1 #pragma once 2 3 #ifndef __ASM__ 4 5 #include "intrin_i.h" 6 7 // 8 // Thread Dispatcher Header DebugActive Mask 9 // 10 #define DR_MASK(x) (1 << (x)) 11 #define DR_REG_MASK 0x4F 12 13 // 14 // INT3 is 1 byte long 15 // 16 #define KD_BREAKPOINT_TYPE UCHAR 17 #define KD_BREAKPOINT_SIZE sizeof(UCHAR) 18 #define KD_BREAKPOINT_VALUE 0xCC 19 20 // 21 // Macros for getting and setting special purpose registers in portable code 22 // 23 #define KeGetContextPc(Context) \ 24 ((Context)->Eip) 25 26 #define KeSetContextPc(Context, ProgramCounter) \ 27 ((Context)->Eip = (ProgramCounter)) 28 29 #define KeGetTrapFramePc(TrapFrame) \ 30 ((TrapFrame)->Eip) 31 32 #define KiGetLinkedTrapFrame(x) \ 33 (PKTRAP_FRAME)((x)->Edx) 34 35 #define KeGetContextReturnRegister(Context) \ 36 ((Context)->Eax) 37 38 #define KeSetContextReturnRegister(Context, ReturnValue) \ 39 ((Context)->Eax = (ReturnValue)) 40 41 // 42 // Macro to get trap and exception frame from a thread stack 43 // 44 #define KeGetTrapFrame(Thread) \ 45 (PKTRAP_FRAME)((ULONG_PTR)((Thread)->InitialStack) - \ 46 sizeof(KTRAP_FRAME) - \ 47 sizeof(FX_SAVE_AREA)) 48 49 #define KeGetExceptionFrame(Thread) \ 50 NULL 51 52 // 53 // Macro to get context switches from the PRCB 54 // All architectures but x86 have it in the PRCB's KeContextSwitches 55 // 56 #define KeGetContextSwitches(Prcb) \ 57 CONTAINING_RECORD(Prcb, KIPCR, PrcbData)->ContextSwitches 58 59 // 60 // Macro to get the second level cache size field name which differs between 61 // CISC and RISC architectures, as the former has unified I/D cache 62 // 63 #define KiGetSecondLevelDCacheSize() ((PKIPCR)KeGetPcr())->SecondLevelCacheSize 64 65 // 66 // Returns the Interrupt State from a Trap Frame. 67 // ON = TRUE, OFF = FALSE 68 // 69 #define KeGetTrapFrameInterruptState(TrapFrame) \ 70 BooleanFlagOn((TrapFrame)->EFlags, EFLAGS_INTERRUPT_MASK) 71 72 // 73 // Flags for exiting a trap 74 // 75 #define KTE_SKIP_PM_BIT (((KTRAP_EXIT_SKIP_BITS) { { .SkipPreviousMode = TRUE } }).Bits) 76 #define KTE_SKIP_SEG_BIT (((KTRAP_EXIT_SKIP_BITS) { { .SkipSegments = TRUE } }).Bits) 77 #define KTE_SKIP_VOL_BIT (((KTRAP_EXIT_SKIP_BITS) { { .SkipVolatiles = TRUE } }).Bits) 78 79 typedef union _KTRAP_EXIT_SKIP_BITS 80 { 81 struct 82 { 83 UCHAR SkipPreviousMode:1; 84 UCHAR SkipSegments:1; 85 UCHAR SkipVolatiles:1; 86 UCHAR Reserved:5; 87 }; 88 UCHAR Bits; 89 } KTRAP_EXIT_SKIP_BITS, *PKTRAP_EXIT_SKIP_BITS; 90 91 92 // 93 // Flags used by the VDM/V8086 emulation engine for determining instruction prefixes 94 // 95 #define PFX_FLAG_ES 0x00000100 96 #define PFX_FLAG_CS 0x00000200 97 #define PFX_FLAG_SS 0x00000400 98 #define PFX_FLAG_DS 0x00000800 99 #define PFX_FLAG_FS 0x00001000 100 #define PFX_FLAG_GS 0x00002000 101 #define PFX_FLAG_OPER32 0x00004000 102 #define PFX_FLAG_ADDR32 0x00008000 103 #define PFX_FLAG_LOCK 0x00010000 104 #define PFX_FLAG_REPNE 0x00020000 105 #define PFX_FLAG_REP 0x00040000 106 107 // 108 // VDM Helper Macros 109 // 110 // All VDM/V8086 opcode emulators have the same FASTCALL function definition. 111 // We need to keep 2 parameters while the original ASM implementation uses 4: 112 // TrapFrame, PrefixFlags, Eip, InstructionSize; 113 // 114 // We pass the trap frame, and prefix flags, in our two parameters. 115 // 116 // We then realize that since the smallest prefix flag is 0x100, this gives us 117 // a count of up to 0xFF. So we OR in the instruction size with the prefix flags 118 // 119 // We further realize that we always have access to EIP from the trap frame, and 120 // that if we want the *current instruction* EIP, we simply have to add the 121 // instruction size *MINUS ONE*, and that gives us the EIP we should be looking 122 // at now, so we don't need to use the stack to push this parameter. 123 // 124 // We actually only care about the *current instruction* EIP in one location, 125 // so although it may be slightly more expensive to re-calculate the EIP one 126 // more time, this way we don't redefine ALL opcode handlers to have 3 parameters, 127 // which would be forcing stack usage in all other scenarios. 128 // 129 #define KiVdmSetVdmEFlags(x) InterlockedOr((PLONG)KiNtVdmState, (x)); 130 #define KiVdmClearVdmEFlags(x) InterlockedAnd((PLONG)KiNtVdmState, ~(x)) 131 #define KiCallVdmHandler(x) KiVdmOpcode##x(TrapFrame, Flags) 132 #define KiCallVdmPrefixHandler(x) KiVdmOpcodePrefix(TrapFrame, Flags | x) 133 #define KiVdmUnhandledOpcode(x) \ 134 BOOLEAN \ 135 FASTCALL \ 136 KiVdmOpcode##x(IN PKTRAP_FRAME TrapFrame, \ 137 IN ULONG Flags) \ 138 { \ 139 /* Not yet handled */ \ 140 UNIMPLEMENTED_DBGBREAK(); \ 141 return FALSE; \ 142 } 143 144 C_ASSERT(NPX_FRAME_LENGTH == sizeof(FX_SAVE_AREA)); 145 146 // 147 // Local parameters 148 // 149 typedef struct _KV86_FRAME 150 { 151 PVOID ThreadStack; 152 PVOID ThreadTeb; 153 PVOID PcrTeb; 154 } KV86_FRAME, *PKV86_FRAME; 155 156 // 157 // Virtual Stack Frame 158 // 159 typedef struct _KV8086_STACK_FRAME 160 { 161 KTRAP_FRAME TrapFrame; 162 FX_SAVE_AREA NpxArea; 163 KV86_FRAME V86Frame; 164 } KV8086_STACK_FRAME, *PKV8086_STACK_FRAME; 165 166 // 167 // Large Pages Support 168 // 169 typedef struct _LARGE_IDENTITY_MAP 170 { 171 PHARDWARE_PTE TopLevelDirectory; 172 ULONG Cr3; 173 ULONG_PTR StartAddress; 174 ULONG PagesCount; 175 PVOID PagesList[30]; 176 } LARGE_IDENTITY_MAP, *PLARGE_IDENTITY_MAP; 177 178 /* Diable interrupts and return whether they were enabled before */ 179 FORCEINLINE 180 BOOLEAN 181 KeDisableInterrupts(VOID) 182 { 183 ULONG Flags; 184 BOOLEAN Return; 185 186 /* Get EFLAGS and check if the interrupt bit is set */ 187 Flags = __readeflags(); 188 Return = (Flags & EFLAGS_INTERRUPT_MASK) ? TRUE: FALSE; 189 190 /* Disable interrupts */ 191 _disable(); 192 return Return; 193 } 194 195 /* Restore previous interrupt state */ 196 FORCEINLINE 197 VOID 198 KeRestoreInterrupts(BOOLEAN WereEnabled) 199 { 200 if (WereEnabled) _enable(); 201 } 202 203 // 204 // Registers an interrupt handler with an IDT vector 205 // 206 FORCEINLINE 207 VOID 208 KeRegisterInterruptHandler(IN ULONG Vector, 209 IN PVOID Handler) 210 { 211 UCHAR Entry; 212 ULONG_PTR Address; 213 PKIPCR Pcr = (PKIPCR)KeGetPcr(); 214 215 // 216 // Get the entry from the HAL 217 // 218 Entry = HalVectorToIDTEntry(Vector); 219 Address = PtrToUlong(Handler); 220 221 // 222 // Now set the data 223 // 224 Pcr->IDT[Entry].ExtendedOffset = (USHORT)(Address >> 16); 225 Pcr->IDT[Entry].Offset = (USHORT)Address; 226 } 227 228 // 229 // Returns the registered interrupt handler for a given IDT vector 230 // 231 FORCEINLINE 232 PVOID 233 KeQueryInterruptHandler(IN ULONG Vector) 234 { 235 PKIPCR Pcr = (PKIPCR)KeGetPcr(); 236 UCHAR Entry; 237 238 // 239 // Get the entry from the HAL 240 // 241 Entry = HalVectorToIDTEntry(Vector); 242 243 // 244 // Read the entry from the IDT 245 // 246 return (PVOID)(((Pcr->IDT[Entry].ExtendedOffset << 16) & 0xFFFF0000) | 247 (Pcr->IDT[Entry].Offset & 0xFFFF)); 248 } 249 250 // 251 // Invalidates the TLB entry for a specified address 252 // 253 FORCEINLINE 254 VOID 255 KeInvalidateTlbEntry(IN PVOID Address) 256 { 257 /* Invalidate the TLB entry for this address */ 258 __invlpg(Address); 259 } 260 261 FORCEINLINE 262 VOID 263 KeFlushProcessTb(VOID) 264 { 265 /* Flush the TLB by resetting CR3 */ 266 __writecr3(__readcr3()); 267 } 268 269 FORCEINLINE 270 VOID 271 KeSweepICache(IN PVOID BaseAddress, 272 IN SIZE_T FlushSize) 273 { 274 // 275 // Always sweep the whole cache 276 // 277 UNREFERENCED_PARAMETER(BaseAddress); 278 UNREFERENCED_PARAMETER(FlushSize); 279 __wbinvd(); 280 } 281 282 FORCEINLINE 283 PRKTHREAD 284 KeGetCurrentThread(VOID) 285 { 286 /* Return the current thread */ 287 return ((PKIPCR)KeGetPcr())->PrcbData.CurrentThread; 288 } 289 290 FORCEINLINE 291 VOID 292 KiRundownThread(IN PKTHREAD Thread) 293 { 294 #ifndef CONFIG_SMP 295 /* Check if this is the NPX Thread */ 296 if (KeGetCurrentPrcb()->NpxThread == Thread) 297 { 298 /* Clear it */ 299 KeGetCurrentPrcb()->NpxThread = NULL; 300 Ke386FnInit(); 301 } 302 #else 303 /* Nothing to do */ 304 #endif 305 } 306 307 FORCEINLINE 308 VOID 309 Ke386SetGdtEntryBase(PKGDTENTRY GdtEntry, PVOID BaseAddress) 310 { 311 GdtEntry->BaseLow = (USHORT)((ULONG_PTR)BaseAddress & 0xFFFF); 312 GdtEntry->HighWord.Bytes.BaseMid = (UCHAR)((ULONG_PTR)BaseAddress >> 16); 313 GdtEntry->HighWord.Bytes.BaseHi = (UCHAR)((ULONG_PTR)BaseAddress >> 24); 314 } 315 316 FORCEINLINE 317 VOID 318 KiSetTebBase(PKPCR Pcr, PVOID TebAddress) 319 { 320 Pcr->NtTib.Self = TebAddress; 321 Ke386SetGdtEntryBase(&Pcr->GDT[KGDT_R3_TEB / sizeof(KGDTENTRY)], TebAddress); 322 } 323 324 VOID 325 FASTCALL 326 Ki386InitializeTss( 327 IN PKTSS Tss, 328 IN PKIDTENTRY Idt, 329 IN PKGDTENTRY Gdt 330 ); 331 332 VOID 333 NTAPI 334 KiSetCR0Bits(VOID); 335 336 VOID 337 NTAPI 338 KiGetCacheInformation(VOID); 339 340 BOOLEAN 341 NTAPI 342 KiIsNpxPresent( 343 VOID 344 ); 345 346 BOOLEAN 347 NTAPI 348 KiIsNpxErrataPresent( 349 VOID 350 ); 351 352 VOID 353 NTAPI 354 KiSetProcessorType(VOID); 355 356 ULONG 357 NTAPI 358 KiGetFeatureBits(VOID); 359 360 VOID 361 NTAPI 362 KiThreadStartup(VOID); 363 364 NTSTATUS 365 NTAPI 366 Ke386GetGdtEntryThread( 367 IN PKTHREAD Thread, 368 IN ULONG Offset, 369 IN PKGDTENTRY Descriptor 370 ); 371 372 VOID 373 NTAPI 374 KiFlushNPXState( 375 IN FLOATING_SAVE_AREA *SaveArea 376 ); 377 378 VOID 379 NTAPI 380 Ki386AdjustEsp0( 381 IN PKTRAP_FRAME TrapFrame 382 ); 383 384 VOID 385 NTAPI 386 Ki386SetupAndExitToV86Mode( 387 OUT PTEB VdmTeb 388 ); 389 390 VOID 391 NTAPI 392 KeI386VdmInitialize( 393 VOID 394 ); 395 396 ULONG_PTR 397 NTAPI 398 Ki386EnableGlobalPage( 399 IN ULONG_PTR Context 400 ); 401 402 ULONG_PTR 403 NTAPI 404 Ki386EnableTargetLargePage( 405 IN ULONG_PTR Context 406 ); 407 408 BOOLEAN 409 NTAPI 410 Ki386CreateIdentityMap( 411 IN PLARGE_IDENTITY_MAP IdentityMap, 412 IN PVOID StartPtr, 413 IN ULONG Length 414 ); 415 416 VOID 417 NTAPI 418 Ki386FreeIdentityMap( 419 IN PLARGE_IDENTITY_MAP IdentityMap 420 ); 421 422 VOID 423 NTAPI 424 Ki386EnableCurrentLargePage( 425 IN ULONG_PTR StartAddress, 426 IN ULONG Cr3 427 ); 428 429 VOID 430 NTAPI 431 KiI386PentiumLockErrataFixup( 432 VOID 433 ); 434 435 VOID 436 NTAPI 437 KiInitializePAT( 438 VOID 439 ); 440 441 VOID 442 NTAPI 443 KiInitializeMTRR( 444 IN BOOLEAN FinalCpu 445 ); 446 447 VOID 448 NTAPI 449 KiAmdK6InitializeMTRR( 450 VOID 451 ); 452 453 VOID 454 NTAPI 455 KiRestoreFastSyscallReturnState( 456 VOID 457 ); 458 459 ULONG_PTR 460 NTAPI 461 Ki386EnableDE( 462 IN ULONG_PTR Context 463 ); 464 465 ULONG_PTR 466 NTAPI 467 Ki386EnableFxsr( 468 IN ULONG_PTR Context 469 ); 470 471 ULONG_PTR 472 NTAPI 473 Ki386EnableXMMIExceptions( 474 IN ULONG_PTR Context 475 ); 476 477 BOOLEAN 478 NTAPI 479 VdmDispatchBop( 480 IN PKTRAP_FRAME TrapFrame 481 ); 482 483 BOOLEAN 484 NTAPI 485 VdmDispatchPageFault( 486 _In_ PKTRAP_FRAME TrapFrame 487 ); 488 489 BOOLEAN 490 FASTCALL 491 KiVdmOpcodePrefix( 492 IN PKTRAP_FRAME TrapFrame, 493 IN ULONG Flags 494 ); 495 496 BOOLEAN 497 FASTCALL 498 Ki386HandleOpcodeV86( 499 IN PKTRAP_FRAME TrapFrame 500 ); 501 502 DECLSPEC_NORETURN 503 VOID 504 FASTCALL 505 KiEoiHelper( 506 IN PKTRAP_FRAME TrapFrame 507 ); 508 509 VOID 510 FASTCALL 511 Ki386BiosCallReturnAddress( 512 IN PKTRAP_FRAME TrapFrame 513 ); 514 515 ULONG_PTR 516 FASTCALL 517 KiExitV86Mode( 518 IN PKTRAP_FRAME TrapFrame 519 ); 520 521 DECLSPEC_NORETURN 522 VOID 523 NTAPI 524 KiDispatchExceptionFromTrapFrame( 525 IN NTSTATUS Code, 526 IN ULONG Flags, 527 IN ULONG_PTR Address, 528 IN ULONG ParameterCount, 529 IN ULONG_PTR Parameter1, 530 IN ULONG_PTR Parameter2, 531 IN ULONG_PTR Parameter3, 532 IN PKTRAP_FRAME TrapFrame 533 ); 534 535 NTSTATUS 536 NTAPI 537 KiConvertToGuiThread( 538 VOID 539 ); 540 541 // 542 // Global x86 only Kernel data 543 // 544 extern PVOID Ki386IopmSaveArea; 545 extern ULONG KeI386EFlagsAndMaskV86; 546 extern ULONG KeI386EFlagsOrMaskV86; 547 extern BOOLEAN KeI386VirtualIntExtensions; 548 extern KIDTENTRY KiIdt[MAXIMUM_IDTVECTOR+1]; 549 extern KDESCRIPTOR KiIdtDescriptor; 550 extern BOOLEAN KiI386PentiumLockErrataPresent; 551 extern ULONG KeI386NpxPresent; 552 extern ULONG KeI386XMMIPresent; 553 extern ULONG KeI386FxsrPresent; 554 extern ULONG KiMXCsrMask; 555 extern ULONG KeI386CpuType; 556 extern ULONG KeI386CpuStep; 557 extern ULONG KiFastSystemCallDisable; 558 extern UCHAR KiDebugRegisterTrapOffsets[9]; 559 extern UCHAR KiDebugRegisterContextOffsets[9]; 560 extern VOID __cdecl KiTrap02(VOID); 561 extern VOID __cdecl KiTrap08(VOID); 562 extern VOID __cdecl KiTrap13(VOID); 563 extern VOID __cdecl KiFastCallEntry(VOID); 564 extern VOID NTAPI ExpInterlockedPopEntrySListFault(VOID); 565 extern VOID NTAPI ExpInterlockedPopEntrySListResume(VOID); 566 extern VOID __cdecl CopyParams(VOID); 567 extern VOID __cdecl ReadBatch(VOID); 568 extern CHAR KiSystemCallExitBranch[]; 569 extern CHAR KiSystemCallExit[]; 570 extern CHAR KiSystemCallExit2[]; 571 572 // 573 // Trap Macros 574 // 575 #include "trap_x.h" 576 577 // 578 // Returns a thread's FPU save area 579 // 580 FORCEINLINE 581 PFX_SAVE_AREA 582 KiGetThreadNpxArea(IN PKTHREAD Thread) 583 { 584 ASSERT((ULONG_PTR)Thread->InitialStack % 16 == 0); 585 return (PFX_SAVE_AREA)((ULONG_PTR)Thread->InitialStack - sizeof(FX_SAVE_AREA)); 586 } 587 588 // 589 // Sanitizes a selector 590 // 591 FORCEINLINE 592 ULONG 593 Ke386SanitizeSeg(IN ULONG Cs, 594 IN KPROCESSOR_MODE Mode) 595 { 596 // 597 // Check if we're in kernel-mode, and force CPL 0 if so. 598 // Otherwise, force CPL 3. 599 // 600 return ((Mode == KernelMode) ? 601 (Cs & (0xFFFF & ~RPL_MASK)) : 602 (RPL_MASK | (Cs & 0xFFFF))); 603 } 604 605 // 606 // Sanitizes EFLAGS 607 // 608 FORCEINLINE 609 ULONG 610 Ke386SanitizeFlags(IN ULONG Eflags, 611 IN KPROCESSOR_MODE Mode) 612 { 613 // 614 // Check if we're in kernel-mode, and sanitize EFLAGS if so. 615 // Otherwise, also force interrupt mask on. 616 // 617 return ((Mode == KernelMode) ? 618 (Eflags & (EFLAGS_USER_SANITIZE | EFLAGS_INTERRUPT_MASK)) : 619 (EFLAGS_INTERRUPT_MASK | (Eflags & EFLAGS_USER_SANITIZE))); 620 } 621 622 // 623 // Sanitizes a Debug Register 624 // 625 FORCEINLINE 626 PVOID 627 Ke386SanitizeDr(IN PVOID DrAddress, 628 IN KPROCESSOR_MODE Mode) 629 { 630 // 631 // Check if we're in kernel-mode, and return the address directly if so. 632 // Otherwise, make sure it's not inside the kernel-mode address space. 633 // If it is, then clear the address. 634 // 635 return ((Mode == KernelMode) ? DrAddress : 636 (DrAddress <= MM_HIGHEST_USER_ADDRESS) ? DrAddress : 0); 637 } 638 639 // 640 // Exception with no arguments 641 // 642 FORCEINLINE 643 DECLSPEC_NORETURN 644 VOID 645 KiDispatchException0Args(IN NTSTATUS Code, 646 IN ULONG_PTR Address, 647 IN PKTRAP_FRAME TrapFrame) 648 { 649 /* Helper for exceptions with no arguments */ 650 KiDispatchExceptionFromTrapFrame(Code, 0, Address, 0, 0, 0, 0, TrapFrame); 651 } 652 653 // 654 // Exception with one argument 655 // 656 FORCEINLINE 657 DECLSPEC_NORETURN 658 VOID 659 KiDispatchException1Args(IN NTSTATUS Code, 660 IN ULONG_PTR Address, 661 IN ULONG P1, 662 IN PKTRAP_FRAME TrapFrame) 663 { 664 /* Helper for exceptions with no arguments */ 665 KiDispatchExceptionFromTrapFrame(Code, 0, Address, 1, P1, 0, 0, TrapFrame); 666 } 667 668 // 669 // Exception with two arguments 670 // 671 FORCEINLINE 672 DECLSPEC_NORETURN 673 VOID 674 KiDispatchException2Args(IN NTSTATUS Code, 675 IN ULONG_PTR Address, 676 IN ULONG P1, 677 IN ULONG P2, 678 IN PKTRAP_FRAME TrapFrame) 679 { 680 /* Helper for exceptions with no arguments */ 681 KiDispatchExceptionFromTrapFrame(Code, 0, Address, 2, P1, P2, 0, TrapFrame); 682 } 683 684 // 685 // Performs a system call 686 // 687 688 /* 689 * This sequence does a RtlCopyMemory(Stack - StackBytes, Arguments, StackBytes) 690 * and then calls the function associated with the system call. 691 * 692 * It's done in assembly for two reasons: we need to muck with the stack, 693 * and the call itself restores the stack back for us. The only way to do 694 * this in C is to do manual C handlers for every possible number of args on 695 * the stack, and then have the handler issue a call by pointer. This is 696 * wasteful since it'll basically push the values twice and require another 697 * level of call indirection. 698 * 699 * The ARM kernel currently does this, but it should probably be changed 700 * later to function like this as well. 701 * 702 */ 703 #ifdef __GNUC__ 704 FORCEINLINE 705 NTSTATUS 706 KiSystemCallTrampoline(IN PVOID Handler, 707 IN PVOID Arguments, 708 IN ULONG StackBytes) 709 { 710 NTSTATUS Result; 711 712 __asm__ __volatile__ 713 ( 714 "subl %1, %%esp\n\t" 715 "movl %%esp, %%edi\n\t" 716 "movl %2, %%esi\n\t" 717 "shrl $2, %1\n\t" 718 "rep movsd\n\t" 719 "call *%3\n\t" 720 "movl %%eax, %0" 721 : "=r"(Result) 722 : "c"(StackBytes), 723 "d"(Arguments), 724 "r"(Handler) 725 : "%esp", "%esi", "%edi" 726 ); 727 return Result; 728 } 729 #elif defined(_MSC_VER) 730 FORCEINLINE 731 NTSTATUS 732 KiSystemCallTrampoline(IN PVOID Handler, 733 IN PVOID Arguments, 734 IN ULONG StackBytes) 735 { 736 __asm 737 { 738 mov ecx, StackBytes 739 mov esi, Arguments 740 mov eax, Handler 741 sub esp, ecx 742 mov edi, esp 743 shr ecx, 2 744 rep movsd 745 call eax 746 } 747 /* Return with result in EAX */ 748 } 749 #else 750 #error Unknown Compiler 751 #endif 752 753 754 // 755 // Checks for pending APCs 756 // 757 FORCEINLINE 758 VOID 759 KiCheckForApcDelivery(IN PKTRAP_FRAME TrapFrame) 760 { 761 PKTHREAD Thread; 762 KIRQL OldIrql; 763 764 /* Check for V8086 or user-mode trap */ 765 if ((TrapFrame->EFlags & EFLAGS_V86_MASK) || (KiUserTrap(TrapFrame))) 766 { 767 /* Get the thread */ 768 Thread = KeGetCurrentThread(); 769 while (TRUE) 770 { 771 /* Turn off the alerted state for kernel mode */ 772 Thread->Alerted[KernelMode] = FALSE; 773 774 /* Are there pending user APCs? */ 775 if (!Thread->ApcState.UserApcPending) break; 776 777 /* Raise to APC level and enable interrupts */ 778 OldIrql = KfRaiseIrql(APC_LEVEL); 779 _enable(); 780 781 /* Deliver APCs */ 782 KiDeliverApc(UserMode, NULL, TrapFrame); 783 784 /* Restore IRQL and disable interrupts once again */ 785 KfLowerIrql(OldIrql); 786 _disable(); 787 } 788 } 789 } 790 791 // 792 // Switches from boot loader to initial kernel stack 793 // 794 FORCEINLINE 795 VOID 796 KiSwitchToBootStack(IN ULONG_PTR InitialStack) 797 { 798 VOID NTAPI KiSystemStartupBootStack(VOID); 799 800 /* We have to switch to a new stack before continuing kernel initialization */ 801 #ifdef __GNUC__ 802 __asm__ 803 ( 804 "movl %0, %%esp\n\t" 805 "subl %1, %%esp\n\t" 806 "pushl %2\n\t" 807 "jmp _KiSystemStartupBootStack@0" 808 : 809 : "c"(InitialStack), 810 "i"(NPX_FRAME_LENGTH + KTRAP_FRAME_ALIGN + KTRAP_FRAME_LENGTH), 811 "i"(CR0_EM | CR0_TS | CR0_MP), 812 "p"(KiSystemStartupBootStack) 813 : "%esp" 814 ); 815 #elif defined(_MSC_VER) 816 __asm 817 { 818 mov esp, InitialStack 819 sub esp, (NPX_FRAME_LENGTH + KTRAP_FRAME_ALIGN + KTRAP_FRAME_LENGTH) 820 push (CR0_EM | CR0_TS | CR0_MP) 821 jmp KiSystemStartupBootStack 822 } 823 #else 824 #error Unknown Compiler 825 #endif 826 } 827 828 // 829 // Emits the iret instruction for C code 830 // 831 FORCEINLINE 832 DECLSPEC_NORETURN 833 VOID 834 KiIret(VOID) 835 { 836 #if defined(__GNUC__) 837 __asm__ __volatile__ 838 ( 839 "iret" 840 ); 841 #elif defined(_MSC_VER) 842 __asm 843 { 844 iretd 845 } 846 #else 847 #error Unsupported compiler 848 #endif 849 UNREACHABLE; 850 } 851 852 // 853 // Normally this is done by the HAL, but on x86 as an optimization, the kernel 854 // initiates the end by calling back into the HAL and exiting the trap here. 855 // 856 FORCEINLINE 857 VOID 858 KiEndInterrupt(IN KIRQL Irql, 859 IN PKTRAP_FRAME TrapFrame) 860 { 861 /* Disable interrupts and end the interrupt */ 862 _disable(); 863 HalEndSystemInterrupt(Irql, TrapFrame); 864 865 /* Exit the interrupt */ 866 KiEoiHelper(TrapFrame); 867 } 868 869 // 870 // PERF Code 871 // 872 FORCEINLINE 873 VOID 874 Ki386PerfEnd(VOID) 875 { 876 extern ULONGLONG BootCyclesEnd, BootCycles; 877 BootCyclesEnd = __rdtsc(); 878 DbgPrint("Boot took %I64u cycles!\n", BootCyclesEnd - BootCycles); 879 DbgPrint("Interrupts: %u System Calls: %u Context Switches: %u\n", 880 KeGetCurrentPrcb()->InterruptCount, 881 KeGetCurrentPrcb()->KeSystemCalls, 882 KeGetContextSwitches(KeGetCurrentPrcb())); 883 } 884 885 FORCEINLINE 886 PULONG 887 KiGetUserModeStackAddress(void) 888 { 889 return &(KeGetCurrentThread()->TrapFrame->HardwareEsp); 890 } 891 892 #endif 893