1 /*++ 2 3 Copyright (c) 1990-2000 Microsoft Corporation 4 5 Module Name: 6 7 cache.c 8 9 Abstract: 10 11 This module implements the cache management routines for the Fat 12 FSD and FSP, by calling the Common Cache Manager. 13 14 15 --*/ 16 17 #include "fatprocs.h" 18 19 // 20 // The Bug check file id for this module 21 // 22 23 #define BugCheckFileId (FAT_BUG_CHECK_CACHESUP) 24 25 // 26 // Local debug trace level 27 // 28 29 #define Dbg (DEBUG_TRACE_CACHESUP) 30 31 #if DBG 32 33 BOOLEAN 34 FatIsCurrentOperationSynchedForDcbTeardown ( 35 IN PIRP_CONTEXT IrpContext, 36 IN PDCB Dcb 37 ); 38 39 #endif 40 41 #ifdef ALLOC_PRAGMA 42 #pragma alloc_text(PAGE, FatCloseEaFile) 43 #pragma alloc_text(PAGE, FatCompleteMdl) 44 #pragma alloc_text(PAGE, FatOpenDirectoryFile) 45 #pragma alloc_text(PAGE, FatOpenEaFile) 46 #pragma alloc_text(PAGE, FatPinMappedData) 47 #pragma alloc_text(PAGE, FatPrepareWriteDirectoryFile) 48 #pragma alloc_text(PAGE, FatPrepareWriteVolumeFile) 49 #pragma alloc_text(PAGE, FatReadDirectoryFile) 50 #pragma alloc_text(PAGE, FatReadVolumeFile) 51 #pragma alloc_text(PAGE, FatRepinBcb) 52 #pragma alloc_text(PAGE, FatSyncUninitializeCacheMap) 53 #pragma alloc_text(PAGE, FatUnpinRepinnedBcbs) 54 #pragma alloc_text(PAGE, FatZeroData) 55 #pragma alloc_text(PAGE, FatPrefetchPages) 56 #if DBG 57 #pragma alloc_text(PAGE, FatIsCurrentOperationSynchedForDcbTeardown) 58 #endif 59 #endif 60 61 VOID 62 FatInitializeCacheMap ( 63 _In_ PFILE_OBJECT FileObject, 64 _In_ PCC_FILE_SIZES FileSizes, 65 _In_ BOOLEAN PinAccess, 66 _In_ PCACHE_MANAGER_CALLBACKS Callbacks, 67 _In_ PVOID LazyWriteContext 68 ) 69 /*++ 70 71 Routine Description: 72 73 Wrapper over CcInitializeCacheMap and CcSetAdditionalCacheAttributesEx to initialize 74 caching and enable IO accounting on a file. 75 76 --*/ 77 78 { 79 // 80 // Initialize caching 81 // 82 83 CcInitializeCacheMap( FileObject, 84 FileSizes, 85 PinAccess, 86 Callbacks, 87 LazyWriteContext ); 88 89 #if (NTDDI_VERSION >= NTDDI_WIN8) 90 // 91 // Enable Disk IO Accounting for this file 92 // 93 94 if (FatDiskAccountingEnabled) { 95 96 CcSetAdditionalCacheAttributesEx( FileObject, CC_ENABLE_DISK_IO_ACCOUNTING ); 97 } 98 #endif 99 } 100 101 VOID 102 FatReadVolumeFile ( 103 IN PIRP_CONTEXT IrpContext, 104 IN PVCB Vcb, 105 IN VBO StartingVbo, 106 IN ULONG ByteCount, 107 OUT PBCB *Bcb, 108 OUT PVOID *Buffer 109 ) 110 111 /*++ 112 113 Routine Description: 114 115 This routine is called when the specified range of sectors is to be 116 read into the cache. In fat, the volume file only contains the boot 117 sector, reserved sectors, and the "fat(s)." Thus the volume file is 118 of fixed size and only extends up to (but not not including) the root 119 directory entry, and will never move or change size. 120 121 The fat volume file is also peculiar in that, since it starts at the 122 logical beginning of the disk, Vbo == Lbo. 123 124 Arguments: 125 126 Vcb - Pointer to the VCB for the volume 127 128 StartingVbo - The virtual offset of the first desired byte 129 130 ByteCount - Number of bytes desired 131 132 Bcb - Returns a pointer to the BCB which is valid until unpinned 133 134 Buffer - Returns a pointer to the sectors, which is valid until unpinned 135 136 --*/ 137 138 { 139 LARGE_INTEGER Vbo; 140 141 PAGED_CODE(); 142 143 // 144 // Check to see that all references are within the Bios Parameter Block 145 // or the fat(s). A special case is made when StartingVbo == 0 at 146 // mounting time since we do not know how big the fat is. 147 // 148 149 NT_ASSERT( ((StartingVbo == 0) || ((StartingVbo + ByteCount) <= (ULONG) 150 (FatRootDirectoryLbo( &Vcb->Bpb ) + PAGE_SIZE)))); 151 152 DebugTrace(+1, Dbg, "FatReadVolumeFile\n", 0); 153 DebugTrace( 0, Dbg, "Vcb = %p\n", Vcb); 154 DebugTrace( 0, Dbg, "StartingVbo = %08lx\n", StartingVbo); 155 DebugTrace( 0, Dbg, "ByteCount = %08lx\n", ByteCount); 156 157 // 158 // Call the Cache manager to attempt the transfer. 159 // 160 161 Vbo.QuadPart = StartingVbo; 162 163 if (!CcMapData( Vcb->VirtualVolumeFile, 164 &Vbo, 165 ByteCount, 166 BooleanFlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT), 167 Bcb, 168 Buffer )) { 169 170 NT_ASSERT( !FlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT) ); 171 172 // 173 // Could not read the data without waiting (cache miss). 174 // 175 176 FatRaiseStatus( IrpContext, STATUS_CANT_WAIT ); 177 } 178 179 DbgDoit( IrpContext->PinCount += 1 ) 180 181 DebugTrace(-1, Dbg, "FatReadVolumeFile -> VOID, *BCB = %p\n", *Bcb); 182 183 return; 184 } 185 186 187 _Requires_lock_held_(_Global_critical_region_) 188 VOID 189 FatPrepareWriteVolumeFile ( 190 IN PIRP_CONTEXT IrpContext, 191 IN PVCB Vcb, 192 IN VBO StartingVbo, 193 IN ULONG ByteCount, 194 OUT PBCB *Bcb, 195 OUT PVOID *Buffer, 196 IN BOOLEAN Reversible, 197 IN BOOLEAN Zero 198 ) 199 200 /*++ 201 202 Routine Description: 203 204 This routine first looks to see if the specified range of sectors, 205 is already in the cache. If so, it increments the BCB PinCount, 206 sets the BCB dirty, and returns with the location of the sectors. 207 208 If the sectors are not in the cache and Wait is TRUE, it finds a 209 free BCB (potentially causing a flush), and clears out the entire 210 buffer. Once this is done, it increments the BCB PinCount, sets the 211 BCB dirty, and returns with the location of the sectors. 212 213 If the sectors are not in the cache and Wait is FALSE, this routine 214 raises STATUS_CANT_WAIT. 215 216 Arguments: 217 218 Vcb - Pointer to the VCB for the volume 219 220 StartingVbo - The virtual offset of the first byte to be written 221 222 ByteCount - Number of bytes to be written 223 224 Bcb - Returns a pointer to the BCB which is valid until unpinned 225 226 Buffer - Returns a pointer to the sectors, which is valid until unpinned 227 228 Reversible - Supplies TRUE if the specified range of modification should 229 be repinned so that the operation can be reversed in a controlled 230 fashion if errors are encountered. 231 232 Zero - Supplies TRUE if the specified range of bytes should be zeroed 233 234 --*/ 235 236 { 237 LARGE_INTEGER Vbo; 238 239 PAGED_CODE(); 240 241 // 242 // Check to see that all references are within the Bios Parameter Block 243 // or the fat(s). 244 // 245 246 NT_ASSERT( ((StartingVbo + ByteCount) <= (ULONG) 247 (FatRootDirectoryLbo( &Vcb->Bpb )))); 248 249 DebugTrace(+1, Dbg, "FatPrepareWriteVolumeFile\n", 0); 250 DebugTrace( 0, Dbg, "Vcb = %p\n", Vcb); 251 DebugTrace( 0, Dbg, "StartingVbo = %08lx\n", (ULONG)StartingVbo); 252 DebugTrace( 0, Dbg, "ByteCount = %08lx\n", ByteCount); 253 DebugTrace( 0, Dbg, "Zero = %08lx\n", Zero); 254 255 // 256 // Call the Cache manager to attempt the transfer. 257 // 258 259 Vbo.QuadPart = StartingVbo; 260 261 if (!CcPinRead( Vcb->VirtualVolumeFile, 262 &Vbo, 263 ByteCount, 264 BooleanFlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT), 265 Bcb, 266 Buffer )) { 267 268 NT_ASSERT( !FlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT) ); 269 270 // 271 // Could not read the data without waiting (cache miss). 272 // 273 274 FatRaiseStatus( IrpContext, STATUS_CANT_WAIT ); 275 } 276 277 // 278 // This keeps the data pinned until we complete the request 279 // and writes the dirty bit through to the disk. 280 // 281 282 DbgDoit( IrpContext->PinCount += 1 ) 283 284 _SEH2_TRY { 285 286 if (Zero) { 287 288 RtlZeroMemory( *Buffer, ByteCount ); 289 } 290 291 FatSetDirtyBcb( IrpContext, *Bcb, Vcb, Reversible ); 292 293 } _SEH2_FINALLY { 294 295 if (_SEH2_AbnormalTermination()) { 296 297 FatUnpinBcb(IrpContext, *Bcb); 298 } 299 } _SEH2_END; 300 301 DebugTrace(-1, Dbg, "FatPrepareWriteVolumeFile -> VOID, *Bcb = %p\n", *Bcb); 302 303 return; 304 } 305 306 307 _Requires_lock_held_(_Global_critical_region_) 308 VOID 309 FatReadDirectoryFile ( 310 IN PIRP_CONTEXT IrpContext, 311 IN PDCB Dcb, 312 IN VBO StartingVbo, 313 IN ULONG ByteCount, 314 IN BOOLEAN Pin, 315 OUT PBCB *Bcb, 316 OUT PVOID *Buffer, 317 OUT PNTSTATUS Status 318 ) 319 320 /*++ 321 322 Routine Description: 323 324 This routine is called when the specified range of sectors is to be 325 read into the cache. If the desired range falls beyond the current 326 cache mapping, the fat will be searched, and if the desired range can 327 be satisfied, the cache mapping will be extended and the MCB updated 328 accordingly. 329 330 Arguments: 331 332 Dcb - Pointer to the DCB for the directory 333 334 StartingVbo - The virtual offset of the first desired byte 335 336 ByteCount - Number of bytes desired 337 338 Pin - Tells us if we should pin instead of just mapping. 339 340 Bcb - Returns a pointer to the BCB which is valid until unpinned 341 342 Buffer - Returns a pointer to the sectors, which is valid until unpinned 343 344 Status - Returns the status of the operation. 345 346 --*/ 347 348 { 349 LARGE_INTEGER Vbo; 350 351 PAGED_CODE(); 352 353 DebugTrace(+1, Dbg, "FatReadDirectoryFile\n", 0); 354 DebugTrace( 0, Dbg, "Dcb = %p\n", Dcb); 355 DebugTrace( 0, Dbg, "StartingVbo = %08lx\n", StartingVbo); 356 DebugTrace( 0, Dbg, "ByteCount = %08lx\n", ByteCount); 357 358 // 359 // Check for the zero case 360 // 361 362 if (ByteCount == 0) { 363 364 DebugTrace(0, Dbg, "Nothing to read\n", 0); 365 366 *Bcb = NULL; 367 *Buffer = NULL; 368 *Status = STATUS_SUCCESS; 369 370 DebugTrace(-1, Dbg, "FatReadDirectoryFile -> VOID\n", 0); 371 return; 372 } 373 374 // 375 // If we need to create a directory file and initialize the 376 // cachemap, do so. 377 // 378 379 FatOpenDirectoryFile( IrpContext, Dcb ); 380 381 // 382 // Now if the transfer is beyond the allocation size return EOF. 383 // 384 385 if (StartingVbo >= Dcb->Header.AllocationSize.LowPart) { 386 387 DebugTrace(0, Dbg, "End of file read for directory\n", 0); 388 389 *Bcb = NULL; 390 *Buffer = NULL; 391 *Status = STATUS_END_OF_FILE; 392 393 DebugTrace(-1, Dbg, "FatReadDirectoryFile -> VOID\n", 0); 394 return; 395 } 396 397 // 398 // If the caller is trying to read past the EOF, truncate the 399 // read. 400 // 401 402 ByteCount = (Dcb->Header.AllocationSize.LowPart - StartingVbo < ByteCount) ? 403 Dcb->Header.AllocationSize.LowPart - StartingVbo : ByteCount; 404 405 NT_ASSERT( ByteCount != 0 ); 406 407 // 408 // Call the Cache manager to attempt the transfer. 409 // 410 411 Vbo.QuadPart = StartingVbo; 412 413 if (Pin ? 414 415 !CcPinRead( Dcb->Specific.Dcb.DirectoryFile, 416 &Vbo, 417 ByteCount, 418 BooleanFlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT), 419 Bcb, 420 Buffer ) 421 : 422 423 !CcMapData( Dcb->Specific.Dcb.DirectoryFile, 424 &Vbo, 425 ByteCount, 426 BooleanFlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT), 427 Bcb, 428 Buffer ) ) { 429 430 // 431 // Could not read the data without waiting (cache miss). 432 // 433 434 *Bcb = NULL; 435 *Buffer = NULL; 436 FatRaiseStatus( IrpContext, STATUS_CANT_WAIT ); 437 } 438 439 DbgDoit( IrpContext->PinCount += 1 ) 440 441 *Status = STATUS_SUCCESS; 442 443 DebugTrace(-1, Dbg, "FatReadDirectoryFile -> VOID, *BCB = %p\n", *Bcb); 444 445 return; 446 } 447 448 449 _Requires_lock_held_(_Global_critical_region_) 450 VOID 451 FatPrepareWriteDirectoryFile ( 452 IN PIRP_CONTEXT IrpContext, 453 IN PDCB Dcb, 454 IN VBO StartingVbo, 455 IN ULONG ByteCount, 456 OUT PBCB *Bcb, 457 OUT PVOID *Buffer, 458 IN BOOLEAN Zero, 459 IN BOOLEAN Reversible, 460 OUT PNTSTATUS Status 461 ) 462 463 /*++ 464 465 Routine Description: 466 467 This routine first looks to see if the specified range of sectors 468 is already in the cache. If so, it increments the BCB PinCount, 469 sets the BCB dirty, and returns TRUE with the location of the sectors. 470 471 The IrpContext->Flags .. Wait == TRUE/FALSE actions of this routine are identical to 472 FatPrepareWriteVolumeFile() above. 473 474 Arguments: 475 476 Dcb - Pointer to the DCB for the directory 477 478 StartingVbo - The virtual offset of the first byte to be written 479 480 ByteCount - Number of bytes to be written 481 482 Bcb - Returns a pointer to the BCB which is valid until unpinned 483 484 Buffer - Returns a pointer to the sectors, which is valid until unpinned 485 486 Zero - Supplies TRUE if the specified range of bytes should be zeroed 487 488 Reversible - Supplies TRUE if the specified range of modification should 489 be repinned so that the operation can be reversed in a controlled 490 fashion if errors are encountered. 491 492 Status - Returns the status of the operation. 493 494 --*/ 495 496 { 497 LARGE_INTEGER Vbo; 498 ULONG InitialAllocation = 0; 499 BOOLEAN UnwindWeAllocatedDiskSpace = FALSE; 500 PBCB LocalBcb = NULL; 501 PVOID LocalBuffer = NULL; 502 ULONG InitialRequest = ByteCount; 503 ULONG MappingGranularity = PAGE_SIZE; 504 505 PAGED_CODE(); 506 507 DebugTrace(+1, Dbg, "FatPrepareWriteDirectoryFile\n", 0); 508 DebugTrace( 0, Dbg, "Dcb = %p\n", Dcb); 509 DebugTrace( 0, Dbg, "StartingVbo = %08lx\n", (ULONG)StartingVbo); 510 DebugTrace( 0, Dbg, "ByteCount = %08lx\n", ByteCount); 511 DebugTrace( 0, Dbg, "Zero = %08lx\n", Zero); 512 513 *Bcb = NULL; 514 *Buffer = NULL; 515 516 // 517 // If we need to create a directory file and initialize the 518 // cachemap, do so. 519 // 520 521 FatOpenDirectoryFile( IrpContext, Dcb ); 522 523 // 524 // If the transfer is beyond the allocation size we need to 525 // extend the directory's allocation. The call to 526 // AddFileAllocation will raise a condition if 527 // it runs out of disk space. Note that the root directory 528 // cannot be extended. 529 // 530 531 Vbo.QuadPart = StartingVbo; 532 533 _SEH2_TRY { 534 535 if (StartingVbo + ByteCount > Dcb->Header.AllocationSize.LowPart) { 536 537 if (NodeType(Dcb) == FAT_NTC_ROOT_DCB && 538 !FatIsFat32(Dcb->Vcb)) { 539 540 FatRaiseStatus( IrpContext, STATUS_DISK_FULL ); 541 } 542 543 DebugTrace(0, Dbg, "Try extending normal directory\n", 0); 544 545 InitialAllocation = Dcb->Header.AllocationSize.LowPart; 546 547 FatAddFileAllocation( IrpContext, 548 Dcb, 549 Dcb->Specific.Dcb.DirectoryFile, 550 StartingVbo + ByteCount ); 551 552 UnwindWeAllocatedDiskSpace = TRUE; 553 554 // 555 // Inform the cache manager of the new allocation 556 // 557 558 Dcb->Header.FileSize.LowPart = 559 Dcb->Header.AllocationSize.LowPart; 560 561 CcSetFileSizes( Dcb->Specific.Dcb.DirectoryFile, 562 (PCC_FILE_SIZES)&Dcb->Header.AllocationSize ); 563 564 // 565 // Set up the Bitmap buffer if it is not big enough already 566 // 567 568 FatCheckFreeDirentBitmap( IrpContext, Dcb ); 569 570 // 571 // The newly allocated clusters should be zeroed starting at 572 // the previous allocation size 573 // 574 575 Zero = TRUE; 576 Vbo.QuadPart = InitialAllocation; 577 ByteCount = Dcb->Header.AllocationSize.LowPart - InitialAllocation; 578 } 579 580 while (ByteCount > 0) { 581 582 ULONG BytesToPin; 583 584 LocalBcb = NULL; 585 586 // 587 // We must pin in terms of pages below the boundary of the initial request. 588 // Once we pass the end of the request, we are free to expand the pin size to 589 // VACB_MAPPING_GRANULARITY. This will prevent Cc from returning OBCBs 590 // and hence will prevent bugchecks when we then attempt to repin one, yet 591 // allow us to be more efficient by pinning in 256KB chunks instead of 4KB pages. 592 // 593 594 if (Vbo.QuadPart > StartingVbo + InitialRequest) { 595 596 MappingGranularity = VACB_MAPPING_GRANULARITY; 597 } 598 599 // 600 // If the first and final byte are both described by the same page, pin 601 // the entire range. Note we pin in pages to prevent cache manager from 602 // returning OBCBs, which would result in a bugcheck on CcRepinBcb. 603 // 604 605 if ((Vbo.QuadPart / MappingGranularity) == 606 ((Vbo.QuadPart + ByteCount - 1) / MappingGranularity)) { 607 608 BytesToPin = ByteCount; 609 610 } else { 611 612 BytesToPin = MappingGranularity - 613 ((ULONG)Vbo.QuadPart & (MappingGranularity - 1)); 614 } 615 616 if (!CcPinRead( Dcb->Specific.Dcb.DirectoryFile, 617 &Vbo, 618 BytesToPin, 619 BooleanFlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT), 620 &LocalBcb, 621 &LocalBuffer )) { 622 623 // 624 // Could not read the data without waiting (cache miss). 625 // 626 627 FatRaiseStatus( IrpContext, STATUS_CANT_WAIT ); 628 } 629 630 // 631 // Update our caller with the beginning of their request. 632 // 633 634 if (*Buffer == NULL) { 635 636 *Buffer = LocalBuffer; 637 *Bcb = LocalBcb; 638 } 639 640 DbgDoit( IrpContext->PinCount += 1 ) 641 642 if (Zero) { 643 644 // 645 // We set this guy dirty right now so that we can raise CANT_WAIT when 646 // it needs to be done. It'd be beautiful if we could noop the read IO 647 // since we know we don't care about it. 648 // 649 650 RtlZeroMemory( LocalBuffer, BytesToPin ); 651 CcSetDirtyPinnedData( LocalBcb, NULL ); 652 } 653 654 ByteCount -= BytesToPin; 655 Vbo.QuadPart += BytesToPin; 656 657 if (*Bcb != LocalBcb) { 658 659 FatRepinBcb( IrpContext, LocalBcb ); 660 FatUnpinBcb( IrpContext, LocalBcb ); 661 } 662 } 663 664 // 665 // This lets us get the data pinned until we complete the request 666 // and writes the dirty bit through to the disk. 667 // 668 669 FatSetDirtyBcb( IrpContext, *Bcb, Dcb->Vcb, Reversible ); 670 671 *Status = STATUS_SUCCESS; 672 673 } _SEH2_FINALLY { 674 675 DebugUnwind( FatPrepareWriteDirectoryFile ); 676 677 if (_SEH2_AbnormalTermination()) { 678 679 // 680 // Make sure we unpin the buffers. 681 // 682 683 if (*Bcb != LocalBcb) { 684 685 FatUnpinBcb( IrpContext, LocalBcb ); 686 } 687 688 FatUnpinBcb(IrpContext, *Bcb); 689 690 // 691 // These steps are carefully arranged - FatTruncateFileAllocation can raise. 692 // Make sure we unpin the buffer. If FTFA raises, the effect should be benign. 693 // 694 695 if (UnwindWeAllocatedDiskSpace == TRUE) { 696 697 // 698 // Inform the cache manager of the change. 699 // 700 701 FatTruncateFileAllocation( IrpContext, Dcb, InitialAllocation ); 702 703 Dcb->Header.FileSize.LowPart = 704 Dcb->Header.AllocationSize.LowPart; 705 706 CcSetFileSizes( Dcb->Specific.Dcb.DirectoryFile, 707 (PCC_FILE_SIZES)&Dcb->Header.AllocationSize ); 708 } 709 } 710 711 DebugTrace(-1, Dbg, "FatPrepareWriteDirectoryFile -> (VOID), *Bcb = %p\n", *Bcb); 712 } _SEH2_END; 713 714 return; 715 } 716 717 718 #if DBG 719 BOOLEAN FatDisableParentCheck = 0; 720 721 BOOLEAN 722 FatIsCurrentOperationSynchedForDcbTeardown ( 723 IN PIRP_CONTEXT IrpContext, 724 IN PDCB Dcb 725 ) 726 { 727 PIRP Irp = IrpContext->OriginatingIrp; 728 PIO_STACK_LOCATION Stack = IoGetCurrentIrpStackLocation( Irp ) ; 729 PVCB Vcb; 730 PFCB Fcb; 731 PCCB Ccb; 732 733 PFILE_OBJECT ToCheck[3]; 734 ULONG Index = 0; 735 736 PAGED_CODE(); 737 738 // 739 // While mounting, we're OK without having to own anything. 740 // 741 742 if (Stack->MajorFunction == IRP_MJ_FILE_SYSTEM_CONTROL && 743 Stack->MinorFunction == IRP_MN_MOUNT_VOLUME) { 744 745 return TRUE; 746 } 747 748 // 749 // With the Vcb held, the close path is blocked out. 750 // 751 752 if (ExIsResourceAcquiredSharedLite( &Dcb->Vcb->Resource ) || 753 ExIsResourceAcquiredExclusiveLite( &Dcb->Vcb->Resource )) { 754 755 return TRUE; 756 } 757 758 // 759 // Accept this assertion at face value. It comes from GetDirentForFcbOrDcb, 760 // and is reliable. 761 // 762 763 if (FlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_PARENT_BY_CHILD )) { 764 765 return TRUE; 766 } 767 768 // 769 // Determine which fileobjects are around on this operation. 770 // 771 772 if (Stack->MajorFunction == IRP_MJ_SET_INFORMATION && 773 Stack->Parameters.SetFile.FileObject) { 774 775 ToCheck[Index++] = Stack->Parameters.SetFile.FileObject; 776 } 777 778 if (Stack->FileObject) { 779 780 ToCheck[Index++] = Stack->FileObject; 781 } 782 783 ToCheck[Index] = NULL; 784 785 // 786 // If the fileobjects we have are for this dcb or a child of it, we are 787 // also guaranteed that this dcb isn't going anywhere (even without 788 // the Vcb). 789 // 790 791 for (Index = 0; ToCheck[Index] != NULL; Index++) { 792 793 (VOID) FatDecodeFileObject( ToCheck[Index], &Vcb, &Fcb, &Ccb ); 794 795 while ( Fcb ) { 796 797 if (Fcb == Dcb) { 798 799 return TRUE; 800 } 801 802 Fcb = Fcb->ParentDcb; 803 } 804 } 805 806 return FatDisableParentCheck; 807 } 808 #endif // DBG 809 810 _Requires_lock_held_(_Global_critical_region_) 811 VOID 812 FatOpenDirectoryFile ( 813 IN PIRP_CONTEXT IrpContext, 814 IN PDCB Dcb 815 ) 816 817 /*++ 818 819 Routine Description: 820 821 This routine opens a new directory file if one is not already open. 822 823 Arguments: 824 825 Dcb - Pointer to the DCB for the directory 826 827 Return Value: 828 829 None. 830 831 --*/ 832 833 { 834 PAGED_CODE(); 835 836 DebugTrace(+1, Dbg, "FatOpenDirectoryFile\n", 0); 837 DebugTrace( 0, Dbg, "Dcb = %p\n", Dcb); 838 839 // 840 // If we don't have some hold on this Dcb (there are several ways), there is nothing 841 // to prevent child files from closing and tearing this branch of the tree down in the 842 // midst of our slapping this reference onto it. 843 // 844 // I really wish we had a proper Fcb synchronization model (like CDFS/UDFS/NTFS). 845 // 846 847 NT_ASSERT( FatIsCurrentOperationSynchedForDcbTeardown( IrpContext, Dcb )); 848 849 // 850 // If we haven't yet set the correct AllocationSize, do so. 851 // 852 853 if (Dcb->Header.AllocationSize.QuadPart == FCB_LOOKUP_ALLOCATIONSIZE_HINT) { 854 855 FatLookupFileAllocationSize( IrpContext, Dcb ); 856 857 Dcb->Header.FileSize.LowPart = 858 Dcb->Header.AllocationSize.LowPart; 859 } 860 861 // 862 // Setup the Bitmap buffer if it is not big enough already 863 // 864 865 FatCheckFreeDirentBitmap( IrpContext, Dcb ); 866 867 // 868 // Check if we need to create a directory file. 869 // 870 // We first do a spot check and then synchronize and check again. 871 // 872 873 if (Dcb->Specific.Dcb.DirectoryFile == NULL) { 874 875 PFILE_OBJECT DirectoryFileObject = NULL; 876 877 FatAcquireDirectoryFileMutex( Dcb->Vcb ); 878 879 _SEH2_TRY { 880 881 if (Dcb->Specific.Dcb.DirectoryFile == NULL) { 882 883 PDEVICE_OBJECT RealDevice; 884 885 // 886 // Create the special file object for the directory file, and set 887 // up its pointers back to the Dcb and the section object pointer. 888 // Note that setting the DirectoryFile pointer in the Dcb has 889 // to be the last thing done. 890 // 891 // Preallocate a close context since we have no Ccb for this object. 892 // 893 894 RealDevice = Dcb->Vcb->CurrentDevice; 895 896 DirectoryFileObject = IoCreateStreamFileObject( NULL, RealDevice ); 897 FatPreallocateCloseContext( Dcb->Vcb); 898 899 FatSetFileObject( DirectoryFileObject, 900 DirectoryFile, 901 Dcb, 902 NULL ); 903 904 // 905 // Remember this internal open. 906 // 907 908 InterlockedIncrement( (LONG*)&(Dcb->Vcb->InternalOpenCount) ); 909 910 // 911 // If this is the root directory, it is also a residual open. 912 // 913 914 if (NodeType( Dcb ) == FAT_NTC_ROOT_DCB) { 915 916 InterlockedIncrement( (LONG*)&(Dcb->Vcb->ResidualOpenCount) ); 917 } 918 919 DirectoryFileObject->SectionObjectPointer = &Dcb->NonPaged->SectionObjectPointers; 920 921 DirectoryFileObject->ReadAccess = TRUE; 922 DirectoryFileObject->WriteAccess = TRUE; 923 DirectoryFileObject->DeleteAccess = TRUE; 924 925 InterlockedIncrement( (LONG*)&Dcb->Specific.Dcb.DirectoryFileOpenCount ); 926 927 Dcb->Specific.Dcb.DirectoryFile = DirectoryFileObject; 928 929 // 930 // Indicate we're happy with the fileobject now. 931 // 932 933 DirectoryFileObject = NULL; 934 } 935 936 } _SEH2_FINALLY { 937 938 FatReleaseDirectoryFileMutex( Dcb->Vcb ); 939 940 // 941 // Rip the object up if we couldn't get the close context. 942 // 943 944 if (DirectoryFileObject) { 945 946 ObDereferenceObject( DirectoryFileObject ); 947 } 948 } _SEH2_END; 949 } 950 951 // 952 // Finally check if we need to initialize the Cache Map for the 953 // directory file. The size of the section we are going to map 954 // the current allocation size for the directory. Note that the 955 // cache manager will provide syncronization for us. 956 // 957 958 if ( Dcb->Specific.Dcb.DirectoryFile->PrivateCacheMap == NULL ) { 959 960 Dcb->Header.ValidDataLength = FatMaxLarge; 961 Dcb->ValidDataToDisk = MAXULONG; 962 963 FatInitializeCacheMap( Dcb->Specific.Dcb.DirectoryFile, 964 (PCC_FILE_SIZES)&Dcb->Header.AllocationSize, 965 TRUE, 966 &FatData.CacheManagerNoOpCallbacks, 967 Dcb ); 968 } 969 970 DebugTrace(-1, Dbg, "FatOpenDirectoryFile -> VOID\n", 0); 971 972 return; 973 } 974 975 976 977 978 PFILE_OBJECT 979 FatOpenEaFile ( 980 IN PIRP_CONTEXT IrpContext, 981 IN PFCB EaFcb 982 ) 983 984 /*++ 985 986 Routine Description: 987 988 This routine opens the Ea file. 989 990 Arguments: 991 992 EaFcb - Pointer to the Fcb for the Ea file. 993 994 Return Value: 995 996 Pointer to the new file object. 997 998 --*/ 999 1000 { 1001 PFILE_OBJECT EaFileObject = NULL; 1002 PDEVICE_OBJECT RealDevice; 1003 1004 PAGED_CODE(); 1005 1006 DebugTrace(+1, Dbg, "FatOpenEaFile\n", 0); 1007 DebugTrace( 0, Dbg, "EaFcb = %p\n", EaFcb); 1008 1009 // 1010 // Create the special file object for the ea file, and set 1011 // up its pointers back to the Fcb and the section object pointer 1012 // 1013 1014 RealDevice = EaFcb->Vcb->CurrentDevice; 1015 1016 EaFileObject = IoCreateStreamFileObject( NULL, RealDevice ); 1017 1018 _SEH2_TRY { 1019 1020 FatPreallocateCloseContext( IrpContext->Vcb); 1021 1022 FatSetFileObject( EaFileObject, 1023 EaFile, 1024 EaFcb, 1025 NULL ); 1026 1027 // 1028 // Remember this internal, residual open. 1029 // 1030 1031 InterlockedIncrement( (LONG*)&(EaFcb->Vcb->InternalOpenCount) ); 1032 InterlockedIncrement( (LONG*)&(EaFcb->Vcb->ResidualOpenCount) ); 1033 1034 EaFileObject->SectionObjectPointer = &EaFcb->NonPaged->SectionObjectPointers; 1035 1036 EaFileObject->ReadAccess = TRUE; 1037 EaFileObject->WriteAccess = TRUE; 1038 1039 // 1040 // Finally check if we need to initialize the Cache Map for the 1041 // ea file. The size of the section we are going to map 1042 // the current allocation size for the Fcb. 1043 // 1044 1045 EaFcb->Header.ValidDataLength = FatMaxLarge; 1046 1047 FatInitializeCacheMap( EaFileObject, 1048 (PCC_FILE_SIZES)&EaFcb->Header.AllocationSize, 1049 TRUE, 1050 &FatData.CacheManagerCallbacks, 1051 EaFcb ); 1052 1053 CcSetAdditionalCacheAttributes( EaFileObject, TRUE, TRUE ); 1054 1055 } _SEH2_FINALLY { 1056 1057 // 1058 // Drop the fileobject if we're raising. Two cases: couldn't get 1059 // the close context, and it is still an UnopenedFileObject, or 1060 // we lost trying to build the cache map - in which case we're 1061 // OK for the close context if we have to. 1062 // 1063 1064 if (_SEH2_AbnormalTermination()) { 1065 1066 ObDereferenceObject( EaFileObject ); 1067 } 1068 } _SEH2_END; 1069 1070 DebugTrace(-1, Dbg, "FatOpenEaFile -> %p\n", EaFileObject); 1071 1072 UNREFERENCED_PARAMETER( IrpContext ); 1073 1074 return EaFileObject; 1075 } 1076 1077 1078 VOID 1079 FatCloseEaFile ( 1080 IN PIRP_CONTEXT IrpContext, 1081 IN PVCB Vcb, 1082 IN BOOLEAN FlushFirst 1083 ) 1084 1085 /*++ 1086 1087 Routine Description: 1088 1089 This routine shuts down the ea file. Usually this is required when the volume 1090 begins to leave the system: after verify, dismount, deletion, pnp. 1091 1092 Arguments: 1093 1094 Vcb - the volume to close the ea file on 1095 1096 FlushFirst - whether the file should be flushed 1097 1098 Return Value: 1099 1100 None. As a side effect, the EA fileobject in the Vcb is cleared. 1101 1102 Caller must have the Vcb exclusive. 1103 1104 --*/ 1105 1106 { 1107 PFILE_OBJECT EaFileObject = Vcb->VirtualEaFile; 1108 1109 PAGED_CODE(); 1110 1111 DebugTrace(+1, Dbg, "FatCloseEaFile\n", 0); 1112 DebugTrace( 0, Dbg, "Vcb = %p\n", Vcb); 1113 1114 NT_ASSERT( FatVcbAcquiredExclusive(IrpContext, Vcb) ); 1115 1116 if (EaFileObject != NULL) { 1117 1118 EaFileObject = Vcb->VirtualEaFile; 1119 1120 if (FlushFirst) { 1121 1122 CcFlushCache( Vcb->VirtualEaFile->SectionObjectPointer, NULL, 0, NULL ); 1123 } 1124 1125 Vcb->VirtualEaFile = NULL; 1126 1127 // 1128 // Empty the Mcb for the Ea file. 1129 // 1130 1131 FatRemoveMcbEntry( Vcb, &Vcb->EaFcb->Mcb, 0, 0xFFFFFFFF ); 1132 1133 // 1134 // Uninitialize the cache for this file object and dereference it. 1135 // 1136 1137 FatSyncUninitializeCacheMap( IrpContext, EaFileObject ); 1138 1139 ObDereferenceObject( EaFileObject ); 1140 } 1141 1142 DebugTrace(-1, Dbg, "FatCloseEaFile -> %p\n", EaFileObject); 1143 } 1144 1145 1146 _Requires_lock_held_(_Global_critical_region_) 1147 VOID 1148 FatSetDirtyBcb ( 1149 IN PIRP_CONTEXT IrpContext, 1150 IN PBCB Bcb, 1151 IN PVCB Vcb OPTIONAL, 1152 IN BOOLEAN Reversible 1153 ) 1154 1155 /*++ 1156 1157 Routine Description: 1158 1159 This routine saves a reference to the bcb in the irp context and 1160 sets the bcb dirty. This will have the affect of keeping the page in 1161 memory until we complete the request 1162 1163 In addition, a DPC is set to fire in 5 seconds (or if one is pending, 1164 pushed back 5 seconds) to mark the volume clean. 1165 1166 Arguments: 1167 1168 Bcb - Supplies the Bcb being set dirty 1169 1170 Vcb - Supplies the volume being marked dirty 1171 1172 Reversible - Supplies TRUE if the specified range of bcb should be repinned 1173 so that the changes can be reversed in a controlled fashion if errors 1174 are encountered. 1175 1176 Return Value: 1177 1178 None. 1179 1180 --*/ 1181 1182 { 1183 DebugTrace(+1, Dbg, "FatSetDirtyBcb\n", 0 ); 1184 DebugTrace( 0, Dbg, "IrpContext = %p\n", IrpContext ); 1185 DebugTrace( 0, Dbg, "Bcb = %p\n", Bcb ); 1186 DebugTrace( 0, Dbg, "Vcb = %p\n", Vcb ); 1187 1188 // 1189 // Repin the bcb as required 1190 // 1191 1192 if (Reversible) { 1193 1194 FatRepinBcb( IrpContext, Bcb ); 1195 } 1196 1197 // 1198 // Set the bcb dirty 1199 // 1200 1201 CcSetDirtyPinnedData( Bcb, NULL ); 1202 1203 // 1204 // If volume dirtying isn't disabled for this operation (for 1205 // instance, when we're changing the dirty state), set the 1206 // volume dirty if we were given a Vcb that we want to perform 1207 // clean volume processing on, and return. 1208 // 1209 // As a historical note, we used to key off of the old floppy 1210 // (now deferred flush) bit to disable dirtying behavior. Since 1211 // hotpluggable media can still be yanked while operations are 1212 // in flight, recognize that its really the case that FAT12 1213 // doesn't have the dirty bit. 1214 // 1215 1216 if ( !FlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_DISABLE_DIRTY) && 1217 ARGUMENT_PRESENT(Vcb) && 1218 !FatIsFat12(Vcb)) { 1219 1220 KIRQL SavedIrql; 1221 1222 BOOLEAN SetTimer; 1223 1224 LARGE_INTEGER TimeSincePreviousCall; 1225 LARGE_INTEGER CurrentTime; 1226 1227 // 1228 // "Borrow" the irp context spinlock. 1229 // 1230 1231 KeQuerySystemTime( &CurrentTime ); 1232 1233 KeAcquireSpinLock( &FatData.GeneralSpinLock, &SavedIrql ); 1234 1235 TimeSincePreviousCall.QuadPart = 1236 CurrentTime.QuadPart - Vcb->LastFatMarkVolumeDirtyCall.QuadPart; 1237 1238 // 1239 // If more than one second has elapsed since the prior call 1240 // to here, bump the timer up again and see if we need to 1241 // physically mark the volume dirty. 1242 // 1243 1244 if ( (TimeSincePreviousCall.HighPart != 0) || 1245 (TimeSincePreviousCall.LowPart > (1000 * 1000 * 10)) ) { 1246 1247 SetTimer = TRUE; 1248 1249 } else { 1250 1251 SetTimer = FALSE; 1252 } 1253 1254 KeReleaseSpinLock( &FatData.GeneralSpinLock, SavedIrql ); 1255 1256 if ( SetTimer ) { 1257 1258 LARGE_INTEGER CleanVolumeTimer; 1259 1260 // 1261 // We use a shorter volume clean timer for hot plug volumes. 1262 // 1263 1264 CleanVolumeTimer.QuadPart = FlagOn( Vcb->VcbState, VCB_STATE_FLAG_DEFERRED_FLUSH) 1265 ? (LONG)-1500*1000*10 1266 : (LONG)-8*1000*1000*10; 1267 1268 (VOID)KeCancelTimer( &Vcb->CleanVolumeTimer ); 1269 (VOID)KeRemoveQueueDpc( &Vcb->CleanVolumeDpc ); 1270 1271 // 1272 // We have now synchronized with anybody clearing the dirty 1273 // flag, so we can now see if we really have to actually write 1274 // out the physical bit. 1275 // 1276 1277 if ( !FlagOn(Vcb->VcbState, VCB_STATE_FLAG_VOLUME_DIRTY) ) { 1278 1279 // 1280 // We want to really mark the volume dirty now. 1281 // 1282 1283 if (!FlagOn(Vcb->VcbState, VCB_STATE_FLAG_MOUNTED_DIRTY)) { 1284 1285 FatMarkVolume( IrpContext, Vcb, VolumeDirty ); 1286 } 1287 1288 SetFlag( Vcb->VcbState, VCB_STATE_FLAG_VOLUME_DIRTY ); 1289 1290 // 1291 // Lock the volume if it is removable. 1292 // 1293 1294 if (FlagOn( Vcb->VcbState, VCB_STATE_FLAG_REMOVABLE_MEDIA)) { 1295 1296 FatToggleMediaEjectDisable( IrpContext, Vcb, TRUE ); 1297 } 1298 } 1299 1300 KeAcquireSpinLock( &FatData.GeneralSpinLock, &SavedIrql ); 1301 1302 KeQuerySystemTime( &Vcb->LastFatMarkVolumeDirtyCall ); 1303 1304 KeReleaseSpinLock( &FatData.GeneralSpinLock, SavedIrql ); 1305 1306 KeSetTimer( &Vcb->CleanVolumeTimer, 1307 CleanVolumeTimer, 1308 &Vcb->CleanVolumeDpc ); 1309 } 1310 } 1311 1312 DebugTrace(-1, Dbg, "FatSetDirtyBcb -> VOID\n", 0 ); 1313 } 1314 1315 1316 VOID 1317 FatRepinBcb ( 1318 IN PIRP_CONTEXT IrpContext, 1319 IN PBCB Bcb 1320 ) 1321 1322 /*++ 1323 1324 Routine Description: 1325 1326 This routine saves a reference to the bcb in the irp context. This will 1327 have the affect of keeping the page in memory until we complete the 1328 request 1329 1330 Arguments: 1331 1332 Bcb - Supplies the Bcb being referenced 1333 1334 Return Value: 1335 1336 None. 1337 1338 --*/ 1339 1340 { 1341 PREPINNED_BCBS Repinned; 1342 ULONG i; 1343 1344 PAGED_CODE(); 1345 1346 DebugTrace(+1, Dbg, "FatRepinBcb\n", 0 ); 1347 DebugTrace( 0, Dbg, "IrpContext = %p\n", IrpContext ); 1348 DebugTrace( 0, Dbg, "Bcb = %p\n", Bcb ); 1349 1350 // 1351 // The algorithm is to search the list of repinned records until 1352 // we either find a match for the bcb or we find a null slot. 1353 // 1354 1355 Repinned = &IrpContext->Repinned; 1356 1357 while (TRUE) { 1358 1359 // 1360 // For every entry in the repinned record check if the bcb's 1361 // match or if the entry is null. If the bcb's match then 1362 // we've done because we've already repinned this bcb, if 1363 // the entry is null then we know, because it's densely packed, 1364 // that the bcb is not in the list so add it to the repinned 1365 // record and repin it. 1366 // 1367 1368 for (i = 0; i < REPINNED_BCBS_ARRAY_SIZE; i += 1) { 1369 1370 if (Repinned->Bcb[i] == Bcb) { 1371 1372 DebugTrace(-1, Dbg, "FatRepinBcb -> VOID\n", 0 ); 1373 return; 1374 } 1375 1376 if (Repinned->Bcb[i] == NULL) { 1377 1378 Repinned->Bcb[i] = Bcb; 1379 CcRepinBcb( Bcb ); 1380 1381 DebugTrace(-1, Dbg, "FatRepinBcb -> VOID\n", 0 ); 1382 return; 1383 } 1384 } 1385 1386 // 1387 // We finished checking one repinned record so now locate the next 1388 // repinned record, If there isn't one then allocate and zero out 1389 // a new one. 1390 // 1391 1392 if (Repinned->Next == NULL) { 1393 1394 Repinned->Next = FsRtlAllocatePoolWithTag( PagedPool, 1395 sizeof(REPINNED_BCBS), 1396 TAG_REPINNED_BCB ); 1397 1398 RtlZeroMemory( Repinned->Next, sizeof(REPINNED_BCBS) ); 1399 } 1400 1401 Repinned = Repinned->Next; 1402 } 1403 } 1404 1405 1406 VOID 1407 FatUnpinRepinnedBcbs ( 1408 IN PIRP_CONTEXT IrpContext 1409 ) 1410 1411 /*++ 1412 1413 Routine Description: 1414 1415 This routine frees all of the repinned bcbs, stored in an IRP context. 1416 1417 Arguments: 1418 1419 Return Value: 1420 1421 None. 1422 1423 --*/ 1424 1425 { 1426 IO_STATUS_BLOCK RaiseIosb; 1427 PREPINNED_BCBS Repinned; 1428 BOOLEAN WriteThroughToDisk; 1429 PFILE_OBJECT FileObject = NULL; 1430 BOOLEAN ForceVerify = FALSE; 1431 ULONG i; 1432 PFCB FcbOrDcb = NULL; 1433 1434 PAGED_CODE(); 1435 1436 DebugTrace(+1, Dbg, "FatUnpinRepinnedBcbs\n", 0 ); 1437 DebugTrace( 0, Dbg, "IrpContext = %p\n", IrpContext ); 1438 1439 // 1440 // The algorithm for this procedure is to scan the entire list of 1441 // repinned records unpinning any repinned bcbs. We start off 1442 // with the first record in the irp context, and while there is a 1443 // record to scan we do the following loop. 1444 // 1445 1446 Repinned = &IrpContext->Repinned; 1447 RaiseIosb.Status = STATUS_SUCCESS; 1448 1449 // 1450 // WinSE bug #307418 "Occasional data corruption when 1451 // standby/resume while copying files to removable FAT 1452 // formatted media". 1453 // Extract main FCB pointer from the irp context - we 1454 // will need it later to detect new file creation operation. 1455 // 1456 1457 if (IrpContext->MajorFunction == IRP_MJ_CREATE && 1458 IrpContext->OriginatingIrp != NULL) { 1459 PIO_STACK_LOCATION IrpSp; 1460 1461 IrpSp = IoGetCurrentIrpStackLocation( IrpContext->OriginatingIrp ); 1462 1463 if (IrpSp != NULL && 1464 IrpSp->FileObject != NULL && 1465 IrpSp->FileObject->FsContext != NULL) { 1466 1467 FcbOrDcb = IrpSp->FileObject->FsContext; 1468 } 1469 } 1470 1471 // 1472 // If the request is write through or the media is deferred flush, 1473 // unpin the bcb's write through. 1474 // 1475 1476 WriteThroughToDisk = (BOOLEAN) (!FlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_DISABLE_WRITE_THROUGH) && 1477 IrpContext->Vcb != NULL && 1478 (FlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WRITE_THROUGH) || 1479 FlagOn(IrpContext->Vcb->VcbState, VCB_STATE_FLAG_DEFERRED_FLUSH))); 1480 1481 while (Repinned != NULL) { 1482 1483 // 1484 // For every non-null entry in the repinned record unpin the 1485 // repinned entry. 1486 // 1487 // If the this is removable media (therefore all requests write- 1488 // through) and the write fails, purge the cache so that we throw 1489 // away the modifications as we will be returning an error to the 1490 // user. 1491 // 1492 1493 for (i = 0; i < REPINNED_BCBS_ARRAY_SIZE; i += 1) { 1494 1495 if (Repinned->Bcb[i] != NULL) { 1496 1497 IO_STATUS_BLOCK Iosb; 1498 1499 if (WriteThroughToDisk && 1500 FlagOn(IrpContext->Vcb->VcbState, VCB_STATE_FLAG_DEFERRED_FLUSH)) { 1501 1502 FileObject = CcGetFileObjectFromBcb( Repinned->Bcb[i] ); 1503 } 1504 1505 CcUnpinRepinnedBcb( Repinned->Bcb[i], 1506 WriteThroughToDisk, 1507 &Iosb ); 1508 1509 if (!NT_SUCCESS(Iosb.Status)) { 1510 1511 if (RaiseIosb.Status == STATUS_SUCCESS) { 1512 1513 RaiseIosb = Iosb; 1514 } 1515 1516 // 1517 // If this was a writethrough device, purge the cache, 1518 // except for Irp major codes that either don't handle 1519 // the error paths correctly or are simple victims like 1520 // cleanup.c. 1521 // 1522 1523 if (FileObject && 1524 (IrpContext->MajorFunction != IRP_MJ_CLEANUP) && 1525 (IrpContext->MajorFunction != IRP_MJ_FLUSH_BUFFERS) && 1526 (IrpContext->MajorFunction != IRP_MJ_SET_INFORMATION) 1527 1528 && 1529 1530 // 1531 // WinSE bug #307418 "Occasional data corruption when 1532 // standby/resume while copying files to removable FAT 1533 // formatted media". 1534 // Buffer unpinning for new file creation operation can 1535 // be interrupted by system syspend. As a result some BCBs 1536 // will be successfully written to the disk while others will 1537 // be kicked back with STATUS_VERIFY_REQUIRED. Since there is 1538 // is still a chance for the failed BCBs to reach the disk 1539 // after the volume verification we'll not purge them. 1540 // Instead FatCommonCreate() will unroll the file creation 1541 // changes for these pages. 1542 // 1543 1544 !(IrpContext->MajorFunction == IRP_MJ_CREATE && 1545 Iosb.Status == STATUS_VERIFY_REQUIRED && 1546 FcbOrDcb != NULL && 1547 NodeType( FcbOrDcb ) == FAT_NTC_FCB)) { 1548 1549 // 1550 // The call to CcPurgeCacheSection() below will 1551 // purge the entire file from memory. It will also 1552 // block until all the file's BCB's are pinned. 1553 // 1554 // We end up in a deadlock situation of there 1555 // are any other pinned BCB's in this IRP context 1556 // so the first thing we do is search the list 1557 // for BCB's pinned in the same file and unpin 1558 // them. 1559 // 1560 // We are probably not going to lose data because 1561 // it's safe to assume that all flushes will 1562 // fail after the first one fails. 1563 // 1564 1565 ULONG j; 1566 ULONG k = i + 1; 1567 PREPINNED_BCBS RepinnedToPurge = Repinned; 1568 1569 while( RepinnedToPurge != NULL ) { 1570 1571 for (j = k; j < REPINNED_BCBS_ARRAY_SIZE; j++) { 1572 1573 if (RepinnedToPurge->Bcb[j] != NULL) { 1574 1575 if (CcGetFileObjectFromBcb( RepinnedToPurge->Bcb[j] ) == FileObject) { 1576 1577 CcUnpinRepinnedBcb( RepinnedToPurge->Bcb[j], 1578 FALSE, 1579 &Iosb ); 1580 1581 RepinnedToPurge->Bcb[j] = NULL; 1582 } 1583 } 1584 } 1585 1586 RepinnedToPurge = RepinnedToPurge->Next; 1587 k = 0; 1588 } 1589 1590 CcPurgeCacheSection( FileObject->SectionObjectPointer, 1591 NULL, 1592 0, 1593 FALSE ); 1594 1595 // 1596 // Force a verify operation here since who knows 1597 // what state things are in. 1598 // 1599 1600 ForceVerify = TRUE; 1601 } 1602 } 1603 1604 Repinned->Bcb[i] = NULL; 1605 1606 } 1607 } 1608 1609 // 1610 // Now find the next repinned record in the list, and possibly 1611 // delete the one we've just processed. 1612 // 1613 1614 if (Repinned != &IrpContext->Repinned) { 1615 1616 PREPINNED_BCBS Saved; 1617 1618 Saved = Repinned->Next; 1619 ExFreePool( Repinned ); 1620 Repinned = Saved; 1621 1622 } else { 1623 1624 Repinned = Repinned->Next; 1625 IrpContext->Repinned.Next = NULL; 1626 } 1627 } 1628 1629 // 1630 // Now if we weren't completely successful in the our unpin 1631 // then raise the iosb we got 1632 // 1633 1634 if (!NT_SUCCESS(RaiseIosb.Status)) { 1635 1636 if (ForceVerify && FileObject) { 1637 1638 SetFlag(FileObject->DeviceObject->Flags, DO_VERIFY_VOLUME); 1639 1640 IoSetHardErrorOrVerifyDevice( IrpContext->OriginatingIrp, 1641 FileObject->DeviceObject ); 1642 } 1643 1644 if (!FlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_DISABLE_RAISE )) { 1645 if (IrpContext->OriginatingIrp) { 1646 IrpContext->OriginatingIrp->IoStatus = RaiseIosb; 1647 } 1648 FatNormalizeAndRaiseStatus( IrpContext, RaiseIosb.Status ); 1649 } 1650 } 1651 1652 DebugTrace(-1, Dbg, "FatUnpinRepinnedBcbs -> VOID\n", 0 ); 1653 1654 return; 1655 } 1656 1657 1658 FINISHED 1659 FatZeroData ( 1660 IN PIRP_CONTEXT IrpContext, 1661 IN PVCB Vcb, 1662 IN PFILE_OBJECT FileObject, 1663 IN ULONG StartingZero, 1664 IN ULONG ByteCount 1665 ) 1666 1667 /*++ 1668 1669 **** Temporary function - Remove when CcZeroData is capable of handling 1670 non sector aligned requests. 1671 1672 --*/ 1673 { 1674 #ifndef __REACTOS__ 1675 LARGE_INTEGER ZeroStart = {0,0}; 1676 LARGE_INTEGER BeyondZeroEnd = {0,0}; 1677 #else 1678 LARGE_INTEGER ZeroStart = {{0,0}}; 1679 LARGE_INTEGER BeyondZeroEnd = {{0,0}}; 1680 #endif 1681 1682 ULONG SectorSize; 1683 1684 BOOLEAN Finished; 1685 1686 PAGED_CODE(); 1687 1688 SectorSize = (ULONG)Vcb->Bpb.BytesPerSector; 1689 1690 ZeroStart.LowPart = (StartingZero + (SectorSize - 1)) & ~(SectorSize - 1); 1691 1692 // 1693 // Detect overflow if we were asked to zero in the last sector of the file, 1694 // which must be "zeroed" already (or we're in trouble). 1695 // 1696 1697 if (StartingZero != 0 && ZeroStart.LowPart == 0) { 1698 1699 return TRUE; 1700 } 1701 1702 // 1703 // Note that BeyondZeroEnd can take the value 4gb. 1704 // 1705 1706 BeyondZeroEnd.QuadPart = ((ULONGLONG) StartingZero + ByteCount + (SectorSize - 1)) 1707 & (~((LONGLONG) SectorSize - 1)); 1708 1709 // 1710 // If we were called to just zero part of a sector we are in trouble. 1711 // 1712 1713 if ( ZeroStart.QuadPart == BeyondZeroEnd.QuadPart ) { 1714 1715 return TRUE; 1716 } 1717 1718 Finished = CcZeroData( FileObject, 1719 &ZeroStart, 1720 &BeyondZeroEnd, 1721 BooleanFlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT) ); 1722 1723 return Finished; 1724 } 1725 1726 1727 NTSTATUS 1728 FatCompleteMdl ( 1729 IN PIRP_CONTEXT IrpContext, 1730 IN PIRP Irp 1731 ) 1732 1733 /*++ 1734 1735 Routine Description: 1736 1737 This routine performs the function of completing Mdl read and write 1738 requests. It should be called only from FatFsdRead and FatFsdWrite. 1739 1740 Arguments: 1741 1742 Irp - Supplies the originating Irp. 1743 1744 Return Value: 1745 1746 NTSTATUS - Will always be STATUS_PENDING or STATUS_SUCCESS. 1747 1748 --*/ 1749 1750 { 1751 PFILE_OBJECT FileObject; 1752 PIO_STACK_LOCATION IrpSp; 1753 1754 PAGED_CODE(); 1755 1756 DebugTrace(+1, Dbg, "FatCompleteMdl\n", 0 ); 1757 DebugTrace( 0, Dbg, "IrpContext = %p\n", IrpContext ); 1758 DebugTrace( 0, Dbg, "Irp = %p\n", Irp ); 1759 1760 // 1761 // Do completion processing. 1762 // 1763 1764 FileObject = IoGetCurrentIrpStackLocation( Irp )->FileObject; 1765 1766 switch( IrpContext->MajorFunction ) { 1767 1768 case IRP_MJ_READ: 1769 1770 CcMdlReadComplete( FileObject, Irp->MdlAddress ); 1771 break; 1772 1773 case IRP_MJ_WRITE: 1774 1775 IrpSp = IoGetCurrentIrpStackLocation( Irp ); 1776 1777 NT_ASSERT( FlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT )); 1778 1779 CcMdlWriteComplete( FileObject, &IrpSp->Parameters.Write.ByteOffset, Irp->MdlAddress ); 1780 1781 Irp->IoStatus.Status = STATUS_SUCCESS; 1782 1783 break; 1784 1785 default: 1786 1787 DebugTrace( DEBUG_TRACE_ERROR, 0, "Illegal Mdl Complete.\n", 0); 1788 #ifdef _MSC_VER 1789 #pragma prefast( suppress: 28159, "we're very broken if we get here" ) 1790 #endif 1791 FatBugCheck( IrpContext->MajorFunction, 0, 0 ); 1792 } 1793 1794 // 1795 // Mdl is now deallocated. 1796 // 1797 1798 Irp->MdlAddress = NULL; 1799 1800 // 1801 // Complete the request and exit right away. 1802 // 1803 1804 FatCompleteRequest( IrpContext, Irp, STATUS_SUCCESS ); 1805 1806 DebugTrace(-1, Dbg, "FatCompleteMdl -> STATUS_SUCCESS\n", 0 ); 1807 1808 return STATUS_SUCCESS; 1809 } 1810 1811 VOID 1812 FatSyncUninitializeCacheMap ( 1813 IN PIRP_CONTEXT IrpContext, 1814 IN PFILE_OBJECT FileObject 1815 ) 1816 1817 /*++ 1818 1819 Routine Description: 1820 1821 The routine performs a CcUnitializeCacheMap to LargeZero synchronously. That 1822 is it waits on the Cc event. This call is useful when we want to be certain 1823 when a close will actually some in. 1824 1825 Return Value: 1826 1827 None. 1828 1829 --*/ 1830 1831 { 1832 CACHE_UNINITIALIZE_EVENT UninitializeCompleteEvent; 1833 NTSTATUS WaitStatus; 1834 1835 UNREFERENCED_PARAMETER( IrpContext ); 1836 1837 PAGED_CODE(); 1838 1839 KeInitializeEvent( &UninitializeCompleteEvent.Event, 1840 SynchronizationEvent, 1841 FALSE); 1842 1843 CcUninitializeCacheMap( FileObject, 1844 &FatLargeZero, 1845 &UninitializeCompleteEvent ); 1846 1847 // 1848 // Now wait for the cache manager to finish purging the file. 1849 // This will garentee that Mm gets the purge before we 1850 // delete the Vcb. 1851 // 1852 1853 #ifdef _MSC_VER 1854 #pragma prefast( suppress: 28931, "we use WaitStatus in the debug assert, in fre builds prefast complains it's unused" ) 1855 #endif 1856 WaitStatus = KeWaitForSingleObject( &UninitializeCompleteEvent.Event, 1857 Executive, 1858 KernelMode, 1859 FALSE, 1860 NULL); 1861 1862 NT_ASSERT(WaitStatus == STATUS_SUCCESS); 1863 } 1864 1865 VOID 1866 FatPinMappedData ( 1867 IN PIRP_CONTEXT IrpContext, 1868 IN PDCB Dcb, 1869 IN VBO StartingVbo, 1870 IN ULONG ByteCount, 1871 OUT PBCB *Bcb 1872 ) 1873 1874 /*++ 1875 1876 Routine Description: 1877 1878 This routine pins data that was previously mapped before setting it dirty. 1879 1880 Arguments: 1881 1882 Dcb - Pointer to the DCB for the directory 1883 1884 StartingVbo - The virtual offset of the first desired byte 1885 1886 ByteCount - Number of bytes desired 1887 1888 Bcb - Returns a pointer to the BCB which is valid until unpinned 1889 1890 --*/ 1891 1892 { 1893 LARGE_INTEGER Vbo; 1894 1895 PAGED_CODE(); 1896 1897 DebugTrace(+1, Dbg, "FatPinMappedData\n", 0); 1898 DebugTrace( 0, Dbg, "Dcb = %p\n", Dcb); 1899 DebugTrace( 0, Dbg, "StartingVbo = %08lx\n", StartingVbo); 1900 DebugTrace( 0, Dbg, "ByteCount = %08lx\n", ByteCount); 1901 1902 // 1903 // Call the Cache manager to perform the operation. 1904 // 1905 1906 Vbo.QuadPart = StartingVbo; 1907 1908 if (!CcPinMappedData( Dcb->Specific.Dcb.DirectoryFile, 1909 &Vbo, 1910 ByteCount, 1911 BooleanFlagOn(IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT), 1912 Bcb )) { 1913 1914 // 1915 // Could not pin the data without waiting (cache miss). 1916 // 1917 1918 FatRaiseStatus( IrpContext, STATUS_CANT_WAIT ); 1919 } 1920 1921 DebugTrace(-1, Dbg, "FatReadDirectoryFile -> VOID, *BCB = %p\n", *Bcb); 1922 1923 return; 1924 } 1925 1926 #if (NTDDI_VERSION >= NTDDI_WIN8) 1927 1928 NTSTATUS 1929 FatPrefetchPages ( 1930 IN PIRP_CONTEXT IrpContext, 1931 IN PFILE_OBJECT FileObject, 1932 IN ULONG StartingPage, 1933 IN ULONG PageCount 1934 ) 1935 { 1936 IO_PRIORITY_INFO PriorityInformation = {0}; 1937 MM_PREFETCH_FLAGS PrefetchFlags; 1938 ULONG PageNo; 1939 NTSTATUS Status; 1940 1941 PREAD_LIST ReadList = NULL; 1942 1943 UNREFERENCED_PARAMETER( IrpContext ); 1944 1945 PAGED_CODE(); 1946 1947 // 1948 // Succeed zero page prefetch requests. 1949 // 1950 1951 if (PageCount == 0) { 1952 1953 return STATUS_SUCCESS; 1954 } 1955 1956 // 1957 // Mm's prefetch API's "only" support fetching a ULONG worth of pages. 1958 // Make sure we don't overflow. 1959 // 1960 1961 ASSERT( PageCount < (PFN_NUMBER)MAXULONG ); 1962 1963 IoInitializePriorityInfo( &PriorityInformation ); 1964 1965 Status = IoRetrievePriorityInfo( IrpContext->OriginatingIrp, 1966 FileObject, 1967 IrpContext->OriginatingIrp->Tail.Overlay.Thread, 1968 &PriorityInformation ); 1969 1970 if (!NT_SUCCESS( Status)) { 1971 1972 goto Cleanup; 1973 } 1974 1975 ReadList = ExAllocatePoolWithTag( PagedPool, 1976 FIELD_OFFSET( READ_LIST, List ) + PageCount * sizeof( FILE_SEGMENT_ELEMENT ), 1977 ' taF' ); 1978 1979 if (ReadList == NULL) { 1980 1981 Status = STATUS_INSUFFICIENT_RESOURCES; 1982 goto Cleanup; 1983 } 1984 1985 // 1986 // Call Mm to prefetch data. 1987 // 1988 1989 ReadList->FileObject = FileObject; 1990 ReadList->IsImage = FALSE; 1991 ReadList->NumberOfEntries = PageCount; 1992 1993 PrefetchFlags.AllFlags = 0; 1994 PrefetchFlags.Flags.Priority = PriorityInformation.PagePriority; 1995 PrefetchFlags.Flags.RepurposePriority = SYSTEM_PAGE_PRIORITY_LEVELS - 1; 1996 PrefetchFlags.Flags.PriorityProtection = 1; 1997 ReadList->List[0].Alignment = StartingPage * PAGE_SIZE; 1998 ReadList->List[0].Alignment |= PrefetchFlags.AllFlags; 1999 2000 for (PageNo = 1; PageNo < PageCount; PageNo++) { 2001 2002 ReadList->List[PageNo].Alignment = ReadList->List[PageNo-1].Alignment + PAGE_SIZE; 2003 } 2004 2005 Status = MmPrefetchPages( 1, &ReadList ); 2006 2007 Cleanup: 2008 2009 if (ReadList != NULL) { 2010 2011 ExFreePoolWithTag( ReadList, ' taF' ); 2012 } 2013 2014 return Status; 2015 } 2016 #endif 2017 2018