xref: /reactos/ntoskrnl/include/internal/i386/ke.h (revision 02e84521)
1 #pragma once
2 
3 #ifndef __ASM__
4 
5 #include "intrin_i.h"
6 
7 //
8 // Thread Dispatcher Header DebugActive Mask
9 //
10 #define DR_MASK(x)                              (1 << (x))
11 #define DR_REG_MASK                             0x4F
12 
13 //
14 // INT3 is 1 byte long
15 //
16 #define KD_BREAKPOINT_TYPE        UCHAR
17 #define KD_BREAKPOINT_SIZE        sizeof(UCHAR)
18 #define KD_BREAKPOINT_VALUE       0xCC
19 
20 //
21 // Macros for getting and setting special purpose registers in portable code
22 //
23 #define KeGetContextPc(Context) \
24     ((Context)->Eip)
25 
26 #define KeSetContextPc(Context, ProgramCounter) \
27     ((Context)->Eip = (ProgramCounter))
28 
29 #define KeGetTrapFramePc(TrapFrame) \
30     ((TrapFrame)->Eip)
31 
32 #define KiGetLinkedTrapFrame(x) \
33     (PKTRAP_FRAME)((x)->Edx)
34 
35 #define KeGetContextReturnRegister(Context) \
36     ((Context)->Eax)
37 
38 #define KeSetContextReturnRegister(Context, ReturnValue) \
39     ((Context)->Eax = (ReturnValue))
40 
41 //
42 // Macro to get trap and exception frame from a thread stack
43 //
44 #define KeGetTrapFrame(Thread) \
45     (PKTRAP_FRAME)((ULONG_PTR)((Thread)->InitialStack) - \
46                    sizeof(KTRAP_FRAME) - \
47                    sizeof(FX_SAVE_AREA))
48 
49 #define KeGetExceptionFrame(Thread) \
50     NULL
51 
52 //
53 // Macro to get context switches from the PRCB
54 // All architectures but x86 have it in the PRCB's KeContextSwitches
55 //
56 #define KeGetContextSwitches(Prcb)  \
57     CONTAINING_RECORD(Prcb, KIPCR, PrcbData)->ContextSwitches
58 
59 //
60 // Macro to get the second level cache size field name which differs between
61 // CISC and RISC architectures, as the former has unified I/D cache
62 //
63 #define KiGetSecondLevelDCacheSize() ((PKIPCR)KeGetPcr())->SecondLevelCacheSize
64 
65 //
66 // Returns the Interrupt State from a Trap Frame.
67 // ON = TRUE, OFF = FALSE
68 //
69 #define KeGetTrapFrameInterruptState(TrapFrame) \
70         BooleanFlagOn((TrapFrame)->EFlags, EFLAGS_INTERRUPT_MASK)
71 
72 //
73 // Flags for exiting a trap
74 //
75 #define KTE_SKIP_PM_BIT  (((KTRAP_EXIT_SKIP_BITS) { { .SkipPreviousMode = TRUE } }).Bits)
76 #define KTE_SKIP_SEG_BIT (((KTRAP_EXIT_SKIP_BITS) { { .SkipSegments  = TRUE } }).Bits)
77 #define KTE_SKIP_VOL_BIT (((KTRAP_EXIT_SKIP_BITS) { { .SkipVolatiles = TRUE } }).Bits)
78 
79 typedef union _KTRAP_EXIT_SKIP_BITS
80 {
81     struct
82     {
83         UCHAR SkipPreviousMode:1;
84         UCHAR SkipSegments:1;
85         UCHAR SkipVolatiles:1;
86         UCHAR Reserved:5;
87     };
88     UCHAR Bits;
89 } KTRAP_EXIT_SKIP_BITS, *PKTRAP_EXIT_SKIP_BITS;
90 
91 
92 //
93 // Flags used by the VDM/V8086 emulation engine for determining instruction prefixes
94 //
95 #define PFX_FLAG_ES                0x00000100
96 #define PFX_FLAG_CS                0x00000200
97 #define PFX_FLAG_SS                0x00000400
98 #define PFX_FLAG_DS                0x00000800
99 #define PFX_FLAG_FS                0x00001000
100 #define PFX_FLAG_GS                0x00002000
101 #define PFX_FLAG_OPER32            0x00004000
102 #define PFX_FLAG_ADDR32            0x00008000
103 #define PFX_FLAG_LOCK              0x00010000
104 #define PFX_FLAG_REPNE             0x00020000
105 #define PFX_FLAG_REP               0x00040000
106 
107 //
108 // VDM Helper Macros
109 //
110 // All VDM/V8086 opcode emulators have the same FASTCALL function definition.
111 // We need to keep 2 parameters while the original ASM implementation uses 4:
112 // TrapFrame, PrefixFlags, Eip, InstructionSize;
113 //
114 // We pass the trap frame, and prefix flags, in our two parameters.
115 //
116 // We then realize that since the smallest prefix flag is 0x100, this gives us
117 // a count of up to 0xFF. So we OR in the instruction size with the prefix flags
118 //
119 // We further realize that we always have access to EIP from the trap frame, and
120 // that if we want the *current instruction* EIP, we simply have to add the
121 // instruction size *MINUS ONE*, and that gives us the EIP we should be looking
122 // at now, so we don't need to use the stack to push this parameter.
123 //
124 // We actually only care about the *current instruction* EIP in one location,
125 // so although it may be slightly more expensive to re-calculate the EIP one
126 // more time, this way we don't redefine ALL opcode handlers to have 3 parameters,
127 // which would be forcing stack usage in all other scenarios.
128 //
129 #define KiVdmSetVdmEFlags(x)        InterlockedOr((PLONG)KiNtVdmState, (x));
130 #define KiVdmClearVdmEFlags(x)      InterlockedAnd((PLONG)KiNtVdmState, ~(x))
131 #define KiCallVdmHandler(x)         KiVdmOpcode##x(TrapFrame, Flags)
132 #define KiCallVdmPrefixHandler(x)   KiVdmOpcodePrefix(TrapFrame, Flags | x)
133 #define KiVdmUnhandledOpcode(x)                     \
134     BOOLEAN                                         \
135     FASTCALL                                        \
136     KiVdmOpcode##x(IN PKTRAP_FRAME TrapFrame,       \
137                    IN ULONG Flags)                  \
138     {                                               \
139         /* Not yet handled */                       \
140         UNIMPLEMENTED_DBGBREAK();                   \
141         return FALSE;                               \
142     }
143 
144 C_ASSERT(NPX_FRAME_LENGTH == sizeof(FX_SAVE_AREA));
145 
146 //
147 // Local parameters
148 //
149 typedef struct _KV86_FRAME
150 {
151     PVOID ThreadStack;
152     PVOID ThreadTeb;
153     PVOID PcrTeb;
154 } KV86_FRAME, *PKV86_FRAME;
155 
156 //
157 // Virtual Stack Frame
158 //
159 typedef struct _KV8086_STACK_FRAME
160 {
161     KTRAP_FRAME TrapFrame;
162     FX_SAVE_AREA NpxArea;
163     KV86_FRAME V86Frame;
164 } KV8086_STACK_FRAME, *PKV8086_STACK_FRAME;
165 
166 //
167 // Large Pages Support
168 //
169 typedef struct _LARGE_IDENTITY_MAP
170 {
171     PHARDWARE_PTE TopLevelDirectory;
172     ULONG Cr3;
173     ULONG_PTR StartAddress;
174     ULONG PagesCount;
175     PVOID PagesList[30];
176 } LARGE_IDENTITY_MAP, *PLARGE_IDENTITY_MAP;
177 
178 /* Diable interrupts and return whether they were enabled before */
179 FORCEINLINE
180 BOOLEAN
181 KeDisableInterrupts(VOID)
182 {
183     ULONG Flags;
184     BOOLEAN Return;
185 
186     /* Get EFLAGS and check if the interrupt bit is set */
187     Flags = __readeflags();
188     Return = (Flags & EFLAGS_INTERRUPT_MASK) ? TRUE: FALSE;
189 
190     /* Disable interrupts */
191     _disable();
192     return Return;
193 }
194 
195 /* Restore previous interrupt state */
196 FORCEINLINE
197 VOID
198 KeRestoreInterrupts(BOOLEAN WereEnabled)
199 {
200     if (WereEnabled) _enable();
201 }
202 
203 //
204 // Registers an interrupt handler with an IDT vector
205 //
206 FORCEINLINE
207 VOID
208 KeRegisterInterruptHandler(IN ULONG Vector,
209                            IN PVOID Handler)
210 {
211     UCHAR Entry;
212     ULONG_PTR Address;
213     PKIPCR Pcr = (PKIPCR)KeGetPcr();
214 
215     //
216     // Get the entry from the HAL
217     //
218     Entry = HalVectorToIDTEntry(Vector);
219     Address = PtrToUlong(Handler);
220 
221     //
222     // Now set the data
223     //
224     Pcr->IDT[Entry].ExtendedOffset = (USHORT)(Address >> 16);
225     Pcr->IDT[Entry].Offset = (USHORT)Address;
226 }
227 
228 //
229 // Returns the registered interrupt handler for a given IDT vector
230 //
231 FORCEINLINE
232 PVOID
233 KeQueryInterruptHandler(IN ULONG Vector)
234 {
235     PKIPCR Pcr = (PKIPCR)KeGetPcr();
236     UCHAR Entry;
237 
238     //
239     // Get the entry from the HAL
240     //
241     Entry = HalVectorToIDTEntry(Vector);
242 
243     //
244     // Read the entry from the IDT
245     //
246     return (PVOID)(((Pcr->IDT[Entry].ExtendedOffset << 16) & 0xFFFF0000) |
247                     (Pcr->IDT[Entry].Offset & 0xFFFF));
248 }
249 
250 //
251 // Invalidates the TLB entry for a specified address
252 //
253 FORCEINLINE
254 VOID
255 KeInvalidateTlbEntry(IN PVOID Address)
256 {
257     /* Invalidate the TLB entry for this address */
258     __invlpg(Address);
259 }
260 
261 FORCEINLINE
262 VOID
263 KeFlushProcessTb(VOID)
264 {
265     /* Flush the TLB by resetting CR3 */
266     __writecr3(__readcr3());
267 }
268 
269 FORCEINLINE
270 VOID
271 KeSweepICache(IN PVOID BaseAddress,
272               IN SIZE_T FlushSize)
273 {
274     //
275     // Always sweep the whole cache
276     //
277     UNREFERENCED_PARAMETER(BaseAddress);
278     UNREFERENCED_PARAMETER(FlushSize);
279     __wbinvd();
280 }
281 
282 FORCEINLINE
283 PRKTHREAD
284 KeGetCurrentThread(VOID)
285 {
286     /* Return the current thread */
287     return ((PKIPCR)KeGetPcr())->PrcbData.CurrentThread;
288 }
289 
290 FORCEINLINE
291 VOID
292 KiRundownThread(IN PKTHREAD Thread)
293 {
294 #ifndef CONFIG_SMP
295     /* Check if this is the NPX Thread */
296     if (KeGetCurrentPrcb()->NpxThread == Thread)
297     {
298         /* Clear it */
299         KeGetCurrentPrcb()->NpxThread = NULL;
300         Ke386FnInit();
301     }
302 #else
303     /* Nothing to do */
304 #endif
305 }
306 
307 FORCEINLINE
308 VOID
309 Ke386SetGdtEntryBase(PKGDTENTRY GdtEntry, PVOID BaseAddress)
310 {
311     GdtEntry->BaseLow = (USHORT)((ULONG_PTR)BaseAddress & 0xFFFF);
312     GdtEntry->HighWord.Bytes.BaseMid = (UCHAR)((ULONG_PTR)BaseAddress >> 16);
313     GdtEntry->HighWord.Bytes.BaseHi = (UCHAR)((ULONG_PTR)BaseAddress >> 24);
314 }
315 
316 FORCEINLINE
317 VOID
318 KiSetTebBase(PKPCR Pcr, PVOID TebAddress)
319 {
320     Pcr->NtTib.Self = TebAddress;
321     Ke386SetGdtEntryBase(&Pcr->GDT[KGDT_R3_TEB / sizeof(KGDTENTRY)], TebAddress);
322 }
323 
324 INIT_FUNCTION
325 VOID
326 FASTCALL
327 Ki386InitializeTss(
328     IN PKTSS Tss,
329     IN PKIDTENTRY Idt,
330     IN PKGDTENTRY Gdt
331 );
332 
333 INIT_FUNCTION
334 VOID
335 NTAPI
336 KiSetCR0Bits(VOID);
337 
338 INIT_FUNCTION
339 VOID
340 NTAPI
341 KiGetCacheInformation(VOID);
342 
343 INIT_FUNCTION
344 BOOLEAN
345 NTAPI
346 KiIsNpxPresent(
347     VOID
348 );
349 
350 INIT_FUNCTION
351 BOOLEAN
352 NTAPI
353 KiIsNpxErrataPresent(
354     VOID
355 );
356 
357 INIT_FUNCTION
358 VOID
359 NTAPI
360 KiSetProcessorType(VOID);
361 
362 INIT_FUNCTION
363 ULONG
364 NTAPI
365 KiGetFeatureBits(VOID);
366 
367 VOID
368 NTAPI
369 KiThreadStartup(VOID);
370 
371 NTSTATUS
372 NTAPI
373 Ke386GetGdtEntryThread(
374     IN PKTHREAD Thread,
375     IN ULONG Offset,
376     IN PKGDTENTRY Descriptor
377 );
378 
379 VOID
380 NTAPI
381 KiFlushNPXState(
382     IN FLOATING_SAVE_AREA *SaveArea
383 );
384 
385 VOID
386 NTAPI
387 Ki386AdjustEsp0(
388     IN PKTRAP_FRAME TrapFrame
389 );
390 
391 VOID
392 NTAPI
393 Ki386SetupAndExitToV86Mode(
394     OUT PTEB VdmTeb
395 );
396 
397 INIT_FUNCTION
398 VOID
399 NTAPI
400 KeI386VdmInitialize(
401     VOID
402 );
403 
404 INIT_FUNCTION
405 ULONG_PTR
406 NTAPI
407 Ki386EnableGlobalPage(
408     IN ULONG_PTR Context
409 );
410 
411 INIT_FUNCTION
412 ULONG_PTR
413 NTAPI
414 Ki386EnableTargetLargePage(
415     IN ULONG_PTR Context
416 );
417 
418 BOOLEAN
419 NTAPI
420 Ki386CreateIdentityMap(
421     IN PLARGE_IDENTITY_MAP IdentityMap,
422     IN PVOID StartPtr,
423     IN ULONG Length
424 );
425 
426 VOID
427 NTAPI
428 Ki386FreeIdentityMap(
429     IN PLARGE_IDENTITY_MAP IdentityMap
430 );
431 
432 VOID
433 NTAPI
434 Ki386EnableCurrentLargePage(
435     IN ULONG_PTR StartAddress,
436     IN ULONG Cr3
437 );
438 
439 INIT_FUNCTION
440 VOID
441 NTAPI
442 KiI386PentiumLockErrataFixup(
443     VOID
444 );
445 
446 INIT_FUNCTION
447 VOID
448 NTAPI
449 KiInitializePAT(
450     VOID
451 );
452 
453 INIT_FUNCTION
454 VOID
455 NTAPI
456 KiInitializeMTRR(
457     IN BOOLEAN FinalCpu
458 );
459 
460 INIT_FUNCTION
461 VOID
462 NTAPI
463 KiAmdK6InitializeMTRR(
464     VOID
465 );
466 
467 INIT_FUNCTION
468 VOID
469 NTAPI
470 KiRestoreFastSyscallReturnState(
471     VOID
472 );
473 
474 INIT_FUNCTION
475 ULONG_PTR
476 NTAPI
477 Ki386EnableDE(
478     IN ULONG_PTR Context
479 );
480 
481 INIT_FUNCTION
482 ULONG_PTR
483 NTAPI
484 Ki386EnableFxsr(
485     IN ULONG_PTR Context
486 );
487 
488 INIT_FUNCTION
489 ULONG_PTR
490 NTAPI
491 Ki386EnableXMMIExceptions(
492     IN ULONG_PTR Context
493 );
494 
495 BOOLEAN
496 NTAPI
497 VdmDispatchBop(
498     IN PKTRAP_FRAME TrapFrame
499 );
500 
501 BOOLEAN
502 NTAPI
503 VdmDispatchPageFault(
504     _In_ PKTRAP_FRAME TrapFrame
505 );
506 
507 BOOLEAN
508 FASTCALL
509 KiVdmOpcodePrefix(
510     IN PKTRAP_FRAME TrapFrame,
511     IN ULONG Flags
512 );
513 
514 BOOLEAN
515 FASTCALL
516 Ki386HandleOpcodeV86(
517     IN PKTRAP_FRAME TrapFrame
518 );
519 
520 DECLSPEC_NORETURN
521 VOID
522 FASTCALL
523 KiEoiHelper(
524     IN PKTRAP_FRAME TrapFrame
525 );
526 
527 VOID
528 FASTCALL
529 Ki386BiosCallReturnAddress(
530     IN PKTRAP_FRAME TrapFrame
531 );
532 
533 ULONG_PTR
534 FASTCALL
535 KiExitV86Mode(
536     IN PKTRAP_FRAME TrapFrame
537 );
538 
539 DECLSPEC_NORETURN
540 VOID
541 NTAPI
542 KiDispatchExceptionFromTrapFrame(
543     IN NTSTATUS Code,
544     IN ULONG Flags,
545     IN ULONG_PTR Address,
546     IN ULONG ParameterCount,
547     IN ULONG_PTR Parameter1,
548     IN ULONG_PTR Parameter2,
549     IN ULONG_PTR Parameter3,
550     IN PKTRAP_FRAME TrapFrame
551 );
552 
553 NTSTATUS
554 NTAPI
555 KiConvertToGuiThread(
556     VOID
557 );
558 
559 //
560 // Global x86 only Kernel data
561 //
562 extern PVOID Ki386IopmSaveArea;
563 extern ULONG KeI386EFlagsAndMaskV86;
564 extern ULONG KeI386EFlagsOrMaskV86;
565 extern BOOLEAN KeI386VirtualIntExtensions;
566 extern KIDTENTRY KiIdt[MAXIMUM_IDTVECTOR+1];
567 extern KDESCRIPTOR KiIdtDescriptor;
568 extern BOOLEAN KiI386PentiumLockErrataPresent;
569 extern ULONG KeI386NpxPresent;
570 extern ULONG KeI386XMMIPresent;
571 extern ULONG KeI386FxsrPresent;
572 extern ULONG KiMXCsrMask;
573 extern ULONG KeI386CpuType;
574 extern ULONG KeI386CpuStep;
575 extern ULONG KiFastSystemCallDisable;
576 extern UCHAR KiDebugRegisterTrapOffsets[9];
577 extern UCHAR KiDebugRegisterContextOffsets[9];
578 extern DECLSPEC_NORETURN VOID __cdecl KiTrap02(VOID);
579 extern VOID __cdecl KiTrap08(VOID);
580 extern VOID __cdecl KiTrap13(VOID);
581 extern VOID __cdecl KiFastCallEntry(VOID);
582 extern VOID NTAPI ExpInterlockedPopEntrySListFault(VOID);
583 extern VOID NTAPI ExpInterlockedPopEntrySListResume(VOID);
584 extern VOID __cdecl CopyParams(VOID);
585 extern VOID __cdecl ReadBatch(VOID);
586 extern CHAR KiSystemCallExitBranch[];
587 extern CHAR KiSystemCallExit[];
588 extern CHAR KiSystemCallExit2[];
589 
590 //
591 // Trap Macros
592 //
593 #include "trap_x.h"
594 
595 //
596 // Returns a thread's FPU save area
597 //
598 FORCEINLINE
599 PFX_SAVE_AREA
600 KiGetThreadNpxArea(IN PKTHREAD Thread)
601 {
602     ASSERT((ULONG_PTR)Thread->InitialStack % 16 == 0);
603     return (PFX_SAVE_AREA)((ULONG_PTR)Thread->InitialStack - sizeof(FX_SAVE_AREA));
604 }
605 
606 //
607 // Sanitizes a selector
608 //
609 FORCEINLINE
610 ULONG
611 Ke386SanitizeSeg(IN ULONG Cs,
612                 IN KPROCESSOR_MODE Mode)
613 {
614     //
615     // Check if we're in kernel-mode, and force CPL 0 if so.
616     // Otherwise, force CPL 3.
617     //
618     return ((Mode == KernelMode) ?
619             (Cs & (0xFFFF & ~RPL_MASK)) :
620             (RPL_MASK | (Cs & 0xFFFF)));
621 }
622 
623 //
624 // Sanitizes EFLAGS
625 //
626 FORCEINLINE
627 ULONG
628 Ke386SanitizeFlags(IN ULONG Eflags,
629                    IN KPROCESSOR_MODE Mode)
630 {
631     //
632     // Check if we're in kernel-mode, and sanitize EFLAGS if so.
633     // Otherwise, also force interrupt mask on.
634     //
635     return ((Mode == KernelMode) ?
636             (Eflags & (EFLAGS_USER_SANITIZE | EFLAGS_INTERRUPT_MASK)) :
637             (EFLAGS_INTERRUPT_MASK | (Eflags & EFLAGS_USER_SANITIZE)));
638 }
639 
640 //
641 // Sanitizes a Debug Register
642 //
643 FORCEINLINE
644 PVOID
645 Ke386SanitizeDr(IN PVOID DrAddress,
646                 IN KPROCESSOR_MODE Mode)
647 {
648     //
649     // Check if we're in kernel-mode, and return the address directly if so.
650     // Otherwise, make sure it's not inside the kernel-mode address space.
651     // If it is, then clear the address.
652     //
653     return ((Mode == KernelMode) ? DrAddress :
654             (DrAddress <= MM_HIGHEST_USER_ADDRESS) ? DrAddress : 0);
655 }
656 
657 //
658 // Exception with no arguments
659 //
660 FORCEINLINE
661 DECLSPEC_NORETURN
662 VOID
663 KiDispatchException0Args(IN NTSTATUS Code,
664                          IN ULONG_PTR Address,
665                          IN PKTRAP_FRAME TrapFrame)
666 {
667     /* Helper for exceptions with no arguments */
668     KiDispatchExceptionFromTrapFrame(Code, 0, Address, 0, 0, 0, 0, TrapFrame);
669 }
670 
671 //
672 // Exception with one argument
673 //
674 FORCEINLINE
675 DECLSPEC_NORETURN
676 VOID
677 KiDispatchException1Args(IN NTSTATUS Code,
678                          IN ULONG_PTR Address,
679                          IN ULONG P1,
680                          IN PKTRAP_FRAME TrapFrame)
681 {
682     /* Helper for exceptions with no arguments */
683     KiDispatchExceptionFromTrapFrame(Code, 0, Address, 1, P1, 0, 0, TrapFrame);
684 }
685 
686 //
687 // Exception with two arguments
688 //
689 FORCEINLINE
690 DECLSPEC_NORETURN
691 VOID
692 KiDispatchException2Args(IN NTSTATUS Code,
693                          IN ULONG_PTR Address,
694                          IN ULONG P1,
695                          IN ULONG P2,
696                          IN PKTRAP_FRAME TrapFrame)
697 {
698     /* Helper for exceptions with no arguments */
699     KiDispatchExceptionFromTrapFrame(Code, 0, Address, 2, P1, P2, 0, TrapFrame);
700 }
701 
702 //
703 // Performs a system call
704 //
705 
706     /*
707      * This sequence does a RtlCopyMemory(Stack - StackBytes, Arguments, StackBytes)
708      * and then calls the function associated with the system call.
709      *
710      * It's done in assembly for two reasons: we need to muck with the stack,
711      * and the call itself restores the stack back for us. The only way to do
712      * this in C is to do manual C handlers for every possible number of args on
713      * the stack, and then have the handler issue a call by pointer. This is
714      * wasteful since it'll basically push the values twice and require another
715      * level of call indirection.
716      *
717      * The ARM kernel currently does this, but it should probably be changed
718      * later to function like this as well.
719      *
720      */
721 #ifdef __GNUC__
722 FORCEINLINE
723 NTSTATUS
724 KiSystemCallTrampoline(IN PVOID Handler,
725                        IN PVOID Arguments,
726                        IN ULONG StackBytes)
727 {
728     NTSTATUS Result;
729 
730     __asm__ __volatile__
731     (
732         "subl %1, %%esp\n\t"
733         "movl %%esp, %%edi\n\t"
734         "movl %2, %%esi\n\t"
735         "shrl $2, %1\n\t"
736         "rep movsd\n\t"
737         "call *%3\n\t"
738         "movl %%eax, %0"
739         : "=r"(Result)
740         : "c"(StackBytes),
741           "d"(Arguments),
742           "r"(Handler)
743         : "%esp", "%esi", "%edi"
744     );
745     return Result;
746 }
747 #elif defined(_MSC_VER)
748 FORCEINLINE
749 NTSTATUS
750 KiSystemCallTrampoline(IN PVOID Handler,
751                        IN PVOID Arguments,
752                        IN ULONG StackBytes)
753 {
754     __asm
755     {
756         mov ecx, StackBytes
757         mov esi, Arguments
758         mov eax, Handler
759         sub esp, ecx
760         mov edi, esp
761         shr ecx, 2
762         rep movsd
763         call eax
764     }
765     /* Return with result in EAX */
766 }
767 #else
768 #error Unknown Compiler
769 #endif
770 
771 
772 //
773 // Checks for pending APCs
774 //
775 FORCEINLINE
776 VOID
777 KiCheckForApcDelivery(IN PKTRAP_FRAME TrapFrame)
778 {
779     PKTHREAD Thread;
780     KIRQL OldIrql;
781 
782     /* Check for V8086 or user-mode trap */
783     if ((TrapFrame->EFlags & EFLAGS_V86_MASK) || (KiUserTrap(TrapFrame)))
784     {
785         /* Get the thread */
786         Thread = KeGetCurrentThread();
787         while (TRUE)
788         {
789             /* Turn off the alerted state for kernel mode */
790             Thread->Alerted[KernelMode] = FALSE;
791 
792             /* Are there pending user APCs? */
793             if (!Thread->ApcState.UserApcPending) break;
794 
795             /* Raise to APC level and enable interrupts */
796             OldIrql = KfRaiseIrql(APC_LEVEL);
797             _enable();
798 
799             /* Deliver APCs */
800             KiDeliverApc(UserMode, NULL, TrapFrame);
801 
802             /* Restore IRQL and disable interrupts once again */
803             KfLowerIrql(OldIrql);
804             _disable();
805         }
806     }
807 }
808 
809 //
810 // Switches from boot loader to initial kernel stack
811 //
812 INIT_FUNCTION
813 FORCEINLINE
814 VOID
815 KiSwitchToBootStack(IN ULONG_PTR InitialStack)
816 {
817     INIT_FUNCTION VOID NTAPI KiSystemStartupBootStack(VOID);
818 
819     /* We have to switch to a new stack before continuing kernel initialization */
820 #ifdef __GNUC__
821     __asm__
822     (
823         "movl %0, %%esp\n\t"
824         "subl %1, %%esp\n\t"
825         "pushl %2\n\t"
826         "jmp _KiSystemStartupBootStack@0"
827         :
828         : "c"(InitialStack),
829           "i"(NPX_FRAME_LENGTH + KTRAP_FRAME_ALIGN + KTRAP_FRAME_LENGTH),
830           "i"(CR0_EM | CR0_TS | CR0_MP),
831           "p"(KiSystemStartupBootStack)
832         : "%esp"
833     );
834 #elif defined(_MSC_VER)
835     __asm
836     {
837         mov esp, InitialStack
838         sub esp, (NPX_FRAME_LENGTH + KTRAP_FRAME_ALIGN + KTRAP_FRAME_LENGTH)
839         push (CR0_EM | CR0_TS | CR0_MP)
840         jmp KiSystemStartupBootStack
841     }
842 #else
843 #error Unknown Compiler
844 #endif
845 }
846 
847 //
848 // Emits the iret instruction for C code
849 //
850 FORCEINLINE
851 DECLSPEC_NORETURN
852 VOID
853 KiIret(VOID)
854 {
855 #if defined(__GNUC__)
856     __asm__ __volatile__
857     (
858         "iret"
859     );
860 #elif defined(_MSC_VER)
861     __asm
862     {
863         iretd
864     }
865 #else
866 #error Unsupported compiler
867 #endif
868     UNREACHABLE;
869 }
870 
871 //
872 // Normally this is done by the HAL, but on x86 as an optimization, the kernel
873 // initiates the end by calling back into the HAL and exiting the trap here.
874 //
875 FORCEINLINE
876 VOID
877 KiEndInterrupt(IN KIRQL Irql,
878                IN PKTRAP_FRAME TrapFrame)
879 {
880     /* Disable interrupts and end the interrupt */
881     _disable();
882     HalEndSystemInterrupt(Irql, TrapFrame);
883 
884     /* Exit the interrupt */
885     KiEoiHelper(TrapFrame);
886 }
887 
888 //
889 // PERF Code
890 //
891 FORCEINLINE
892 VOID
893 Ki386PerfEnd(VOID)
894 {
895     extern ULONGLONG BootCyclesEnd, BootCycles;
896     BootCyclesEnd = __rdtsc();
897     DbgPrint("Boot took %I64u cycles!\n", BootCyclesEnd - BootCycles);
898     DbgPrint("Interrupts: %u System Calls: %u Context Switches: %u\n",
899              KeGetCurrentPrcb()->InterruptCount,
900              KeGetCurrentPrcb()->KeSystemCalls,
901              KeGetContextSwitches(KeGetCurrentPrcb()));
902 }
903 
904 FORCEINLINE
905 PULONG
906 KiGetUserModeStackAddress(void)
907 {
908     return &(KeGetCurrentThread()->TrapFrame->HardwareEsp);
909 }
910 
911 #endif
912