1 /* 2 * xxHash - Fast Hash algorithm 3 * Copyright (C) 2012-2016, Yann Collet 4 * 5 * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions are 9 * met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following disclaimer 15 * in the documentation and/or other materials provided with the 16 * distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * 30 * You can contact the author at : 31 * - xxHash homepage: http://www.xxhash.com 32 * - xxHash source repository : https://github.com/Cyan4973/xxHash 33 */ 34 35 36 /* ************************************* 37 * Tuning parameters 38 ***************************************/ 39 /*!XXH_FORCE_MEMORY_ACCESS : 40 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. 41 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. 42 * The below switch allow to select different access method for improved performance. 43 * Method 0 (default) : use `memcpy()`. Safe and portable. 44 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). 45 * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. 46 * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. 47 * It can generate buggy code on targets which do not support unaligned memory accesses. 48 * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) 49 * See http://stackoverflow.com/a/32095106/646947 for details. 50 * Prefer these methods in priority order (0 > 1 > 2) 51 */ 52 #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ 53 # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) 54 # define XXH_FORCE_MEMORY_ACCESS 2 55 # elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \ 56 (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) 57 # define XXH_FORCE_MEMORY_ACCESS 1 58 # endif 59 #endif 60 61 /*!XXH_ACCEPT_NULL_INPUT_POINTER : 62 * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. 63 * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. 64 * By default, this option is disabled. To enable it, uncomment below define : 65 */ 66 /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */ 67 68 /*!XXH_FORCE_NATIVE_FORMAT : 69 * By default, xxHash library provides endian-independant Hash values, based on little-endian convention. 70 * Results are therefore identical for little-endian and big-endian CPU. 71 * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. 72 * Should endian-independance be of no importance for your application, you may set the #define below to 1, 73 * to improve speed for Big-endian CPU. 74 * This option has no impact on Little_Endian CPU. 75 */ 76 #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ 77 # define XXH_FORCE_NATIVE_FORMAT 0 78 #endif 79 80 /*!XXH_FORCE_ALIGN_CHECK : 81 * This is a minor performance trick, only useful with lots of very small keys. 82 * It means : check for aligned/unaligned input. 83 * The check costs one initial branch per hash; set to 0 when the input data 84 * is guaranteed to be aligned. 85 */ 86 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ 87 # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) 88 # define XXH_FORCE_ALIGN_CHECK 0 89 # else 90 # define XXH_FORCE_ALIGN_CHECK 1 91 # endif 92 #endif 93 94 95 /* ************************************* 96 * Includes & Memory related functions 97 ***************************************/ 98 /* Modify the local functions below should you wish to use some other memory routines */ 99 /* for malloc(), free() */ 100 #include <stdlib.h> 101 #include <stddef.h> /* size_t */ 102 #ifndef __REACTOS__ 103 #include <ntifs.h> 104 #include <ntddk.h> 105 #endif // __REACTOS__ 106 107 #ifndef _USRDLL 108 #ifdef __REACTOS__ 109 #include <ntifs.h> 110 #include <ntddk.h> 111 #endif // __REACTOS__ 112 113 #define XXH_ALLOC_TAG 0x32485858 // "XXH " 114 115 static void* XXH_malloc(size_t s) { 116 return ExAllocatePoolWithTag(PagedPool, s, XXH_ALLOC_TAG); 117 } 118 119 static void XXH_free(void* p) { 120 ExFreePool(p); 121 } 122 123 #else 124 #ifndef __REACTOS__ 125 static void* XXH_malloc(size_t s) { 126 return malloc(s); 127 } 128 129 static void XXH_free(void* p) { 130 free(p); 131 } 132 #else 133 #include <ndk/rtlfuncs.h> 134 135 static void* XXH_malloc(size_t s) { 136 return RtlAllocateHeap(RtlGetProcessHeap(), 0, s); 137 } 138 139 static void XXH_free(void* p) { 140 RtlFreeHeap(RtlGetProcessHeap(), 0, p); 141 } 142 #endif // __REACTOS__ 143 #endif 144 145 /* for memcpy() */ 146 #include <string.h> 147 static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } 148 149 #ifndef XXH_STATIC_LINKING_ONLY 150 # define XXH_STATIC_LINKING_ONLY 151 #endif 152 #include "xxhash.h" 153 154 155 /* ************************************* 156 * Compiler Specific Options 157 ***************************************/ 158 #if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ 159 # define INLINE_KEYWORD inline 160 #else 161 # define INLINE_KEYWORD 162 #endif 163 164 #if defined(__GNUC__) 165 # define FORCE_INLINE_ATTR __attribute__((always_inline)) 166 #elif defined(_MSC_VER) 167 # define FORCE_INLINE_ATTR __forceinline 168 #else 169 # define FORCE_INLINE_ATTR 170 #endif 171 172 #define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR 173 174 175 #ifdef _MSC_VER 176 # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ 177 #endif 178 179 180 /* ************************************* 181 * Basic Types 182 ***************************************/ 183 #ifndef MEM_MODULE 184 # define MEM_MODULE 185 # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) 186 # include <stdint.h> 187 typedef uint8_t BYTE; 188 typedef uint16_t U16; 189 typedef uint32_t U32; 190 typedef int32_t S32; 191 typedef uint64_t U64; 192 # else 193 typedef unsigned char BYTE; 194 typedef unsigned short U16; 195 typedef unsigned int U32; 196 typedef signed int S32; 197 typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */ 198 # endif 199 #endif 200 201 202 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) 203 204 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ 205 static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } 206 static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } 207 208 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) 209 210 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ 211 /* currently only defined for gcc and icc */ 212 typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign; 213 214 static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } 215 static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } 216 217 #else 218 219 /* portable and safe solution. Generally efficient. 220 * see : http://stackoverflow.com/a/32095106/646947 221 */ 222 223 static U32 XXH_read32(const void* memPtr) 224 { 225 U32 val; 226 memcpy(&val, memPtr, sizeof(val)); 227 return val; 228 } 229 230 static U64 XXH_read64(const void* memPtr) 231 { 232 U64 val; 233 memcpy(&val, memPtr, sizeof(val)); 234 return val; 235 } 236 237 #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ 238 239 240 /* **************************************** 241 * Compiler-specific Functions and Macros 242 ******************************************/ 243 #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) 244 245 /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ 246 #if defined(_MSC_VER) 247 # define XXH_rotl32(x,r) _rotl(x,r) 248 # define XXH_rotl64(x,r) _rotl64(x,r) 249 #else 250 # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) 251 # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) 252 #endif 253 254 #if defined(_MSC_VER) /* Visual Studio */ 255 # define XXH_swap32 _byteswap_ulong 256 # define XXH_swap64 _byteswap_uint64 257 #elif GCC_VERSION >= 403 258 # define XXH_swap32 __builtin_bswap32 259 # define XXH_swap64 __builtin_bswap64 260 #else 261 static U32 XXH_swap32 (U32 x) 262 { 263 return ((x << 24) & 0xff000000 ) | 264 ((x << 8) & 0x00ff0000 ) | 265 ((x >> 8) & 0x0000ff00 ) | 266 ((x >> 24) & 0x000000ff ); 267 } 268 static U64 XXH_swap64 (U64 x) 269 { 270 return ((x << 56) & 0xff00000000000000ULL) | 271 ((x << 40) & 0x00ff000000000000ULL) | 272 ((x << 24) & 0x0000ff0000000000ULL) | 273 ((x << 8) & 0x000000ff00000000ULL) | 274 ((x >> 8) & 0x00000000ff000000ULL) | 275 ((x >> 24) & 0x0000000000ff0000ULL) | 276 ((x >> 40) & 0x000000000000ff00ULL) | 277 ((x >> 56) & 0x00000000000000ffULL); 278 } 279 #endif 280 281 282 /* ************************************* 283 * Architecture Macros 284 ***************************************/ 285 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; 286 287 /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ 288 #ifndef XXH_CPU_LITTLE_ENDIAN 289 static const int g_one = 1; 290 # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one)) 291 #endif 292 293 294 /* *************************** 295 * Memory reads 296 *****************************/ 297 typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; 298 299 FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) 300 { 301 if (align==XXH_unaligned) 302 return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); 303 else 304 return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); 305 } 306 307 FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) 308 { 309 return XXH_readLE32_align(ptr, endian, XXH_unaligned); 310 } 311 312 static U32 XXH_readBE32(const void* ptr) 313 { 314 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); 315 } 316 317 FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) 318 { 319 if (align==XXH_unaligned) 320 return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); 321 else 322 return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); 323 } 324 325 FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) 326 { 327 return XXH_readLE64_align(ptr, endian, XXH_unaligned); 328 } 329 330 static U64 XXH_readBE64(const void* ptr) 331 { 332 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); 333 } 334 335 336 /* ************************************* 337 * Macros 338 ***************************************/ 339 #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ 340 341 342 /* ************************************* 343 * Constants 344 ***************************************/ 345 static const U32 PRIME32_1 = 2654435761U; 346 static const U32 PRIME32_2 = 2246822519U; 347 static const U32 PRIME32_3 = 3266489917U; 348 static const U32 PRIME32_4 = 668265263U; 349 static const U32 PRIME32_5 = 374761393U; 350 351 static const U64 PRIME64_1 = 11400714785074694791ULL; 352 static const U64 PRIME64_2 = 14029467366897019727ULL; 353 static const U64 PRIME64_3 = 1609587929392839161ULL; 354 static const U64 PRIME64_4 = 9650029242287828579ULL; 355 static const U64 PRIME64_5 = 2870177450012600261ULL; 356 357 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } 358 359 360 /* ************************** 361 * Utils 362 ****************************/ 363 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState) 364 { 365 memcpy(dstState, srcState, sizeof(*dstState)); 366 } 367 368 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState) 369 { 370 memcpy(dstState, srcState, sizeof(*dstState)); 371 } 372 373 374 /* *************************** 375 * Simple Hash Functions 376 *****************************/ 377 378 static U32 XXH32_round(U32 seed, U32 input) 379 { 380 seed += input * PRIME32_2; 381 seed = XXH_rotl32(seed, 13); 382 seed *= PRIME32_1; 383 return seed; 384 } 385 386 FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align) 387 { 388 const BYTE* p = (const BYTE*)input; 389 const BYTE* bEnd = p + len; 390 U32 h32; 391 #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) 392 393 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER 394 if (p==NULL) { 395 len=0; 396 bEnd=p=(const BYTE*)(size_t)16; 397 } 398 #endif 399 400 if (len>=16) { 401 const BYTE* const limit = bEnd - 16; 402 U32 v1 = seed + PRIME32_1 + PRIME32_2; 403 U32 v2 = seed + PRIME32_2; 404 U32 v3 = seed + 0; 405 U32 v4 = seed - PRIME32_1; 406 407 do { 408 v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; 409 v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; 410 v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; 411 v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; 412 } while (p<=limit); 413 414 h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); 415 } else { 416 h32 = seed + PRIME32_5; 417 } 418 419 h32 += (U32) len; 420 421 while (p+4<=bEnd) { 422 h32 += XXH_get32bits(p) * PRIME32_3; 423 h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; 424 p+=4; 425 } 426 427 while (p<bEnd) { 428 h32 += (*p) * PRIME32_5; 429 h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; 430 p++; 431 } 432 433 h32 ^= h32 >> 15; 434 h32 *= PRIME32_2; 435 h32 ^= h32 >> 13; 436 h32 *= PRIME32_3; 437 h32 ^= h32 >> 16; 438 439 return h32; 440 } 441 442 443 XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) 444 { 445 #if 0 446 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ 447 XXH32_CREATESTATE_STATIC(state); 448 XXH32_reset(state, seed); 449 XXH32_update(state, input, len); 450 return XXH32_digest(state); 451 #else 452 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 453 454 if (XXH_FORCE_ALIGN_CHECK) { 455 if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ 456 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 457 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); 458 else 459 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); 460 } } 461 462 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 463 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); 464 else 465 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); 466 #endif 467 } 468 469 470 static U64 XXH64_round(U64 acc, U64 input) 471 { 472 acc += input * PRIME64_2; 473 acc = XXH_rotl64(acc, 31); 474 acc *= PRIME64_1; 475 return acc; 476 } 477 478 static U64 XXH64_mergeRound(U64 acc, U64 val) 479 { 480 val = XXH64_round(0, val); 481 acc ^= val; 482 acc = acc * PRIME64_1 + PRIME64_4; 483 return acc; 484 } 485 486 FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align) 487 { 488 const BYTE* p = (const BYTE*)input; 489 const BYTE* const bEnd = p + len; 490 U64 h64; 491 #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) 492 493 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER 494 if (p==NULL) { 495 len=0; 496 bEnd=p=(const BYTE*)(size_t)32; 497 } 498 #endif 499 500 if (len>=32) { 501 const BYTE* const limit = bEnd - 32; 502 U64 v1 = seed + PRIME64_1 + PRIME64_2; 503 U64 v2 = seed + PRIME64_2; 504 U64 v3 = seed + 0; 505 U64 v4 = seed - PRIME64_1; 506 507 do { 508 v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; 509 v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; 510 v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; 511 v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; 512 } while (p<=limit); 513 514 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); 515 h64 = XXH64_mergeRound(h64, v1); 516 h64 = XXH64_mergeRound(h64, v2); 517 h64 = XXH64_mergeRound(h64, v3); 518 h64 = XXH64_mergeRound(h64, v4); 519 520 } else { 521 h64 = seed + PRIME64_5; 522 } 523 524 h64 += (U64) len; 525 526 while (p+8<=bEnd) { 527 U64 const k1 = XXH64_round(0, XXH_get64bits(p)); 528 h64 ^= k1; 529 h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; 530 p+=8; 531 } 532 533 if (p+4<=bEnd) { 534 h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; 535 h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; 536 p+=4; 537 } 538 539 while (p<bEnd) { 540 h64 ^= (*p) * PRIME64_5; 541 h64 = XXH_rotl64(h64, 11) * PRIME64_1; 542 p++; 543 } 544 545 h64 ^= h64 >> 33; 546 h64 *= PRIME64_2; 547 h64 ^= h64 >> 29; 548 h64 *= PRIME64_3; 549 h64 ^= h64 >> 32; 550 551 return h64; 552 } 553 554 555 XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) 556 { 557 #if 0 558 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ 559 XXH64_CREATESTATE_STATIC(state); 560 XXH64_reset(state, seed); 561 XXH64_update(state, input, len); 562 return XXH64_digest(state); 563 #else 564 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 565 566 if (XXH_FORCE_ALIGN_CHECK) { 567 if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ 568 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 569 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); 570 else 571 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); 572 } } 573 574 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 575 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); 576 else 577 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); 578 #endif 579 } 580 581 582 /* ************************************************** 583 * Advanced Hash Functions 584 ****************************************************/ 585 586 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) 587 { 588 return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); 589 } 590 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) 591 { 592 XXH_free(statePtr); 593 return XXH_OK; 594 } 595 596 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) 597 { 598 return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); 599 } 600 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) 601 { 602 XXH_free(statePtr); 603 return XXH_OK; 604 } 605 606 607 /*** Hash feed ***/ 608 609 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) 610 { 611 XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ 612 memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */ 613 state.v1 = seed + PRIME32_1 + PRIME32_2; 614 state.v2 = seed + PRIME32_2; 615 state.v3 = seed + 0; 616 state.v4 = seed - PRIME32_1; 617 memcpy(statePtr, &state, sizeof(state)); 618 return XXH_OK; 619 } 620 621 622 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) 623 { 624 XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ 625 memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */ 626 state.v1 = seed + PRIME64_1 + PRIME64_2; 627 state.v2 = seed + PRIME64_2; 628 state.v3 = seed + 0; 629 state.v4 = seed - PRIME64_1; 630 memcpy(statePtr, &state, sizeof(state)); 631 return XXH_OK; 632 } 633 634 635 FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) 636 { 637 const BYTE* p = (const BYTE*)input; 638 const BYTE* const bEnd = p + len; 639 640 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER 641 if (input==NULL) return XXH_ERROR; 642 #endif 643 644 state->total_len_32 += (unsigned)len; 645 state->large_len |= (len>=16) | (state->total_len_32>=16); 646 647 if (state->memsize + len < 16) { /* fill in tmp buffer */ 648 XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); 649 state->memsize += (unsigned)len; 650 return XXH_OK; 651 } 652 653 if (state->memsize) { /* some data left from previous update */ 654 XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); 655 { const U32* p32 = state->mem32; 656 state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; 657 state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; 658 state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; 659 state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++; 660 } 661 p += 16-state->memsize; 662 state->memsize = 0; 663 } 664 665 if (p <= bEnd-16) { 666 const BYTE* const limit = bEnd - 16; 667 U32 v1 = state->v1; 668 U32 v2 = state->v2; 669 U32 v3 = state->v3; 670 U32 v4 = state->v4; 671 672 do { 673 v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; 674 v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; 675 v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; 676 v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; 677 } while (p<=limit); 678 679 state->v1 = v1; 680 state->v2 = v2; 681 state->v3 = v3; 682 state->v4 = v4; 683 } 684 685 if (p < bEnd) { 686 XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); 687 state->memsize = (unsigned)(bEnd-p); 688 } 689 690 return XXH_OK; 691 } 692 693 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) 694 { 695 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 696 697 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 698 return XXH32_update_endian(state_in, input, len, XXH_littleEndian); 699 else 700 return XXH32_update_endian(state_in, input, len, XXH_bigEndian); 701 } 702 703 704 705 FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) 706 { 707 const BYTE * p = (const BYTE*)state->mem32; 708 const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize; 709 U32 h32; 710 711 if (state->large_len) { 712 h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); 713 } else { 714 h32 = state->v3 /* == seed */ + PRIME32_5; 715 } 716 717 h32 += state->total_len_32; 718 719 while (p+4<=bEnd) { 720 h32 += XXH_readLE32(p, endian) * PRIME32_3; 721 h32 = XXH_rotl32(h32, 17) * PRIME32_4; 722 p+=4; 723 } 724 725 while (p<bEnd) { 726 h32 += (*p) * PRIME32_5; 727 h32 = XXH_rotl32(h32, 11) * PRIME32_1; 728 p++; 729 } 730 731 h32 ^= h32 >> 15; 732 h32 *= PRIME32_2; 733 h32 ^= h32 >> 13; 734 h32 *= PRIME32_3; 735 h32 ^= h32 >> 16; 736 737 return h32; 738 } 739 740 741 XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) 742 { 743 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 744 745 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 746 return XXH32_digest_endian(state_in, XXH_littleEndian); 747 else 748 return XXH32_digest_endian(state_in, XXH_bigEndian); 749 } 750 751 752 753 /* **** XXH64 **** */ 754 755 FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) 756 { 757 const BYTE* p = (const BYTE*)input; 758 const BYTE* const bEnd = p + len; 759 760 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER 761 if (input==NULL) return XXH_ERROR; 762 #endif 763 764 state->total_len += len; 765 766 if (state->memsize + len < 32) { /* fill in tmp buffer */ 767 XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); 768 state->memsize += (U32)len; 769 return XXH_OK; 770 } 771 772 if (state->memsize) { /* tmp buffer is full */ 773 XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); 774 state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); 775 state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); 776 state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); 777 state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); 778 p += 32-state->memsize; 779 state->memsize = 0; 780 } 781 782 if (p+32 <= bEnd) { 783 const BYTE* const limit = bEnd - 32; 784 U64 v1 = state->v1; 785 U64 v2 = state->v2; 786 U64 v3 = state->v3; 787 U64 v4 = state->v4; 788 789 do { 790 v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; 791 v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; 792 v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; 793 v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; 794 } while (p<=limit); 795 796 state->v1 = v1; 797 state->v2 = v2; 798 state->v3 = v3; 799 state->v4 = v4; 800 } 801 802 if (p < bEnd) { 803 XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); 804 state->memsize = (unsigned)(bEnd-p); 805 } 806 807 return XXH_OK; 808 } 809 810 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) 811 { 812 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 813 814 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 815 return XXH64_update_endian(state_in, input, len, XXH_littleEndian); 816 else 817 return XXH64_update_endian(state_in, input, len, XXH_bigEndian); 818 } 819 820 821 822 FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) 823 { 824 const BYTE * p = (const BYTE*)state->mem64; 825 const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize; 826 U64 h64; 827 828 if (state->total_len >= 32) { 829 U64 const v1 = state->v1; 830 U64 const v2 = state->v2; 831 U64 const v3 = state->v3; 832 U64 const v4 = state->v4; 833 834 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); 835 h64 = XXH64_mergeRound(h64, v1); 836 h64 = XXH64_mergeRound(h64, v2); 837 h64 = XXH64_mergeRound(h64, v3); 838 h64 = XXH64_mergeRound(h64, v4); 839 } else { 840 h64 = state->v3 + PRIME64_5; 841 } 842 843 h64 += (U64) state->total_len; 844 845 while (p+8<=bEnd) { 846 U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian)); 847 h64 ^= k1; 848 h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; 849 p+=8; 850 } 851 852 if (p+4<=bEnd) { 853 h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; 854 h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; 855 p+=4; 856 } 857 858 while (p<bEnd) { 859 h64 ^= (*p) * PRIME64_5; 860 h64 = XXH_rotl64(h64, 11) * PRIME64_1; 861 p++; 862 } 863 864 h64 ^= h64 >> 33; 865 h64 *= PRIME64_2; 866 h64 ^= h64 >> 29; 867 h64 *= PRIME64_3; 868 h64 ^= h64 >> 32; 869 870 return h64; 871 } 872 873 874 XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) 875 { 876 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; 877 878 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) 879 return XXH64_digest_endian(state_in, XXH_littleEndian); 880 else 881 return XXH64_digest_endian(state_in, XXH_bigEndian); 882 } 883 884 885 /* ************************** 886 * Canonical representation 887 ****************************/ 888 889 /*! Default XXH result types are basic unsigned 32 and 64 bits. 890 * The canonical representation follows human-readable write convention, aka big-endian (large digits first). 891 * These functions allow transformation of hash result into and from its canonical format. 892 * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs. 893 */ 894 895 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) 896 { 897 XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); 898 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); 899 memcpy(dst, &hash, sizeof(*dst)); 900 } 901 902 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) 903 { 904 XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); 905 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); 906 memcpy(dst, &hash, sizeof(*dst)); 907 } 908 909 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) 910 { 911 return XXH_readBE32(src); 912 } 913 914 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) 915 { 916 return XXH_readBE64(src); 917 } 918