1 /* 2 * PROJECT: ReactOS Kernel 3 * LICENSE: BSD - See COPYING.ARM in the top level directory 4 * FILE: ntoskrnl/mm/ARM3/pool.c 5 * PURPOSE: ARM Memory Manager Pool Allocator 6 * PROGRAMMERS: ReactOS Portable Systems Group 7 */ 8 9 /* INCLUDES *******************************************************************/ 10 11 #include <ntoskrnl.h> 12 #define NDEBUG 13 #include <debug.h> 14 15 #define MODULE_INVOLVED_IN_ARM3 16 #include <mm/ARM3/miarm.h> 17 18 /* GLOBALS ********************************************************************/ 19 20 LIST_ENTRY MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS]; 21 PFN_COUNT MmNumberOfFreeNonPagedPool, MiExpansionPoolPagesInitialCharge; 22 PVOID MmNonPagedPoolEnd0; 23 PFN_NUMBER MiStartOfInitialPoolFrame, MiEndOfInitialPoolFrame; 24 KGUARDED_MUTEX MmPagedPoolMutex; 25 MM_PAGED_POOL_INFO MmPagedPoolInfo; 26 SIZE_T MmAllocatedNonPagedPool; 27 ULONG MmSpecialPoolTag; 28 ULONG MmConsumedPoolPercentage; 29 BOOLEAN MmProtectFreedNonPagedPool; 30 SLIST_HEADER MiNonPagedPoolSListHead; 31 ULONG MiNonPagedPoolSListMaximum = 4; 32 SLIST_HEADER MiPagedPoolSListHead; 33 ULONG MiPagedPoolSListMaximum = 8; 34 35 /* PRIVATE FUNCTIONS **********************************************************/ 36 37 VOID 38 NTAPI 39 MiProtectFreeNonPagedPool(IN PVOID VirtualAddress, 40 IN ULONG PageCount) 41 { 42 PMMPTE PointerPte, LastPte; 43 MMPTE TempPte; 44 45 /* If pool is physical, can't protect PTEs */ 46 if (MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) return; 47 48 /* Get PTE pointers and loop */ 49 PointerPte = MiAddressToPte(VirtualAddress); 50 LastPte = PointerPte + PageCount; 51 do 52 { 53 /* Capture the PTE for safety */ 54 TempPte = *PointerPte; 55 56 /* Mark it as an invalid PTE, set proto bit to recognize it as pool */ 57 TempPte.u.Hard.Valid = 0; 58 TempPte.u.Soft.Prototype = 1; 59 MI_WRITE_INVALID_PTE(PointerPte, TempPte); 60 } while (++PointerPte < LastPte); 61 62 /* Flush the TLB */ 63 KeFlushEntireTb(TRUE, TRUE); 64 } 65 66 BOOLEAN 67 NTAPI 68 MiUnProtectFreeNonPagedPool(IN PVOID VirtualAddress, 69 IN ULONG PageCount) 70 { 71 PMMPTE PointerPte; 72 MMPTE TempPte; 73 PFN_NUMBER UnprotectedPages = 0; 74 75 /* If pool is physical, can't protect PTEs */ 76 if (MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) return FALSE; 77 78 /* Get, and capture the PTE */ 79 PointerPte = MiAddressToPte(VirtualAddress); 80 TempPte = *PointerPte; 81 82 /* Loop protected PTEs */ 83 while ((TempPte.u.Hard.Valid == 0) && (TempPte.u.Soft.Prototype == 1)) 84 { 85 /* Unprotect the PTE */ 86 TempPte.u.Hard.Valid = 1; 87 TempPte.u.Soft.Prototype = 0; 88 MI_WRITE_VALID_PTE(PointerPte, TempPte); 89 90 /* One more page */ 91 if (++UnprotectedPages == PageCount) break; 92 93 /* Capture next PTE */ 94 TempPte = *(++PointerPte); 95 } 96 97 /* Return if any pages were unprotected */ 98 return UnprotectedPages ? TRUE : FALSE; 99 } 100 101 FORCEINLINE 102 VOID 103 MiProtectedPoolUnProtectLinks(IN PLIST_ENTRY Links, 104 OUT PVOID* PoolFlink, 105 OUT PVOID* PoolBlink) 106 { 107 BOOLEAN Safe; 108 PVOID PoolVa; 109 110 /* Initialize variables */ 111 *PoolFlink = *PoolBlink = NULL; 112 113 /* Check if the list has entries */ 114 if (IsListEmpty(Links) == FALSE) 115 { 116 /* We are going to need to forward link to do an insert */ 117 PoolVa = Links->Flink; 118 119 /* So make it safe to access */ 120 Safe = MiUnProtectFreeNonPagedPool(PoolVa, 1); 121 if (Safe) *PoolFlink = PoolVa; 122 } 123 124 /* Are we going to need a backward link too? */ 125 if (Links != Links->Blink) 126 { 127 /* Get the head's backward link for the insert */ 128 PoolVa = Links->Blink; 129 130 /* Make it safe to access */ 131 Safe = MiUnProtectFreeNonPagedPool(PoolVa, 1); 132 if (Safe) *PoolBlink = PoolVa; 133 } 134 } 135 136 FORCEINLINE 137 VOID 138 MiProtectedPoolProtectLinks(IN PVOID PoolFlink, 139 IN PVOID PoolBlink) 140 { 141 /* Reprotect the pages, if they got unprotected earlier */ 142 if (PoolFlink) MiProtectFreeNonPagedPool(PoolFlink, 1); 143 if (PoolBlink) MiProtectFreeNonPagedPool(PoolBlink, 1); 144 } 145 146 VOID 147 NTAPI 148 MiProtectedPoolInsertList(IN PLIST_ENTRY ListHead, 149 IN PLIST_ENTRY Entry, 150 IN BOOLEAN Critical) 151 { 152 PVOID PoolFlink, PoolBlink; 153 154 /* Make the list accessible */ 155 MiProtectedPoolUnProtectLinks(ListHead, &PoolFlink, &PoolBlink); 156 157 /* Now insert in the right position */ 158 Critical ? InsertHeadList(ListHead, Entry) : InsertTailList(ListHead, Entry); 159 160 /* And reprotect the pages containing the free links */ 161 MiProtectedPoolProtectLinks(PoolFlink, PoolBlink); 162 } 163 164 VOID 165 NTAPI 166 MiProtectedPoolRemoveEntryList(IN PLIST_ENTRY Entry) 167 { 168 PVOID PoolFlink, PoolBlink; 169 170 /* Make the list accessible */ 171 MiProtectedPoolUnProtectLinks(Entry, &PoolFlink, &PoolBlink); 172 173 /* Now remove */ 174 RemoveEntryList(Entry); 175 176 /* And reprotect the pages containing the free links */ 177 if (PoolFlink) MiProtectFreeNonPagedPool(PoolFlink, 1); 178 if (PoolBlink) MiProtectFreeNonPagedPool(PoolBlink, 1); 179 } 180 181 VOID 182 NTAPI 183 INIT_FUNCTION 184 MiInitializeNonPagedPoolThresholds(VOID) 185 { 186 PFN_NUMBER Size = MmMaximumNonPagedPoolInPages; 187 188 /* Default low threshold of 8MB or one third of nonpaged pool */ 189 MiLowNonPagedPoolThreshold = (8 * _1MB) >> PAGE_SHIFT; 190 MiLowNonPagedPoolThreshold = min(MiLowNonPagedPoolThreshold, Size / 3); 191 192 /* Default high threshold of 20MB or 50% */ 193 MiHighNonPagedPoolThreshold = (20 * _1MB) >> PAGE_SHIFT; 194 MiHighNonPagedPoolThreshold = min(MiHighNonPagedPoolThreshold, Size / 2); 195 ASSERT(MiLowNonPagedPoolThreshold < MiHighNonPagedPoolThreshold); 196 } 197 198 VOID 199 NTAPI 200 INIT_FUNCTION 201 MiInitializePoolEvents(VOID) 202 { 203 KIRQL OldIrql; 204 PFN_NUMBER FreePoolInPages; 205 206 /* Lock paged pool */ 207 KeAcquireGuardedMutex(&MmPagedPoolMutex); 208 209 /* Total size of the paged pool minus the allocated size, is free */ 210 FreePoolInPages = MmSizeOfPagedPoolInPages - MmPagedPoolInfo.AllocatedPagedPool; 211 212 /* Check the initial state high state */ 213 if (FreePoolInPages >= MiHighPagedPoolThreshold) 214 { 215 /* We have plenty of pool */ 216 KeSetEvent(MiHighPagedPoolEvent, 0, FALSE); 217 } 218 else 219 { 220 /* We don't */ 221 KeClearEvent(MiHighPagedPoolEvent); 222 } 223 224 /* Check the initial low state */ 225 if (FreePoolInPages <= MiLowPagedPoolThreshold) 226 { 227 /* We're very low in free pool memory */ 228 KeSetEvent(MiLowPagedPoolEvent, 0, FALSE); 229 } 230 else 231 { 232 /* We're not */ 233 KeClearEvent(MiLowPagedPoolEvent); 234 } 235 236 /* Release the paged pool lock */ 237 KeReleaseGuardedMutex(&MmPagedPoolMutex); 238 239 /* Now it's time for the nonpaged pool lock */ 240 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 241 242 /* Free pages are the maximum minus what's been allocated */ 243 FreePoolInPages = MmMaximumNonPagedPoolInPages - MmAllocatedNonPagedPool; 244 245 /* Check if we have plenty */ 246 if (FreePoolInPages >= MiHighNonPagedPoolThreshold) 247 { 248 /* We do, set the event */ 249 KeSetEvent(MiHighNonPagedPoolEvent, 0, FALSE); 250 } 251 else 252 { 253 /* We don't, clear the event */ 254 KeClearEvent(MiHighNonPagedPoolEvent); 255 } 256 257 /* Check if we have very little */ 258 if (FreePoolInPages <= MiLowNonPagedPoolThreshold) 259 { 260 /* We do, set the event */ 261 KeSetEvent(MiLowNonPagedPoolEvent, 0, FALSE); 262 } 263 else 264 { 265 /* We don't, clear it */ 266 KeClearEvent(MiLowNonPagedPoolEvent); 267 } 268 269 /* We're done, release the nonpaged pool lock */ 270 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 271 } 272 273 VOID 274 NTAPI 275 INIT_FUNCTION 276 MiInitializeNonPagedPool(VOID) 277 { 278 ULONG i; 279 PFN_COUNT PoolPages; 280 PMMFREE_POOL_ENTRY FreeEntry, FirstEntry; 281 PMMPTE PointerPte; 282 PAGED_CODE(); 283 284 // 285 // Initialize the pool S-LISTs as well as their maximum count. In general, 286 // we'll allow 8 times the default on a 2GB system, and two times the default 287 // on a 1GB system. 288 // 289 InitializeSListHead(&MiPagedPoolSListHead); 290 InitializeSListHead(&MiNonPagedPoolSListHead); 291 if (MmNumberOfPhysicalPages >= ((2 * _1GB) /PAGE_SIZE)) 292 { 293 MiNonPagedPoolSListMaximum *= 8; 294 MiPagedPoolSListMaximum *= 8; 295 } 296 else if (MmNumberOfPhysicalPages >= (_1GB /PAGE_SIZE)) 297 { 298 MiNonPagedPoolSListMaximum *= 2; 299 MiPagedPoolSListMaximum *= 2; 300 } 301 302 // 303 // However if debugging options for the pool are enabled, turn off the S-LIST 304 // to reduce the risk of messing things up even more 305 // 306 if (MmProtectFreedNonPagedPool) 307 { 308 MiNonPagedPoolSListMaximum = 0; 309 MiPagedPoolSListMaximum = 0; 310 } 311 312 // 313 // We keep 4 lists of free pages (4 lists help avoid contention) 314 // 315 for (i = 0; i < MI_MAX_FREE_PAGE_LISTS; i++) 316 { 317 // 318 // Initialize each of them 319 // 320 InitializeListHead(&MmNonPagedPoolFreeListHead[i]); 321 } 322 323 // 324 // Calculate how many pages the initial nonpaged pool has 325 // 326 PoolPages = (PFN_COUNT)BYTES_TO_PAGES(MmSizeOfNonPagedPoolInBytes); 327 MmNumberOfFreeNonPagedPool = PoolPages; 328 329 // 330 // Initialize the first free entry 331 // 332 FreeEntry = MmNonPagedPoolStart; 333 FirstEntry = FreeEntry; 334 FreeEntry->Size = PoolPages; 335 FreeEntry->Signature = MM_FREE_POOL_SIGNATURE; 336 FreeEntry->Owner = FirstEntry; 337 338 // 339 // Insert it into the last list 340 // 341 InsertHeadList(&MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS - 1], 342 &FreeEntry->List); 343 344 // 345 // Now create free entries for every single other page 346 // 347 while (PoolPages-- > 1) 348 { 349 // 350 // Link them all back to the original entry 351 // 352 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)FreeEntry + PAGE_SIZE); 353 FreeEntry->Owner = FirstEntry; 354 FreeEntry->Signature = MM_FREE_POOL_SIGNATURE; 355 } 356 357 // 358 // Validate and remember first allocated pool page 359 // 360 PointerPte = MiAddressToPte(MmNonPagedPoolStart); 361 ASSERT(PointerPte->u.Hard.Valid == 1); 362 MiStartOfInitialPoolFrame = PFN_FROM_PTE(PointerPte); 363 364 // 365 // Keep track of where initial nonpaged pool ends 366 // 367 MmNonPagedPoolEnd0 = (PVOID)((ULONG_PTR)MmNonPagedPoolStart + 368 MmSizeOfNonPagedPoolInBytes); 369 370 // 371 // Validate and remember last allocated pool page 372 // 373 PointerPte = MiAddressToPte((PVOID)((ULONG_PTR)MmNonPagedPoolEnd0 - 1)); 374 ASSERT(PointerPte->u.Hard.Valid == 1); 375 MiEndOfInitialPoolFrame = PFN_FROM_PTE(PointerPte); 376 377 // 378 // Validate the first nonpaged pool expansion page (which is a guard page) 379 // 380 PointerPte = MiAddressToPte(MmNonPagedPoolExpansionStart); 381 ASSERT(PointerPte->u.Hard.Valid == 0); 382 383 // 384 // Calculate the size of the expansion region alone 385 // 386 MiExpansionPoolPagesInitialCharge = (PFN_COUNT) 387 BYTES_TO_PAGES(MmMaximumNonPagedPoolInBytes - MmSizeOfNonPagedPoolInBytes); 388 389 // 390 // Remove 2 pages, since there's a guard page on top and on the bottom 391 // 392 MiExpansionPoolPagesInitialCharge -= 2; 393 394 // 395 // Now initialize the nonpaged pool expansion PTE space. Remember there's a 396 // guard page on top so make sure to skip it. The bottom guard page will be 397 // guaranteed by the fact our size is off by one. 398 // 399 MiInitializeSystemPtes(PointerPte + 1, 400 MiExpansionPoolPagesInitialCharge, 401 NonPagedPoolExpansion); 402 } 403 404 POOL_TYPE 405 NTAPI 406 MmDeterminePoolType(IN PVOID PoolAddress) 407 { 408 // 409 // Use a simple bounds check 410 // 411 if (PoolAddress >= MmPagedPoolStart && PoolAddress <= MmPagedPoolEnd) 412 return PagedPool; 413 else if (PoolAddress >= MmNonPagedPoolStart && PoolAddress <= MmNonPagedPoolEnd) 414 return NonPagedPool; 415 KeBugCheckEx(BAD_POOL_CALLER, 0x42, (ULONG_PTR)PoolAddress, 0, 0); 416 } 417 418 PVOID 419 NTAPI 420 MiAllocatePoolPages(IN POOL_TYPE PoolType, 421 IN SIZE_T SizeInBytes) 422 { 423 PFN_NUMBER PageFrameNumber; 424 PFN_COUNT SizeInPages, PageTableCount; 425 ULONG i; 426 KIRQL OldIrql; 427 PLIST_ENTRY NextEntry, NextHead, LastHead; 428 PMMPTE PointerPte, StartPte; 429 PMMPDE PointerPde; 430 ULONG EndAllocation; 431 MMPTE TempPte; 432 MMPDE TempPde; 433 PMMPFN Pfn1; 434 PVOID BaseVa, BaseVaStart; 435 PMMFREE_POOL_ENTRY FreeEntry; 436 PKSPIN_LOCK_QUEUE LockQueue; 437 438 // 439 // Figure out how big the allocation is in pages 440 // 441 SizeInPages = (PFN_COUNT)BYTES_TO_PAGES(SizeInBytes); 442 443 // 444 // Check for overflow 445 // 446 if (SizeInPages == 0) 447 { 448 // 449 // Fail 450 // 451 return NULL; 452 } 453 454 // 455 // Handle paged pool 456 // 457 if ((PoolType & BASE_POOL_TYPE_MASK) == PagedPool) 458 { 459 // 460 // If only one page is being requested, try to grab it from the S-LIST 461 // 462 if ((SizeInPages == 1) && (ExQueryDepthSList(&MiPagedPoolSListHead))) 463 { 464 BaseVa = InterlockedPopEntrySList(&MiPagedPoolSListHead); 465 if (BaseVa) return BaseVa; 466 } 467 468 // 469 // Lock the paged pool mutex 470 // 471 KeAcquireGuardedMutex(&MmPagedPoolMutex); 472 473 // 474 // Find some empty allocation space 475 // 476 i = RtlFindClearBitsAndSet(MmPagedPoolInfo.PagedPoolAllocationMap, 477 SizeInPages, 478 MmPagedPoolInfo.PagedPoolHint); 479 if (i == 0xFFFFFFFF) 480 { 481 // 482 // Get the page bit count 483 // 484 i = ((SizeInPages - 1) / PTE_COUNT) + 1; 485 DPRINT("Paged pool expansion: %lu %x\n", i, SizeInPages); 486 487 // 488 // Check if there is enougn paged pool expansion space left 489 // 490 if (MmPagedPoolInfo.NextPdeForPagedPoolExpansion > 491 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.LastPteForPagedPool)) 492 { 493 // 494 // Out of memory! 495 // 496 DPRINT1("FAILED to allocate %Iu bytes from paged pool\n", SizeInBytes); 497 KeReleaseGuardedMutex(&MmPagedPoolMutex); 498 return NULL; 499 } 500 501 // 502 // Check if we'll have to expand past the last PTE we have available 503 // 504 if (((i - 1) + MmPagedPoolInfo.NextPdeForPagedPoolExpansion) > 505 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.LastPteForPagedPool)) 506 { 507 // 508 // We can only support this much then 509 // 510 PointerPde = MiPteToPde(MmPagedPoolInfo.LastPteForPagedPool); 511 PageTableCount = (PFN_COUNT)(PointerPde + 1 - 512 MmPagedPoolInfo.NextPdeForPagedPoolExpansion); 513 ASSERT(PageTableCount < i); 514 i = PageTableCount; 515 } 516 else 517 { 518 // 519 // Otherwise, there is plenty of space left for this expansion 520 // 521 PageTableCount = i; 522 } 523 524 // 525 // Get the template PDE we'll use to expand 526 // 527 TempPde = ValidKernelPde; 528 529 // 530 // Get the first PTE in expansion space 531 // 532 PointerPde = MmPagedPoolInfo.NextPdeForPagedPoolExpansion; 533 BaseVa = MiPdeToPte(PointerPde); 534 BaseVaStart = BaseVa; 535 536 // 537 // Lock the PFN database and loop pages 538 // 539 OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock); 540 do 541 { 542 // 543 // It should not already be valid 544 // 545 ASSERT(PointerPde->u.Hard.Valid == 0); 546 547 /* Request a page */ 548 MI_SET_USAGE(MI_USAGE_PAGED_POOL); 549 MI_SET_PROCESS2("Kernel"); 550 PageFrameNumber = MiRemoveAnyPage(MI_GET_NEXT_COLOR()); 551 TempPde.u.Hard.PageFrameNumber = PageFrameNumber; 552 #if (_MI_PAGING_LEVELS >= 3) 553 /* On PAE/x64 systems, there's no double-buffering */ 554 ASSERT(FALSE); 555 #else 556 // 557 // Save it into our double-buffered system page directory 558 // 559 MmSystemPagePtes[((ULONG_PTR)PointerPde & (SYSTEM_PD_SIZE - 1)) / sizeof(MMPTE)] = TempPde; 560 561 /* Initialize the PFN */ 562 MiInitializePfnForOtherProcess(PageFrameNumber, 563 (PMMPTE)PointerPde, 564 MmSystemPageDirectory[(PointerPde - MiAddressToPde(NULL)) / PDE_COUNT]); 565 566 /* Write the actual PDE now */ 567 // MI_WRITE_VALID_PDE(PointerPde, TempPde); 568 #endif 569 // 570 // Move on to the next expansion address 571 // 572 PointerPde++; 573 BaseVa = (PVOID)((ULONG_PTR)BaseVa + PAGE_SIZE); 574 i--; 575 } while (i > 0); 576 577 // 578 // Release the PFN database lock 579 // 580 KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql); 581 582 // 583 // These pages are now available, clear their availablity bits 584 // 585 EndAllocation = (ULONG)(MmPagedPoolInfo.NextPdeForPagedPoolExpansion - 586 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.FirstPteForPagedPool)) * 587 PTE_COUNT; 588 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap, 589 EndAllocation, 590 PageTableCount * PTE_COUNT); 591 592 // 593 // Update the next expansion location 594 // 595 MmPagedPoolInfo.NextPdeForPagedPoolExpansion += PageTableCount; 596 597 // 598 // Zero out the newly available memory 599 // 600 RtlZeroMemory(BaseVaStart, PageTableCount * PAGE_SIZE); 601 602 // 603 // Now try consuming the pages again 604 // 605 i = RtlFindClearBitsAndSet(MmPagedPoolInfo.PagedPoolAllocationMap, 606 SizeInPages, 607 0); 608 if (i == 0xFFFFFFFF) 609 { 610 // 611 // Out of memory! 612 // 613 DPRINT1("FAILED to allocate %Iu bytes from paged pool\n", SizeInBytes); 614 KeReleaseGuardedMutex(&MmPagedPoolMutex); 615 return NULL; 616 } 617 } 618 619 // 620 // Update the pool hint if the request was just one page 621 // 622 if (SizeInPages == 1) MmPagedPoolInfo.PagedPoolHint = i + 1; 623 624 // 625 // Update the end bitmap so we know the bounds of this allocation when 626 // the time comes to free it 627 // 628 EndAllocation = i + SizeInPages - 1; 629 RtlSetBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, EndAllocation); 630 631 // 632 // Now we can release the lock (it mainly protects the bitmap) 633 // 634 KeReleaseGuardedMutex(&MmPagedPoolMutex); 635 636 // 637 // Now figure out where this allocation starts 638 // 639 BaseVa = (PVOID)((ULONG_PTR)MmPagedPoolStart + (i << PAGE_SHIFT)); 640 641 // 642 // Flush the TLB 643 // 644 KeFlushEntireTb(TRUE, TRUE); 645 646 /* Setup a demand-zero writable PTE */ 647 MI_MAKE_SOFTWARE_PTE(&TempPte, MM_READWRITE); 648 649 // 650 // Find the first and last PTE, then loop them all 651 // 652 PointerPte = MiAddressToPte(BaseVa); 653 StartPte = PointerPte + SizeInPages; 654 do 655 { 656 // 657 // Write the demand zero PTE and keep going 658 // 659 MI_WRITE_INVALID_PTE(PointerPte, TempPte); 660 } while (++PointerPte < StartPte); 661 662 // 663 // Return the allocation address to the caller 664 // 665 return BaseVa; 666 } 667 668 // 669 // If only one page is being requested, try to grab it from the S-LIST 670 // 671 if ((SizeInPages == 1) && (ExQueryDepthSList(&MiNonPagedPoolSListHead))) 672 { 673 BaseVa = InterlockedPopEntrySList(&MiNonPagedPoolSListHead); 674 if (BaseVa) return BaseVa; 675 } 676 677 // 678 // Allocations of less than 4 pages go into their individual buckets 679 // 680 i = SizeInPages - 1; 681 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 682 683 // 684 // Loop through all the free page lists based on the page index 685 // 686 NextHead = &MmNonPagedPoolFreeListHead[i]; 687 LastHead = &MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS]; 688 689 // 690 // Acquire the nonpaged pool lock 691 // 692 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 693 do 694 { 695 // 696 // Now loop through all the free page entries in this given list 697 // 698 NextEntry = NextHead->Flink; 699 while (NextEntry != NextHead) 700 { 701 /* Is freed non paged pool enabled */ 702 if (MmProtectFreedNonPagedPool) 703 { 704 /* We need to be able to touch this page, unprotect it */ 705 MiUnProtectFreeNonPagedPool(NextEntry, 0); 706 } 707 708 // 709 // Grab the entry and see if it can handle our allocation 710 // 711 FreeEntry = CONTAINING_RECORD(NextEntry, MMFREE_POOL_ENTRY, List); 712 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE); 713 if (FreeEntry->Size >= SizeInPages) 714 { 715 // 716 // It does, so consume the pages from here 717 // 718 FreeEntry->Size -= SizeInPages; 719 720 // 721 // The allocation will begin in this free page area 722 // 723 BaseVa = (PVOID)((ULONG_PTR)FreeEntry + 724 (FreeEntry->Size << PAGE_SHIFT)); 725 726 /* Remove the item from the list, depending if pool is protected */ 727 if (MmProtectFreedNonPagedPool) 728 MiProtectedPoolRemoveEntryList(&FreeEntry->List); 729 else 730 RemoveEntryList(&FreeEntry->List); 731 732 // 733 // However, check if its' still got space left 734 // 735 if (FreeEntry->Size != 0) 736 { 737 /* Check which list to insert this entry into */ 738 i = FreeEntry->Size - 1; 739 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 740 741 /* Insert the entry into the free list head, check for prot. pool */ 742 if (MmProtectFreedNonPagedPool) 743 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE); 744 else 745 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List); 746 747 /* Is freed non paged pool protected? */ 748 if (MmProtectFreedNonPagedPool) 749 { 750 /* Protect the freed pool! */ 751 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size); 752 } 753 } 754 755 // 756 // Grab the PTE for this allocation 757 // 758 PointerPte = MiAddressToPte(BaseVa); 759 ASSERT(PointerPte->u.Hard.Valid == 1); 760 761 // 762 // Grab the PFN NextEntry and index 763 // 764 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte)); 765 766 // 767 // Now mark it as the beginning of an allocation 768 // 769 ASSERT(Pfn1->u3.e1.StartOfAllocation == 0); 770 Pfn1->u3.e1.StartOfAllocation = 1; 771 772 /* Mark it as special pool if needed */ 773 ASSERT(Pfn1->u4.VerifierAllocation == 0); 774 if (PoolType & VERIFIER_POOL_MASK) 775 { 776 Pfn1->u4.VerifierAllocation = 1; 777 } 778 779 // 780 // Check if the allocation is larger than one page 781 // 782 if (SizeInPages != 1) 783 { 784 // 785 // Navigate to the last PFN entry and PTE 786 // 787 PointerPte += SizeInPages - 1; 788 ASSERT(PointerPte->u.Hard.Valid == 1); 789 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 790 } 791 792 // 793 // Mark this PFN as the last (might be the same as the first) 794 // 795 ASSERT(Pfn1->u3.e1.EndOfAllocation == 0); 796 Pfn1->u3.e1.EndOfAllocation = 1; 797 798 // 799 // Release the nonpaged pool lock, and return the allocation 800 // 801 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 802 return BaseVa; 803 } 804 805 // 806 // Try the next free page entry 807 // 808 NextEntry = FreeEntry->List.Flink; 809 810 /* Is freed non paged pool protected? */ 811 if (MmProtectFreedNonPagedPool) 812 { 813 /* Protect the freed pool! */ 814 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size); 815 } 816 } 817 } while (++NextHead < LastHead); 818 819 // 820 // If we got here, we're out of space. 821 // Start by releasing the lock 822 // 823 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 824 825 // 826 // Allocate some system PTEs 827 // 828 StartPte = MiReserveSystemPtes(SizeInPages, NonPagedPoolExpansion); 829 PointerPte = StartPte; 830 if (StartPte == NULL) 831 { 832 // 833 // Ran out of memory 834 // 835 DPRINT1("Out of NP Expansion Pool\n"); 836 return NULL; 837 } 838 839 // 840 // Acquire the pool lock now 841 // 842 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 843 844 // 845 // Lock the PFN database too 846 // 847 LockQueue = &KeGetCurrentPrcb()->LockQueue[LockQueuePfnLock]; 848 KeAcquireQueuedSpinLockAtDpcLevel(LockQueue); 849 850 // 851 // Loop the pages 852 // 853 TempPte = ValidKernelPte; 854 do 855 { 856 /* Allocate a page */ 857 MI_SET_USAGE(MI_USAGE_PAGED_POOL); 858 MI_SET_PROCESS2("Kernel"); 859 PageFrameNumber = MiRemoveAnyPage(MI_GET_NEXT_COLOR()); 860 861 /* Get the PFN entry for it and fill it out */ 862 Pfn1 = MiGetPfnEntry(PageFrameNumber); 863 Pfn1->u3.e2.ReferenceCount = 1; 864 Pfn1->u2.ShareCount = 1; 865 Pfn1->PteAddress = PointerPte; 866 Pfn1->u3.e1.PageLocation = ActiveAndValid; 867 Pfn1->u4.VerifierAllocation = 0; 868 869 /* Write the PTE for it */ 870 TempPte.u.Hard.PageFrameNumber = PageFrameNumber; 871 MI_WRITE_VALID_PTE(PointerPte++, TempPte); 872 } while (--SizeInPages > 0); 873 874 // 875 // This is the last page 876 // 877 Pfn1->u3.e1.EndOfAllocation = 1; 878 879 // 880 // Get the first page and mark it as such 881 // 882 Pfn1 = MiGetPfnEntry(StartPte->u.Hard.PageFrameNumber); 883 Pfn1->u3.e1.StartOfAllocation = 1; 884 885 /* Mark it as a verifier allocation if needed */ 886 ASSERT(Pfn1->u4.VerifierAllocation == 0); 887 if (PoolType & VERIFIER_POOL_MASK) Pfn1->u4.VerifierAllocation = 1; 888 889 // 890 // Release the PFN and nonpaged pool lock 891 // 892 KeReleaseQueuedSpinLockFromDpcLevel(LockQueue); 893 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 894 895 // 896 // Return the address 897 // 898 return MiPteToAddress(StartPte); 899 } 900 901 ULONG 902 NTAPI 903 MiFreePoolPages(IN PVOID StartingVa) 904 { 905 PMMPTE PointerPte, StartPte; 906 PMMPFN Pfn1, StartPfn; 907 PFN_COUNT FreePages, NumberOfPages; 908 KIRQL OldIrql; 909 PMMFREE_POOL_ENTRY FreeEntry, NextEntry, LastEntry; 910 ULONG i, End; 911 ULONG_PTR Offset; 912 913 // 914 // Handle paged pool 915 // 916 if ((StartingVa >= MmPagedPoolStart) && (StartingVa <= MmPagedPoolEnd)) 917 { 918 // 919 // Calculate the offset from the beginning of paged pool, and convert it 920 // into pages 921 // 922 Offset = (ULONG_PTR)StartingVa - (ULONG_PTR)MmPagedPoolStart; 923 i = (ULONG)(Offset >> PAGE_SHIFT); 924 End = i; 925 926 // 927 // Now use the end bitmap to scan until we find a set bit, meaning that 928 // this allocation finishes here 929 // 930 while (!RtlTestBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, End)) End++; 931 932 // 933 // Now calculate the total number of pages this allocation spans. If it's 934 // only one page, add it to the S-LIST instead of freeing it 935 // 936 NumberOfPages = End - i + 1; 937 if ((NumberOfPages == 1) && 938 (ExQueryDepthSList(&MiPagedPoolSListHead) < MiPagedPoolSListMaximum)) 939 { 940 InterlockedPushEntrySList(&MiPagedPoolSListHead, StartingVa); 941 return 1; 942 } 943 944 /* Delete the actual pages */ 945 PointerPte = MmPagedPoolInfo.FirstPteForPagedPool + i; 946 FreePages = MiDeleteSystemPageableVm(PointerPte, NumberOfPages, 0, NULL); 947 ASSERT(FreePages == NumberOfPages); 948 949 // 950 // Acquire the paged pool lock 951 // 952 KeAcquireGuardedMutex(&MmPagedPoolMutex); 953 954 // 955 // Clear the allocation and free bits 956 // 957 RtlClearBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, End); 958 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap, i, NumberOfPages); 959 960 // 961 // Update the hint if we need to 962 // 963 if (i < MmPagedPoolInfo.PagedPoolHint) MmPagedPoolInfo.PagedPoolHint = i; 964 965 // 966 // Release the lock protecting the bitmaps 967 // 968 KeReleaseGuardedMutex(&MmPagedPoolMutex); 969 970 // 971 // And finally return the number of pages freed 972 // 973 return NumberOfPages; 974 } 975 976 // 977 // Get the first PTE and its corresponding PFN entry. If this is also the 978 // last PTE, meaning that this allocation was only for one page, push it into 979 // the S-LIST instead of freeing it 980 // 981 StartPte = PointerPte = MiAddressToPte(StartingVa); 982 StartPfn = Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 983 if ((Pfn1->u3.e1.EndOfAllocation == 1) && 984 (ExQueryDepthSList(&MiNonPagedPoolSListHead) < MiNonPagedPoolSListMaximum)) 985 { 986 InterlockedPushEntrySList(&MiNonPagedPoolSListHead, StartingVa); 987 return 1; 988 } 989 990 // 991 // Loop until we find the last PTE 992 // 993 while (Pfn1->u3.e1.EndOfAllocation == 0) 994 { 995 // 996 // Keep going 997 // 998 PointerPte++; 999 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 1000 } 1001 1002 // 1003 // Now we know how many pages we have 1004 // 1005 NumberOfPages = (PFN_COUNT)(PointerPte - StartPte + 1); 1006 1007 // 1008 // Acquire the nonpaged pool lock 1009 // 1010 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 1011 1012 // 1013 // Mark the first and last PTEs as not part of an allocation anymore 1014 // 1015 StartPfn->u3.e1.StartOfAllocation = 0; 1016 Pfn1->u3.e1.EndOfAllocation = 0; 1017 1018 // 1019 // Assume we will free as many pages as the allocation was 1020 // 1021 FreePages = NumberOfPages; 1022 1023 // 1024 // Peek one page past the end of the allocation 1025 // 1026 PointerPte++; 1027 1028 // 1029 // Guard against going past initial nonpaged pool 1030 // 1031 if (MiGetPfnEntryIndex(Pfn1) == MiEndOfInitialPoolFrame) 1032 { 1033 // 1034 // This page is on the outskirts of initial nonpaged pool, so ignore it 1035 // 1036 Pfn1 = NULL; 1037 } 1038 else 1039 { 1040 /* Sanity check */ 1041 ASSERT((ULONG_PTR)StartingVa + NumberOfPages <= (ULONG_PTR)MmNonPagedPoolEnd); 1042 1043 /* Check if protected pool is enabled */ 1044 if (MmProtectFreedNonPagedPool) 1045 { 1046 /* The freed block will be merged, it must be made accessible */ 1047 MiUnProtectFreeNonPagedPool(MiPteToAddress(PointerPte), 0); 1048 } 1049 1050 // 1051 // Otherwise, our entire allocation must've fit within the initial non 1052 // paged pool, or the expansion nonpaged pool, so get the PFN entry of 1053 // the next allocation 1054 // 1055 if (PointerPte->u.Hard.Valid == 1) 1056 { 1057 // 1058 // It's either expansion or initial: get the PFN entry 1059 // 1060 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 1061 } 1062 else 1063 { 1064 // 1065 // This means we've reached the guard page that protects the end of 1066 // the expansion nonpaged pool 1067 // 1068 Pfn1 = NULL; 1069 } 1070 1071 } 1072 1073 // 1074 // Check if this allocation actually exists 1075 // 1076 if ((Pfn1) && (Pfn1->u3.e1.StartOfAllocation == 0)) 1077 { 1078 // 1079 // It doesn't, so we should actually locate a free entry descriptor 1080 // 1081 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)StartingVa + 1082 (NumberOfPages << PAGE_SHIFT)); 1083 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE); 1084 ASSERT(FreeEntry->Owner == FreeEntry); 1085 1086 /* Consume this entry's pages */ 1087 FreePages += FreeEntry->Size; 1088 1089 /* Remove the item from the list, depending if pool is protected */ 1090 if (MmProtectFreedNonPagedPool) 1091 MiProtectedPoolRemoveEntryList(&FreeEntry->List); 1092 else 1093 RemoveEntryList(&FreeEntry->List); 1094 } 1095 1096 // 1097 // Now get the official free entry we'll create for the caller's allocation 1098 // 1099 FreeEntry = StartingVa; 1100 1101 // 1102 // Check if the our allocation is the very first page 1103 // 1104 if (MiGetPfnEntryIndex(StartPfn) == MiStartOfInitialPoolFrame) 1105 { 1106 // 1107 // Then we can't do anything or we'll risk underflowing 1108 // 1109 Pfn1 = NULL; 1110 } 1111 else 1112 { 1113 // 1114 // Otherwise, get the PTE for the page right before our allocation 1115 // 1116 PointerPte -= NumberOfPages + 1; 1117 1118 /* Check if protected pool is enabled */ 1119 if (MmProtectFreedNonPagedPool) 1120 { 1121 /* The freed block will be merged, it must be made accessible */ 1122 MiUnProtectFreeNonPagedPool(MiPteToAddress(PointerPte), 0); 1123 } 1124 1125 /* Check if this is valid pool, or a guard page */ 1126 if (PointerPte->u.Hard.Valid == 1) 1127 { 1128 // 1129 // It's either expansion or initial nonpaged pool, get the PFN entry 1130 // 1131 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 1132 } 1133 else 1134 { 1135 // 1136 // We must've reached the guard page, so don't risk touching it 1137 // 1138 Pfn1 = NULL; 1139 } 1140 } 1141 1142 // 1143 // Check if there is a valid PFN entry for the page before the allocation 1144 // and then check if this page was actually the end of an allocation. 1145 // If it wasn't, then we know for sure it's a free page 1146 // 1147 if ((Pfn1) && (Pfn1->u3.e1.EndOfAllocation == 0)) 1148 { 1149 // 1150 // Get the free entry descriptor for that given page range 1151 // 1152 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)StartingVa - PAGE_SIZE); 1153 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE); 1154 FreeEntry = FreeEntry->Owner; 1155 1156 /* Check if protected pool is enabled */ 1157 if (MmProtectFreedNonPagedPool) 1158 { 1159 /* The freed block will be merged, it must be made accessible */ 1160 MiUnProtectFreeNonPagedPool(FreeEntry, 0); 1161 } 1162 1163 // 1164 // Check if the entry is small enough to be indexed on a free list 1165 // If it is, we'll want to re-insert it, since we're about to 1166 // collapse our pages on top of it, which will change its count 1167 // 1168 if (FreeEntry->Size < (MI_MAX_FREE_PAGE_LISTS - 1)) 1169 { 1170 /* Remove the item from the list, depending if pool is protected */ 1171 if (MmProtectFreedNonPagedPool) 1172 MiProtectedPoolRemoveEntryList(&FreeEntry->List); 1173 else 1174 RemoveEntryList(&FreeEntry->List); 1175 1176 // 1177 // Update its size 1178 // 1179 FreeEntry->Size += FreePages; 1180 1181 // 1182 // And now find the new appropriate list to place it in 1183 // 1184 i = (ULONG)(FreeEntry->Size - 1); 1185 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 1186 1187 /* Insert the entry into the free list head, check for prot. pool */ 1188 if (MmProtectFreedNonPagedPool) 1189 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE); 1190 else 1191 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List); 1192 } 1193 else 1194 { 1195 // 1196 // Otherwise, just combine our free pages into this entry 1197 // 1198 FreeEntry->Size += FreePages; 1199 } 1200 } 1201 1202 // 1203 // Check if we were unable to do any compaction, and we'll stick with this 1204 // 1205 if (FreeEntry == StartingVa) 1206 { 1207 // 1208 // Well, now we are a free entry. At worse we just have our newly freed 1209 // pages, at best we have our pages plus whatever entry came after us 1210 // 1211 FreeEntry->Size = FreePages; 1212 1213 // 1214 // Find the appropriate list we should be on 1215 // 1216 i = FreeEntry->Size - 1; 1217 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 1218 1219 /* Insert the entry into the free list head, check for prot. pool */ 1220 if (MmProtectFreedNonPagedPool) 1221 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE); 1222 else 1223 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List); 1224 } 1225 1226 // 1227 // Just a sanity check 1228 // 1229 ASSERT(FreePages != 0); 1230 1231 // 1232 // Get all the pages between our allocation and its end. These will all now 1233 // become free page chunks. 1234 // 1235 NextEntry = StartingVa; 1236 LastEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)NextEntry + (FreePages << PAGE_SHIFT)); 1237 do 1238 { 1239 // 1240 // Link back to the parent free entry, and keep going 1241 // 1242 NextEntry->Owner = FreeEntry; 1243 NextEntry->Signature = MM_FREE_POOL_SIGNATURE; 1244 NextEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)NextEntry + PAGE_SIZE); 1245 } while (NextEntry != LastEntry); 1246 1247 /* Is freed non paged pool protected? */ 1248 if (MmProtectFreedNonPagedPool) 1249 { 1250 /* Protect the freed pool! */ 1251 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size); 1252 } 1253 1254 // 1255 // We're done, release the lock and let the caller know how much we freed 1256 // 1257 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 1258 return NumberOfPages; 1259 } 1260 1261 1262 BOOLEAN 1263 NTAPI 1264 MiRaisePoolQuota(IN POOL_TYPE PoolType, 1265 IN ULONG CurrentMaxQuota, 1266 OUT PULONG NewMaxQuota) 1267 { 1268 // 1269 // Not implemented 1270 // 1271 UNIMPLEMENTED; 1272 *NewMaxQuota = CurrentMaxQuota + 65536; 1273 return TRUE; 1274 } 1275 1276 NTSTATUS 1277 NTAPI 1278 MiInitializeSessionPool(VOID) 1279 { 1280 PMMPTE PointerPte, LastPte; 1281 PMMPDE PointerPde, LastPde; 1282 PFN_NUMBER PageFrameIndex, PdeCount; 1283 PPOOL_DESCRIPTOR PoolDescriptor; 1284 PMM_SESSION_SPACE SessionGlobal; 1285 PMM_PAGED_POOL_INFO PagedPoolInfo; 1286 NTSTATUS Status; 1287 ULONG Index, PoolSize, BitmapSize; 1288 PAGED_CODE(); 1289 1290 /* Lock session pool */ 1291 SessionGlobal = MmSessionSpace->GlobalVirtualAddress; 1292 KeInitializeGuardedMutex(&SessionGlobal->PagedPoolMutex); 1293 1294 /* Setup a valid pool descriptor */ 1295 PoolDescriptor = &MmSessionSpace->PagedPool; 1296 ExInitializePoolDescriptor(PoolDescriptor, 1297 PagedPoolSession, 1298 0, 1299 0, 1300 &SessionGlobal->PagedPoolMutex); 1301 1302 /* Setup the pool addresses */ 1303 MmSessionSpace->PagedPoolStart = (PVOID)MiSessionPoolStart; 1304 MmSessionSpace->PagedPoolEnd = (PVOID)((ULONG_PTR)MiSessionPoolEnd - 1); 1305 DPRINT1("Session Pool Start: 0x%p End: 0x%p\n", 1306 MmSessionSpace->PagedPoolStart, MmSessionSpace->PagedPoolEnd); 1307 1308 /* Reset all the counters */ 1309 PagedPoolInfo = &MmSessionSpace->PagedPoolInfo; 1310 PagedPoolInfo->PagedPoolCommit = 0; 1311 PagedPoolInfo->PagedPoolHint = 0; 1312 PagedPoolInfo->AllocatedPagedPool = 0; 1313 1314 /* Compute PDE and PTE addresses */ 1315 PointerPde = MiAddressToPde(MmSessionSpace->PagedPoolStart); 1316 PointerPte = MiAddressToPte(MmSessionSpace->PagedPoolStart); 1317 LastPde = MiAddressToPde(MmSessionSpace->PagedPoolEnd); 1318 LastPte = MiAddressToPte(MmSessionSpace->PagedPoolEnd); 1319 1320 /* Write them down */ 1321 MmSessionSpace->PagedPoolBasePde = PointerPde; 1322 PagedPoolInfo->FirstPteForPagedPool = PointerPte; 1323 PagedPoolInfo->LastPteForPagedPool = LastPte; 1324 PagedPoolInfo->NextPdeForPagedPoolExpansion = PointerPde + 1; 1325 1326 /* Zero the PDEs */ 1327 PdeCount = LastPde - PointerPde; 1328 RtlZeroMemory(PointerPde, (PdeCount + 1) * sizeof(MMPTE)); 1329 1330 /* Initialize the PFN for the PDE */ 1331 Status = MiInitializeAndChargePfn(&PageFrameIndex, 1332 PointerPde, 1333 MmSessionSpace->SessionPageDirectoryIndex, 1334 TRUE); 1335 ASSERT(NT_SUCCESS(Status) == TRUE); 1336 1337 /* Initialize the first page table */ 1338 Index = (ULONG_PTR)MmSessionSpace->PagedPoolStart - (ULONG_PTR)MmSessionBase; 1339 Index >>= 22; 1340 #ifndef _M_AMD64 // FIXME 1341 ASSERT(MmSessionSpace->PageTables[Index].u.Long == 0); 1342 MmSessionSpace->PageTables[Index] = *PointerPde; 1343 #endif 1344 1345 /* Bump up counters */ 1346 InterlockedIncrementSizeT(&MmSessionSpace->NonPageablePages); 1347 InterlockedIncrementSizeT(&MmSessionSpace->CommittedPages); 1348 1349 /* Compute the size of the pool in pages, and of the bitmap for it */ 1350 PoolSize = MmSessionPoolSize >> PAGE_SHIFT; 1351 BitmapSize = sizeof(RTL_BITMAP) + ((PoolSize + 31) / 32) * sizeof(ULONG); 1352 1353 /* Allocate and initialize the bitmap to track allocations */ 1354 PagedPoolInfo->PagedPoolAllocationMap = ExAllocatePoolWithTag(NonPagedPool, 1355 BitmapSize, 1356 TAG_MM); 1357 ASSERT(PagedPoolInfo->PagedPoolAllocationMap != NULL); 1358 RtlInitializeBitMap(PagedPoolInfo->PagedPoolAllocationMap, 1359 (PULONG)(PagedPoolInfo->PagedPoolAllocationMap + 1), 1360 PoolSize); 1361 1362 /* Set all bits, but clear the first page table's worth */ 1363 RtlSetAllBits(PagedPoolInfo->PagedPoolAllocationMap); 1364 RtlClearBits(PagedPoolInfo->PagedPoolAllocationMap, 0, PTE_PER_PAGE); 1365 1366 /* Allocate and initialize the bitmap to track free space */ 1367 PagedPoolInfo->EndOfPagedPoolBitmap = ExAllocatePoolWithTag(NonPagedPool, 1368 BitmapSize, 1369 TAG_MM); 1370 ASSERT(PagedPoolInfo->EndOfPagedPoolBitmap != NULL); 1371 RtlInitializeBitMap(PagedPoolInfo->EndOfPagedPoolBitmap, 1372 (PULONG)(PagedPoolInfo->EndOfPagedPoolBitmap + 1), 1373 PoolSize); 1374 1375 /* Clear all the bits and return success */ 1376 RtlClearAllBits(PagedPoolInfo->EndOfPagedPoolBitmap); 1377 return STATUS_SUCCESS; 1378 } 1379 1380 /* PUBLIC FUNCTIONS ***********************************************************/ 1381 1382 /* 1383 * @unimplemented 1384 */ 1385 PVOID 1386 NTAPI 1387 MmAllocateMappingAddress(IN SIZE_T NumberOfBytes, 1388 IN ULONG PoolTag) 1389 { 1390 UNIMPLEMENTED; 1391 return NULL; 1392 } 1393 1394 /* 1395 * @unimplemented 1396 */ 1397 VOID 1398 NTAPI 1399 MmFreeMappingAddress(IN PVOID BaseAddress, 1400 IN ULONG PoolTag) 1401 { 1402 UNIMPLEMENTED; 1403 } 1404 1405 /* EOF */ 1406