1 /* 2 * PROJECT: ReactOS Kernel 3 * LICENSE: BSD - See COPYING.ARM in the top level directory 4 * FILE: ntoskrnl/mm/ARM3/pool.c 5 * PURPOSE: ARM Memory Manager Pool Allocator 6 * PROGRAMMERS: ReactOS Portable Systems Group 7 */ 8 9 /* INCLUDES *******************************************************************/ 10 11 #include <ntoskrnl.h> 12 #define NDEBUG 13 #include <debug.h> 14 15 #define MODULE_INVOLVED_IN_ARM3 16 #include <mm/ARM3/miarm.h> 17 18 /* GLOBALS ********************************************************************/ 19 20 LIST_ENTRY MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS]; 21 PFN_COUNT MmNumberOfFreeNonPagedPool, MiExpansionPoolPagesInitialCharge; 22 PVOID MmNonPagedPoolEnd0; 23 PFN_NUMBER MiStartOfInitialPoolFrame, MiEndOfInitialPoolFrame; 24 KGUARDED_MUTEX MmPagedPoolMutex; 25 MM_PAGED_POOL_INFO MmPagedPoolInfo; 26 SIZE_T MmAllocatedNonPagedPool; 27 ULONG MmSpecialPoolTag; 28 ULONG MmConsumedPoolPercentage; 29 BOOLEAN MmProtectFreedNonPagedPool; 30 SLIST_HEADER MiNonPagedPoolSListHead; 31 ULONG MiNonPagedPoolSListMaximum = 4; 32 SLIST_HEADER MiPagedPoolSListHead; 33 ULONG MiPagedPoolSListMaximum = 8; 34 35 /* PRIVATE FUNCTIONS **********************************************************/ 36 37 VOID 38 NTAPI 39 MiProtectFreeNonPagedPool(IN PVOID VirtualAddress, 40 IN ULONG PageCount) 41 { 42 PMMPTE PointerPte, LastPte; 43 MMPTE TempPte; 44 45 /* If pool is physical, can't protect PTEs */ 46 if (MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) return; 47 48 /* Get PTE pointers and loop */ 49 PointerPte = MiAddressToPte(VirtualAddress); 50 LastPte = PointerPte + PageCount; 51 do 52 { 53 /* Capture the PTE for safety */ 54 TempPte = *PointerPte; 55 56 /* Mark it as an invalid PTE, set proto bit to recognize it as pool */ 57 TempPte.u.Hard.Valid = 0; 58 TempPte.u.Soft.Prototype = 1; 59 MI_WRITE_INVALID_PTE(PointerPte, TempPte); 60 } while (++PointerPte < LastPte); 61 62 /* Flush the TLB */ 63 KeFlushEntireTb(TRUE, TRUE); 64 } 65 66 BOOLEAN 67 NTAPI 68 MiUnProtectFreeNonPagedPool(IN PVOID VirtualAddress, 69 IN ULONG PageCount) 70 { 71 PMMPTE PointerPte; 72 MMPTE TempPte; 73 PFN_NUMBER UnprotectedPages = 0; 74 75 /* If pool is physical, can't protect PTEs */ 76 if (MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) return FALSE; 77 78 /* Get, and capture the PTE */ 79 PointerPte = MiAddressToPte(VirtualAddress); 80 TempPte = *PointerPte; 81 82 /* Loop protected PTEs */ 83 while ((TempPte.u.Hard.Valid == 0) && (TempPte.u.Soft.Prototype == 1)) 84 { 85 /* Unprotect the PTE */ 86 TempPte.u.Hard.Valid = 1; 87 TempPte.u.Soft.Prototype = 0; 88 MI_WRITE_VALID_PTE(PointerPte, TempPte); 89 90 /* One more page */ 91 if (++UnprotectedPages == PageCount) break; 92 93 /* Capture next PTE */ 94 TempPte = *(++PointerPte); 95 } 96 97 /* Return if any pages were unprotected */ 98 return UnprotectedPages ? TRUE : FALSE; 99 } 100 101 FORCEINLINE 102 VOID 103 MiProtectedPoolUnProtectLinks(IN PLIST_ENTRY Links, 104 OUT PVOID* PoolFlink, 105 OUT PVOID* PoolBlink) 106 { 107 BOOLEAN Safe; 108 PVOID PoolVa; 109 110 /* Initialize variables */ 111 *PoolFlink = *PoolBlink = NULL; 112 113 /* Check if the list has entries */ 114 if (IsListEmpty(Links) == FALSE) 115 { 116 /* We are going to need to forward link to do an insert */ 117 PoolVa = Links->Flink; 118 119 /* So make it safe to access */ 120 Safe = MiUnProtectFreeNonPagedPool(PoolVa, 1); 121 if (Safe) *PoolFlink = PoolVa; 122 } 123 124 /* Are we going to need a backward link too? */ 125 if (Links != Links->Blink) 126 { 127 /* Get the head's backward link for the insert */ 128 PoolVa = Links->Blink; 129 130 /* Make it safe to access */ 131 Safe = MiUnProtectFreeNonPagedPool(PoolVa, 1); 132 if (Safe) *PoolBlink = PoolVa; 133 } 134 } 135 136 FORCEINLINE 137 VOID 138 MiProtectedPoolProtectLinks(IN PVOID PoolFlink, 139 IN PVOID PoolBlink) 140 { 141 /* Reprotect the pages, if they got unprotected earlier */ 142 if (PoolFlink) MiProtectFreeNonPagedPool(PoolFlink, 1); 143 if (PoolBlink) MiProtectFreeNonPagedPool(PoolBlink, 1); 144 } 145 146 VOID 147 NTAPI 148 MiProtectedPoolInsertList(IN PLIST_ENTRY ListHead, 149 IN PLIST_ENTRY Entry, 150 IN BOOLEAN Critical) 151 { 152 PVOID PoolFlink, PoolBlink; 153 154 /* Make the list accessible */ 155 MiProtectedPoolUnProtectLinks(ListHead, &PoolFlink, &PoolBlink); 156 157 /* Now insert in the right position */ 158 Critical ? InsertHeadList(ListHead, Entry) : InsertTailList(ListHead, Entry); 159 160 /* And reprotect the pages containing the free links */ 161 MiProtectedPoolProtectLinks(PoolFlink, PoolBlink); 162 } 163 164 VOID 165 NTAPI 166 MiProtectedPoolRemoveEntryList(IN PLIST_ENTRY Entry) 167 { 168 PVOID PoolFlink, PoolBlink; 169 170 /* Make the list accessible */ 171 MiProtectedPoolUnProtectLinks(Entry, &PoolFlink, &PoolBlink); 172 173 /* Now remove */ 174 RemoveEntryList(Entry); 175 176 /* And reprotect the pages containing the free links */ 177 if (PoolFlink) MiProtectFreeNonPagedPool(PoolFlink, 1); 178 if (PoolBlink) MiProtectFreeNonPagedPool(PoolBlink, 1); 179 } 180 181 CODE_SEG("INIT") 182 VOID 183 NTAPI 184 MiInitializeNonPagedPoolThresholds(VOID) 185 { 186 PFN_NUMBER Size = MmMaximumNonPagedPoolInPages; 187 188 /* Default low threshold of 8MB or one third of nonpaged pool */ 189 MiLowNonPagedPoolThreshold = (8 * _1MB) >> PAGE_SHIFT; 190 MiLowNonPagedPoolThreshold = min(MiLowNonPagedPoolThreshold, Size / 3); 191 192 /* Default high threshold of 20MB or 50% */ 193 MiHighNonPagedPoolThreshold = (20 * _1MB) >> PAGE_SHIFT; 194 MiHighNonPagedPoolThreshold = min(MiHighNonPagedPoolThreshold, Size / 2); 195 ASSERT(MiLowNonPagedPoolThreshold < MiHighNonPagedPoolThreshold); 196 } 197 198 CODE_SEG("INIT") 199 VOID 200 NTAPI 201 MiInitializePoolEvents(VOID) 202 { 203 KIRQL OldIrql; 204 PFN_NUMBER FreePoolInPages; 205 206 /* Lock paged pool */ 207 KeAcquireGuardedMutex(&MmPagedPoolMutex); 208 209 /* Total size of the paged pool minus the allocated size, is free */ 210 FreePoolInPages = MmSizeOfPagedPoolInPages - MmPagedPoolInfo.AllocatedPagedPool; 211 212 /* Check the initial state high state */ 213 if (FreePoolInPages >= MiHighPagedPoolThreshold) 214 { 215 /* We have plenty of pool */ 216 KeSetEvent(MiHighPagedPoolEvent, 0, FALSE); 217 } 218 else 219 { 220 /* We don't */ 221 KeClearEvent(MiHighPagedPoolEvent); 222 } 223 224 /* Check the initial low state */ 225 if (FreePoolInPages <= MiLowPagedPoolThreshold) 226 { 227 /* We're very low in free pool memory */ 228 KeSetEvent(MiLowPagedPoolEvent, 0, FALSE); 229 } 230 else 231 { 232 /* We're not */ 233 KeClearEvent(MiLowPagedPoolEvent); 234 } 235 236 /* Release the paged pool lock */ 237 KeReleaseGuardedMutex(&MmPagedPoolMutex); 238 239 /* Now it's time for the nonpaged pool lock */ 240 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 241 242 /* Free pages are the maximum minus what's been allocated */ 243 FreePoolInPages = MmMaximumNonPagedPoolInPages - MmAllocatedNonPagedPool; 244 245 /* Check if we have plenty */ 246 if (FreePoolInPages >= MiHighNonPagedPoolThreshold) 247 { 248 /* We do, set the event */ 249 KeSetEvent(MiHighNonPagedPoolEvent, 0, FALSE); 250 } 251 else 252 { 253 /* We don't, clear the event */ 254 KeClearEvent(MiHighNonPagedPoolEvent); 255 } 256 257 /* Check if we have very little */ 258 if (FreePoolInPages <= MiLowNonPagedPoolThreshold) 259 { 260 /* We do, set the event */ 261 KeSetEvent(MiLowNonPagedPoolEvent, 0, FALSE); 262 } 263 else 264 { 265 /* We don't, clear it */ 266 KeClearEvent(MiLowNonPagedPoolEvent); 267 } 268 269 /* We're done, release the nonpaged pool lock */ 270 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 271 } 272 273 CODE_SEG("INIT") 274 VOID 275 NTAPI 276 MiInitializeNonPagedPool(VOID) 277 { 278 ULONG i; 279 PFN_COUNT PoolPages; 280 PMMFREE_POOL_ENTRY FreeEntry, FirstEntry; 281 PMMPTE PointerPte; 282 PAGED_CODE(); 283 284 // 285 // Initialize the pool S-LISTs as well as their maximum count. In general, 286 // we'll allow 8 times the default on a 2GB system, and two times the default 287 // on a 1GB system. 288 // 289 InitializeSListHead(&MiPagedPoolSListHead); 290 InitializeSListHead(&MiNonPagedPoolSListHead); 291 if (MmNumberOfPhysicalPages >= ((2 * _1GB) /PAGE_SIZE)) 292 { 293 MiNonPagedPoolSListMaximum *= 8; 294 MiPagedPoolSListMaximum *= 8; 295 } 296 else if (MmNumberOfPhysicalPages >= (_1GB /PAGE_SIZE)) 297 { 298 MiNonPagedPoolSListMaximum *= 2; 299 MiPagedPoolSListMaximum *= 2; 300 } 301 302 // 303 // However if debugging options for the pool are enabled, turn off the S-LIST 304 // to reduce the risk of messing things up even more 305 // 306 if (MmProtectFreedNonPagedPool) 307 { 308 MiNonPagedPoolSListMaximum = 0; 309 MiPagedPoolSListMaximum = 0; 310 } 311 312 // 313 // We keep 4 lists of free pages (4 lists help avoid contention) 314 // 315 for (i = 0; i < MI_MAX_FREE_PAGE_LISTS; i++) 316 { 317 // 318 // Initialize each of them 319 // 320 InitializeListHead(&MmNonPagedPoolFreeListHead[i]); 321 } 322 323 // 324 // Calculate how many pages the initial nonpaged pool has 325 // 326 PoolPages = (PFN_COUNT)BYTES_TO_PAGES(MmSizeOfNonPagedPoolInBytes); 327 MmNumberOfFreeNonPagedPool = PoolPages; 328 329 // 330 // Initialize the first free entry 331 // 332 FreeEntry = MmNonPagedPoolStart; 333 FirstEntry = FreeEntry; 334 FreeEntry->Size = PoolPages; 335 FreeEntry->Signature = MM_FREE_POOL_SIGNATURE; 336 FreeEntry->Owner = FirstEntry; 337 338 // 339 // Insert it into the last list 340 // 341 InsertHeadList(&MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS - 1], 342 &FreeEntry->List); 343 344 // 345 // Now create free entries for every single other page 346 // 347 while (PoolPages-- > 1) 348 { 349 // 350 // Link them all back to the original entry 351 // 352 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)FreeEntry + PAGE_SIZE); 353 FreeEntry->Owner = FirstEntry; 354 FreeEntry->Signature = MM_FREE_POOL_SIGNATURE; 355 } 356 357 // 358 // Validate and remember first allocated pool page 359 // 360 PointerPte = MiAddressToPte(MmNonPagedPoolStart); 361 ASSERT(PointerPte->u.Hard.Valid == 1); 362 MiStartOfInitialPoolFrame = PFN_FROM_PTE(PointerPte); 363 364 // 365 // Keep track of where initial nonpaged pool ends 366 // 367 MmNonPagedPoolEnd0 = (PVOID)((ULONG_PTR)MmNonPagedPoolStart + 368 MmSizeOfNonPagedPoolInBytes); 369 370 // 371 // Validate and remember last allocated pool page 372 // 373 PointerPte = MiAddressToPte((PVOID)((ULONG_PTR)MmNonPagedPoolEnd0 - 1)); 374 ASSERT(PointerPte->u.Hard.Valid == 1); 375 MiEndOfInitialPoolFrame = PFN_FROM_PTE(PointerPte); 376 377 // 378 // Validate the first nonpaged pool expansion page (which is a guard page) 379 // 380 PointerPte = MiAddressToPte(MmNonPagedPoolExpansionStart); 381 ASSERT(PointerPte->u.Hard.Valid == 0); 382 383 // 384 // Calculate the size of the expansion region alone 385 // 386 MiExpansionPoolPagesInitialCharge = (PFN_COUNT) 387 BYTES_TO_PAGES(MmMaximumNonPagedPoolInBytes - MmSizeOfNonPagedPoolInBytes); 388 389 // 390 // Remove 2 pages, since there's a guard page on top and on the bottom 391 // 392 MiExpansionPoolPagesInitialCharge -= 2; 393 394 // 395 // Now initialize the nonpaged pool expansion PTE space. Remember there's a 396 // guard page on top so make sure to skip it. The bottom guard page will be 397 // guaranteed by the fact our size is off by one. 398 // 399 MiInitializeSystemPtes(PointerPte + 1, 400 MiExpansionPoolPagesInitialCharge, 401 NonPagedPoolExpansion); 402 } 403 404 POOL_TYPE 405 NTAPI 406 MmDeterminePoolType(IN PVOID PoolAddress) 407 { 408 // 409 // Use a simple bounds check 410 // 411 if (PoolAddress >= MmPagedPoolStart && PoolAddress <= MmPagedPoolEnd) 412 return PagedPool; 413 else if (PoolAddress >= MmNonPagedPoolStart && PoolAddress <= MmNonPagedPoolEnd) 414 return NonPagedPool; 415 KeBugCheckEx(BAD_POOL_CALLER, 0x42, (ULONG_PTR)PoolAddress, 0, 0); 416 } 417 418 PVOID 419 NTAPI 420 MiAllocatePoolPages(IN POOL_TYPE PoolType, 421 IN SIZE_T SizeInBytes) 422 { 423 PFN_NUMBER PageFrameNumber; 424 PFN_COUNT SizeInPages, PageTableCount; 425 ULONG i; 426 KIRQL OldIrql; 427 PLIST_ENTRY NextEntry, NextHead, LastHead; 428 PMMPTE PointerPte, StartPte; 429 PMMPDE PointerPde; 430 ULONG EndAllocation; 431 MMPTE TempPte; 432 MMPDE TempPde; 433 PMMPFN Pfn1; 434 PVOID BaseVa, BaseVaStart; 435 PMMFREE_POOL_ENTRY FreeEntry; 436 437 // 438 // Figure out how big the allocation is in pages 439 // 440 SizeInPages = (PFN_COUNT)BYTES_TO_PAGES(SizeInBytes); 441 442 // 443 // Check for overflow 444 // 445 if (SizeInPages == 0) 446 { 447 // 448 // Fail 449 // 450 return NULL; 451 } 452 453 // 454 // Handle paged pool 455 // 456 if ((PoolType & BASE_POOL_TYPE_MASK) == PagedPool) 457 { 458 // 459 // If only one page is being requested, try to grab it from the S-LIST 460 // 461 if ((SizeInPages == 1) && (ExQueryDepthSList(&MiPagedPoolSListHead))) 462 { 463 BaseVa = InterlockedPopEntrySList(&MiPagedPoolSListHead); 464 if (BaseVa) return BaseVa; 465 } 466 467 // 468 // Lock the paged pool mutex 469 // 470 KeAcquireGuardedMutex(&MmPagedPoolMutex); 471 472 // 473 // Find some empty allocation space 474 // 475 i = RtlFindClearBitsAndSet(MmPagedPoolInfo.PagedPoolAllocationMap, 476 SizeInPages, 477 MmPagedPoolInfo.PagedPoolHint); 478 if (i == 0xFFFFFFFF) 479 { 480 // 481 // Get the page bit count 482 // 483 i = ((SizeInPages - 1) / PTE_PER_PAGE) + 1; 484 DPRINT("Paged pool expansion: %lu %x\n", i, SizeInPages); 485 486 // 487 // Check if there is enougn paged pool expansion space left 488 // 489 if (MmPagedPoolInfo.NextPdeForPagedPoolExpansion > 490 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.LastPteForPagedPool)) 491 { 492 // 493 // Out of memory! 494 // 495 DPRINT1("FAILED to allocate %Iu bytes from paged pool\n", SizeInBytes); 496 KeReleaseGuardedMutex(&MmPagedPoolMutex); 497 return NULL; 498 } 499 500 // 501 // Check if we'll have to expand past the last PTE we have available 502 // 503 if (((i - 1) + MmPagedPoolInfo.NextPdeForPagedPoolExpansion) > 504 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.LastPteForPagedPool)) 505 { 506 // 507 // We can only support this much then 508 // 509 PointerPde = MiPteToPde(MmPagedPoolInfo.LastPteForPagedPool); 510 PageTableCount = (PFN_COUNT)(PointerPde + 1 - 511 MmPagedPoolInfo.NextPdeForPagedPoolExpansion); 512 ASSERT(PageTableCount < i); 513 i = PageTableCount; 514 } 515 else 516 { 517 // 518 // Otherwise, there is plenty of space left for this expansion 519 // 520 PageTableCount = i; 521 } 522 523 // 524 // Get the template PDE we'll use to expand 525 // 526 TempPde = ValidKernelPde; 527 528 // 529 // Get the first PTE in expansion space 530 // 531 PointerPde = MmPagedPoolInfo.NextPdeForPagedPoolExpansion; 532 BaseVa = MiPdeToPte(PointerPde); 533 BaseVaStart = BaseVa; 534 535 // 536 // Lock the PFN database and loop pages 537 // 538 OldIrql = MiAcquirePfnLock(); 539 do 540 { 541 // 542 // It should not already be valid 543 // 544 ASSERT(PointerPde->u.Hard.Valid == 0); 545 546 /* Request a page */ 547 MI_SET_USAGE(MI_USAGE_PAGED_POOL); 548 MI_SET_PROCESS2("Kernel"); 549 PageFrameNumber = MiRemoveAnyPage(MI_GET_NEXT_COLOR()); 550 TempPde.u.Hard.PageFrameNumber = PageFrameNumber; 551 #if (_MI_PAGING_LEVELS >= 3) 552 /* On PAE/x64 systems, there's no double-buffering */ 553 /* Initialize the PFN entry for it */ 554 MiInitializePfnForOtherProcess(PageFrameNumber, 555 (PMMPTE)PointerPde, 556 PFN_FROM_PTE(MiAddressToPte(PointerPde))); 557 558 /* Write the actual PDE now */ 559 MI_WRITE_VALID_PDE(PointerPde, TempPde); 560 #else 561 // 562 // Save it into our double-buffered system page directory 563 // 564 MmSystemPagePtes[((ULONG_PTR)PointerPde & (SYSTEM_PD_SIZE - 1)) / sizeof(MMPTE)] = TempPde; 565 566 /* Initialize the PFN */ 567 MiInitializePfnForOtherProcess(PageFrameNumber, 568 (PMMPTE)PointerPde, 569 MmSystemPageDirectory[(PointerPde - MiAddressToPde(NULL)) / PDE_PER_PAGE]); 570 #endif 571 572 // 573 // Move on to the next expansion address 574 // 575 PointerPde++; 576 BaseVa = (PVOID)((ULONG_PTR)BaseVa + PAGE_SIZE); 577 i--; 578 } while (i > 0); 579 580 // 581 // Release the PFN database lock 582 // 583 MiReleasePfnLock(OldIrql); 584 585 // 586 // These pages are now available, clear their availablity bits 587 // 588 EndAllocation = (ULONG)(MmPagedPoolInfo.NextPdeForPagedPoolExpansion - 589 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.FirstPteForPagedPool)) * 590 PTE_PER_PAGE; 591 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap, 592 EndAllocation, 593 PageTableCount * PTE_PER_PAGE); 594 595 // 596 // Update the next expansion location 597 // 598 MmPagedPoolInfo.NextPdeForPagedPoolExpansion += PageTableCount; 599 600 // 601 // Zero out the newly available memory 602 // 603 RtlZeroMemory(BaseVaStart, PageTableCount * PAGE_SIZE); 604 605 // 606 // Now try consuming the pages again 607 // 608 i = RtlFindClearBitsAndSet(MmPagedPoolInfo.PagedPoolAllocationMap, 609 SizeInPages, 610 0); 611 if (i == 0xFFFFFFFF) 612 { 613 // 614 // Out of memory! 615 // 616 DPRINT1("FAILED to allocate %Iu bytes from paged pool\n", SizeInBytes); 617 KeReleaseGuardedMutex(&MmPagedPoolMutex); 618 return NULL; 619 } 620 } 621 622 // 623 // Update the pool hint if the request was just one page 624 // 625 if (SizeInPages == 1) MmPagedPoolInfo.PagedPoolHint = i + 1; 626 627 // 628 // Update the end bitmap so we know the bounds of this allocation when 629 // the time comes to free it 630 // 631 EndAllocation = i + SizeInPages - 1; 632 RtlSetBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, EndAllocation); 633 634 // 635 // Now we can release the lock (it mainly protects the bitmap) 636 // 637 KeReleaseGuardedMutex(&MmPagedPoolMutex); 638 639 // 640 // Now figure out where this allocation starts 641 // 642 BaseVa = (PVOID)((ULONG_PTR)MmPagedPoolStart + (i << PAGE_SHIFT)); 643 644 // 645 // Flush the TLB 646 // 647 KeFlushEntireTb(TRUE, TRUE); 648 649 /* Setup a demand-zero writable PTE */ 650 MI_MAKE_SOFTWARE_PTE(&TempPte, MM_READWRITE); 651 652 // 653 // Find the first and last PTE, then loop them all 654 // 655 PointerPte = MiAddressToPte(BaseVa); 656 StartPte = PointerPte + SizeInPages; 657 do 658 { 659 // 660 // Write the demand zero PTE and keep going 661 // 662 MI_WRITE_INVALID_PTE(PointerPte, TempPte); 663 } while (++PointerPte < StartPte); 664 665 // 666 // Return the allocation address to the caller 667 // 668 return BaseVa; 669 } 670 671 // 672 // If only one page is being requested, try to grab it from the S-LIST 673 // 674 if ((SizeInPages == 1) && (ExQueryDepthSList(&MiNonPagedPoolSListHead))) 675 { 676 BaseVa = InterlockedPopEntrySList(&MiNonPagedPoolSListHead); 677 if (BaseVa) return BaseVa; 678 } 679 680 // 681 // Allocations of less than 4 pages go into their individual buckets 682 // 683 i = SizeInPages - 1; 684 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 685 686 // 687 // Loop through all the free page lists based on the page index 688 // 689 NextHead = &MmNonPagedPoolFreeListHead[i]; 690 LastHead = &MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS]; 691 692 // 693 // Acquire the nonpaged pool lock 694 // 695 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 696 do 697 { 698 // 699 // Now loop through all the free page entries in this given list 700 // 701 NextEntry = NextHead->Flink; 702 while (NextEntry != NextHead) 703 { 704 /* Is freed non paged pool enabled */ 705 if (MmProtectFreedNonPagedPool) 706 { 707 /* We need to be able to touch this page, unprotect it */ 708 MiUnProtectFreeNonPagedPool(NextEntry, 0); 709 } 710 711 // 712 // Grab the entry and see if it can handle our allocation 713 // 714 FreeEntry = CONTAINING_RECORD(NextEntry, MMFREE_POOL_ENTRY, List); 715 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE); 716 if (FreeEntry->Size >= SizeInPages) 717 { 718 // 719 // It does, so consume the pages from here 720 // 721 FreeEntry->Size -= SizeInPages; 722 723 // 724 // The allocation will begin in this free page area 725 // 726 BaseVa = (PVOID)((ULONG_PTR)FreeEntry + 727 (FreeEntry->Size << PAGE_SHIFT)); 728 729 /* Remove the item from the list, depending if pool is protected */ 730 if (MmProtectFreedNonPagedPool) 731 MiProtectedPoolRemoveEntryList(&FreeEntry->List); 732 else 733 RemoveEntryList(&FreeEntry->List); 734 735 // 736 // However, check if its' still got space left 737 // 738 if (FreeEntry->Size != 0) 739 { 740 /* Check which list to insert this entry into */ 741 i = FreeEntry->Size - 1; 742 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 743 744 /* Insert the entry into the free list head, check for prot. pool */ 745 if (MmProtectFreedNonPagedPool) 746 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE); 747 else 748 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List); 749 750 /* Is freed non paged pool protected? */ 751 if (MmProtectFreedNonPagedPool) 752 { 753 /* Protect the freed pool! */ 754 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size); 755 } 756 } 757 758 // 759 // Grab the PTE for this allocation 760 // 761 PointerPte = MiAddressToPte(BaseVa); 762 ASSERT(PointerPte->u.Hard.Valid == 1); 763 764 // 765 // Grab the PFN NextEntry and index 766 // 767 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte)); 768 769 // 770 // Now mark it as the beginning of an allocation 771 // 772 ASSERT(Pfn1->u3.e1.StartOfAllocation == 0); 773 Pfn1->u3.e1.StartOfAllocation = 1; 774 775 /* Mark it as special pool if needed */ 776 ASSERT(Pfn1->u4.VerifierAllocation == 0); 777 if (PoolType & VERIFIER_POOL_MASK) 778 { 779 Pfn1->u4.VerifierAllocation = 1; 780 } 781 782 // 783 // Check if the allocation is larger than one page 784 // 785 if (SizeInPages != 1) 786 { 787 // 788 // Navigate to the last PFN entry and PTE 789 // 790 PointerPte += SizeInPages - 1; 791 ASSERT(PointerPte->u.Hard.Valid == 1); 792 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 793 } 794 795 // 796 // Mark this PFN as the last (might be the same as the first) 797 // 798 ASSERT(Pfn1->u3.e1.EndOfAllocation == 0); 799 Pfn1->u3.e1.EndOfAllocation = 1; 800 801 // 802 // Release the nonpaged pool lock, and return the allocation 803 // 804 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 805 return BaseVa; 806 } 807 808 // 809 // Try the next free page entry 810 // 811 NextEntry = FreeEntry->List.Flink; 812 813 /* Is freed non paged pool protected? */ 814 if (MmProtectFreedNonPagedPool) 815 { 816 /* Protect the freed pool! */ 817 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size); 818 } 819 } 820 } while (++NextHead < LastHead); 821 822 // 823 // If we got here, we're out of space. 824 // Start by releasing the lock 825 // 826 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 827 828 // 829 // Allocate some system PTEs 830 // 831 StartPte = MiReserveSystemPtes(SizeInPages, NonPagedPoolExpansion); 832 PointerPte = StartPte; 833 if (StartPte == NULL) 834 { 835 // 836 // Ran out of memory 837 // 838 DPRINT1("Out of NP Expansion Pool\n"); 839 return NULL; 840 } 841 842 // 843 // Acquire the pool lock now 844 // 845 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 846 847 // 848 // Lock the PFN database too 849 // 850 MiAcquirePfnLockAtDpcLevel(); 851 852 /* Check that we have enough available pages for this request */ 853 if (MmAvailablePages < SizeInPages) 854 { 855 MiReleasePfnLockFromDpcLevel(); 856 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 857 858 MiReleaseSystemPtes(StartPte, SizeInPages, NonPagedPoolExpansion); 859 860 DPRINT1("OUT OF AVAILABLE PAGES! Required %lu, Available %lu\n", SizeInPages, MmAvailablePages); 861 862 return NULL; 863 } 864 865 // 866 // Loop the pages 867 // 868 TempPte = ValidKernelPte; 869 do 870 { 871 /* Allocate a page */ 872 MI_SET_USAGE(MI_USAGE_PAGED_POOL); 873 MI_SET_PROCESS2("Kernel"); 874 PageFrameNumber = MiRemoveAnyPage(MI_GET_NEXT_COLOR()); 875 876 /* Get the PFN entry for it and fill it out */ 877 Pfn1 = MiGetPfnEntry(PageFrameNumber); 878 Pfn1->u3.e2.ReferenceCount = 1; 879 Pfn1->u2.ShareCount = 1; 880 Pfn1->PteAddress = PointerPte; 881 Pfn1->u3.e1.PageLocation = ActiveAndValid; 882 Pfn1->u4.VerifierAllocation = 0; 883 884 /* Write the PTE for it */ 885 TempPte.u.Hard.PageFrameNumber = PageFrameNumber; 886 MI_WRITE_VALID_PTE(PointerPte++, TempPte); 887 } while (--SizeInPages > 0); 888 889 // 890 // This is the last page 891 // 892 Pfn1->u3.e1.EndOfAllocation = 1; 893 894 // 895 // Get the first page and mark it as such 896 // 897 Pfn1 = MiGetPfnEntry(StartPte->u.Hard.PageFrameNumber); 898 Pfn1->u3.e1.StartOfAllocation = 1; 899 900 /* Mark it as a verifier allocation if needed */ 901 ASSERT(Pfn1->u4.VerifierAllocation == 0); 902 if (PoolType & VERIFIER_POOL_MASK) Pfn1->u4.VerifierAllocation = 1; 903 904 // 905 // Release the PFN and nonpaged pool lock 906 // 907 MiReleasePfnLockFromDpcLevel(); 908 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 909 910 // 911 // Return the address 912 // 913 return MiPteToAddress(StartPte); 914 } 915 916 ULONG 917 NTAPI 918 MiFreePoolPages(IN PVOID StartingVa) 919 { 920 PMMPTE PointerPte, StartPte; 921 PMMPFN Pfn1, StartPfn; 922 PFN_COUNT FreePages, NumberOfPages; 923 KIRQL OldIrql; 924 PMMFREE_POOL_ENTRY FreeEntry, NextEntry, LastEntry; 925 ULONG i, End; 926 ULONG_PTR Offset; 927 928 // 929 // Handle paged pool 930 // 931 if ((StartingVa >= MmPagedPoolStart) && (StartingVa <= MmPagedPoolEnd)) 932 { 933 // 934 // Calculate the offset from the beginning of paged pool, and convert it 935 // into pages 936 // 937 Offset = (ULONG_PTR)StartingVa - (ULONG_PTR)MmPagedPoolStart; 938 i = (ULONG)(Offset >> PAGE_SHIFT); 939 End = i; 940 941 // 942 // Now use the end bitmap to scan until we find a set bit, meaning that 943 // this allocation finishes here 944 // 945 while (!RtlTestBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, End)) End++; 946 947 // 948 // Now calculate the total number of pages this allocation spans. If it's 949 // only one page, add it to the S-LIST instead of freeing it 950 // 951 NumberOfPages = End - i + 1; 952 if ((NumberOfPages == 1) && 953 (ExQueryDepthSList(&MiPagedPoolSListHead) < MiPagedPoolSListMaximum)) 954 { 955 InterlockedPushEntrySList(&MiPagedPoolSListHead, StartingVa); 956 return 1; 957 } 958 959 /* Delete the actual pages */ 960 PointerPte = MmPagedPoolInfo.FirstPteForPagedPool + i; 961 FreePages = MiDeleteSystemPageableVm(PointerPte, NumberOfPages, 0, NULL); 962 ASSERT(FreePages == NumberOfPages); 963 964 // 965 // Acquire the paged pool lock 966 // 967 KeAcquireGuardedMutex(&MmPagedPoolMutex); 968 969 // 970 // Clear the allocation and free bits 971 // 972 RtlClearBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, End); 973 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap, i, NumberOfPages); 974 975 // 976 // Update the hint if we need to 977 // 978 if (i < MmPagedPoolInfo.PagedPoolHint) MmPagedPoolInfo.PagedPoolHint = i; 979 980 // 981 // Release the lock protecting the bitmaps 982 // 983 KeReleaseGuardedMutex(&MmPagedPoolMutex); 984 985 // 986 // And finally return the number of pages freed 987 // 988 return NumberOfPages; 989 } 990 991 // 992 // Get the first PTE and its corresponding PFN entry. If this is also the 993 // last PTE, meaning that this allocation was only for one page, push it into 994 // the S-LIST instead of freeing it 995 // 996 StartPte = PointerPte = MiAddressToPte(StartingVa); 997 StartPfn = Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 998 if ((Pfn1->u3.e1.EndOfAllocation == 1) && 999 (ExQueryDepthSList(&MiNonPagedPoolSListHead) < MiNonPagedPoolSListMaximum)) 1000 { 1001 InterlockedPushEntrySList(&MiNonPagedPoolSListHead, StartingVa); 1002 return 1; 1003 } 1004 1005 // 1006 // Loop until we find the last PTE 1007 // 1008 while (Pfn1->u3.e1.EndOfAllocation == 0) 1009 { 1010 // 1011 // Keep going 1012 // 1013 PointerPte++; 1014 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 1015 } 1016 1017 // 1018 // Now we know how many pages we have 1019 // 1020 NumberOfPages = (PFN_COUNT)(PointerPte - StartPte + 1); 1021 1022 // 1023 // Acquire the nonpaged pool lock 1024 // 1025 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 1026 1027 // 1028 // Mark the first and last PTEs as not part of an allocation anymore 1029 // 1030 StartPfn->u3.e1.StartOfAllocation = 0; 1031 Pfn1->u3.e1.EndOfAllocation = 0; 1032 1033 // 1034 // Assume we will free as many pages as the allocation was 1035 // 1036 FreePages = NumberOfPages; 1037 1038 // 1039 // Peek one page past the end of the allocation 1040 // 1041 PointerPte++; 1042 1043 // 1044 // Guard against going past initial nonpaged pool 1045 // 1046 if (MiGetPfnEntryIndex(Pfn1) == MiEndOfInitialPoolFrame) 1047 { 1048 // 1049 // This page is on the outskirts of initial nonpaged pool, so ignore it 1050 // 1051 Pfn1 = NULL; 1052 } 1053 else 1054 { 1055 /* Sanity check */ 1056 ASSERT((ULONG_PTR)StartingVa + NumberOfPages <= (ULONG_PTR)MmNonPagedPoolEnd); 1057 1058 /* Check if protected pool is enabled */ 1059 if (MmProtectFreedNonPagedPool) 1060 { 1061 /* The freed block will be merged, it must be made accessible */ 1062 MiUnProtectFreeNonPagedPool(MiPteToAddress(PointerPte), 0); 1063 } 1064 1065 // 1066 // Otherwise, our entire allocation must've fit within the initial non 1067 // paged pool, or the expansion nonpaged pool, so get the PFN entry of 1068 // the next allocation 1069 // 1070 if (PointerPte->u.Hard.Valid == 1) 1071 { 1072 // 1073 // It's either expansion or initial: get the PFN entry 1074 // 1075 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 1076 } 1077 else 1078 { 1079 // 1080 // This means we've reached the guard page that protects the end of 1081 // the expansion nonpaged pool 1082 // 1083 Pfn1 = NULL; 1084 } 1085 1086 } 1087 1088 // 1089 // Check if this allocation actually exists 1090 // 1091 if ((Pfn1) && (Pfn1->u3.e1.StartOfAllocation == 0)) 1092 { 1093 // 1094 // It doesn't, so we should actually locate a free entry descriptor 1095 // 1096 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)StartingVa + 1097 (NumberOfPages << PAGE_SHIFT)); 1098 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE); 1099 ASSERT(FreeEntry->Owner == FreeEntry); 1100 1101 /* Consume this entry's pages */ 1102 FreePages += FreeEntry->Size; 1103 1104 /* Remove the item from the list, depending if pool is protected */ 1105 if (MmProtectFreedNonPagedPool) 1106 MiProtectedPoolRemoveEntryList(&FreeEntry->List); 1107 else 1108 RemoveEntryList(&FreeEntry->List); 1109 } 1110 1111 // 1112 // Now get the official free entry we'll create for the caller's allocation 1113 // 1114 FreeEntry = StartingVa; 1115 1116 // 1117 // Check if the our allocation is the very first page 1118 // 1119 if (MiGetPfnEntryIndex(StartPfn) == MiStartOfInitialPoolFrame) 1120 { 1121 // 1122 // Then we can't do anything or we'll risk underflowing 1123 // 1124 Pfn1 = NULL; 1125 } 1126 else 1127 { 1128 // 1129 // Otherwise, get the PTE for the page right before our allocation 1130 // 1131 PointerPte -= NumberOfPages + 1; 1132 1133 /* Check if protected pool is enabled */ 1134 if (MmProtectFreedNonPagedPool) 1135 { 1136 /* The freed block will be merged, it must be made accessible */ 1137 MiUnProtectFreeNonPagedPool(MiPteToAddress(PointerPte), 0); 1138 } 1139 1140 /* Check if this is valid pool, or a guard page */ 1141 if (PointerPte->u.Hard.Valid == 1) 1142 { 1143 // 1144 // It's either expansion or initial nonpaged pool, get the PFN entry 1145 // 1146 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 1147 } 1148 else 1149 { 1150 // 1151 // We must've reached the guard page, so don't risk touching it 1152 // 1153 Pfn1 = NULL; 1154 } 1155 } 1156 1157 // 1158 // Check if there is a valid PFN entry for the page before the allocation 1159 // and then check if this page was actually the end of an allocation. 1160 // If it wasn't, then we know for sure it's a free page 1161 // 1162 if ((Pfn1) && (Pfn1->u3.e1.EndOfAllocation == 0)) 1163 { 1164 // 1165 // Get the free entry descriptor for that given page range 1166 // 1167 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)StartingVa - PAGE_SIZE); 1168 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE); 1169 FreeEntry = FreeEntry->Owner; 1170 1171 /* Check if protected pool is enabled */ 1172 if (MmProtectFreedNonPagedPool) 1173 { 1174 /* The freed block will be merged, it must be made accessible */ 1175 MiUnProtectFreeNonPagedPool(FreeEntry, 0); 1176 } 1177 1178 // 1179 // Check if the entry is small enough to be indexed on a free list 1180 // If it is, we'll want to re-insert it, since we're about to 1181 // collapse our pages on top of it, which will change its count 1182 // 1183 if (FreeEntry->Size < (MI_MAX_FREE_PAGE_LISTS - 1)) 1184 { 1185 /* Remove the item from the list, depending if pool is protected */ 1186 if (MmProtectFreedNonPagedPool) 1187 MiProtectedPoolRemoveEntryList(&FreeEntry->List); 1188 else 1189 RemoveEntryList(&FreeEntry->List); 1190 1191 // 1192 // Update its size 1193 // 1194 FreeEntry->Size += FreePages; 1195 1196 // 1197 // And now find the new appropriate list to place it in 1198 // 1199 i = (ULONG)(FreeEntry->Size - 1); 1200 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 1201 1202 /* Insert the entry into the free list head, check for prot. pool */ 1203 if (MmProtectFreedNonPagedPool) 1204 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE); 1205 else 1206 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List); 1207 } 1208 else 1209 { 1210 // 1211 // Otherwise, just combine our free pages into this entry 1212 // 1213 FreeEntry->Size += FreePages; 1214 } 1215 } 1216 1217 // 1218 // Check if we were unable to do any compaction, and we'll stick with this 1219 // 1220 if (FreeEntry == StartingVa) 1221 { 1222 // 1223 // Well, now we are a free entry. At worse we just have our newly freed 1224 // pages, at best we have our pages plus whatever entry came after us 1225 // 1226 FreeEntry->Size = FreePages; 1227 1228 // 1229 // Find the appropriate list we should be on 1230 // 1231 i = FreeEntry->Size - 1; 1232 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 1233 1234 /* Insert the entry into the free list head, check for prot. pool */ 1235 if (MmProtectFreedNonPagedPool) 1236 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE); 1237 else 1238 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List); 1239 } 1240 1241 // 1242 // Just a sanity check 1243 // 1244 ASSERT(FreePages != 0); 1245 1246 // 1247 // Get all the pages between our allocation and its end. These will all now 1248 // become free page chunks. 1249 // 1250 NextEntry = StartingVa; 1251 LastEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)NextEntry + (FreePages << PAGE_SHIFT)); 1252 do 1253 { 1254 // 1255 // Link back to the parent free entry, and keep going 1256 // 1257 NextEntry->Owner = FreeEntry; 1258 NextEntry->Signature = MM_FREE_POOL_SIGNATURE; 1259 NextEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)NextEntry + PAGE_SIZE); 1260 } while (NextEntry != LastEntry); 1261 1262 /* Is freed non paged pool protected? */ 1263 if (MmProtectFreedNonPagedPool) 1264 { 1265 /* Protect the freed pool! */ 1266 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size); 1267 } 1268 1269 // 1270 // We're done, release the lock and let the caller know how much we freed 1271 // 1272 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 1273 return NumberOfPages; 1274 } 1275 1276 1277 BOOLEAN 1278 NTAPI 1279 MiRaisePoolQuota(IN POOL_TYPE PoolType, 1280 IN ULONG CurrentMaxQuota, 1281 OUT PULONG NewMaxQuota) 1282 { 1283 // 1284 // Not implemented 1285 // 1286 UNIMPLEMENTED; 1287 *NewMaxQuota = CurrentMaxQuota + 65536; 1288 return TRUE; 1289 } 1290 1291 NTSTATUS 1292 NTAPI 1293 MiInitializeSessionPool(VOID) 1294 { 1295 PMMPTE PointerPte, LastPte; 1296 PMMPDE PointerPde, LastPde; 1297 PFN_NUMBER PageFrameIndex, PdeCount; 1298 PPOOL_DESCRIPTOR PoolDescriptor; 1299 PMM_SESSION_SPACE SessionGlobal; 1300 PMM_PAGED_POOL_INFO PagedPoolInfo; 1301 NTSTATUS Status; 1302 ULONG Index, PoolSize, BitmapSize; 1303 PAGED_CODE(); 1304 1305 /* Lock session pool */ 1306 SessionGlobal = MmSessionSpace->GlobalVirtualAddress; 1307 KeInitializeGuardedMutex(&SessionGlobal->PagedPoolMutex); 1308 1309 /* Setup a valid pool descriptor */ 1310 PoolDescriptor = &MmSessionSpace->PagedPool; 1311 ExInitializePoolDescriptor(PoolDescriptor, 1312 PagedPoolSession, 1313 0, 1314 0, 1315 &SessionGlobal->PagedPoolMutex); 1316 1317 /* Setup the pool addresses */ 1318 MmSessionSpace->PagedPoolStart = (PVOID)MiSessionPoolStart; 1319 MmSessionSpace->PagedPoolEnd = (PVOID)((ULONG_PTR)MiSessionPoolEnd - 1); 1320 DPRINT1("Session Pool Start: 0x%p End: 0x%p\n", 1321 MmSessionSpace->PagedPoolStart, MmSessionSpace->PagedPoolEnd); 1322 1323 /* Reset all the counters */ 1324 PagedPoolInfo = &MmSessionSpace->PagedPoolInfo; 1325 PagedPoolInfo->PagedPoolCommit = 0; 1326 PagedPoolInfo->PagedPoolHint = 0; 1327 PagedPoolInfo->AllocatedPagedPool = 0; 1328 1329 /* Compute PDE and PTE addresses */ 1330 PointerPde = MiAddressToPde(MmSessionSpace->PagedPoolStart); 1331 PointerPte = MiAddressToPte(MmSessionSpace->PagedPoolStart); 1332 LastPde = MiAddressToPde(MmSessionSpace->PagedPoolEnd); 1333 LastPte = MiAddressToPte(MmSessionSpace->PagedPoolEnd); 1334 1335 /* Write them down */ 1336 MmSessionSpace->PagedPoolBasePde = PointerPde; 1337 PagedPoolInfo->FirstPteForPagedPool = PointerPte; 1338 PagedPoolInfo->LastPteForPagedPool = LastPte; 1339 PagedPoolInfo->NextPdeForPagedPoolExpansion = PointerPde + 1; 1340 1341 /* Zero the PDEs */ 1342 PdeCount = LastPde - PointerPde; 1343 RtlZeroMemory(PointerPde, (PdeCount + 1) * sizeof(MMPTE)); 1344 1345 /* Initialize the PFN for the PDE */ 1346 Status = MiInitializeAndChargePfn(&PageFrameIndex, 1347 PointerPde, 1348 MmSessionSpace->SessionPageDirectoryIndex, 1349 TRUE); 1350 ASSERT(NT_SUCCESS(Status) == TRUE); 1351 1352 /* Initialize the first page table */ 1353 Index = (ULONG_PTR)MmSessionSpace->PagedPoolStart - (ULONG_PTR)MmSessionBase; 1354 Index >>= 22; 1355 #ifndef _M_AMD64 // FIXME 1356 ASSERT(MmSessionSpace->PageTables[Index].u.Long == 0); 1357 MmSessionSpace->PageTables[Index] = *PointerPde; 1358 #endif 1359 1360 /* Bump up counters */ 1361 InterlockedIncrementSizeT(&MmSessionSpace->NonPageablePages); 1362 InterlockedIncrementSizeT(&MmSessionSpace->CommittedPages); 1363 1364 /* Compute the size of the pool in pages, and of the bitmap for it */ 1365 PoolSize = MmSessionPoolSize >> PAGE_SHIFT; 1366 BitmapSize = sizeof(RTL_BITMAP) + ((PoolSize + 31) / 32) * sizeof(ULONG); 1367 1368 /* Allocate and initialize the bitmap to track allocations */ 1369 PagedPoolInfo->PagedPoolAllocationMap = ExAllocatePoolWithTag(NonPagedPool, 1370 BitmapSize, 1371 TAG_MM); 1372 ASSERT(PagedPoolInfo->PagedPoolAllocationMap != NULL); 1373 RtlInitializeBitMap(PagedPoolInfo->PagedPoolAllocationMap, 1374 (PULONG)(PagedPoolInfo->PagedPoolAllocationMap + 1), 1375 PoolSize); 1376 1377 /* Set all bits, but clear the first page table's worth */ 1378 RtlSetAllBits(PagedPoolInfo->PagedPoolAllocationMap); 1379 RtlClearBits(PagedPoolInfo->PagedPoolAllocationMap, 0, PTE_PER_PAGE); 1380 1381 /* Allocate and initialize the bitmap to track free space */ 1382 PagedPoolInfo->EndOfPagedPoolBitmap = ExAllocatePoolWithTag(NonPagedPool, 1383 BitmapSize, 1384 TAG_MM); 1385 ASSERT(PagedPoolInfo->EndOfPagedPoolBitmap != NULL); 1386 RtlInitializeBitMap(PagedPoolInfo->EndOfPagedPoolBitmap, 1387 (PULONG)(PagedPoolInfo->EndOfPagedPoolBitmap + 1), 1388 PoolSize); 1389 1390 /* Clear all the bits and return success */ 1391 RtlClearAllBits(PagedPoolInfo->EndOfPagedPoolBitmap); 1392 return STATUS_SUCCESS; 1393 } 1394 1395 /* PUBLIC FUNCTIONS ***********************************************************/ 1396 1397 /* 1398 * @unimplemented 1399 */ 1400 PVOID 1401 NTAPI 1402 MmAllocateMappingAddress(IN SIZE_T NumberOfBytes, 1403 IN ULONG PoolTag) 1404 { 1405 UNIMPLEMENTED; 1406 return NULL; 1407 } 1408 1409 /* 1410 * @unimplemented 1411 */ 1412 VOID 1413 NTAPI 1414 MmFreeMappingAddress(IN PVOID BaseAddress, 1415 IN ULONG PoolTag) 1416 { 1417 UNIMPLEMENTED; 1418 } 1419 1420 /* EOF */ 1421