1 /* 2 * RFC 1321 compliant MD5 implementation 3 * 4 * Based on XySSL: Copyright (C) 2006-2008 Christophe Devine 5 * 6 * Copyright (C) 2009 Paul Bakker <polarssl_maintainer at polarssl dot org> 7 * 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * * Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * * Neither the names of PolarSSL or XySSL nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 /* 36 * The MD5 algorithm was designed by Ron Rivest in 1991. 37 * 38 * http://www.ietf.org/rfc/rfc1321.txt 39 */ 40 41 #include "netif/ppp/ppp_opts.h" 42 #if PPP_SUPPORT && LWIP_INCLUDED_POLARSSL_MD5 43 44 #include "netif/ppp/polarssl/md5.h" 45 46 #include <string.h> 47 48 /* 49 * 32-bit integer manipulation macros (little endian) 50 */ 51 #ifndef GET_ULONG_LE 52 #define GET_ULONG_LE(n,b,i) \ 53 { \ 54 (n) = ( (unsigned long) (b)[(i) ] ) \ 55 | ( (unsigned long) (b)[(i) + 1] << 8 ) \ 56 | ( (unsigned long) (b)[(i) + 2] << 16 ) \ 57 | ( (unsigned long) (b)[(i) + 3] << 24 ); \ 58 } 59 #endif 60 61 #ifndef PUT_ULONG_LE 62 #define PUT_ULONG_LE(n,b,i) \ 63 { \ 64 (b)[(i) ] = (unsigned char) ( (n) ); \ 65 (b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); \ 66 (b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); \ 67 (b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); \ 68 } 69 #endif 70 71 /* 72 * MD5 context setup 73 */ 74 void md5_starts( md5_context *ctx ) 75 { 76 ctx->total[0] = 0; 77 ctx->total[1] = 0; 78 79 ctx->state[0] = 0x67452301; 80 ctx->state[1] = 0xEFCDAB89; 81 ctx->state[2] = 0x98BADCFE; 82 ctx->state[3] = 0x10325476; 83 } 84 85 static void md5_process( md5_context *ctx, const unsigned char data[64] ) 86 { 87 unsigned long X[16], A, B, C, D; 88 89 GET_ULONG_LE( X[ 0], data, 0 ); 90 GET_ULONG_LE( X[ 1], data, 4 ); 91 GET_ULONG_LE( X[ 2], data, 8 ); 92 GET_ULONG_LE( X[ 3], data, 12 ); 93 GET_ULONG_LE( X[ 4], data, 16 ); 94 GET_ULONG_LE( X[ 5], data, 20 ); 95 GET_ULONG_LE( X[ 6], data, 24 ); 96 GET_ULONG_LE( X[ 7], data, 28 ); 97 GET_ULONG_LE( X[ 8], data, 32 ); 98 GET_ULONG_LE( X[ 9], data, 36 ); 99 GET_ULONG_LE( X[10], data, 40 ); 100 GET_ULONG_LE( X[11], data, 44 ); 101 GET_ULONG_LE( X[12], data, 48 ); 102 GET_ULONG_LE( X[13], data, 52 ); 103 GET_ULONG_LE( X[14], data, 56 ); 104 GET_ULONG_LE( X[15], data, 60 ); 105 106 #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n))) 107 108 #define P(a,b,c,d,k,s,t) \ 109 { \ 110 a += F(b,c,d) + X[k] + t; a = S(a,s) + b; \ 111 } 112 113 A = ctx->state[0]; 114 B = ctx->state[1]; 115 C = ctx->state[2]; 116 D = ctx->state[3]; 117 118 #define F(x,y,z) (z ^ (x & (y ^ z))) 119 120 P( A, B, C, D, 0, 7, 0xD76AA478 ); 121 P( D, A, B, C, 1, 12, 0xE8C7B756 ); 122 P( C, D, A, B, 2, 17, 0x242070DB ); 123 P( B, C, D, A, 3, 22, 0xC1BDCEEE ); 124 P( A, B, C, D, 4, 7, 0xF57C0FAF ); 125 P( D, A, B, C, 5, 12, 0x4787C62A ); 126 P( C, D, A, B, 6, 17, 0xA8304613 ); 127 P( B, C, D, A, 7, 22, 0xFD469501 ); 128 P( A, B, C, D, 8, 7, 0x698098D8 ); 129 P( D, A, B, C, 9, 12, 0x8B44F7AF ); 130 P( C, D, A, B, 10, 17, 0xFFFF5BB1 ); 131 P( B, C, D, A, 11, 22, 0x895CD7BE ); 132 P( A, B, C, D, 12, 7, 0x6B901122 ); 133 P( D, A, B, C, 13, 12, 0xFD987193 ); 134 P( C, D, A, B, 14, 17, 0xA679438E ); 135 P( B, C, D, A, 15, 22, 0x49B40821 ); 136 137 #undef F 138 139 #define F(x,y,z) (y ^ (z & (x ^ y))) 140 141 P( A, B, C, D, 1, 5, 0xF61E2562 ); 142 P( D, A, B, C, 6, 9, 0xC040B340 ); 143 P( C, D, A, B, 11, 14, 0x265E5A51 ); 144 P( B, C, D, A, 0, 20, 0xE9B6C7AA ); 145 P( A, B, C, D, 5, 5, 0xD62F105D ); 146 P( D, A, B, C, 10, 9, 0x02441453 ); 147 P( C, D, A, B, 15, 14, 0xD8A1E681 ); 148 P( B, C, D, A, 4, 20, 0xE7D3FBC8 ); 149 P( A, B, C, D, 9, 5, 0x21E1CDE6 ); 150 P( D, A, B, C, 14, 9, 0xC33707D6 ); 151 P( C, D, A, B, 3, 14, 0xF4D50D87 ); 152 P( B, C, D, A, 8, 20, 0x455A14ED ); 153 P( A, B, C, D, 13, 5, 0xA9E3E905 ); 154 P( D, A, B, C, 2, 9, 0xFCEFA3F8 ); 155 P( C, D, A, B, 7, 14, 0x676F02D9 ); 156 P( B, C, D, A, 12, 20, 0x8D2A4C8A ); 157 158 #undef F 159 160 #define F(x,y,z) (x ^ y ^ z) 161 162 P( A, B, C, D, 5, 4, 0xFFFA3942 ); 163 P( D, A, B, C, 8, 11, 0x8771F681 ); 164 P( C, D, A, B, 11, 16, 0x6D9D6122 ); 165 P( B, C, D, A, 14, 23, 0xFDE5380C ); 166 P( A, B, C, D, 1, 4, 0xA4BEEA44 ); 167 P( D, A, B, C, 4, 11, 0x4BDECFA9 ); 168 P( C, D, A, B, 7, 16, 0xF6BB4B60 ); 169 P( B, C, D, A, 10, 23, 0xBEBFBC70 ); 170 P( A, B, C, D, 13, 4, 0x289B7EC6 ); 171 P( D, A, B, C, 0, 11, 0xEAA127FA ); 172 P( C, D, A, B, 3, 16, 0xD4EF3085 ); 173 P( B, C, D, A, 6, 23, 0x04881D05 ); 174 P( A, B, C, D, 9, 4, 0xD9D4D039 ); 175 P( D, A, B, C, 12, 11, 0xE6DB99E5 ); 176 P( C, D, A, B, 15, 16, 0x1FA27CF8 ); 177 P( B, C, D, A, 2, 23, 0xC4AC5665 ); 178 179 #undef F 180 181 #define F(x,y,z) (y ^ (x | ~z)) 182 183 P( A, B, C, D, 0, 6, 0xF4292244 ); 184 P( D, A, B, C, 7, 10, 0x432AFF97 ); 185 P( C, D, A, B, 14, 15, 0xAB9423A7 ); 186 P( B, C, D, A, 5, 21, 0xFC93A039 ); 187 P( A, B, C, D, 12, 6, 0x655B59C3 ); 188 P( D, A, B, C, 3, 10, 0x8F0CCC92 ); 189 P( C, D, A, B, 10, 15, 0xFFEFF47D ); 190 P( B, C, D, A, 1, 21, 0x85845DD1 ); 191 P( A, B, C, D, 8, 6, 0x6FA87E4F ); 192 P( D, A, B, C, 15, 10, 0xFE2CE6E0 ); 193 P( C, D, A, B, 6, 15, 0xA3014314 ); 194 P( B, C, D, A, 13, 21, 0x4E0811A1 ); 195 P( A, B, C, D, 4, 6, 0xF7537E82 ); 196 P( D, A, B, C, 11, 10, 0xBD3AF235 ); 197 P( C, D, A, B, 2, 15, 0x2AD7D2BB ); 198 P( B, C, D, A, 9, 21, 0xEB86D391 ); 199 200 #undef F 201 202 ctx->state[0] += A; 203 ctx->state[1] += B; 204 ctx->state[2] += C; 205 ctx->state[3] += D; 206 } 207 208 /* 209 * MD5 process buffer 210 */ 211 void md5_update( md5_context *ctx, const unsigned char *input, int ilen ) 212 { 213 int fill; 214 unsigned long left; 215 216 if( ilen <= 0 ) 217 return; 218 219 left = ctx->total[0] & 0x3F; 220 fill = 64 - left; 221 222 ctx->total[0] += ilen; 223 ctx->total[0] &= 0xFFFFFFFF; 224 225 if( ctx->total[0] < (unsigned long) ilen ) 226 ctx->total[1]++; 227 228 if( left && ilen >= fill ) 229 { 230 MEMCPY( (void *) (ctx->buffer + left), 231 input, fill ); 232 md5_process( ctx, ctx->buffer ); 233 input += fill; 234 ilen -= fill; 235 left = 0; 236 } 237 238 while( ilen >= 64 ) 239 { 240 md5_process( ctx, input ); 241 input += 64; 242 ilen -= 64; 243 } 244 245 if( ilen > 0 ) 246 { 247 MEMCPY( (void *) (ctx->buffer + left), 248 input, ilen ); 249 } 250 } 251 252 static const unsigned char md5_padding[64] = 253 { 254 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 258 }; 259 260 /* 261 * MD5 final digest 262 */ 263 void md5_finish( md5_context *ctx, unsigned char output[16] ) 264 { 265 unsigned long last, padn; 266 unsigned long high, low; 267 unsigned char msglen[8]; 268 269 high = ( ctx->total[0] >> 29 ) 270 | ( ctx->total[1] << 3 ); 271 low = ( ctx->total[0] << 3 ); 272 273 PUT_ULONG_LE( low, msglen, 0 ); 274 PUT_ULONG_LE( high, msglen, 4 ); 275 276 last = ctx->total[0] & 0x3F; 277 padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); 278 279 md5_update( ctx, md5_padding, padn ); 280 md5_update( ctx, msglen, 8 ); 281 282 PUT_ULONG_LE( ctx->state[0], output, 0 ); 283 PUT_ULONG_LE( ctx->state[1], output, 4 ); 284 PUT_ULONG_LE( ctx->state[2], output, 8 ); 285 PUT_ULONG_LE( ctx->state[3], output, 12 ); 286 } 287 288 /* 289 * output = MD5( input buffer ) 290 */ 291 void md5( unsigned char *input, int ilen, unsigned char output[16] ) 292 { 293 md5_context ctx; 294 295 md5_starts( &ctx ); 296 md5_update( &ctx, input, ilen ); 297 md5_finish( &ctx, output ); 298 } 299 300 #endif /* PPP_SUPPORT && LWIP_INCLUDED_POLARSSL_MD5 */ 301