xref: /reactos/dll/win32/rsaenh/rsaenh.c (revision 682f85ad)
1 /*
2  * dlls/rsaenh/rsaenh.c
3  * RSAENH - RSA encryption for Wine
4  *
5  * Copyright 2002 TransGaming Technologies (David Hammerton)
6  * Copyright 2004 Mike McCormack for CodeWeavers
7  * Copyright 2004, 2005 Michael Jung
8  * Copyright 2007 Vijay Kiran Kamuju
9  *
10  * This library is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * This library is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with this library; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
23  */
24 
25 #define WIN32_NO_STATUS
26 #define _INC_WINDOWS
27 #define COM_NO_WINDOWS_H
28 
29 #include <config.h>
30 //#include "wine/port.h"
31 #include <wine/library.h>
32 #include <wine/debug.h>
33 
34 //#include <stdarg.h>
35 //#include <stdio.h>
36 
37 #include <windef.h>
38 //#include "winbase.h"
39 #include <winreg.h>
40 #include <wincrypt.h>
41 #include "handle.h"
42 #include "implglue.h"
43 #include <objbase.h>
44 #include <rpcproxy.h>
45 #include <aclapi.h>
46 #include <strsafe.h>
47 
48 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
49 
50 static HINSTANCE instance;
51 
52 /******************************************************************************
53  * CRYPTHASH - hash objects
54  */
55 #define RSAENH_MAGIC_HASH           0x85938417u
56 #define RSAENH_MAX_HASH_SIZE        104
57 #define RSAENH_HASHSTATE_HASHING    1
58 #define RSAENH_HASHSTATE_FINISHED   2
59 typedef struct _RSAENH_TLS1PRF_PARAMS
60 {
61     CRYPT_DATA_BLOB blobLabel;
62     CRYPT_DATA_BLOB blobSeed;
63 } RSAENH_TLS1PRF_PARAMS;
64 
65 typedef struct tagCRYPTHASH
66 {
67     OBJECTHDR    header;
68     ALG_ID       aiAlgid;
69     HCRYPTKEY    hKey;
70     HCRYPTPROV   hProv;
71     DWORD        dwHashSize;
72     DWORD        dwState;
73     HASH_CONTEXT context;
74     BYTE         abHashValue[RSAENH_MAX_HASH_SIZE];
75     PHMAC_INFO   pHMACInfo;
76     RSAENH_TLS1PRF_PARAMS tpPRFParams;
77 } CRYPTHASH;
78 
79 /******************************************************************************
80  * CRYPTKEY - key objects
81  */
82 #define RSAENH_MAGIC_KEY           0x73620457u
83 #define RSAENH_MAX_KEY_SIZE        64
84 #define RSAENH_MAX_BLOCK_SIZE      24
85 #define RSAENH_KEYSTATE_IDLE       0
86 #define RSAENH_KEYSTATE_ENCRYPTING 1
87 #define RSAENH_KEYSTATE_MASTERKEY  2
88 typedef struct _RSAENH_SCHANNEL_INFO
89 {
90     SCHANNEL_ALG saEncAlg;
91     SCHANNEL_ALG saMACAlg;
92     CRYPT_DATA_BLOB blobClientRandom;
93     CRYPT_DATA_BLOB blobServerRandom;
94 } RSAENH_SCHANNEL_INFO;
95 
96 typedef struct tagCRYPTKEY
97 {
98     OBJECTHDR   header;
99     ALG_ID      aiAlgid;
100     HCRYPTPROV  hProv;
101     DWORD       dwMode;
102     DWORD       dwModeBits;
103     DWORD       dwPermissions;
104     DWORD       dwKeyLen;
105     DWORD       dwEffectiveKeyLen;
106     DWORD       dwSaltLen;
107     DWORD       dwBlockLen;
108     DWORD       dwState;
109     KEY_CONTEXT context;
110     BYTE        abKeyValue[RSAENH_MAX_KEY_SIZE];
111     BYTE        abInitVector[RSAENH_MAX_BLOCK_SIZE];
112     BYTE        abChainVector[RSAENH_MAX_BLOCK_SIZE];
113     RSAENH_SCHANNEL_INFO siSChannelInfo;
114     CRYPT_DATA_BLOB blobHmacKey;
115 } CRYPTKEY;
116 
117 /******************************************************************************
118  * KEYCONTAINER - key containers
119  */
120 #define RSAENH_PERSONALITY_BASE        0u
121 #define RSAENH_PERSONALITY_STRONG      1u
122 #define RSAENH_PERSONALITY_ENHANCED    2u
123 #define RSAENH_PERSONALITY_SCHANNEL    3u
124 #define RSAENH_PERSONALITY_AES         4u
125 
126 #define RSAENH_MAGIC_CONTAINER         0x26384993u
127 typedef struct tagKEYCONTAINER
128 {
129     OBJECTHDR    header;
130     DWORD        dwFlags;
131     DWORD        dwPersonality;
132     DWORD        dwEnumAlgsCtr;
133     DWORD        dwEnumContainersCtr;
134     CHAR         szName[MAX_PATH];
135     CHAR         szProvName[MAX_PATH];
136     HCRYPTKEY    hKeyExchangeKeyPair;
137     HCRYPTKEY    hSignatureKeyPair;
138 } KEYCONTAINER;
139 
140 /******************************************************************************
141  * Some magic constants
142  */
143 #define RSAENH_ENCRYPT                    1
144 #define RSAENH_DECRYPT                    0
145 #define RSAENH_HMAC_DEF_IPAD_CHAR      0x36
146 #define RSAENH_HMAC_DEF_OPAD_CHAR      0x5c
147 #define RSAENH_HMAC_DEF_PAD_LEN          64
148 #define RSAENH_HMAC_BLOCK_LEN            64
149 #define RSAENH_DES_EFFECTIVE_KEYLEN      56
150 #define RSAENH_DES_STORAGE_KEYLEN        64
151 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
152 #define RSAENH_3DES112_STORAGE_KEYLEN   128
153 #define RSAENH_3DES_EFFECTIVE_KEYLEN    168
154 #define RSAENH_3DES_STORAGE_KEYLEN      192
155 #define RSAENH_MAGIC_RSA2        0x32415352
156 #define RSAENH_MAGIC_RSA1        0x31415352
157 #define RSAENH_PKC_BLOCKTYPE           0x02
158 #define RSAENH_SSL3_VERSION_MAJOR         3
159 #define RSAENH_SSL3_VERSION_MINOR         0
160 #define RSAENH_TLS1_VERSION_MAJOR         3
161 #define RSAENH_TLS1_VERSION_MINOR         1
162 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
163 
164 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
165 /******************************************************************************
166  * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
167  */
168 #define RSAENH_MAX_ENUMALGS 24
169 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
170 static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
171 {
172  {
173   {CALG_RC2,       40, 40,   56,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
174   {CALG_RC4,       40, 40,   56,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
175   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
176   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
177   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
178   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
179   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
180   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
181   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
182   {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
183   {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
184   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
185   {0,               0,  0,    0,0,                    1,"",         1,""}
186  },
187  {
188   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
189   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
190   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
191   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
192   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
193   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
194   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
195   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
196   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
197   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
198   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
199   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
200   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
201   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
202   {0,               0,  0,    0,0,                    1,"",         1,""}
203  },
204  {
205   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
206   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
207   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
208   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
209   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
210   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
211   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
212   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
213   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
214   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
215   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
216   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
217   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
218   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
219   {0,               0,  0,    0,0,                    1,"",         1,""}
220  },
221  {
222   {CALG_RC2,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2",        24,"RSA Data Security's RC2"},
223   {CALG_RC4,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4",        24,"RSA Data Security's RC4"},
224   {CALG_DES,       56, 56,   56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES",        31,"Data Encryption Standard (DES)"},
225   {CALG_3DES_112, 112,112,  112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
226   {CALG_3DES,     168,168,  168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES",       21,"Three Key Triple DES"},
227   {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
228   {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
229   {CALG_SSL3_SHAMD5,288,288,288,0,                         12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
230   {CALG_MAC,        0,  0,    0,0,                          4,"MAC",        28,"Message Authentication Code"},
231   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
232   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
233   {CALG_HMAC,       0,  0,    0,0,                          5,"HMAC",       18,"Hugo's MAC (HMAC)"},
234   {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1,           12,"PCT1 MASTER",12,"PCT1 Master"},
235   {CALG_SSL2_MASTER,40,40,  192,CRYPT_FLAG_SSL2,           12,"SSL2 MASTER",12,"SSL2 Master"},
236   {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3,           12,"SSL3 MASTER",12,"SSL3 Master"},
237   {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1,           12,"TLS1 MASTER",12,"TLS1 Master"},
238   {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0,                     16,"SCH MASTER HASH",21,"SChannel Master Hash"},
239   {CALG_SCHANNEL_MAC_KEY,0,0,-1,0,                         12,"SCH MAC KEY",17,"SChannel MAC Key"},
240   {CALG_SCHANNEL_ENC_KEY,0,0,-1,0,                         12,"SCH ENC KEY",24,"SChannel Encryption Key"},
241   {CALG_TLS1PRF,    0,  0,   -1,0,                          9,"TLS1 PRF",   28,"TLS1 Pseudo Random Function"},
242   {0,               0,  0,    0,0,                          1,"",            1,""}
243  },
244  {
245   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
246   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
247   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
248   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
249   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
250   {CALG_AES,      128,128,  128,0,                    4,"AES",     35,"Advanced Encryption Standard (AES)"},
251   {CALG_AES_128,  128,128,  128,0,                    8,"AES-128", 39,"Advanced Encryption Standard (AES-128)"},
252   {CALG_AES_192,  192,192,  192,0,                    8,"AES-192", 39,"Advanced Encryption Standard (AES-192)"},
253   {CALG_AES_256,  256,256,  256,0,                    8,"AES-256", 39,"Advanced Encryption Standard (AES-256)"},
254   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
255   {CALG_SHA_256,  256,256,  256,CRYPT_FLAG_SIGNING,   6,"SHA-256", 30,"Secure Hash Algorithm (SHA-256)"},
256   {CALG_SHA_384,  384,384,  384,CRYPT_FLAG_SIGNING,   6,"SHA-384", 30,"Secure Hash Algorithm (SHA-384)"},
257   {CALG_SHA_512,  512,512,  512,CRYPT_FLAG_SIGNING,   6,"SHA-512", 30,"Secure Hash Algorithm (SHA-512)"},
258   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
259   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
260   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
261   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
262   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
263   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
264   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
265   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
266   {0,               0,  0,    0,0,                    1,"",         1,""}
267  }
268 };
269 
270 /******************************************************************************
271  * API forward declarations
272  */
273 BOOL WINAPI
274 RSAENH_CPGetKeyParam(
275     HCRYPTPROV hProv,
276     HCRYPTKEY hKey,
277     DWORD dwParam,
278     BYTE *pbData,
279     DWORD *pdwDataLen,
280     DWORD dwFlags
281 );
282 
283 BOOL WINAPI
284 RSAENH_CPEncrypt(
285     HCRYPTPROV hProv,
286     HCRYPTKEY hKey,
287     HCRYPTHASH hHash,
288     BOOL Final,
289     DWORD dwFlags,
290     BYTE *pbData,
291     DWORD *pdwDataLen,
292     DWORD dwBufLen
293 );
294 
295 BOOL WINAPI
296 RSAENH_CPCreateHash(
297     HCRYPTPROV hProv,
298     ALG_ID Algid,
299     HCRYPTKEY hKey,
300     DWORD dwFlags,
301     HCRYPTHASH *phHash
302 );
303 
304 BOOL WINAPI
305 RSAENH_CPSetHashParam(
306     HCRYPTPROV hProv,
307     HCRYPTHASH hHash,
308     DWORD dwParam,
309     BYTE *pbData, DWORD dwFlags
310 );
311 
312 BOOL WINAPI
313 RSAENH_CPGetHashParam(
314     HCRYPTPROV hProv,
315     HCRYPTHASH hHash,
316     DWORD dwParam,
317     BYTE *pbData,
318     DWORD *pdwDataLen,
319     DWORD dwFlags
320 );
321 
322 BOOL WINAPI
323 RSAENH_CPDestroyHash(
324     HCRYPTPROV hProv,
325     HCRYPTHASH hHash
326 );
327 
328 static BOOL crypt_export_key(
329     CRYPTKEY *pCryptKey,
330     HCRYPTKEY hPubKey,
331     DWORD dwBlobType,
332     DWORD dwFlags,
333     BOOL force,
334     BYTE *pbData,
335     DWORD *pdwDataLen
336 );
337 
338 static BOOL import_key(
339     HCRYPTPROV hProv,
340     const BYTE *pbData,
341     DWORD dwDataLen,
342     HCRYPTKEY hPubKey,
343     DWORD dwFlags,
344     BOOL fStoreKey,
345     HCRYPTKEY *phKey
346 );
347 
348 BOOL WINAPI
349 RSAENH_CPHashData(
350     HCRYPTPROV hProv,
351     HCRYPTHASH hHash,
352     const BYTE *pbData,
353     DWORD dwDataLen,
354     DWORD dwFlags
355 );
356 
357 /******************************************************************************
358  * CSP's handle table (used by all acquired key containers)
359  */
360 static struct handle_table handle_table;
361 
362 /******************************************************************************
363  * DllMain (RSAENH.@)
364  *
365  * Initializes and destroys the handle table for the CSP's handles.
366  */
367 BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID reserved)
368 {
369     switch (fdwReason)
370     {
371         case DLL_PROCESS_ATTACH:
372             instance = hInstance;
373             DisableThreadLibraryCalls(hInstance);
374             init_handle_table(&handle_table);
375             break;
376 
377         case DLL_PROCESS_DETACH:
378             if (reserved) break;
379             destroy_handle_table(&handle_table);
380             break;
381     }
382     return TRUE;
383 }
384 
385 /******************************************************************************
386  * copy_param [Internal]
387  *
388  * Helper function that supports the standard WINAPI protocol for querying data
389  * of dynamic size.
390  *
391  * PARAMS
392  *  pbBuffer      [O]   Buffer where the queried parameter is copied to, if it is large enough.
393  *                      May be NUL if the required buffer size is to be queried only.
394  *  pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
395  *                      Out: Size of parameter pbParam
396  *  pbParam       [I]   Parameter value.
397  *  dwParamSize   [I]   Size of pbParam
398  *
399  * RETURN
400  *  Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
401  *  Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
402  */
403 static inline BOOL copy_param(BYTE *pbBuffer, DWORD *pdwBufferSize, const BYTE *pbParam,
404                               DWORD dwParamSize)
405 {
406     if (pbBuffer)
407     {
408         if (dwParamSize > *pdwBufferSize)
409         {
410             SetLastError(ERROR_MORE_DATA);
411             *pdwBufferSize = dwParamSize;
412             return FALSE;
413         }
414         memcpy(pbBuffer, pbParam, dwParamSize);
415     }
416     *pdwBufferSize = dwParamSize;
417     return TRUE;
418 }
419 
420 static inline KEYCONTAINER* get_key_container(HCRYPTPROV hProv)
421 {
422     KEYCONTAINER *pKeyContainer;
423 
424     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
425         (OBJECTHDR**)&pKeyContainer))
426     {
427         SetLastError(NTE_BAD_UID);
428         return NULL;
429     }
430     return pKeyContainer;
431 }
432 
433 /******************************************************************************
434  * get_algid_info [Internal]
435  *
436  * Query CSP capabilities for a given crypto algorithm.
437  *
438  * PARAMS
439  *  hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
440  *  algid [I] Identifier of the crypto algorithm about which information is requested.
441  *
442  * RETURNS
443  *  Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
444  *  Failure: NULL (algid not supported)
445  */
446 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
447     const PROV_ENUMALGS_EX *iterator;
448     KEYCONTAINER *pKeyContainer;
449 
450     if (!(pKeyContainer = get_key_container(hProv))) return NULL;
451 
452     for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
453         if (iterator->aiAlgid == algid) return iterator;
454     }
455 
456     SetLastError(NTE_BAD_ALGID);
457     return NULL;
458 }
459 
460 /******************************************************************************
461  * copy_data_blob [Internal]
462  *
463  * deeply copies a DATA_BLOB
464  *
465  * PARAMS
466  *  dst [O] That's where the blob will be copied to
467  *  src [I] Source blob
468  *
469  * RETURNS
470  *  Success: TRUE
471  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY
472  *
473  * NOTES
474  *  Use free_data_blob to release resources occupied by copy_data_blob.
475  */
476 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src)
477 {
478     dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
479     if (!dst->pbData) {
480         SetLastError(NTE_NO_MEMORY);
481         return FALSE;
482     }
483     dst->cbData = src->cbData;
484     memcpy(dst->pbData, src->pbData, src->cbData);
485     return TRUE;
486 }
487 
488 /******************************************************************************
489  * concat_data_blobs [Internal]
490  *
491  * Concatenates two blobs
492  *
493  * PARAMS
494  *  dst  [O] The new blob will be copied here
495  *  src1 [I] Prefix blob
496  *  src2 [I] Appendix blob
497  *
498  * RETURNS
499  *  Success: TRUE
500  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
501  *
502  * NOTES
503  *  Release resources occupied by concat_data_blobs with free_data_blobs
504  */
505 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src1,
506                                      const PCRYPT_DATA_BLOB src2)
507 {
508     dst->cbData = src1->cbData + src2->cbData;
509     dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
510     if (!dst->pbData) {
511         SetLastError(NTE_NO_MEMORY);
512         return FALSE;
513     }
514     memcpy(dst->pbData, src1->pbData, src1->cbData);
515     memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
516     return TRUE;
517 }
518 
519 /******************************************************************************
520  * free_data_blob [Internal]
521  *
522  * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
523  *
524  * PARAMS
525  *  pBlob [I] Heap space occupied by pBlob->pbData is released
526  */
527 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
528     HeapFree(GetProcessHeap(), 0, pBlob->pbData);
529 }
530 
531 /******************************************************************************
532  * init_data_blob [Internal]
533  */
534 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
535     pBlob->pbData = NULL;
536     pBlob->cbData = 0;
537 }
538 
539 /******************************************************************************
540  * free_hmac_info [Internal]
541  *
542  * Deeply free an HMAC_INFO struct.
543  *
544  * PARAMS
545  *  hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
546  *
547  * NOTES
548  *  See Internet RFC 2104 for details on the HMAC algorithm.
549  */
550 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
551     if (!hmac_info) return;
552     HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
553     HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
554     HeapFree(GetProcessHeap(), 0, hmac_info);
555 }
556 
557 /******************************************************************************
558  * copy_hmac_info [Internal]
559  *
560  * Deeply copy an HMAC_INFO struct
561  *
562  * PARAMS
563  *  dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
564  *  src [I] Pointer to the HMAC_INFO struct to be copied.
565  *
566  * RETURNS
567  *  Success: TRUE
568  *  Failure: FALSE
569  *
570  * NOTES
571  *  See Internet RFC 2104 for details on the HMAC algorithm.
572  */
573 static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
574     if (!src) return FALSE;
575     *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
576     if (!*dst) return FALSE;
577     **dst = *src;
578     (*dst)->pbInnerString = NULL;
579     (*dst)->pbOuterString = NULL;
580     if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
581     (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
582     if (!(*dst)->pbInnerString) {
583         free_hmac_info(*dst);
584         return FALSE;
585     }
586     if (src->cbInnerString)
587         memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
588     else
589         memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
590     if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
591     (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
592     if (!(*dst)->pbOuterString) {
593         free_hmac_info(*dst);
594         return FALSE;
595     }
596     if (src->cbOuterString)
597         memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
598     else
599         memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
600     return TRUE;
601 }
602 
603 /******************************************************************************
604  * destroy_hash [Internal]
605  *
606  * Destructor for hash objects
607  *
608  * PARAMS
609  *  pCryptHash [I] Pointer to the hash object to be destroyed.
610  *                 Will be invalid after function returns!
611  */
612 static void destroy_hash(OBJECTHDR *pObject)
613 {
614     CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
615 
616     free_hmac_info(pCryptHash->pHMACInfo);
617     free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
618     free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
619     HeapFree(GetProcessHeap(), 0, pCryptHash);
620 }
621 
622 /******************************************************************************
623  * init_hash [Internal]
624  *
625  * Initialize (or reset) a hash object
626  *
627  * PARAMS
628  *  pCryptHash    [I] The hash object to be initialized.
629  */
630 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
631     DWORD dwLen;
632 
633     switch (pCryptHash->aiAlgid)
634     {
635         case CALG_HMAC:
636             if (pCryptHash->pHMACInfo) {
637                 const PROV_ENUMALGS_EX *pAlgInfo;
638 
639                 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
640                 if (!pAlgInfo) return FALSE;
641                 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
642                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
643                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
644                                  pCryptHash->pHMACInfo->pbInnerString,
645                                  pCryptHash->pHMACInfo->cbInnerString);
646             }
647             return TRUE;
648 
649         case CALG_MAC:
650             dwLen = sizeof(DWORD);
651             RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN,
652                                  (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
653             pCryptHash->dwHashSize >>= 3;
654             return TRUE;
655 
656         default:
657             return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
658     }
659 }
660 
661 /******************************************************************************
662  * update_hash [Internal]
663  *
664  * Hashes the given data and updates the hash object's state accordingly
665  *
666  * PARAMS
667  *  pCryptHash [I] Hash object to be updated.
668  *  pbData     [I] Pointer to data stream to be hashed.
669  *  dwDataLen  [I] Length of data stream.
670  */
671 static inline void update_hash(CRYPTHASH *pCryptHash, const BYTE *pbData, DWORD dwDataLen)
672 {
673     BYTE *pbTemp;
674 
675     switch (pCryptHash->aiAlgid)
676     {
677         case CALG_HMAC:
678             if (pCryptHash->pHMACInfo)
679                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
680                                  pbData, dwDataLen);
681             break;
682 
683         case CALG_MAC:
684             pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
685             if (!pbTemp) return;
686             memcpy(pbTemp, pbData, dwDataLen);
687             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0,
688                              pbTemp, &dwDataLen, dwDataLen);
689             HeapFree(GetProcessHeap(), 0, pbTemp);
690             break;
691 
692         default:
693             update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
694     }
695 }
696 
697 /******************************************************************************
698  * finalize_hash [Internal]
699  *
700  * Finalizes the hash, after all data has been hashed with update_hash.
701  * No additional data can be hashed afterwards until the hash gets initialized again.
702  *
703  * PARAMS
704  *  pCryptHash [I] Hash object to be finalized.
705  */
706 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
707     DWORD dwDataLen;
708 
709     switch (pCryptHash->aiAlgid)
710     {
711         case CALG_HMAC:
712             if (pCryptHash->pHMACInfo) {
713                 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
714 
715                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
716                                    pCryptHash->abHashValue);
717                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
718                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
719                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
720                                  pCryptHash->pHMACInfo->pbOuterString,
721                                  pCryptHash->pHMACInfo->cbOuterString);
722                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
723                                  abHashValue, pCryptHash->dwHashSize);
724                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
725                                    pCryptHash->abHashValue);
726             }
727             break;
728 
729         case CALG_MAC:
730             dwDataLen = 0;
731             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0,
732                              pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
733             break;
734 
735         default:
736             finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
737     }
738 }
739 
740 /******************************************************************************
741  * destroy_key [Internal]
742  *
743  * Destructor for key objects
744  *
745  * PARAMS
746  *  pCryptKey [I] Pointer to the key object to be destroyed.
747  *                Will be invalid after function returns!
748  */
749 static void destroy_key(OBJECTHDR *pObject)
750 {
751     CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
752 
753     free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
754     free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
755     free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
756     free_data_blob(&pCryptKey->blobHmacKey);
757     HeapFree(GetProcessHeap(), 0, pCryptKey);
758 }
759 
760 /******************************************************************************
761  * setup_key [Internal]
762  *
763  * Initialize (or reset) a key object
764  *
765  * PARAMS
766  *  pCryptKey    [I] The key object to be initialized.
767  */
768 static inline void setup_key(CRYPTKEY *pCryptKey) {
769     pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
770     memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
771     setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen,
772                    pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
773                    pCryptKey->abKeyValue);
774 }
775 
776 /******************************************************************************
777  * new_key [Internal]
778  *
779  * Creates a new key object without assigning the actual binary key value.
780  * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
781  *
782  * PARAMS
783  *  hProv      [I] Handle to the provider to which the created key will belong.
784  *  aiAlgid    [I] The new key shall use the crypto algorithm identified by aiAlgid.
785  *  dwFlags    [I] Upper 16 bits give the key length.
786  *                 Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
787  *                 CRYPT_NO_SALT
788  *  ppCryptKey [O] Pointer to the created key
789  *
790  * RETURNS
791  *  Success: Handle to the created key.
792  *  Failure: INVALID_HANDLE_VALUE
793  */
794 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
795 {
796     HCRYPTKEY hCryptKey;
797     CRYPTKEY *pCryptKey;
798     DWORD dwKeyLen = HIWORD(dwFlags), bKeyLen = dwKeyLen;
799     const PROV_ENUMALGS_EX *peaAlgidInfo;
800 
801     *ppCryptKey = NULL;
802 
803     /*
804      * Retrieve the CSP's capabilities for the given ALG_ID value
805      */
806     peaAlgidInfo = get_algid_info(hProv, aiAlgid);
807     if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
808 
809     TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName),
810           dwKeyLen);
811     /*
812      * Assume the default key length, if none is specified explicitly
813      */
814     if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
815 
816     /*
817      * Check if the requested key length is supported by the current CSP.
818      * Adjust key length's for DES algorithms.
819      */
820     switch (aiAlgid) {
821         case CALG_DES:
822             if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
823                 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
824             }
825             if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
826                 SetLastError(NTE_BAD_FLAGS);
827                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
828             }
829             break;
830 
831         case CALG_3DES_112:
832             if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
833                 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
834             }
835             if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
836                 SetLastError(NTE_BAD_FLAGS);
837                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
838             }
839             break;
840 
841         case CALG_3DES:
842             if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
843                 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
844             }
845             if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
846                 SetLastError(NTE_BAD_FLAGS);
847                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
848             }
849             break;
850 
851         case CALG_HMAC:
852             /* Avoid the key length check for HMAC keys, which have unlimited
853              * length.
854              */
855             break;
856 
857         case CALG_AES:
858             if (!bKeyLen)
859             {
860                 TRACE("missing key len for CALG_AES\n");
861                 SetLastError(NTE_BAD_ALGID);
862                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
863             }
864             /* fall through */
865         default:
866             if (dwKeyLen % 8 ||
867                 dwKeyLen > peaAlgidInfo->dwMaxLen ||
868                 dwKeyLen < peaAlgidInfo->dwMinLen)
869             {
870                 TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen,
871                       peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen);
872                 SetLastError(NTE_BAD_DATA);
873                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
874             }
875     }
876 
877     hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
878                            destroy_key, (OBJECTHDR**)&pCryptKey);
879     if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
880     {
881         KEYCONTAINER *pKeyContainer = get_key_container(hProv);
882         pCryptKey->aiAlgid = aiAlgid;
883         pCryptKey->hProv = hProv;
884         pCryptKey->dwModeBits = 0;
885         pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE |
886                                    CRYPT_MAC;
887         if (dwFlags & CRYPT_EXPORTABLE)
888             pCryptKey->dwPermissions |= CRYPT_EXPORT;
889         pCryptKey->dwKeyLen = dwKeyLen >> 3;
890         pCryptKey->dwEffectiveKeyLen = 0;
891 
892         /*
893          * For compatibility reasons a 40 bit key on the Enhanced
894          * provider will not have salt
895          */
896         if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_ENHANCED
897             && (aiAlgid == CALG_RC2 || aiAlgid == CALG_RC4)
898             && (dwFlags & CRYPT_CREATE_SALT) && dwKeyLen == 40)
899             pCryptKey->dwSaltLen = 0;
900         else if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT)))
901             pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
902         else
903             pCryptKey->dwSaltLen = 0;
904         memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
905         memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
906         memset(&pCryptKey->siSChannelInfo.saEncAlg, 0, sizeof(pCryptKey->siSChannelInfo.saEncAlg));
907         memset(&pCryptKey->siSChannelInfo.saMACAlg, 0, sizeof(pCryptKey->siSChannelInfo.saMACAlg));
908         init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
909         init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
910         init_data_blob(&pCryptKey->blobHmacKey);
911 
912         switch(aiAlgid)
913         {
914             case CALG_PCT1_MASTER:
915             case CALG_SSL2_MASTER:
916             case CALG_SSL3_MASTER:
917             case CALG_TLS1_MASTER:
918             case CALG_RC4:
919                 pCryptKey->dwBlockLen = 0;
920                 pCryptKey->dwMode = 0;
921                 break;
922 
923             case CALG_RC2:
924             case CALG_DES:
925             case CALG_3DES_112:
926             case CALG_3DES:
927                 pCryptKey->dwBlockLen = 8;
928                 pCryptKey->dwMode = CRYPT_MODE_CBC;
929                 break;
930 
931             case CALG_AES:
932             case CALG_AES_128:
933             case CALG_AES_192:
934             case CALG_AES_256:
935                 pCryptKey->dwBlockLen = 16;
936                 pCryptKey->dwMode = CRYPT_MODE_CBC;
937                 break;
938 
939             case CALG_RSA_KEYX:
940             case CALG_RSA_SIGN:
941                 pCryptKey->dwBlockLen = dwKeyLen >> 3;
942                 pCryptKey->dwMode = 0;
943                 break;
944 
945             case CALG_HMAC:
946                 pCryptKey->dwBlockLen = 0;
947                 pCryptKey->dwMode = 0;
948                 break;
949         }
950 
951         *ppCryptKey = pCryptKey;
952     }
953 
954     return hCryptKey;
955 }
956 
957 /******************************************************************************
958  * map_key_spec_to_key_pair_name [Internal]
959  *
960  * Returns the name of the registry value associated with a key spec.
961  *
962  * PARAMS
963  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
964  *
965  * RETURNS
966  *  Success: Name of registry value.
967  *  Failure: NULL
968  */
969 static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
970 {
971     LPCSTR szValueName;
972 
973     switch (dwKeySpec)
974     {
975     case AT_KEYEXCHANGE:
976         szValueName = "KeyExchangeKeyPair";
977         break;
978     case AT_SIGNATURE:
979         szValueName = "SignatureKeyPair";
980         break;
981     default:
982         WARN("invalid key spec %d\n", dwKeySpec);
983         szValueName = NULL;
984     }
985     return szValueName;
986 }
987 
988 /******************************************************************************
989  * store_key_pair [Internal]
990  *
991  * Stores a key pair to the registry
992  *
993  * PARAMS
994  *  hCryptKey     [I] Handle to the key to be stored
995  *  hKey          [I] Registry key where the key pair is to be stored
996  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
997  *  dwFlags       [I] Flags for protecting the key
998  */
999 static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
1000 {
1001     LPCSTR szValueName;
1002     DATA_BLOB blobIn, blobOut;
1003     CRYPTKEY *pKey;
1004     DWORD dwLen;
1005     BYTE *pbKey;
1006 
1007     if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1008         return;
1009     if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1010                       (OBJECTHDR**)&pKey))
1011     {
1012         if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
1013         {
1014             pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1015             if (pbKey)
1016             {
1017                 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
1018                     &dwLen))
1019                 {
1020                     blobIn.pbData = pbKey;
1021                     blobIn.cbData = dwLen;
1022 
1023                     if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
1024                         dwFlags, &blobOut))
1025                     {
1026                         RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
1027                                        blobOut.pbData, blobOut.cbData);
1028                         LocalFree(blobOut.pbData);
1029                     }
1030                 }
1031                 HeapFree(GetProcessHeap(), 0, pbKey);
1032             }
1033         }
1034     }
1035 }
1036 
1037 /******************************************************************************
1038  * map_key_spec_to_permissions_name [Internal]
1039  *
1040  * Returns the name of the registry value associated with the permissions for
1041  * a key spec.
1042  *
1043  * PARAMS
1044  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
1045  *
1046  * RETURNS
1047  *  Success: Name of registry value.
1048  *  Failure: NULL
1049  */
1050 static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
1051 {
1052     LPCSTR szValueName;
1053 
1054     switch (dwKeySpec)
1055     {
1056     case AT_KEYEXCHANGE:
1057         szValueName = "KeyExchangePermissions";
1058         break;
1059     case AT_SIGNATURE:
1060         szValueName = "SignaturePermissions";
1061         break;
1062     default:
1063         WARN("invalid key spec %d\n", dwKeySpec);
1064         szValueName = NULL;
1065     }
1066     return szValueName;
1067 }
1068 
1069 /******************************************************************************
1070  * store_key_permissions [Internal]
1071  *
1072  * Stores a key's permissions to the registry
1073  *
1074  * PARAMS
1075  *  hCryptKey     [I] Handle to the key whose permissions are to be stored
1076  *  hKey          [I] Registry key where the key permissions are to be stored
1077  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
1078  */
1079 static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
1080 {
1081     LPCSTR szValueName;
1082     CRYPTKEY *pKey;
1083 
1084     if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1085         return;
1086     if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1087                       (OBJECTHDR**)&pKey))
1088         RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
1089                        (BYTE *)&pKey->dwPermissions,
1090                        sizeof(pKey->dwPermissions));
1091 }
1092 
1093 /******************************************************************************
1094  * create_container_key [Internal]
1095  *
1096  * Creates the registry key for a key container's persistent storage.
1097  *
1098  * PARAMS
1099  *  pKeyContainer [I] Pointer to the key container
1100  *  sam           [I] Desired registry access
1101  *  phKey         [O] Returned key
1102  */
1103 static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
1104 {
1105     CHAR szRSABase[MAX_PATH];
1106     HKEY hRootKey;
1107 
1108     StringCbPrintfA(szRSABase, sizeof(szRSABase), RSAENH_REGKEY, pKeyContainer->szName);
1109 
1110     if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1111         hRootKey = HKEY_LOCAL_MACHINE;
1112     else
1113         hRootKey = HKEY_CURRENT_USER;
1114 
1115     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1116     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1117     return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
1118                            REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
1119                            == ERROR_SUCCESS;
1120 }
1121 
1122 /******************************************************************************
1123  * open_container_key [Internal]
1124  *
1125  * Opens a key container's persistent storage for reading.
1126  *
1127  * PARAMS
1128  *  pszContainerName [I] Name of the container to be opened.  May be the empty
1129  *                       string if the parent key of all containers is to be
1130  *                       opened.
1131  *  dwFlags          [I] Flags indicating which keyset to be opened.
1132  *  phKey            [O] Returned key
1133  */
1134 static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, REGSAM access, HKEY *phKey)
1135 {
1136     CHAR szRSABase[MAX_PATH];
1137     HKEY hRootKey;
1138 
1139     sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1140 
1141     if (dwFlags & CRYPT_MACHINE_KEYSET)
1142         hRootKey = HKEY_LOCAL_MACHINE;
1143     else
1144         hRootKey = HKEY_CURRENT_USER;
1145 
1146     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1147     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1148     return RegOpenKeyExA(hRootKey, szRSABase, 0, access, phKey) ==
1149                          ERROR_SUCCESS;
1150 }
1151 
1152 /******************************************************************************
1153  * delete_container_key [Internal]
1154  *
1155  * Deletes a key container's persistent storage.
1156  *
1157  * PARAMS
1158  *  pszContainerName [I] Name of the container to be opened.
1159  *  dwFlags          [I] Flags indicating which keyset to be opened.
1160  */
1161 static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
1162 {
1163     CHAR szRegKey[MAX_PATH];
1164 
1165     if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, pszContainerName) >= MAX_PATH) {
1166         SetLastError(NTE_BAD_KEYSET_PARAM);
1167         return FALSE;
1168     } else {
1169         HKEY hRootKey;
1170         if (dwFlags & CRYPT_MACHINE_KEYSET)
1171             hRootKey = HKEY_LOCAL_MACHINE;
1172         else
1173             hRootKey = HKEY_CURRENT_USER;
1174         if (!RegDeleteKeyA(hRootKey, szRegKey)) {
1175             SetLastError(ERROR_SUCCESS);
1176             return TRUE;
1177         } else {
1178             SetLastError(NTE_BAD_KEYSET);
1179             return FALSE;
1180         }
1181     }
1182 }
1183 
1184 /******************************************************************************
1185  * store_key_container_keys [Internal]
1186  *
1187  * Stores key container's keys in a persistent location.
1188  *
1189  * PARAMS
1190  *  pKeyContainer [I] Pointer to the key container whose keys are to be saved
1191  */
1192 static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
1193 {
1194     HKEY hKey;
1195     DWORD dwFlags;
1196 
1197     /* On WinXP, persistent keys are stored in a file located at:
1198      * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1199      */
1200 
1201     if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1202         dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1203     else
1204         dwFlags = 0;
1205 
1206     if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1207     {
1208         store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
1209                        AT_KEYEXCHANGE, dwFlags);
1210         store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
1211                        AT_SIGNATURE, dwFlags);
1212         RegCloseKey(hKey);
1213     }
1214 }
1215 
1216 /******************************************************************************
1217  * store_key_container_permissions [Internal]
1218  *
1219  * Stores key container's key permissions in a persistent location.
1220  *
1221  * PARAMS
1222  *  pKeyContainer [I] Pointer to the key container whose key permissions are to
1223  *                    be saved
1224  */
1225 static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
1226 {
1227     HKEY hKey;
1228 
1229     if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1230     {
1231         store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
1232                        AT_KEYEXCHANGE);
1233         store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
1234                        AT_SIGNATURE);
1235         RegCloseKey(hKey);
1236     }
1237 }
1238 
1239 /******************************************************************************
1240  * release_key_container_keys [Internal]
1241  *
1242  * Releases key container's keys.
1243  *
1244  * PARAMS
1245  *  pKeyContainer [I] Pointer to the key container whose keys are to be released.
1246  */
1247 static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
1248 {
1249     release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
1250                    RSAENH_MAGIC_KEY);
1251     release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
1252                    RSAENH_MAGIC_KEY);
1253 }
1254 
1255 /******************************************************************************
1256  * destroy_key_container [Internal]
1257  *
1258  * Destructor for key containers.
1259  *
1260  * PARAMS
1261  *  pObjectHdr [I] Pointer to the key container to be destroyed.
1262  */
1263 static void destroy_key_container(OBJECTHDR *pObjectHdr)
1264 {
1265     KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
1266 
1267     if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
1268     {
1269         store_key_container_keys(pKeyContainer);
1270         store_key_container_permissions(pKeyContainer);
1271         release_key_container_keys(pKeyContainer);
1272     }
1273     else
1274         release_key_container_keys(pKeyContainer);
1275     HeapFree( GetProcessHeap(), 0, pKeyContainer );
1276 }
1277 
1278 /******************************************************************************
1279  * new_key_container [Internal]
1280  *
1281  * Create a new key container. The personality (RSA Base, Strong or Enhanced CP)
1282  * of the CSP is determined via the pVTable->pszProvName string.
1283  *
1284  * PARAMS
1285  *  pszContainerName [I] Name of the key container.
1286  *  pVTable          [I] Callback functions and context info provided by the OS
1287  *
1288  * RETURNS
1289  *  Success: Handle to the new key container.
1290  *  Failure: INVALID_HANDLE_VALUE
1291  */
1292 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1293 {
1294     KEYCONTAINER *pKeyContainer;
1295     HCRYPTPROV hKeyContainer;
1296 
1297     hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
1298                                destroy_key_container, (OBJECTHDR**)&pKeyContainer);
1299     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1300     {
1301         lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
1302         pKeyContainer->dwFlags = dwFlags;
1303         pKeyContainer->dwEnumAlgsCtr = 0;
1304         pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1305         pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1306         if (pVTable && pVTable->pszProvName) {
1307             lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
1308             if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
1309                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
1310             } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
1311                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
1312             } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) {
1313                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1314             } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A) ||
1315                        !strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_XP_A)) {
1316                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
1317             } else {
1318                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1319             }
1320         }
1321 
1322         /* The new key container has to be inserted into the CSP immediately
1323          * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1324         if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1325             HKEY hKey;
1326 
1327             if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1328                 RegCloseKey(hKey);
1329         }
1330     }
1331 
1332     return hKeyContainer;
1333 }
1334 
1335 /******************************************************************************
1336  * read_key_value [Internal]
1337  *
1338  * Reads a key pair value from the registry
1339  *
1340  * PARAMS
1341  *  hKeyContainer [I] Crypt provider to use to import the key
1342  *  hKey          [I] Registry key from which to read the key pair
1343  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
1344  *  dwFlags       [I] Flags for unprotecting the key
1345  *  phCryptKey    [O] Returned key
1346  */
1347 static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
1348 {
1349     LPCSTR szValueName;
1350     DWORD dwValueType, dwLen;
1351     BYTE *pbKey;
1352     DATA_BLOB blobIn, blobOut;
1353     BOOL ret = FALSE;
1354 
1355     if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1356         return FALSE;
1357     if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
1358         ERROR_SUCCESS)
1359     {
1360         pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1361         if (pbKey)
1362         {
1363             if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
1364                 ERROR_SUCCESS)
1365             {
1366                 blobIn.pbData = pbKey;
1367                 blobIn.cbData = dwLen;
1368 
1369                 if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
1370                     dwFlags, &blobOut))
1371                 {
1372                     ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1373                                      FALSE, phCryptKey);
1374                     LocalFree(blobOut.pbData);
1375                 }
1376             }
1377             HeapFree(GetProcessHeap(), 0, pbKey);
1378         }
1379     }
1380     if (ret)
1381     {
1382         CRYPTKEY *pKey;
1383 
1384         if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
1385                           (OBJECTHDR**)&pKey))
1386         {
1387             if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1388             {
1389                 dwLen = sizeof(pKey->dwPermissions);
1390                 RegQueryValueExA(hKey, szValueName, 0, NULL,
1391                                  (BYTE *)&pKey->dwPermissions, &dwLen);
1392             }
1393         }
1394     }
1395     return ret;
1396 }
1397 
1398 /******************************************************************************
1399  * read_key_container [Internal]
1400  *
1401  * Tries to read the persistent state of the key container (mainly the signature
1402  * and key exchange private keys) given by pszContainerName.
1403  *
1404  * PARAMS
1405  *  pszContainerName [I] Name of the key container to read from the registry
1406  *  pVTable          [I] Pointer to context data provided by the operating system
1407  *
1408  * RETURNS
1409  *  Success: Handle to the key container read from the registry
1410  *  Failure: INVALID_HANDLE_VALUE
1411  */
1412 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1413 {
1414     HKEY hKey;
1415     KEYCONTAINER *pKeyContainer;
1416     HCRYPTPROV hKeyContainer;
1417     HCRYPTKEY hCryptKey;
1418 
1419     if (!open_container_key(pszContainerName, dwFlags, KEY_READ, &hKey))
1420     {
1421         SetLastError(NTE_BAD_KEYSET);
1422         return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1423     }
1424 
1425     hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1426     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1427     {
1428         DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
1429             CRYPTPROTECT_LOCAL_MACHINE : 0;
1430 
1431         if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER,
1432                            (OBJECTHDR**)&pKeyContainer))
1433             return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1434 
1435         /* read_key_value calls import_key, which calls import_private_key,
1436          * which implicitly installs the key value into the appropriate key
1437          * container key.  Thus the ref count is incremented twice, once for
1438          * the output key value, and once for the implicit install, and needs
1439          * to be decremented to balance the two.
1440          */
1441         if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
1442             dwProtectFlags, &hCryptKey))
1443             release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1444         if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
1445             dwProtectFlags, &hCryptKey))
1446             release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1447     }
1448 
1449     return hKeyContainer;
1450 }
1451 
1452 /******************************************************************************
1453  * build_hash_signature [Internal]
1454  *
1455  * Builds a padded version of a hash to match the length of the RSA key modulus.
1456  *
1457  * PARAMS
1458  *  pbSignature [O] The padded hash object is stored here.
1459  *  dwLen       [I] Length of the pbSignature buffer.
1460  *  aiAlgid     [I] Algorithm identifier of the hash to be padded.
1461  *  abHashValue [I] The value of the hash object.
1462  *  dwHashLen   [I] Length of the hash value.
1463  *  dwFlags     [I] Selection of padding algorithm.
1464  *
1465  * RETURNS
1466  *  Success: TRUE
1467  *  Failure: FALSE (NTE_BAD_ALGID)
1468  */
1469 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid,
1470                                  const BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags)
1471 {
1472     /* These prefixes are meant to be concatenated with hash values of the
1473      * respective kind to form a PKCS #7 DigestInfo. */
1474     static const struct tagOIDDescriptor {
1475         ALG_ID aiAlgid;
1476         DWORD dwLen;
1477         const BYTE abOID[19];
1478     } aOIDDescriptor[] = {
1479         { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1480                           0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1481         { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1482                           0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1483         { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1484                           0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1485         { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03,
1486                           0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1487         { CALG_SHA_256, 19, { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1488                               0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1489                               0x05, 0x00, 0x04, 0x20 } },
1490         { CALG_SHA_384, 19, { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1491                               0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
1492                               0x05, 0x00, 0x04, 0x30 } },
1493         { CALG_SHA_512, 19, { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1494                               0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
1495                               0x05, 0x00, 0x04, 0x40 } },
1496         { CALG_SSL3_SHAMD5, 0, { 0 } },
1497         { 0,        0,  { 0 } }
1498     };
1499     DWORD dwIdxOID, i, j;
1500 
1501     for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1502         if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1503     }
1504 
1505     if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1506         SetLastError(NTE_BAD_ALGID);
1507         return FALSE;
1508     }
1509 
1510     /* Build the padded signature */
1511     if (dwFlags & CRYPT_X931_FORMAT) {
1512         pbSignature[0] = 0x6b;
1513         for (i=1; i < dwLen - dwHashLen - 3; i++) {
1514             pbSignature[i] = 0xbb;
1515         }
1516         pbSignature[i++] = 0xba;
1517         for (j=0; j < dwHashLen; j++, i++) {
1518             pbSignature[i] = abHashValue[j];
1519         }
1520         pbSignature[i++] = 0x33;
1521         pbSignature[i++] = 0xcc;
1522     } else {
1523         pbSignature[0] = 0x00;
1524         pbSignature[1] = 0x01;
1525         if (dwFlags & CRYPT_NOHASHOID) {
1526             for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1527                 pbSignature[i] = 0xff;
1528             }
1529             pbSignature[i++] = 0x00;
1530         } else {
1531             for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1532                 pbSignature[i] = 0xff;
1533             }
1534             pbSignature[i++] = 0x00;
1535             for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1536                 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1537             }
1538         }
1539         for (j=0; j < dwHashLen; j++) {
1540             pbSignature[i++] = abHashValue[j];
1541         }
1542     }
1543 
1544     return TRUE;
1545 }
1546 
1547 /******************************************************************************
1548  * tls1_p [Internal]
1549  *
1550  * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1551  * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1552  * The pseudo random stream generated by this function is exclusive or'ed with
1553  * the data in pbBuffer.
1554  *
1555  * PARAMS
1556  *  hHMAC       [I]   HMAC object, which will be used in pseudo random generation
1557  *  pblobSeed   [I]   Seed value
1558  *  pbBuffer    [I/O] Pseudo random stream will be xor'ed to the provided data
1559  *  dwBufferLen [I]   Number of pseudo random bytes desired
1560  *
1561  * RETURNS
1562  *  Success: TRUE
1563  *  Failure: FALSE
1564  */
1565 static BOOL tls1_p(HCRYPTHASH hHMAC, const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer,
1566                    DWORD dwBufferLen)
1567 {
1568     CRYPTHASH *pHMAC;
1569     BYTE abAi[RSAENH_MAX_HASH_SIZE];
1570     DWORD i = 0;
1571 
1572     if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1573         SetLastError(NTE_BAD_HASH);
1574         return FALSE;
1575     }
1576 
1577     /* compute A_1 = HMAC(seed) */
1578     init_hash(pHMAC);
1579     update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1580     finalize_hash(pHMAC);
1581     memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1582 
1583     do {
1584         /* compute HMAC(A_i + seed) */
1585         init_hash(pHMAC);
1586         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1587         update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1588         finalize_hash(pHMAC);
1589 
1590         /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1591         do {
1592             if (i >= dwBufferLen) break;
1593             pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1594             i++;
1595         } while (i % pHMAC->dwHashSize);
1596 
1597         /* compute A_{i+1} = HMAC(A_i) */
1598         init_hash(pHMAC);
1599         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1600         finalize_hash(pHMAC);
1601         memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1602     } while (i < dwBufferLen);
1603 
1604     return TRUE;
1605 }
1606 
1607 /******************************************************************************
1608  * tls1_prf [Internal]
1609  *
1610  * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1611  *
1612  * PARAMS
1613  *  hProv       [I] Key container used to compute the pseudo random stream
1614  *  hSecret     [I] Key that holds the (pre-)master secret
1615  *  pblobLabel  [I] Descriptive label
1616  *  pblobSeed   [I] Seed value
1617  *  pbBuffer    [O] Pseudo random numbers will be stored here
1618  *  dwBufferLen [I] Number of pseudo random bytes desired
1619  *
1620  * RETURNS
1621  *  Success: TRUE
1622  *  Failure: FALSE
1623  */
1624 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, const PCRYPT_DATA_BLOB pblobLabel,
1625                      const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer, DWORD dwBufferLen)
1626 {
1627     HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1628     HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1629     HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1630     CRYPTKEY *pHalfSecret, *pSecret;
1631     DWORD dwHalfSecretLen;
1632     BOOL result = FALSE;
1633     CRYPT_DATA_BLOB blobLabelSeed;
1634 
1635     TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
1636           hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1637 
1638     if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1639         SetLastError(NTE_FAIL);
1640         return FALSE;
1641     }
1642 
1643     dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1644 
1645     /* concatenation of the label and the seed */
1646     if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1647 
1648     /* zero out the buffer, since two random streams will be xor'ed into it. */
1649     memset(pbBuffer, 0, dwBufferLen);
1650 
1651     /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1652      * the biggest range of valid key lengths. */
1653     hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1654     if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1655 
1656     /* Derive an HMAC_MD5 hash and call the helper function. */
1657     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1658     if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1659     hmacInfo.HashAlgid = CALG_MD5;
1660     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1661     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1662 
1663     /* Reconfigure to HMAC_SHA hash and call helper function again. */
1664     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1665     hmacInfo.HashAlgid = CALG_SHA;
1666     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1667     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1668 
1669     result = TRUE;
1670 exit:
1671     release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1672     if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1673     free_data_blob(&blobLabelSeed);
1674     return result;
1675 }
1676 
1677 /******************************************************************************
1678  * pad_data [Internal]
1679  *
1680  * Helper function for data padding according to PKCS1 #2
1681  *
1682  * PARAMS
1683  *  abData      [I] The data to be padded
1684  *  dwDataLen   [I] Length of the data
1685  *  abBuffer    [O] Padded data will be stored here
1686  *  dwBufferLen [I] Length of the buffer (also length of padded data)
1687  *  dwFlags     [I] Padding format (CRYPT_SSL2_FALLBACK)
1688  *
1689  * RETURN
1690  *  Success: TRUE
1691  *  Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1692  */
1693 static BOOL pad_data(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen,
1694                      DWORD dwFlags)
1695 {
1696     DWORD i;
1697 
1698     /* Ensure there is enough space for PKCS1 #2 padding */
1699     if (dwDataLen > dwBufferLen-11) {
1700         SetLastError(NTE_BAD_LEN);
1701         return FALSE;
1702     }
1703 
1704     memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);
1705 
1706     abBuffer[0] = 0x00;
1707     abBuffer[1] = RSAENH_PKC_BLOCKTYPE;
1708     for (i=2; i < dwBufferLen - dwDataLen - 1; i++)
1709         do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1710     if (dwFlags & CRYPT_SSL2_FALLBACK)
1711         for (i-=8; i < dwBufferLen - dwDataLen - 1; i++)
1712             abBuffer[i] = 0x03;
1713     abBuffer[i] = 0x00;
1714 
1715     return TRUE;
1716 }
1717 
1718 /******************************************************************************
1719  * unpad_data [Internal]
1720  *
1721  * Remove the PKCS1 padding from RSA decrypted data
1722  *
1723  * PARAMS
1724  *  abData      [I]   The padded data
1725  *  dwDataLen   [I]   Length of the padded data
1726  *  abBuffer    [O]   Data without padding will be stored here
1727  *  dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1728  *  dwFlags     [I]   Currently none defined
1729  *
1730  * RETURNS
1731  *  Success: TRUE
1732  *  Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1733  */
1734 static BOOL unpad_data(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen,
1735                        DWORD dwFlags)
1736 {
1737     DWORD i;
1738 
1739     if (dwDataLen < 3)
1740     {
1741         SetLastError(NTE_BAD_DATA);
1742         return FALSE;
1743     }
1744     for (i=2; i<dwDataLen; i++)
1745         if (!abData[i])
1746             break;
1747 
1748     if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1749         (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1750     {
1751         SetLastError(NTE_BAD_DATA);
1752         return FALSE;
1753     }
1754 
1755     *dwBufferLen = dwDataLen - i - 1;
1756     memmove(abBuffer, abData + i + 1, *dwBufferLen);
1757     return TRUE;
1758 }
1759 
1760 /******************************************************************************
1761  * CPAcquireContext (RSAENH.@)
1762  *
1763  * Acquire a handle to the key container specified by pszContainer
1764  *
1765  * PARAMS
1766  *  phProv       [O] Pointer to the location the acquired handle will be written to.
1767  *  pszContainer [I] Name of the desired key container. See Notes
1768  *  dwFlags      [I] Flags. See Notes.
1769  *  pVTable      [I] Pointer to a PVTableProvStruct containing callbacks.
1770  *
1771  * RETURNS
1772  *  Success: TRUE
1773  *  Failure: FALSE
1774  *
1775  * NOTES
1776  *  If pszContainer is NULL or points to a zero length string the user's login
1777  *  name will be used as the key container name.
1778  *
1779  *  If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1780  *  If a keyset with the given name already exists, the function fails and sets
1781  *  last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1782  *  key container does not exist, function fails and sets last error to
1783  *  NTE_BAD_KEYSET.
1784  */
1785 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1786                    DWORD dwFlags, PVTableProvStruc pVTable)
1787 {
1788     CHAR szKeyContainerName[MAX_PATH];
1789 
1790     TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
1791           debugstr_a(pszContainer), dwFlags, pVTable);
1792 
1793     if (pszContainer && *pszContainer)
1794     {
1795         lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1796     }
1797     else
1798     {
1799         DWORD dwLen = sizeof(szKeyContainerName);
1800         if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1801     }
1802 
1803     switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET))
1804     {
1805         case 0:
1806             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1807             break;
1808 
1809         case CRYPT_DELETEKEYSET:
1810             return delete_container_key(szKeyContainerName, dwFlags);
1811 
1812         case CRYPT_NEWKEYSET:
1813             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1814             if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1815             {
1816                 release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
1817                 TRACE("Can't create new keyset, already exists\n");
1818                 SetLastError(NTE_EXISTS);
1819                 return FALSE;
1820             }
1821             *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1822             break;
1823 
1824         case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
1825         case CRYPT_VERIFYCONTEXT:
1826             if (pszContainer && *pszContainer) {
1827                 TRACE("pszContainer should be empty\n");
1828                 SetLastError(NTE_BAD_FLAGS);
1829                 return FALSE;
1830             }
1831             *phProv = new_key_container("", dwFlags, pVTable);
1832             break;
1833 
1834         default:
1835             *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
1836             SetLastError(NTE_BAD_FLAGS);
1837             return FALSE;
1838     }
1839 
1840     if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
1841         SetLastError(ERROR_SUCCESS);
1842         return TRUE;
1843     } else {
1844         return FALSE;
1845     }
1846 }
1847 
1848 /******************************************************************************
1849  * CPCreateHash (RSAENH.@)
1850  *
1851  * CPCreateHash creates and initializes a new hash object.
1852  *
1853  * PARAMS
1854  *  hProv   [I] Handle to the key container to which the new hash will belong.
1855  *  Algid   [I] Identifies the hash algorithm, which will be used for the hash.
1856  *  hKey    [I] Handle to a session key applied for keyed hashes.
1857  *  dwFlags [I] Currently no flags defined. Must be zero.
1858  *  phHash  [O] Points to the location where a handle to the new hash will be stored.
1859  *
1860  * RETURNS
1861  *  Success: TRUE
1862  *  Failure: FALSE
1863  *
1864  * NOTES
1865  *  hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1866  *  If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1867  */
1868 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags,
1869                                 HCRYPTHASH *phHash)
1870 {
1871     CRYPTKEY *pCryptKey;
1872     CRYPTHASH *pCryptHash;
1873     const PROV_ENUMALGS_EX *peaAlgidInfo;
1874 
1875     TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
1876           dwFlags, phHash);
1877 
1878     peaAlgidInfo = get_algid_info(hProv, Algid);
1879     if (!peaAlgidInfo) return FALSE;
1880 
1881     if (dwFlags)
1882     {
1883         SetLastError(NTE_BAD_FLAGS);
1884         return FALSE;
1885     }
1886 
1887     if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH ||
1888         Algid == CALG_TLS1PRF)
1889     {
1890         if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1891             SetLastError(NTE_BAD_KEY);
1892             return FALSE;
1893         }
1894 
1895         if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1896             SetLastError(NTE_BAD_KEY);
1897             return FALSE;
1898         }
1899 
1900         if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) &&
1901             (pCryptKey->aiAlgid != CALG_TLS1_MASTER))
1902         {
1903             SetLastError(NTE_BAD_KEY);
1904             return FALSE;
1905         }
1906         if (Algid == CALG_SCHANNEL_MASTER_HASH &&
1907             ((!pCryptKey->siSChannelInfo.blobClientRandom.cbData) ||
1908              (!pCryptKey->siSChannelInfo.blobServerRandom.cbData)))
1909         {
1910             SetLastError(ERROR_INVALID_PARAMETER);
1911             return FALSE;
1912         }
1913 
1914         if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1915             SetLastError(NTE_BAD_KEY_STATE);
1916             return FALSE;
1917         }
1918     }
1919 
1920     *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1921                          destroy_hash, (OBJECTHDR**)&pCryptHash);
1922     if (!pCryptHash) return FALSE;
1923 
1924     pCryptHash->aiAlgid = Algid;
1925     pCryptHash->hKey = hKey;
1926     pCryptHash->hProv = hProv;
1927     pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
1928     pCryptHash->pHMACInfo = NULL;
1929     pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1930     init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1931     init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1932 
1933     if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1934         static const char keyex[] = "key expansion";
1935         BYTE key_expansion[sizeof keyex];
1936         CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1937 
1938         memcpy( key_expansion, keyex, sizeof keyex );
1939 
1940         if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1941             static const char msec[] = "master secret";
1942             BYTE master_secret[sizeof msec];
1943             CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1944             BYTE abKeyValue[48];
1945 
1946             memcpy( master_secret, msec, sizeof msec );
1947 
1948             /* See RFC 2246, chapter 8.1 */
1949             if (!concat_data_blobs(&blobRandom,
1950                                    &pCryptKey->siSChannelInfo.blobClientRandom,
1951                                    &pCryptKey->siSChannelInfo.blobServerRandom))
1952             {
1953                 return FALSE;
1954             }
1955             tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1956             pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY;
1957             memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1958             free_data_blob(&blobRandom);
1959         }
1960 
1961         /* See RFC 2246, chapter 6.3 */
1962         if (!concat_data_blobs(&blobRandom,
1963                                   &pCryptKey->siSChannelInfo.blobServerRandom,
1964                                   &pCryptKey->siSChannelInfo.blobClientRandom))
1965         {
1966             return FALSE;
1967         }
1968         tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue,
1969                  RSAENH_MAX_HASH_SIZE);
1970         free_data_blob(&blobRandom);
1971     }
1972 
1973     return init_hash(pCryptHash);
1974 }
1975 
1976 /******************************************************************************
1977  * CPDestroyHash (RSAENH.@)
1978  *
1979  * Releases the handle to a hash object. The object is destroyed if its reference
1980  * count reaches zero.
1981  *
1982  * PARAMS
1983  *  hProv [I] Handle to the key container to which the hash object belongs.
1984  *  hHash [I] Handle to the hash object to be released.
1985  *
1986  * RETURNS
1987  *  Success: TRUE
1988  *  Failure: FALSE
1989  */
1990 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1991 {
1992     TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1993 
1994     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1995     {
1996         SetLastError(NTE_BAD_UID);
1997         return FALSE;
1998     }
1999 
2000     if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH))
2001     {
2002         SetLastError(NTE_BAD_HASH);
2003         return FALSE;
2004     }
2005 
2006     return TRUE;
2007 }
2008 
2009 /******************************************************************************
2010  * CPDestroyKey (RSAENH.@)
2011  *
2012  * Releases the handle to a key object. The object is destroyed if its reference
2013  * count reaches zero.
2014  *
2015  * PARAMS
2016  *  hProv [I] Handle to the key container to which the key object belongs.
2017  *  hKey  [I] Handle to the key object to be released.
2018  *
2019  * RETURNS
2020  *  Success: TRUE
2021  *  Failure: FALSE
2022  */
2023 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
2024 {
2025     TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
2026 
2027     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2028     {
2029         SetLastError(NTE_BAD_UID);
2030         return FALSE;
2031     }
2032 
2033     if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY))
2034     {
2035         SetLastError(NTE_BAD_KEY);
2036         return FALSE;
2037     }
2038 
2039     return TRUE;
2040 }
2041 
2042 /******************************************************************************
2043  * CPDuplicateHash (RSAENH.@)
2044  *
2045  * Clones a hash object including its current state.
2046  *
2047  * PARAMS
2048  *  hUID        [I] Handle to the key container the hash belongs to.
2049  *  hHash       [I] Handle to the hash object to be cloned.
2050  *  pdwReserved [I] Reserved. Must be NULL.
2051  *  dwFlags     [I] No flags are currently defined. Must be 0.
2052  *  phHash      [O] Handle to the cloned hash object.
2053  *
2054  * RETURNS
2055  *  Success: TRUE.
2056  *  Failure: FALSE.
2057  */
2058 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved,
2059                                    DWORD dwFlags, HCRYPTHASH *phHash)
2060 {
2061     CRYPTHASH *pSrcHash, *pDestHash;
2062 
2063     TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
2064            pdwReserved, dwFlags, phHash);
2065 
2066     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2067     {
2068         SetLastError(NTE_BAD_UID);
2069         return FALSE;
2070     }
2071 
2072     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
2073     {
2074         SetLastError(NTE_BAD_HASH);
2075         return FALSE;
2076     }
2077 
2078     if (!phHash || pdwReserved || dwFlags)
2079     {
2080         SetLastError(ERROR_INVALID_PARAMETER);
2081         return FALSE;
2082     }
2083 
2084     *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
2085                          destroy_hash, (OBJECTHDR**)&pDestHash);
2086     if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
2087     {
2088         *pDestHash = *pSrcHash;
2089         duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
2090         copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
2091         copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
2092         copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
2093     }
2094 
2095     return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
2096 }
2097 
2098 /******************************************************************************
2099  * CPDuplicateKey (RSAENH.@)
2100  *
2101  * Clones a key object including its current state.
2102  *
2103  * PARAMS
2104  *  hUID        [I] Handle to the key container the hash belongs to.
2105  *  hKey        [I] Handle to the key object to be cloned.
2106  *  pdwReserved [I] Reserved. Must be NULL.
2107  *  dwFlags     [I] No flags are currently defined. Must be 0.
2108  *  phHash      [O] Handle to the cloned key object.
2109  *
2110  * RETURNS
2111  *  Success: TRUE.
2112  *  Failure: FALSE.
2113  */
2114 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved,
2115                                   DWORD dwFlags, HCRYPTKEY *phKey)
2116 {
2117     CRYPTKEY *pSrcKey, *pDestKey;
2118 
2119     TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
2120           pdwReserved, dwFlags, phKey);
2121 
2122     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2123     {
2124         SetLastError(NTE_BAD_UID);
2125         return FALSE;
2126     }
2127 
2128     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
2129     {
2130         SetLastError(NTE_BAD_KEY);
2131         return FALSE;
2132     }
2133 
2134     if (!phKey || pdwReserved || dwFlags)
2135     {
2136         SetLastError(ERROR_INVALID_PARAMETER);
2137         return FALSE;
2138     }
2139 
2140     *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
2141                         (OBJECTHDR**)&pDestKey);
2142     if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
2143     {
2144         *pDestKey = *pSrcKey;
2145         copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
2146                        &pSrcKey->siSChannelInfo.blobServerRandom);
2147         copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom,
2148                        &pSrcKey->siSChannelInfo.blobClientRandom);
2149         duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
2150         return TRUE;
2151     }
2152     else
2153     {
2154         return FALSE;
2155     }
2156 }
2157 
2158 /******************************************************************************
2159  * CPEncrypt (RSAENH.@)
2160  *
2161  * Encrypt data.
2162  *
2163  * PARAMS
2164  *  hProv      [I]   The key container hKey and hHash belong to.
2165  *  hKey       [I]   The key used to encrypt the data.
2166  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
2167  *  Final      [I]   Indicates if this is the last block of data to encrypt.
2168  *  dwFlags    [I]   Currently no flags defined. Must be zero.
2169  *  pbData     [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there.
2170  *  pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
2171  *  dwBufLen   [I]   Size of the buffer at pbData.
2172  *
2173  * RETURNS
2174  *  Success: TRUE.
2175  *  Failure: FALSE.
2176  *
2177  * NOTES
2178  *  If a hash object handle is provided in hHash, it will be updated with the plaintext.
2179  *  This is useful for message signatures.
2180  *
2181  *  This function uses the standard WINAPI protocol for querying data of dynamic length.
2182  */
2183 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2184                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
2185 {
2186     CRYPTKEY *pCryptKey;
2187     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2188     DWORD dwEncryptedLen, i, j, k;
2189 
2190     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2191           "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
2192           dwBufLen);
2193 
2194     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2195     {
2196         SetLastError(NTE_BAD_UID);
2197         return FALSE;
2198     }
2199 
2200     if (dwFlags)
2201     {
2202         SetLastError(NTE_BAD_FLAGS);
2203         return FALSE;
2204     }
2205 
2206     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2207     {
2208         SetLastError(NTE_BAD_KEY);
2209         return FALSE;
2210     }
2211 
2212     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2213         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2214 
2215     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2216     {
2217         SetLastError(NTE_BAD_DATA);
2218         return FALSE;
2219     }
2220 
2221     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2222         if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2223     }
2224 
2225     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2226         if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
2227             SetLastError(NTE_BAD_DATA);
2228             return FALSE;
2229         }
2230 
2231         dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
2232 
2233         if (pbData == NULL) {
2234             *pdwDataLen = dwEncryptedLen;
2235             return TRUE;
2236         }
2237         else if (dwEncryptedLen > dwBufLen) {
2238             *pdwDataLen = dwEncryptedLen;
2239             SetLastError(ERROR_MORE_DATA);
2240             return FALSE;
2241         }
2242 
2243         /* Pad final block with length bytes */
2244         for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
2245         *pdwDataLen = dwEncryptedLen;
2246 
2247         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2248             switch (pCryptKey->dwMode) {
2249                 case CRYPT_MODE_ECB:
2250                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2251                                        RSAENH_ENCRYPT);
2252                     break;
2253 
2254                 case CRYPT_MODE_CBC:
2255                     for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
2256                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2257                                        RSAENH_ENCRYPT);
2258                     memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
2259                     break;
2260 
2261                 case CRYPT_MODE_CFB:
2262                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2263                         encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2264                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2265                         out[j] = in[j] ^ o[0];
2266                         for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2267                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2268                         pCryptKey->abChainVector[k] = out[j];
2269                     }
2270                     break;
2271 
2272                 default:
2273                     SetLastError(NTE_BAD_ALGID);
2274                     return FALSE;
2275             }
2276             memcpy(in, out, pCryptKey->dwBlockLen);
2277         }
2278     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2279         if (pbData == NULL) {
2280             *pdwDataLen = dwBufLen;
2281             return TRUE;
2282         }
2283         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2284     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2285         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2286             SetLastError(NTE_BAD_KEY);
2287             return FALSE;
2288         }
2289         if (!pbData) {
2290             *pdwDataLen = pCryptKey->dwBlockLen;
2291             return TRUE;
2292         }
2293         if (dwBufLen < pCryptKey->dwBlockLen) {
2294             SetLastError(ERROR_MORE_DATA);
2295             return FALSE;
2296         }
2297         if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
2298         encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
2299         *pdwDataLen = pCryptKey->dwBlockLen;
2300         Final = TRUE;
2301     } else {
2302         SetLastError(NTE_BAD_TYPE);
2303         return FALSE;
2304     }
2305 
2306     if (Final) setup_key(pCryptKey);
2307 
2308     return TRUE;
2309 }
2310 
2311 /******************************************************************************
2312  * CPDecrypt (RSAENH.@)
2313  *
2314  * Decrypt data.
2315  *
2316  * PARAMS
2317  *  hProv      [I]   The key container hKey and hHash belong to.
2318  *  hKey       [I]   The key used to decrypt the data.
2319  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
2320  *  Final      [I]   Indicates if this is the last block of data to decrypt.
2321  *  dwFlags    [I]   Currently no flags defined. Must be zero.
2322  *  pbData     [I/O] Pointer to the data to decrypt. Plaintext will also be stored there.
2323  *  pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
2324  *
2325  * RETURNS
2326  *  Success: TRUE.
2327  *  Failure: FALSE.
2328  *
2329  * NOTES
2330  *  If a hash object handle is provided in hHash, it will be updated with the plaintext.
2331  *  This is useful for message signatures.
2332  *
2333  *  This function uses the standard WINAPI protocol for querying data of dynamic length.
2334  */
2335 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2336                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2337 {
2338     CRYPTKEY *pCryptKey;
2339     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2340     DWORD i, j, k;
2341     DWORD dwMax;
2342 
2343     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2344           "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2345 
2346     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2347     {
2348         SetLastError(NTE_BAD_UID);
2349         return FALSE;
2350     }
2351 
2352     if (dwFlags)
2353     {
2354         SetLastError(NTE_BAD_FLAGS);
2355         return FALSE;
2356     }
2357 
2358     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2359     {
2360         SetLastError(NTE_BAD_KEY);
2361         return FALSE;
2362     }
2363 
2364     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2365         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2366 
2367     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2368     {
2369         SetLastError(NTE_BAD_DATA);
2370         return FALSE;
2371     }
2372 
2373     dwMax=*pdwDataLen;
2374 
2375     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2376         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2377             switch (pCryptKey->dwMode) {
2378                 case CRYPT_MODE_ECB:
2379                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2380                                        RSAENH_DECRYPT);
2381                     break;
2382 
2383                 case CRYPT_MODE_CBC:
2384                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2385                                        RSAENH_DECRYPT);
2386                     for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2387                     memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2388                     break;
2389 
2390                 case CRYPT_MODE_CFB:
2391                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2392                         encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2393                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2394                         out[j] = in[j] ^ o[0];
2395                         for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2396                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2397                         pCryptKey->abChainVector[k] = in[j];
2398                     }
2399                     break;
2400 
2401                 default:
2402                     SetLastError(NTE_BAD_ALGID);
2403                     return FALSE;
2404             }
2405             memcpy(in, out, pCryptKey->dwBlockLen);
2406         }
2407         if (Final) {
2408             if (pbData[*pdwDataLen-1] &&
2409              pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
2410              pbData[*pdwDataLen-1] <= *pdwDataLen) {
2411                 BOOL padOkay = TRUE;
2412 
2413                 /* check that every bad byte has the same value */
2414                 for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
2415                     if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
2416                         padOkay = FALSE;
2417                 if (padOkay)
2418                     *pdwDataLen -= pbData[*pdwDataLen-1];
2419                 else {
2420                     SetLastError(NTE_BAD_DATA);
2421                     setup_key(pCryptKey);
2422                     return FALSE;
2423                 }
2424             }
2425             else {
2426                 SetLastError(NTE_BAD_DATA);
2427                 setup_key(pCryptKey);
2428                 return FALSE;
2429             }
2430         }
2431 
2432     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2433         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2434     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2435         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2436             SetLastError(NTE_BAD_KEY);
2437             return FALSE;
2438         }
2439         encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2440         if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2441         Final = TRUE;
2442     } else {
2443         SetLastError(NTE_BAD_TYPE);
2444         return FALSE;
2445     }
2446 
2447     if (Final) setup_key(pCryptKey);
2448 
2449     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2450         if (*pdwDataLen>dwMax ||
2451             !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2452     }
2453 
2454     return TRUE;
2455 }
2456 
2457 static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
2458     DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2459 {
2460     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2461     ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2462     DWORD dwDataLen;
2463 
2464     if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2465         SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2466         return FALSE;
2467     }
2468 
2469     dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2470     if (pbData) {
2471         if (*pdwDataLen < dwDataLen) {
2472             SetLastError(ERROR_MORE_DATA);
2473             *pdwDataLen = dwDataLen;
2474             return FALSE;
2475         }
2476 
2477         pBlobHeader->bType = SIMPLEBLOB;
2478         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2479         pBlobHeader->reserved = 0;
2480         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2481 
2482         *pAlgid = pPubKey->aiAlgid;
2483 
2484         if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
2485                       pPubKey->dwBlockLen, dwFlags))
2486         {
2487             return FALSE;
2488         }
2489 
2490         encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
2491                            (BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
2492     }
2493     *pdwDataLen = dwDataLen;
2494     return TRUE;
2495 }
2496 
2497 static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2498     DWORD *pdwDataLen)
2499 {
2500     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2501     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2502     DWORD dwDataLen;
2503 
2504     if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2505         SetLastError(NTE_BAD_KEY);
2506         return FALSE;
2507     }
2508 
2509     dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2510     if (pbData) {
2511         if (*pdwDataLen < dwDataLen) {
2512             SetLastError(ERROR_MORE_DATA);
2513             *pdwDataLen = dwDataLen;
2514             return FALSE;
2515         }
2516 
2517         pBlobHeader->bType = PUBLICKEYBLOB;
2518         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2519         pBlobHeader->reserved = 0;
2520         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2521 
2522         pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
2523         pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2524 
2525         export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2526                                pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2527     }
2528     *pdwDataLen = dwDataLen;
2529     return TRUE;
2530 }
2531 
2532 static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
2533     BYTE *pbData, DWORD *pdwDataLen)
2534 {
2535     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2536     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2537     DWORD dwDataLen;
2538 
2539     if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2540         SetLastError(NTE_BAD_KEY);
2541         return FALSE;
2542     }
2543     if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
2544     {
2545         SetLastError(NTE_BAD_KEY_STATE);
2546         return FALSE;
2547     }
2548 
2549     dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2550                 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2551     if (pbData) {
2552         if (*pdwDataLen < dwDataLen) {
2553             SetLastError(ERROR_MORE_DATA);
2554             *pdwDataLen = dwDataLen;
2555             return FALSE;
2556         }
2557 
2558         pBlobHeader->bType = PRIVATEKEYBLOB;
2559         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2560         pBlobHeader->reserved = 0;
2561         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2562 
2563         pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2564         pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2565 
2566         export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2567                                 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2568     }
2569     *pdwDataLen = dwDataLen;
2570     return TRUE;
2571 }
2572 
2573 static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2574     DWORD *pdwDataLen)
2575 {
2576     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2577     DWORD *pKeyLen = (DWORD*)(pBlobHeader+1);
2578     BYTE *pbKey = (BYTE*)(pKeyLen+1);
2579     DWORD dwDataLen;
2580 
2581     dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen;
2582     if (pbData) {
2583         if (*pdwDataLen < dwDataLen) {
2584             SetLastError(ERROR_MORE_DATA);
2585             *pdwDataLen = dwDataLen;
2586             return FALSE;
2587         }
2588 
2589         pBlobHeader->bType = PLAINTEXTKEYBLOB;
2590         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2591         pBlobHeader->reserved = 0;
2592         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2593 
2594         *pKeyLen = pCryptKey->dwKeyLen;
2595         memcpy(pbKey, pCryptKey->abKeyValue, pCryptKey->dwKeyLen);
2596     }
2597     *pdwDataLen = dwDataLen;
2598     return TRUE;
2599 }
2600 /******************************************************************************
2601  * crypt_export_key [Internal]
2602  *
2603  * Export a key into a binary large object (BLOB).  Called by CPExportKey and
2604  * by store_key_pair.
2605  *
2606  * PARAMS
2607  *  pCryptKey  [I]   Key to be exported.
2608  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2609  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2610  *  dwFlags    [I]   Currently none defined.
2611  *  force      [I]   If TRUE, the key is written no matter what the key's
2612  *                   permissions are.  Otherwise the key's permissions are
2613  *                   checked before exporting.
2614  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2615  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2616  *
2617  * RETURNS
2618  *  Success: TRUE.
2619  *  Failure: FALSE.
2620  */
2621 static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
2622                              DWORD dwBlobType, DWORD dwFlags, BOOL force,
2623                              BYTE *pbData, DWORD *pdwDataLen)
2624 {
2625     CRYPTKEY *pPubKey;
2626 
2627     if (dwFlags & CRYPT_SSL2_FALLBACK) {
2628         if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2629             SetLastError(NTE_BAD_KEY);
2630             return FALSE;
2631         }
2632     }
2633 
2634     switch ((BYTE)dwBlobType)
2635     {
2636         case SIMPLEBLOB:
2637             if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2638                 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2639                 return FALSE;
2640             }
2641             return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
2642                                        pdwDataLen);
2643 
2644         case PUBLICKEYBLOB:
2645             if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2646                 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2647                 return FALSE;
2648             }
2649 
2650             return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
2651 
2652         case PRIVATEKEYBLOB:
2653             return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
2654 
2655         case PLAINTEXTKEYBLOB:
2656             return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen);
2657 
2658         default:
2659             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2660             return FALSE;
2661     }
2662 }
2663 
2664 /******************************************************************************
2665  * CPExportKey (RSAENH.@)
2666  *
2667  * Export a key into a binary large object (BLOB).
2668  *
2669  * PARAMS
2670  *  hProv      [I]   Key container from which a key is to be exported.
2671  *  hKey       [I]   Key to be exported.
2672  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2673  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2674  *  dwFlags    [I]   Currently none defined.
2675  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2676  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2677  *
2678  * RETURNS
2679  *  Success: TRUE.
2680  *  Failure: FALSE.
2681  */
2682 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
2683                                DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2684 {
2685     CRYPTKEY *pCryptKey;
2686 
2687     TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
2688           "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2689 
2690     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2691     {
2692         SetLastError(NTE_BAD_UID);
2693         return FALSE;
2694     }
2695 
2696     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2697     {
2698         SetLastError(NTE_BAD_KEY);
2699         return FALSE;
2700     }
2701 
2702     return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
2703         pbData, pdwDataLen);
2704 }
2705 
2706 /******************************************************************************
2707  * release_and_install_key [Internal]
2708  *
2709  * Release an existing key, if present, and replaces it with a new one.
2710  *
2711  * PARAMS
2712  *  hProv     [I] Key container into which the key is to be imported.
2713  *  src       [I] Key which will replace *dest
2714  *  dest      [I] Points to key to be released and replaced with src
2715  *  fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
2716  */
2717 static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
2718                                     HCRYPTKEY *dest, DWORD fStoreKey)
2719 {
2720     RSAENH_CPDestroyKey(hProv, *dest);
2721     copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
2722     if (fStoreKey)
2723     {
2724         KEYCONTAINER *pKeyContainer;
2725 
2726         if ((pKeyContainer = get_key_container(hProv)))
2727         {
2728             store_key_container_keys(pKeyContainer);
2729             store_key_container_permissions(pKeyContainer);
2730         }
2731     }
2732 }
2733 
2734 /******************************************************************************
2735  * import_private_key [Internal]
2736  *
2737  * Import a BLOB'ed private key into a key container.
2738  *
2739  * PARAMS
2740  *  hProv     [I] Key container into which the private key is to be imported.
2741  *  pbData    [I] Pointer to a buffer which holds the private key BLOB.
2742  *  dwDataLen [I] Length of data in buffer at pbData.
2743  *  dwFlags   [I] One of:
2744  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2745  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
2746  *  phKey     [O] Handle to the imported key.
2747  *
2748  *
2749  * NOTES
2750  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2751  *  it's a PRIVATEKEYBLOB.
2752  *
2753  * RETURNS
2754  *  Success: TRUE.
2755  *  Failure: FALSE.
2756  */
2757 static BOOL import_private_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
2758                                DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2759 {
2760     KEYCONTAINER *pKeyContainer;
2761     CRYPTKEY *pCryptKey;
2762     const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
2763     const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1);
2764     BOOL ret;
2765 
2766     if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
2767     {
2768         FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
2769         SetLastError(NTE_BAD_FLAGS);
2770         return FALSE;
2771     }
2772     if (!(pKeyContainer = get_key_container(hProv)))
2773         return FALSE;
2774 
2775     if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)))
2776     {
2777         ERR("datalen %d not long enough for a BLOBHEADER + RSAPUBKEY\n",
2778             dwDataLen);
2779         SetLastError(NTE_BAD_DATA);
2780         return FALSE;
2781     }
2782     if (pRSAPubKey->magic != RSAENH_MAGIC_RSA2)
2783     {
2784         ERR("unexpected magic %08x\n", pRSAPubKey->magic);
2785         SetLastError(NTE_BAD_DATA);
2786         return FALSE;
2787     }
2788     if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2789             (pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
2790     {
2791         DWORD expectedLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2792             (pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4));
2793 
2794         ERR("blob too short for pub key: expect %d, got %d\n",
2795             expectedLen, dwDataLen);
2796         SetLastError(NTE_BAD_DATA);
2797         return FALSE;
2798     }
2799 
2800     *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2801     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2802     setup_key(pCryptKey);
2803     ret = import_private_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2804                                    pRSAPubKey->bitlen/8, dwDataLen, pRSAPubKey->pubexp);
2805     if (ret) {
2806         if (dwFlags & CRYPT_EXPORTABLE)
2807             pCryptKey->dwPermissions |= CRYPT_EXPORT;
2808         switch (pBlobHeader->aiKeyAlg)
2809         {
2810         case AT_SIGNATURE:
2811         case CALG_RSA_SIGN:
2812             TRACE("installing signing key\n");
2813             release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
2814                                     fStoreKey);
2815             break;
2816         case AT_KEYEXCHANGE:
2817         case CALG_RSA_KEYX:
2818             TRACE("installing key exchange key\n");
2819             release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2820                                     fStoreKey);
2821             break;
2822         }
2823     }
2824     return ret;
2825 }
2826 
2827 /******************************************************************************
2828  * import_public_key [Internal]
2829  *
2830  * Import a BLOB'ed public key.
2831  *
2832  * PARAMS
2833  *  hProv     [I] A CSP.
2834  *  pbData    [I] Pointer to a buffer which holds the public key BLOB.
2835  *  dwDataLen [I] Length of data in buffer at pbData.
2836  *  dwFlags   [I] One of:
2837  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2838  *  phKey     [O] Handle to the imported key.
2839  *
2840  *
2841  * NOTES
2842  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2843  *  it's a PUBLICKEYBLOB.
2844  *
2845  * RETURNS
2846  *  Success: TRUE.
2847  *  Failure: FALSE.
2848  */
2849 static BOOL import_public_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
2850                               DWORD dwFlags, HCRYPTKEY *phKey)
2851 {
2852     CRYPTKEY *pCryptKey;
2853     const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
2854     const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1);
2855     ALG_ID algID;
2856     BOOL ret;
2857 
2858     if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
2859     {
2860         FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
2861         SetLastError(NTE_BAD_FLAGS);
2862         return FALSE;
2863     }
2864 
2865     if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2866         (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2867         (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
2868     {
2869         SetLastError(NTE_BAD_DATA);
2870         return FALSE;
2871     }
2872 
2873     /* Since this is a public key blob, only the public key is
2874      * available, so only signature verification is possible.
2875      */
2876     algID = pBlobHeader->aiKeyAlg;
2877     *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2878     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2879     setup_key(pCryptKey);
2880     ret = import_public_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2881                                   pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2882     if (ret) {
2883         if (dwFlags & CRYPT_EXPORTABLE)
2884             pCryptKey->dwPermissions |= CRYPT_EXPORT;
2885     }
2886     return ret;
2887 }
2888 
2889 /******************************************************************************
2890  * import_symmetric_key [Internal]
2891  *
2892  * Import a BLOB'ed symmetric key into a key container.
2893  *
2894  * PARAMS
2895  *  hProv     [I] Key container into which the symmetric key is to be imported.
2896  *  pbData    [I] Pointer to a buffer which holds the symmetric key BLOB.
2897  *  dwDataLen [I] Length of data in buffer at pbData.
2898  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
2899  *  dwFlags   [I] One of:
2900  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2901  *  phKey     [O] Handle to the imported key.
2902  *
2903  *
2904  * NOTES
2905  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2906  *  it's a SIMPLEBLOB.
2907  *
2908  * RETURNS
2909  *  Success: TRUE.
2910  *  Failure: FALSE.
2911  */
2912 static BOOL import_symmetric_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
2913                                  HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
2914 {
2915     CRYPTKEY *pCryptKey, *pPubKey;
2916     const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
2917     const ALG_ID *pAlgid = (const ALG_ID*)(pBlobHeader+1);
2918     const BYTE *pbKeyStream = (const BYTE*)(pAlgid + 1);
2919     BYTE *pbDecrypted;
2920     DWORD dwKeyLen;
2921 
2922     if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
2923     {
2924         FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
2925         SetLastError(NTE_BAD_FLAGS);
2926         return FALSE;
2927     }
2928     if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2929         pPubKey->aiAlgid != CALG_RSA_KEYX)
2930     {
2931         SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2932         return FALSE;
2933     }
2934 
2935     if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
2936     {
2937         SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2938         return FALSE;
2939     }
2940 
2941     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2942     if (!pbDecrypted) return FALSE;
2943     encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
2944                        RSAENH_DECRYPT);
2945 
2946     dwKeyLen = RSAENH_MAX_KEY_SIZE;
2947     if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2948         HeapFree(GetProcessHeap(), 0, pbDecrypted);
2949         return FALSE;
2950     }
2951 
2952     *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2953     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2954     {
2955         HeapFree(GetProcessHeap(), 0, pbDecrypted);
2956         return FALSE;
2957     }
2958     memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2959     HeapFree(GetProcessHeap(), 0, pbDecrypted);
2960     setup_key(pCryptKey);
2961     if (dwFlags & CRYPT_EXPORTABLE)
2962         pCryptKey->dwPermissions |= CRYPT_EXPORT;
2963     return TRUE;
2964 }
2965 
2966 /******************************************************************************
2967  * import_plaintext_key [Internal]
2968  *
2969  * Import a plaintext key into a key container.
2970  *
2971  * PARAMS
2972  *  hProv     [I] Key container into which the symmetric key is to be imported.
2973  *  pbData    [I] Pointer to a buffer which holds the plaintext key BLOB.
2974  *  dwDataLen [I] Length of data in buffer at pbData.
2975  *  dwFlags   [I] One of:
2976  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2977  *  phKey     [O] Handle to the imported key.
2978  *
2979  *
2980  * NOTES
2981  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2982  *  it's a PLAINTEXTKEYBLOB.
2983  *
2984  * RETURNS
2985  *  Success: TRUE.
2986  *  Failure: FALSE.
2987  */
2988 static BOOL import_plaintext_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
2989                                  DWORD dwFlags, HCRYPTKEY *phKey)
2990 {
2991     CRYPTKEY *pCryptKey;
2992     const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
2993     const DWORD *pKeyLen = (const DWORD *)(pBlobHeader + 1);
2994     const BYTE *pbKeyStream = (const BYTE*)(pKeyLen + 1);
2995 
2996     if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen)
2997     {
2998         SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2999         return FALSE;
3000     }
3001 
3002     if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
3003     {
3004         *phKey = new_key(hProv, CALG_HMAC, 0, &pCryptKey);
3005         if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3006             return FALSE;
3007         if (*pKeyLen <= RSAENH_MIN(sizeof(pCryptKey->abKeyValue), RSAENH_HMAC_BLOCK_LEN))
3008         {
3009             memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
3010             pCryptKey->dwKeyLen = *pKeyLen;
3011         }
3012         else
3013         {
3014             CRYPT_DATA_BLOB blobHmacKey = { *pKeyLen, (BYTE *)pbKeyStream };
3015 
3016             /* In order to initialize an HMAC key, the key material is hashed,
3017              * and the output of the hash function is used as the key material.
3018              * Unfortunately, the way the Crypto API is designed, we don't know
3019              * the hash algorithm yet, so we have to copy the entire key
3020              * material.
3021              */
3022             if (!copy_data_blob(&pCryptKey->blobHmacKey, &blobHmacKey))
3023             {
3024                 release_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY);
3025                 *phKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
3026                 return FALSE;
3027             }
3028         }
3029         setup_key(pCryptKey);
3030         if (dwFlags & CRYPT_EXPORTABLE)
3031             pCryptKey->dwPermissions |= CRYPT_EXPORT;
3032     }
3033     else
3034     {
3035         *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey);
3036         if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3037             return FALSE;
3038         memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
3039         setup_key(pCryptKey);
3040         if (dwFlags & CRYPT_EXPORTABLE)
3041             pCryptKey->dwPermissions |= CRYPT_EXPORT;
3042     }
3043     return TRUE;
3044 }
3045 
3046 /******************************************************************************
3047  * import_key [Internal]
3048  *
3049  * Import a BLOB'ed key into a key container, optionally storing the key's
3050  * value to the registry.
3051  *
3052  * PARAMS
3053  *  hProv     [I] Key container into which the key is to be imported.
3054  *  pbData    [I] Pointer to a buffer which holds the BLOB.
3055  *  dwDataLen [I] Length of data in buffer at pbData.
3056  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
3057  *  dwFlags   [I] One of:
3058  *                CRYPT_EXPORTABLE: the imported key is marked exportable
3059  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
3060  *  phKey     [O] Handle to the imported key.
3061  *
3062  * RETURNS
3063  *  Success: TRUE.
3064  *  Failure: FALSE.
3065  */
3066 static BOOL import_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, HCRYPTKEY hPubKey,
3067                        DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
3068 {
3069     KEYCONTAINER *pKeyContainer;
3070     const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
3071 
3072     if (!(pKeyContainer = get_key_container(hProv)))
3073         return FALSE;
3074 
3075     if (dwDataLen < sizeof(BLOBHEADER) ||
3076         pBlobHeader->bVersion != CUR_BLOB_VERSION ||
3077         pBlobHeader->reserved != 0)
3078     {
3079         TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion,
3080               pBlobHeader->reserved);
3081         SetLastError(NTE_BAD_DATA);
3082         return FALSE;
3083     }
3084 
3085     /* If this is a verify-only context, the key is not persisted regardless of
3086      * fStoreKey's original value.
3087      */
3088     fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
3089     TRACE("blob type: %x\n", pBlobHeader->bType);
3090     switch (pBlobHeader->bType)
3091     {
3092         case PRIVATEKEYBLOB:
3093             return import_private_key(hProv, pbData, dwDataLen, dwFlags,
3094                                       fStoreKey, phKey);
3095 
3096         case PUBLICKEYBLOB:
3097             return import_public_key(hProv, pbData, dwDataLen, dwFlags,
3098                                      phKey);
3099 
3100         case SIMPLEBLOB:
3101             return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
3102                                         dwFlags, phKey);
3103 
3104         case PLAINTEXTKEYBLOB:
3105             return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags,
3106                                         phKey);
3107 
3108         default:
3109             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
3110             return FALSE;
3111     }
3112 }
3113 
3114 /******************************************************************************
3115  * CPImportKey (RSAENH.@)
3116  *
3117  * Import a BLOB'ed key into a key container.
3118  *
3119  * PARAMS
3120  *  hProv     [I] Key container into which the key is to be imported.
3121  *  pbData    [I] Pointer to a buffer which holds the BLOB.
3122  *  dwDataLen [I] Length of data in buffer at pbData.
3123  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
3124  *  dwFlags   [I] One of:
3125  *                CRYPT_EXPORTABLE: the imported key is marked exportable
3126  *  phKey     [O] Handle to the imported key.
3127  *
3128  * RETURNS
3129  *  Success: TRUE.
3130  *  Failure: FALSE.
3131  */
3132 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
3133                                HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
3134 {
3135     TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
3136         hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
3137 
3138     return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
3139 }
3140 
3141 /******************************************************************************
3142  * CPGenKey (RSAENH.@)
3143  *
3144  * Generate a key in the key container
3145  *
3146  * PARAMS
3147  *  hProv   [I] Key container for which a key is to be generated.
3148  *  Algid   [I] Crypto algorithm identifier for the key to be generated.
3149  *  dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
3150  *  phKey   [O] Handle to the generated key.
3151  *
3152  * RETURNS
3153  *  Success: TRUE.
3154  *  Failure: FALSE.
3155  *
3156  * FIXME
3157  *  Flags currently not considered.
3158  *
3159  * NOTES
3160  *  Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
3161  *  and AT_SIGNATURE values.
3162  */
3163 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
3164 {
3165     KEYCONTAINER *pKeyContainer;
3166     CRYPTKEY *pCryptKey;
3167 
3168     TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
3169 
3170     if (!(pKeyContainer = get_key_container(hProv)))
3171     {
3172         /* MSDN: hProv not containing valid context handle */
3173         return FALSE;
3174     }
3175 
3176     switch (Algid)
3177     {
3178         case AT_SIGNATURE:
3179         case CALG_RSA_SIGN:
3180             *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
3181             if (pCryptKey) {
3182                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3183                 setup_key(pCryptKey);
3184                 release_and_install_key(hProv, *phKey,
3185                                         &pKeyContainer->hSignatureKeyPair,
3186                                         FALSE);
3187             }
3188             break;
3189 
3190         case AT_KEYEXCHANGE:
3191         case CALG_RSA_KEYX:
3192             *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
3193             if (pCryptKey) {
3194                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3195                 setup_key(pCryptKey);
3196                 release_and_install_key(hProv, *phKey,
3197                                         &pKeyContainer->hKeyExchangeKeyPair,
3198                                         FALSE);
3199             }
3200             break;
3201 
3202         case CALG_RC2:
3203         case CALG_RC4:
3204         case CALG_DES:
3205         case CALG_3DES_112:
3206         case CALG_3DES:
3207         case CALG_AES:
3208         case CALG_AES_128:
3209         case CALG_AES_192:
3210         case CALG_AES_256:
3211         case CALG_PCT1_MASTER:
3212         case CALG_SSL2_MASTER:
3213         case CALG_SSL3_MASTER:
3214         case CALG_TLS1_MASTER:
3215             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3216             if (pCryptKey) {
3217                 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
3218                 switch (Algid) {
3219                     case CALG_SSL3_MASTER:
3220                         pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
3221                         pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
3222                         break;
3223 
3224                     case CALG_TLS1_MASTER:
3225                         pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
3226                         pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
3227                         break;
3228                 }
3229                 setup_key(pCryptKey);
3230             }
3231             break;
3232 
3233         default:
3234             /* MSDN: Algorithm not supported specified by Algid */
3235             SetLastError(NTE_BAD_ALGID);
3236             return FALSE;
3237     }
3238 
3239     return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
3240 }
3241 
3242 /******************************************************************************
3243  * CPGenRandom (RSAENH.@)
3244  *
3245  * Generate a random byte stream.
3246  *
3247  * PARAMS
3248  *  hProv    [I] Key container that is used to generate random bytes.
3249  *  dwLen    [I] Specifies the number of requested random data bytes.
3250  *  pbBuffer [O] Random bytes will be stored here.
3251  *
3252  * RETURNS
3253  *  Success: TRUE
3254  *  Failure: FALSE
3255  */
3256 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
3257 {
3258     TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
3259 
3260     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3261     {
3262         /* MSDN: hProv not containing valid context handle */
3263         SetLastError(NTE_BAD_UID);
3264         return FALSE;
3265     }
3266 
3267     return gen_rand_impl(pbBuffer, dwLen);
3268 }
3269 
3270 /******************************************************************************
3271  * CPGetHashParam (RSAENH.@)
3272  *
3273  * Query parameters of an hash object.
3274  *
3275  * PARAMS
3276  *  hProv      [I]   The kea container, which the hash belongs to.
3277  *  hHash      [I]   The hash object that is to be queried.
3278  *  dwParam    [I]   Specifies the parameter that is to be queried.
3279  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3280  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3281  *  dwFlags    [I]   None currently defined.
3282  *
3283  * RETURNS
3284  *  Success: TRUE
3285  *  Failure: FALSE
3286  *
3287  * NOTES
3288  *  Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be
3289  *  finalized if HP_HASHVALUE is queried.
3290  */
3291 BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData,
3292                                   DWORD *pdwDataLen, DWORD dwFlags)
3293 {
3294     CRYPTHASH *pCryptHash;
3295 
3296     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3297         hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
3298 
3299     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3300     {
3301         SetLastError(NTE_BAD_UID);
3302         return FALSE;
3303     }
3304 
3305     if (dwFlags)
3306     {
3307         SetLastError(NTE_BAD_FLAGS);
3308         return FALSE;
3309     }
3310 
3311     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3312                        (OBJECTHDR**)&pCryptHash))
3313     {
3314         SetLastError(NTE_BAD_HASH);
3315         return FALSE;
3316     }
3317 
3318     if (!pdwDataLen)
3319     {
3320         SetLastError(ERROR_INVALID_PARAMETER);
3321         return FALSE;
3322     }
3323 
3324     switch (dwParam)
3325     {
3326         case HP_ALGID:
3327             return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->aiAlgid,
3328                               sizeof(ALG_ID));
3329 
3330         case HP_HASHSIZE:
3331             return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->dwHashSize,
3332                               sizeof(DWORD));
3333 
3334         case HP_HASHVAL:
3335             if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
3336                 return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
3337                                 &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
3338             }
3339 
3340             if ( pbData == NULL ) {
3341                 *pdwDataLen = pCryptHash->dwHashSize;
3342                 return TRUE;
3343             }
3344 
3345             if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
3346             {
3347                 finalize_hash(pCryptHash);
3348                 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
3349             }
3350 
3351             return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue,
3352                               pCryptHash->dwHashSize);
3353 
3354         default:
3355             SetLastError(NTE_BAD_TYPE);
3356             return FALSE;
3357     }
3358 }
3359 
3360 /******************************************************************************
3361  * CPSetKeyParam (RSAENH.@)
3362  *
3363  * Set a parameter of a key object
3364  *
3365  * PARAMS
3366  *  hProv   [I] The key container to which the key belongs.
3367  *  hKey    [I] The key for which a parameter is to be set.
3368  *  dwParam [I] Parameter type. See Notes.
3369  *  pbData  [I] Pointer to the parameter value.
3370  *  dwFlags [I] Currently none defined.
3371  *
3372  * RETURNS
3373  *  Success: TRUE.
3374  *  Failure: FALSE.
3375  *
3376  * NOTES:
3377  *  Defined dwParam types are:
3378  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3379  *   - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
3380  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
3381  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3382  *   - KP_IV: Initialization vector
3383  */
3384 BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
3385                                  DWORD dwFlags)
3386 {
3387     CRYPTKEY *pCryptKey;
3388 
3389     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey,
3390           dwParam, pbData, dwFlags);
3391 
3392     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3393     {
3394         SetLastError(NTE_BAD_UID);
3395         return FALSE;
3396     }
3397 
3398     if (dwFlags) {
3399         SetLastError(NTE_BAD_FLAGS);
3400         return FALSE;
3401     }
3402 
3403     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3404     {
3405         SetLastError(NTE_BAD_KEY);
3406         return FALSE;
3407     }
3408 
3409     switch (dwParam) {
3410         case KP_PADDING:
3411             /* The MS providers only support PKCS5_PADDING */
3412             if (*(DWORD *)pbData != PKCS5_PADDING) {
3413                 SetLastError(NTE_BAD_DATA);
3414                 return FALSE;
3415             }
3416             return TRUE;
3417 
3418         case KP_MODE:
3419             pCryptKey->dwMode = *(DWORD*)pbData;
3420             return TRUE;
3421 
3422         case KP_MODE_BITS:
3423             pCryptKey->dwModeBits = *(DWORD*)pbData;
3424             return TRUE;
3425 
3426         case KP_PERMISSIONS:
3427         {
3428             DWORD perms = *(DWORD *)pbData;
3429 
3430             if ((perms & CRYPT_EXPORT) &&
3431                 !(pCryptKey->dwPermissions & CRYPT_EXPORT))
3432             {
3433                 SetLastError(NTE_BAD_DATA);
3434                 return FALSE;
3435             }
3436             else if (!(perms & CRYPT_EXPORT) &&
3437                 (pCryptKey->dwPermissions & CRYPT_EXPORT))
3438             {
3439                 /* Clearing the export permission appears to be ignored,
3440                  * see tests.
3441                  */
3442                 perms |= CRYPT_EXPORT;
3443             }
3444             pCryptKey->dwPermissions = perms;
3445             return TRUE;
3446         }
3447 
3448         case KP_IV:
3449             memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
3450             setup_key(pCryptKey);
3451             return TRUE;
3452 
3453         case KP_SALT:
3454             switch (pCryptKey->aiAlgid) {
3455                 case CALG_RC2:
3456                 case CALG_RC4:
3457                 {
3458                     KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv);
3459                     if (!pbData)
3460                     {
3461                         SetLastError(ERROR_INVALID_PARAMETER);
3462                         return FALSE;
3463                     }
3464                     /* MSDN: the base provider always sets eleven bytes of
3465                      * salt value.
3466                      */
3467                     memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen,
3468                            pbData, 11);
3469                     pCryptKey->dwSaltLen = 11;
3470                     setup_key(pCryptKey);
3471                     /* After setting the salt value if the provider is not base or
3472                      * strong the salt length will be reset. */
3473                     if (pKeyContainer->dwPersonality != RSAENH_PERSONALITY_BASE &&
3474                         pKeyContainer->dwPersonality != RSAENH_PERSONALITY_STRONG)
3475                         pCryptKey->dwSaltLen = 0;
3476                     break;
3477                 }
3478                 default:
3479                     SetLastError(NTE_BAD_KEY);
3480                     return FALSE;
3481             }
3482             return TRUE;
3483 
3484         case KP_SALT_EX:
3485         {
3486             CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData;
3487 
3488             /* salt length can't be greater than 184 bits = 24 bytes */
3489             if (blob->cbData > 24)
3490             {
3491                 SetLastError(NTE_BAD_DATA);
3492                 return FALSE;
3493             }
3494             memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData,
3495                    blob->cbData);
3496             pCryptKey->dwSaltLen = blob->cbData;
3497             setup_key(pCryptKey);
3498             return TRUE;
3499         }
3500 
3501         case KP_EFFECTIVE_KEYLEN:
3502             switch (pCryptKey->aiAlgid) {
3503                 case CALG_RC2:
3504                 {
3505                     DWORD keylen, deflen;
3506                     BOOL ret = TRUE;
3507                     KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv);
3508 
3509                     if (!pbData)
3510                     {
3511                         SetLastError(ERROR_INVALID_PARAMETER);
3512                         return FALSE;
3513                     }
3514                     keylen = *(DWORD *)pbData;
3515                     if (!keylen || keylen > 1024)
3516                     {
3517                         SetLastError(NTE_BAD_DATA);
3518                         return FALSE;
3519                     }
3520 
3521                     /*
3522                      * The Base provider will force the key length to default
3523                      * and set an error state if a key length different from
3524                      * the default is tried.
3525                      */
3526                     deflen = aProvEnumAlgsEx[pKeyContainer->dwPersonality]->dwDefaultLen;
3527                     if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_BASE
3528                         && keylen != deflen)
3529                     {
3530                         keylen = deflen;
3531                         SetLastError(NTE_BAD_DATA);
3532                         ret = FALSE;
3533                     }
3534                     pCryptKey->dwEffectiveKeyLen = keylen;
3535                     setup_key(pCryptKey);
3536                     return ret;
3537                 }
3538                 default:
3539                     SetLastError(NTE_BAD_TYPE);
3540                     return FALSE;
3541             }
3542             return TRUE;
3543 
3544         case KP_SCHANNEL_ALG:
3545             switch (((PSCHANNEL_ALG)pbData)->dwUse) {
3546                 case SCHANNEL_ENC_KEY:
3547                     memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
3548                     break;
3549 
3550                 case SCHANNEL_MAC_KEY:
3551                     memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
3552                     break;
3553 
3554                 default:
3555                     SetLastError(NTE_FAIL); /* FIXME: error code */
3556                     return FALSE;
3557             }
3558             return TRUE;
3559 
3560         case KP_CLIENT_RANDOM:
3561             return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
3562 
3563         case KP_SERVER_RANDOM:
3564             return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
3565 
3566         default:
3567             SetLastError(NTE_BAD_TYPE);
3568             return FALSE;
3569     }
3570 }
3571 
3572 /******************************************************************************
3573  * CPGetKeyParam (RSAENH.@)
3574  *
3575  * Query a key parameter.
3576  *
3577  * PARAMS
3578  *  hProv      [I]   The key container, which the key belongs to.
3579  *  hHash      [I]   The key object that is to be queried.
3580  *  dwParam    [I]   Specifies the parameter that is to be queried.
3581  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3582  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3583  *  dwFlags    [I]   None currently defined.
3584  *
3585  * RETURNS
3586  *  Success: TRUE
3587  *  Failure: FALSE
3588  *
3589  * NOTES
3590  *  Defined dwParam types are:
3591  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3592  *   - KP_MODE_BITS: Shift width for cipher feedback mode.
3593  *                   (Currently ignored by MS CSP's - always eight)
3594  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
3595  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3596  *   - KP_IV: Initialization vector.
3597  *   - KP_KEYLEN: Bitwidth of the key.
3598  *   - KP_BLOCKLEN: Size of a block cipher block.
3599  *   - KP_SALT: Salt value.
3600  */
3601 BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
3602                                  DWORD *pdwDataLen, DWORD dwFlags)
3603 {
3604     CRYPTKEY *pCryptKey;
3605     DWORD dwValue;
3606 
3607     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n",
3608           hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
3609 
3610     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3611     {
3612         SetLastError(NTE_BAD_UID);
3613         return FALSE;
3614     }
3615 
3616     if (dwFlags) {
3617         SetLastError(NTE_BAD_FLAGS);
3618         return FALSE;
3619     }
3620 
3621     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3622     {
3623         SetLastError(NTE_BAD_KEY);
3624         return FALSE;
3625     }
3626 
3627     switch (dwParam)
3628     {
3629         case KP_IV:
3630             return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector,
3631                               pCryptKey->dwBlockLen);
3632 
3633         case KP_SALT:
3634             switch (pCryptKey->aiAlgid) {
3635                 case CALG_RC2:
3636                 case CALG_RC4:
3637                     return copy_param(pbData, pdwDataLen,
3638                             &pCryptKey->abKeyValue[pCryptKey->dwKeyLen],
3639                             pCryptKey->dwSaltLen);
3640                 default:
3641                     SetLastError(NTE_BAD_KEY);
3642                     return FALSE;
3643             }
3644 
3645         case KP_PADDING:
3646             dwValue = PKCS5_PADDING;
3647             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
3648 
3649         case KP_KEYLEN:
3650             dwValue = pCryptKey->dwKeyLen << 3;
3651             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
3652 
3653         case KP_EFFECTIVE_KEYLEN:
3654             if (pCryptKey->dwEffectiveKeyLen)
3655                 dwValue = pCryptKey->dwEffectiveKeyLen;
3656             else
3657                 dwValue = pCryptKey->dwKeyLen << 3;
3658             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
3659 
3660         case KP_BLOCKLEN:
3661             dwValue = pCryptKey->dwBlockLen << 3;
3662             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
3663 
3664         case KP_MODE:
3665             return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
3666 
3667         case KP_MODE_BITS:
3668             return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwModeBits,
3669                               sizeof(DWORD));
3670 
3671         case KP_PERMISSIONS:
3672             return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwPermissions,
3673                               sizeof(DWORD));
3674 
3675         case KP_ALGID:
3676             return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
3677 
3678         default:
3679             SetLastError(NTE_BAD_TYPE);
3680             return FALSE;
3681     }
3682 }
3683 
3684 /******************************************************************************
3685  * CPGetProvParam (RSAENH.@)
3686  *
3687  * Query a CSP parameter.
3688  *
3689  * PARAMS
3690  *  hProv      [I]   The key container that is to be queried.
3691  *  dwParam    [I]   Specifies the parameter that is to be queried.
3692  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3693  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3694  *  dwFlags    [I]   CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
3695  *
3696  * RETURNS
3697  *  Success: TRUE
3698  *  Failure: FALSE
3699  * NOTES:
3700  *  Defined dwParam types:
3701  *   - PP_CONTAINER: Name of the key container.
3702  *   - PP_NAME: Name of the cryptographic service provider.
3703  *   - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
3704  *   - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
3705  *   - PP_ENUMALGS{_EX}: Query provider capabilities.
3706  *   - PP_KEYSET_SEC_DESCR: Retrieve security descriptor on container.
3707  */
3708 BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData,
3709                                   DWORD *pdwDataLen, DWORD dwFlags)
3710 {
3711     KEYCONTAINER *pKeyContainer;
3712     PROV_ENUMALGS provEnumalgs;
3713     DWORD dwTemp;
3714     HKEY hKey;
3715 
3716     /* This is for dwParam PP_CRYPT_COUNT_KEY_USE.
3717      * IE6 SP1 asks for it in the 'About' dialog.
3718      * Returning this BLOB seems to satisfy IE. The marked 0x00 seem
3719      * to be 'don't care's. If you know anything more specific about
3720      * this provider parameter, please report to wine-devel@winehq.org */
3721     static const BYTE abWTF[96] = {
3722         0xb0, 0x25,     0x63,     0x86, 0x9c, 0xab,     0xb6,     0x37,
3723         0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b,
3724         0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82,
3725         0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde,
3726         0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8,
3727         0x12, 0x1e,     0xd4,     0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01,
3728         0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33,
3729         0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d,
3730         0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05,
3731         0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa,
3732         0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03,
3733         0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca
3734     };
3735 
3736     TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3737            hProv, dwParam, pbData, pdwDataLen, dwFlags);
3738 
3739     if (!pdwDataLen) {
3740         SetLastError(ERROR_INVALID_PARAMETER);
3741         return FALSE;
3742     }
3743 
3744     if (!(pKeyContainer = get_key_container(hProv)))
3745     {
3746         /* MSDN: hProv not containing valid context handle */
3747         return FALSE;
3748     }
3749 
3750     switch (dwParam)
3751     {
3752         case PP_CONTAINER:
3753         case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */
3754             return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szName,
3755                               strlen(pKeyContainer->szName)+1);
3756 
3757         case PP_NAME:
3758             return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szProvName,
3759                               strlen(pKeyContainer->szProvName)+1);
3760 
3761         case PP_PROVTYPE:
3762             dwTemp = PROV_RSA_FULL;
3763             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3764 
3765         case PP_KEYSPEC:
3766             dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE;
3767             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3768 
3769         case PP_KEYSET_TYPE:
3770             dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET;
3771             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3772 
3773         case PP_KEYSTORAGE:
3774             dwTemp = CRYPT_SEC_DESCR;
3775             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3776 
3777         case PP_SIG_KEYSIZE_INC:
3778         case PP_KEYX_KEYSIZE_INC:
3779             dwTemp = 8;
3780             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3781 
3782         case PP_IMPTYPE:
3783             dwTemp = CRYPT_IMPL_SOFTWARE;
3784             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3785 
3786         case PP_VERSION:
3787             dwTemp = 0x00000200;
3788             return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3789 
3790         case PP_ENUMCONTAINERS:
3791             if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
3792 
3793             if (!pbData) {
3794                 *pdwDataLen = (DWORD)MAX_PATH + 1;
3795                 return TRUE;
3796             }
3797 
3798             if (!open_container_key("", dwFlags, KEY_READ, &hKey))
3799             {
3800                 SetLastError(ERROR_NO_MORE_ITEMS);
3801                 return FALSE;
3802             }
3803 
3804             dwTemp = *pdwDataLen;
3805             switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
3806                     NULL, NULL, NULL, NULL))
3807             {
3808                 case ERROR_MORE_DATA:
3809                     *pdwDataLen = (DWORD)MAX_PATH + 1;
3810 
3811                 case ERROR_SUCCESS:
3812                     pKeyContainer->dwEnumContainersCtr++;
3813                     RegCloseKey(hKey);
3814                     return TRUE;
3815 
3816                 case ERROR_NO_MORE_ITEMS:
3817                 default:
3818                     SetLastError(ERROR_NO_MORE_ITEMS);
3819                     RegCloseKey(hKey);
3820                     return FALSE;
3821             }
3822 
3823         case PP_ENUMALGS:
3824         case PP_ENUMALGS_EX:
3825             if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
3826                  (!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
3827                    [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) &&
3828                 ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
3829             {
3830                 SetLastError(ERROR_NO_MORE_ITEMS);
3831                 return FALSE;
3832             }
3833 
3834             if (dwParam == PP_ENUMALGS) {
3835                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS)))
3836                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
3837                         0 : pKeyContainer->dwEnumAlgsCtr+1;
3838 
3839                 provEnumalgs.aiAlgid = aProvEnumAlgsEx
3840                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
3841                 provEnumalgs.dwBitLen = aProvEnumAlgsEx
3842                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
3843                 provEnumalgs.dwNameLen = aProvEnumAlgsEx
3844                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
3845                 memcpy(provEnumalgs.szName, aProvEnumAlgsEx
3846                        [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName,
3847                        20*sizeof(CHAR));
3848 
3849                 return copy_param(pbData, pdwDataLen, (const BYTE*)&provEnumalgs,
3850                                   sizeof(PROV_ENUMALGS));
3851             } else {
3852                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX)))
3853                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
3854                         0 : pKeyContainer->dwEnumAlgsCtr+1;
3855 
3856                 return copy_param(pbData, pdwDataLen,
3857                                   (const BYTE*)&aProvEnumAlgsEx
3858                                       [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr],
3859                                   sizeof(PROV_ENUMALGS_EX));
3860             }
3861 
3862         case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */
3863             return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
3864 
3865         case PP_KEYSET_SEC_DESCR:
3866         {
3867             SECURITY_DESCRIPTOR *sd;
3868             DWORD err, len, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET);
3869 
3870             if (!open_container_key(pKeyContainer->szName, flags, KEY_READ, &hKey))
3871             {
3872                 SetLastError(NTE_BAD_KEYSET);
3873                 return FALSE;
3874             }
3875 
3876             err = GetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, NULL, NULL, NULL, NULL, (void **)&sd);
3877             RegCloseKey(hKey);
3878             if (err)
3879             {
3880                 SetLastError(err);
3881                 return FALSE;
3882             }
3883 
3884             len = GetSecurityDescriptorLength(sd);
3885             if (*pdwDataLen >= len) memcpy(pbData, sd, len);
3886             else SetLastError(ERROR_INSUFFICIENT_BUFFER);
3887             *pdwDataLen = len;
3888 
3889             LocalFree(sd);
3890             return TRUE;
3891         }
3892 
3893         default:
3894             /* MSDN: Unknown parameter number in dwParam */
3895             SetLastError(NTE_BAD_TYPE);
3896             return FALSE;
3897     }
3898 }
3899 
3900 /******************************************************************************
3901  * CPDeriveKey (RSAENH.@)
3902  *
3903  * Derives a key from a hash value.
3904  *
3905  * PARAMS
3906  *  hProv     [I] Key container for which a key is to be generated.
3907  *  Algid     [I] Crypto algorithm identifier for the key to be generated.
3908  *  hBaseData [I] Hash from whose value the key will be derived.
3909  *  dwFlags   [I] See Notes.
3910  *  phKey     [O] The generated key.
3911  *
3912  * RETURNS
3913  *  Success: TRUE
3914  *  Failure: FALSE
3915  *
3916  * NOTES
3917  *  Defined flags:
3918  *   - CRYPT_EXPORTABLE: Key can be exported.
3919  *   - CRYPT_NO_SALT: No salt is used for 40 bit keys.
3920  *   - CRYPT_CREATE_SALT: Use remaining bits as salt value.
3921  */
3922 BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData,
3923                                DWORD dwFlags, HCRYPTKEY *phKey)
3924 {
3925     CRYPTKEY *pCryptKey, *pMasterKey;
3926     CRYPTHASH *pCryptHash;
3927     BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
3928     DWORD dwLen;
3929 
3930     TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid,
3931            hBaseData, dwFlags, phKey);
3932 
3933     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3934     {
3935         SetLastError(NTE_BAD_UID);
3936         return FALSE;
3937     }
3938 
3939     if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH,
3940                        (OBJECTHDR**)&pCryptHash))
3941     {
3942         SetLastError(NTE_BAD_HASH);
3943         return FALSE;
3944     }
3945 
3946     if (!phKey)
3947     {
3948         SetLastError(ERROR_INVALID_PARAMETER);
3949         return FALSE;
3950     }
3951 
3952     switch (GET_ALG_CLASS(Algid))
3953     {
3954         case ALG_CLASS_DATA_ENCRYPT:
3955         {
3956             int need_padding, copy_len;
3957             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3958             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3959 
3960             /*
3961              * We derive the key material from the hash.
3962              * If the hash value is not large enough for the claimed key, we have to construct
3963              * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
3964              */
3965             dwLen = RSAENH_MAX_HASH_SIZE;
3966             RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
3967 
3968             /*
3969              * The usage of padding seems to vary from algorithm to algorithm.
3970              * For now the only different case found was for AES with 128 bit key.
3971              */
3972             switch(Algid)
3973             {
3974                 case CALG_AES_128:
3975                     /* To reduce the chance of regressions we will only deviate
3976                      * from the old behavior for the tested hash lengths */
3977                     if (dwLen == 16 || dwLen == 20)
3978                     {
3979                         need_padding = 1;
3980                         break;
3981                     }
3982                 default:
3983                     need_padding = dwLen < pCryptKey->dwKeyLen;
3984             }
3985 
3986             copy_len = pCryptKey->dwKeyLen;
3987             if (need_padding)
3988             {
3989                 BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
3990                 BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
3991                 DWORD i;
3992 
3993                 memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
3994 
3995                 for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
3996                     pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3997                     pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3998                 }
3999 
4000                 init_hash(pCryptHash);
4001                 update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
4002                 finalize_hash(pCryptHash);
4003                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
4004 
4005                 init_hash(pCryptHash);
4006                 update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
4007                 finalize_hash(pCryptHash);
4008                 memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue,
4009                        pCryptHash->dwHashSize);
4010 
4011                 memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
4012             }
4013             /*
4014              * Padding was not required, we have more hash than needed.
4015              * Do we need to use the remaining hash as salt?
4016              */
4017             else if((dwFlags & CRYPT_CREATE_SALT) &&
4018                     (Algid == CALG_RC2 || Algid == CALG_RC4))
4019             {
4020                 copy_len += pCryptKey->dwSaltLen;
4021             }
4022 
4023             memcpy(pCryptKey->abKeyValue, abHashValue,
4024                    RSAENH_MIN(copy_len, sizeof(pCryptKey->abKeyValue)));
4025             break;
4026         }
4027         case ALG_CLASS_MSG_ENCRYPT:
4028             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
4029                                (OBJECTHDR**)&pMasterKey))
4030             {
4031                 SetLastError(NTE_FAIL); /* FIXME error code */
4032                 return FALSE;
4033             }
4034 
4035             switch (Algid)
4036             {
4037                 /* See RFC 2246, chapter 6.3 Key calculation */
4038                 case CALG_SCHANNEL_ENC_KEY:
4039                     if (!pMasterKey->siSChannelInfo.saEncAlg.Algid ||
4040                         !pMasterKey->siSChannelInfo.saEncAlg.cBits)
4041                     {
4042                         SetLastError(NTE_BAD_FLAGS);
4043                         return FALSE;
4044                     }
4045                     *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid,
4046                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
4047                                      &pCryptKey);
4048                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
4049                     memcpy(pCryptKey->abKeyValue,
4050                            pCryptHash->abHashValue + (
4051                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
4052                                ((dwFlags & CRYPT_SERVER) ?
4053                                    (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
4054                            pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
4055                     memcpy(pCryptKey->abInitVector,
4056                            pCryptHash->abHashValue + (
4057                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
4058                                2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
4059                                ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
4060                            pCryptKey->dwBlockLen);
4061                     break;
4062 
4063                 case CALG_SCHANNEL_MAC_KEY:
4064                     *phKey = new_key(hProv, Algid,
4065                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
4066                                      &pCryptKey);
4067                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
4068                     memcpy(pCryptKey->abKeyValue,
4069                            pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ?
4070                                pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
4071                            pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
4072                     break;
4073 
4074                 default:
4075                     SetLastError(NTE_BAD_ALGID);
4076                     return FALSE;
4077             }
4078             break;
4079 
4080         default:
4081             SetLastError(NTE_BAD_ALGID);
4082             return FALSE;
4083     }
4084 
4085     setup_key(pCryptKey);
4086     return TRUE;
4087 }
4088 
4089 /******************************************************************************
4090  * CPGetUserKey (RSAENH.@)
4091  *
4092  * Returns a handle to the user's private key-exchange- or signature-key.
4093  *
4094  * PARAMS
4095  *  hProv     [I] The key container from which a user key is requested.
4096  *  dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
4097  *  phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
4098  *
4099  * RETURNS
4100  *  Success: TRUE.
4101  *  Failure: FALSE.
4102  *
4103  * NOTE
4104  *  A newly created key container does not contain private user key. Create them with CPGenKey.
4105  */
4106 BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
4107 {
4108     KEYCONTAINER *pKeyContainer;
4109 
4110     TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
4111 
4112     if (!(pKeyContainer = get_key_container(hProv)))
4113     {
4114         /* MSDN: hProv not containing valid context handle */
4115         return FALSE;
4116     }
4117 
4118     switch (dwKeySpec)
4119     {
4120         case AT_KEYEXCHANGE:
4121             copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY,
4122                         phUserKey);
4123             break;
4124 
4125         case AT_SIGNATURE:
4126             copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY,
4127                         phUserKey);
4128             break;
4129 
4130         default:
4131             *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
4132     }
4133 
4134     if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
4135     {
4136         /* MSDN: dwKeySpec parameter specifies nonexistent key */
4137         SetLastError(NTE_NO_KEY);
4138         return FALSE;
4139     }
4140 
4141     return TRUE;
4142 }
4143 
4144 /******************************************************************************
4145  * CPHashData (RSAENH.@)
4146  *
4147  * Updates a hash object with the given data.
4148  *
4149  * PARAMS
4150  *  hProv     [I] Key container to which the hash object belongs.
4151  *  hHash     [I] Hash object which is to be updated.
4152  *  pbData    [I] Pointer to data with which the hash object is to be updated.
4153  *  dwDataLen [I] Length of the data.
4154  *  dwFlags   [I] Currently none defined.
4155  *
4156  * RETURNS
4157  *  Success: TRUE.
4158  *  Failure: FALSE.
4159  *
4160  * NOTES
4161  *  The actual hash value is queried with CPGetHashParam, which will finalize
4162  *  the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
4163  */
4164 BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbData,
4165                               DWORD dwDataLen, DWORD dwFlags)
4166 {
4167     CRYPTHASH *pCryptHash;
4168 
4169     TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n",
4170           hProv, hHash, pbData, dwDataLen, dwFlags);
4171 
4172     if (dwFlags & ~CRYPT_USERDATA)
4173     {
4174         SetLastError(NTE_BAD_FLAGS);
4175         return FALSE;
4176     }
4177 
4178     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
4179                        (OBJECTHDR**)&pCryptHash))
4180     {
4181         SetLastError(NTE_BAD_HASH);
4182         return FALSE;
4183     }
4184 
4185     if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
4186     {
4187         SetLastError(NTE_BAD_ALGID);
4188         return FALSE;
4189     }
4190 
4191     if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
4192     {
4193         SetLastError(NTE_BAD_HASH_STATE);
4194         return FALSE;
4195     }
4196 
4197     update_hash(pCryptHash, pbData, dwDataLen);
4198     return TRUE;
4199 }
4200 
4201 /******************************************************************************
4202  * CPHashSessionKey (RSAENH.@)
4203  *
4204  * Updates a hash object with the binary representation of a symmetric key.
4205  *
4206  * PARAMS
4207  *  hProv     [I] Key container to which the hash object belongs.
4208  *  hHash     [I] Hash object which is to be updated.
4209  *  hKey      [I] The symmetric key, whose binary value will be added to the hash.
4210  *  dwFlags   [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
4211  *
4212  * RETURNS
4213  *  Success: TRUE.
4214  *  Failure: FALSE.
4215  */
4216 BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey,
4217                                     DWORD dwFlags)
4218 {
4219     BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
4220     CRYPTKEY *pKey;
4221     DWORD i;
4222 
4223     TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags);
4224 
4225     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
4226         (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT))
4227     {
4228         SetLastError(NTE_BAD_KEY);
4229         return FALSE;
4230     }
4231 
4232     if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
4233         SetLastError(NTE_BAD_FLAGS);
4234         return FALSE;
4235     }
4236 
4237     memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
4238     if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
4239         for (i=0; i<pKey->dwKeyLen/2; i++) {
4240             bTemp = abKeyValue[i];
4241             abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
4242             abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
4243         }
4244     }
4245 
4246     return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
4247 }
4248 
4249 /******************************************************************************
4250  * CPReleaseContext (RSAENH.@)
4251  *
4252  * Release a key container.
4253  *
4254  * PARAMS
4255  *  hProv   [I] Key container to be released.
4256  *  dwFlags [I] Currently none defined.
4257  *
4258  * RETURNS
4259  *  Success: TRUE
4260  *  Failure: FALSE
4261  */
4262 BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
4263 {
4264     TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags);
4265 
4266     if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4267     {
4268         /* MSDN: hProv not containing valid context handle */
4269         SetLastError(NTE_BAD_UID);
4270         return FALSE;
4271     }
4272 
4273     if (dwFlags) {
4274         SetLastError(NTE_BAD_FLAGS);
4275         return FALSE;
4276     }
4277 
4278     return TRUE;
4279 }
4280 
4281 /******************************************************************************
4282  * CPSetHashParam (RSAENH.@)
4283  *
4284  * Set a parameter of a hash object
4285  *
4286  * PARAMS
4287  *  hProv   [I] The key container to which the key belongs.
4288  *  hHash   [I] The hash object for which a parameter is to be set.
4289  *  dwParam [I] Parameter type. See Notes.
4290  *  pbData  [I] Pointer to the parameter value.
4291  *  dwFlags [I] Currently none defined.
4292  *
4293  * RETURNS
4294  *  Success: TRUE.
4295  *  Failure: FALSE.
4296  *
4297  * NOTES
4298  *  Currently only the HP_HMAC_INFO dwParam type is defined.
4299  *  The HMAC_INFO struct will be deep copied into the hash object.
4300  *  See Internet RFC 2104 for details on the HMAC algorithm.
4301  */
4302 BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam,
4303                                   BYTE *pbData, DWORD dwFlags)
4304 {
4305     CRYPTHASH *pCryptHash;
4306     CRYPTKEY *pCryptKey;
4307     DWORD i;
4308 
4309     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n",
4310            hProv, hHash, dwParam, pbData, dwFlags);
4311 
4312     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4313     {
4314         SetLastError(NTE_BAD_UID);
4315         return FALSE;
4316     }
4317 
4318     if (dwFlags) {
4319         SetLastError(NTE_BAD_FLAGS);
4320         return FALSE;
4321     }
4322 
4323     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
4324                        (OBJECTHDR**)&pCryptHash))
4325     {
4326         SetLastError(NTE_BAD_HASH);
4327         return FALSE;
4328     }
4329 
4330     switch (dwParam) {
4331         case HP_HMAC_INFO:
4332             free_hmac_info(pCryptHash->pHMACInfo);
4333             if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
4334 
4335             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
4336                                (OBJECTHDR**)&pCryptKey))
4337             {
4338                 SetLastError(NTE_FAIL); /* FIXME: correct error code? */
4339                 return FALSE;
4340             }
4341 
4342             if (pCryptKey->aiAlgid == CALG_HMAC && !pCryptKey->dwKeyLen) {
4343                 HCRYPTHASH hKeyHash;
4344                 DWORD keyLen;
4345 
4346                 if (!RSAENH_CPCreateHash(hProv, ((PHMAC_INFO)pbData)->HashAlgid, 0, 0,
4347                     &hKeyHash))
4348                     return FALSE;
4349                 if (!RSAENH_CPHashData(hProv, hKeyHash, pCryptKey->blobHmacKey.pbData,
4350                     pCryptKey->blobHmacKey.cbData, 0))
4351                 {
4352                     RSAENH_CPDestroyHash(hProv, hKeyHash);
4353                     return FALSE;
4354                 }
4355                 keyLen = sizeof(pCryptKey->abKeyValue);
4356                 if (!RSAENH_CPGetHashParam(hProv, hKeyHash, HP_HASHVAL, pCryptKey->abKeyValue,
4357                     &keyLen, 0))
4358                 {
4359                     RSAENH_CPDestroyHash(hProv, hKeyHash);
4360                     return FALSE;
4361                 }
4362                 pCryptKey->dwKeyLen = keyLen;
4363                 RSAENH_CPDestroyHash(hProv, hKeyHash);
4364             }
4365             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
4366                 pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
4367             }
4368             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
4369                 pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
4370             }
4371 
4372             init_hash(pCryptHash);
4373             return TRUE;
4374 
4375         case HP_HASHVAL:
4376             memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
4377             pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
4378             return TRUE;
4379 
4380         case HP_TLS1PRF_SEED:
4381             return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
4382 
4383         case HP_TLS1PRF_LABEL:
4384             return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
4385 
4386         default:
4387             SetLastError(NTE_BAD_TYPE);
4388             return FALSE;
4389     }
4390 }
4391 
4392 /******************************************************************************
4393  * CPSetProvParam (RSAENH.@)
4394  */
4395 BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
4396 {
4397     KEYCONTAINER *pKeyContainer;
4398     HKEY hKey;
4399 
4400     TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, dwParam, pbData, dwFlags);
4401 
4402     if (!(pKeyContainer = get_key_container(hProv)))
4403         return FALSE;
4404 
4405     switch (dwParam)
4406     {
4407     case PP_KEYSET_SEC_DESCR:
4408     {
4409         SECURITY_DESCRIPTOR *sd = (SECURITY_DESCRIPTOR *)pbData;
4410         DWORD err, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET);
4411         BOOL def, present;
4412         REGSAM access = WRITE_DAC | WRITE_OWNER | ACCESS_SYSTEM_SECURITY;
4413         PSID owner = NULL, group = NULL;
4414         PACL dacl = NULL, sacl = NULL;
4415 
4416         if (!open_container_key(pKeyContainer->szName, flags, access, &hKey))
4417         {
4418             SetLastError(NTE_BAD_KEYSET);
4419             return FALSE;
4420         }
4421 
4422         if ((dwFlags & OWNER_SECURITY_INFORMATION && !GetSecurityDescriptorOwner(sd, &owner, &def)) ||
4423             (dwFlags & GROUP_SECURITY_INFORMATION && !GetSecurityDescriptorGroup(sd, &group, &def)) ||
4424             (dwFlags & DACL_SECURITY_INFORMATION && !GetSecurityDescriptorDacl(sd, &present, &dacl, &def)) ||
4425             (dwFlags & SACL_SECURITY_INFORMATION && !GetSecurityDescriptorSacl(sd, &present, &sacl, &def)))
4426         {
4427             RegCloseKey(hKey);
4428             return FALSE;
4429         }
4430 
4431         err = SetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, owner, group, dacl, sacl);
4432         RegCloseKey(hKey);
4433         if (err)
4434         {
4435             SetLastError(err);
4436             return FALSE;
4437         }
4438         return TRUE;
4439     }
4440     default:
4441         FIXME("unimplemented parameter %08x\n", dwParam);
4442         return FALSE;
4443     }
4444 }
4445 
4446 /******************************************************************************
4447  * CPSignHash (RSAENH.@)
4448  *
4449  * Sign a hash object
4450  *
4451  * PARAMS
4452  *  hProv        [I]   The key container, to which the hash object belongs.
4453  *  hHash        [I]   The hash object to be signed.
4454  *  dwKeySpec    [I]   AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
4455  *  sDescription [I]   Should be NULL for security reasons.
4456  *  dwFlags      [I]   0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4457  *  pbSignature  [O]   Buffer, to which the signature will be stored. May be NULL to query SigLen.
4458  *  pdwSigLen    [I/O] Size of the buffer (in), Length of the signature (out)
4459  *
4460  * RETURNS
4461  *  Success: TRUE
4462  *  Failure: FALSE
4463  */
4464 BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec,
4465                               LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature,
4466                               DWORD *pdwSigLen)
4467 {
4468     HCRYPTKEY hCryptKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
4469     CRYPTKEY *pCryptKey;
4470     DWORD dwHashLen;
4471     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4472     ALG_ID aiAlgid;
4473     BOOL ret = FALSE;
4474 
4475     TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, "
4476         "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
4477         dwFlags, pbSignature, pdwSigLen);
4478 
4479     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4480         SetLastError(NTE_BAD_FLAGS);
4481         return FALSE;
4482     }
4483 
4484     if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
4485 
4486     if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
4487                        (OBJECTHDR**)&pCryptKey))
4488     {
4489         SetLastError(NTE_NO_KEY);
4490         goto out;
4491     }
4492 
4493     if (!pbSignature) {
4494         *pdwSigLen = pCryptKey->dwKeyLen;
4495         ret = TRUE;
4496         goto out;
4497     }
4498     if (pCryptKey->dwKeyLen > *pdwSigLen)
4499     {
4500         SetLastError(ERROR_MORE_DATA);
4501         *pdwSigLen = pCryptKey->dwKeyLen;
4502         goto out;
4503     }
4504     *pdwSigLen = pCryptKey->dwKeyLen;
4505 
4506     if (sDescription) {
4507         if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription,
4508                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4509         {
4510             goto out;
4511         }
4512     }
4513 
4514     dwHashLen = sizeof(DWORD);
4515     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) goto out;
4516 
4517     dwHashLen = RSAENH_MAX_HASH_SIZE;
4518     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) goto out;
4519 
4520 
4521     if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
4522         goto out;
4523     }
4524 
4525     ret = encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
4526 out:
4527     RSAENH_CPDestroyKey(hProv, hCryptKey);
4528     return ret;
4529 }
4530 
4531 /******************************************************************************
4532  * CPVerifySignature (RSAENH.@)
4533  *
4534  * Verify the signature of a hash object.
4535  *
4536  * PARAMS
4537  *  hProv        [I] The key container, to which the hash belongs.
4538  *  hHash        [I] The hash for which the signature is verified.
4539  *  pbSignature  [I] The binary signature.
4540  *  dwSigLen     [I] Length of the signature BLOB.
4541  *  hPubKey      [I] Public key used to verify the signature.
4542  *  sDescription [I] Should be NULL for security reasons.
4543  *  dwFlags      [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4544  *
4545  * RETURNS
4546  *  Success: TRUE  (Signature is valid)
4547  *  Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
4548  */
4549 BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbSignature,
4550                                      DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription,
4551                                      DWORD dwFlags)
4552 {
4553     BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
4554     CRYPTKEY *pCryptKey;
4555     DWORD dwHashLen;
4556     ALG_ID aiAlgid;
4557     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4558     BOOL res = FALSE;
4559 
4560     TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, "
4561           "dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
4562           dwFlags);
4563 
4564     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4565         SetLastError(NTE_BAD_FLAGS);
4566         return FALSE;
4567     }
4568 
4569     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4570     {
4571         SetLastError(NTE_BAD_UID);
4572         return FALSE;
4573     }
4574 
4575     if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY,
4576                        (OBJECTHDR**)&pCryptKey))
4577     {
4578         SetLastError(NTE_BAD_KEY);
4579         return FALSE;
4580     }
4581 
4582     /* in Microsoft implementation, the signature length is checked before
4583      * the signature pointer.
4584      */
4585     if (dwSigLen != pCryptKey->dwKeyLen)
4586     {
4587         SetLastError(NTE_BAD_SIGNATURE);
4588         return FALSE;
4589     }
4590 
4591     if (!hHash || !pbSignature)
4592     {
4593         SetLastError(ERROR_INVALID_PARAMETER);
4594         return FALSE;
4595     }
4596 
4597     if (sDescription) {
4598         if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription,
4599                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4600         {
4601             return FALSE;
4602         }
4603     }
4604 
4605     dwHashLen = sizeof(DWORD);
4606     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
4607 
4608     dwHashLen = RSAENH_MAX_HASH_SIZE;
4609     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
4610 
4611     pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4612     if (!pbConstructed) {
4613         SetLastError(NTE_NO_MEMORY);
4614         goto cleanup;
4615     }
4616 
4617     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4618     if (!pbDecrypted) {
4619         SetLastError(NTE_NO_MEMORY);
4620         goto cleanup;
4621     }
4622 
4623     if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted,
4624                             RSAENH_DECRYPT))
4625     {
4626         goto cleanup;
4627     }
4628 
4629     if (build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags) &&
4630         !memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
4631         res = TRUE;
4632         goto cleanup;
4633     }
4634 
4635     if (!(dwFlags & CRYPT_NOHASHOID) &&
4636         build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags|CRYPT_NOHASHOID) &&
4637         !memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
4638         res = TRUE;
4639         goto cleanup;
4640     }
4641 
4642     SetLastError(NTE_BAD_SIGNATURE);
4643 
4644 cleanup:
4645     HeapFree(GetProcessHeap(), 0, pbConstructed);
4646     HeapFree(GetProcessHeap(), 0, pbDecrypted);
4647     return res;
4648 }
4649 
4650 /******************************************************************************
4651  * DllRegisterServer (RSAENH.@)
4652  */
4653 HRESULT WINAPI DllRegisterServer(void)
4654 {
4655     return __wine_register_resources( instance );
4656 }
4657 
4658 /******************************************************************************
4659  * DllUnregisterServer (RSAENH.@)
4660  */
4661 HRESULT WINAPI DllUnregisterServer(void)
4662 {
4663     return __wine_unregister_resources( instance );
4664 }
4665