xref: /reactos/sdk/lib/3rdparty/libxml2/xmlregexp.c (revision da5f10af)
1 /*
2  * regexp.c: generic and extensible Regular Expression engine
3  *
4  * Basically designed with the purpose of compiling regexps for
5  * the variety of validation/shemas mechanisms now available in
6  * XML related specifications these include:
7  *    - XML-1.0 DTD validation
8  *    - XML Schemas structure part 1
9  *    - XML Schemas Datatypes part 2 especially Appendix F
10  *    - RELAX-NG/TREX i.e. the counter proposal
11  *
12  * See Copyright for the status of this software.
13  *
14  * Daniel Veillard <veillard@redhat.com>
15  */
16 
17 #define IN_LIBXML
18 #include "libxml.h"
19 
20 #ifdef LIBXML_REGEXP_ENABLED
21 
22 /* #define DEBUG_ERR */
23 
24 #include <stdio.h>
25 #include <string.h>
26 #ifdef HAVE_LIMITS_H
27 #include <limits.h>
28 #endif
29 
30 #include <libxml/tree.h>
31 #include <libxml/parserInternals.h>
32 #include <libxml/xmlregexp.h>
33 #include <libxml/xmlautomata.h>
34 #include <libxml/xmlunicode.h>
35 
36 #ifndef INT_MAX
37 #define INT_MAX 123456789 /* easy to flag and big enough for our needs */
38 #endif
39 
40 /* #define DEBUG_REGEXP_GRAPH */
41 /* #define DEBUG_REGEXP_EXEC */
42 /* #define DEBUG_PUSH */
43 /* #define DEBUG_COMPACTION */
44 
45 #define MAX_PUSH 10000000
46 
47 #ifdef ERROR
48 #undef ERROR
49 #endif
50 #define ERROR(str)							\
51     ctxt->error = XML_REGEXP_COMPILE_ERROR;				\
52     xmlRegexpErrCompile(ctxt, str);
53 #define NEXT ctxt->cur++
54 #define CUR (*(ctxt->cur))
55 #define NXT(index) (ctxt->cur[index])
56 
57 #define CUR_SCHAR(s, l) xmlStringCurrentChar(NULL, s, &l)
58 #define NEXTL(l) ctxt->cur += l;
59 #define XML_REG_STRING_SEPARATOR '|'
60 /*
61  * Need PREV to check on a '-' within a Character Group. May only be used
62  * when it's guaranteed that cur is not at the beginning of ctxt->string!
63  */
64 #define PREV (ctxt->cur[-1])
65 
66 /**
67  * TODO:
68  *
69  * macro to flag unimplemented blocks
70  */
71 #define TODO								\
72     xmlGenericError(xmlGenericErrorContext,				\
73 	    "Unimplemented block at %s:%d\n",				\
74             __FILE__, __LINE__);
75 
76 /************************************************************************
77  *									*
78  *			Datatypes and structures			*
79  *									*
80  ************************************************************************/
81 
82 /*
83  * Note: the order of the enums below is significant, do not shuffle
84  */
85 typedef enum {
86     XML_REGEXP_EPSILON = 1,
87     XML_REGEXP_CHARVAL,
88     XML_REGEXP_RANGES,
89     XML_REGEXP_SUBREG,  /* used for () sub regexps */
90     XML_REGEXP_STRING,
91     XML_REGEXP_ANYCHAR, /* . */
92     XML_REGEXP_ANYSPACE, /* \s */
93     XML_REGEXP_NOTSPACE, /* \S */
94     XML_REGEXP_INITNAME, /* \l */
95     XML_REGEXP_NOTINITNAME, /* \L */
96     XML_REGEXP_NAMECHAR, /* \c */
97     XML_REGEXP_NOTNAMECHAR, /* \C */
98     XML_REGEXP_DECIMAL, /* \d */
99     XML_REGEXP_NOTDECIMAL, /* \D */
100     XML_REGEXP_REALCHAR, /* \w */
101     XML_REGEXP_NOTREALCHAR, /* \W */
102     XML_REGEXP_LETTER = 100,
103     XML_REGEXP_LETTER_UPPERCASE,
104     XML_REGEXP_LETTER_LOWERCASE,
105     XML_REGEXP_LETTER_TITLECASE,
106     XML_REGEXP_LETTER_MODIFIER,
107     XML_REGEXP_LETTER_OTHERS,
108     XML_REGEXP_MARK,
109     XML_REGEXP_MARK_NONSPACING,
110     XML_REGEXP_MARK_SPACECOMBINING,
111     XML_REGEXP_MARK_ENCLOSING,
112     XML_REGEXP_NUMBER,
113     XML_REGEXP_NUMBER_DECIMAL,
114     XML_REGEXP_NUMBER_LETTER,
115     XML_REGEXP_NUMBER_OTHERS,
116     XML_REGEXP_PUNCT,
117     XML_REGEXP_PUNCT_CONNECTOR,
118     XML_REGEXP_PUNCT_DASH,
119     XML_REGEXP_PUNCT_OPEN,
120     XML_REGEXP_PUNCT_CLOSE,
121     XML_REGEXP_PUNCT_INITQUOTE,
122     XML_REGEXP_PUNCT_FINQUOTE,
123     XML_REGEXP_PUNCT_OTHERS,
124     XML_REGEXP_SEPAR,
125     XML_REGEXP_SEPAR_SPACE,
126     XML_REGEXP_SEPAR_LINE,
127     XML_REGEXP_SEPAR_PARA,
128     XML_REGEXP_SYMBOL,
129     XML_REGEXP_SYMBOL_MATH,
130     XML_REGEXP_SYMBOL_CURRENCY,
131     XML_REGEXP_SYMBOL_MODIFIER,
132     XML_REGEXP_SYMBOL_OTHERS,
133     XML_REGEXP_OTHER,
134     XML_REGEXP_OTHER_CONTROL,
135     XML_REGEXP_OTHER_FORMAT,
136     XML_REGEXP_OTHER_PRIVATE,
137     XML_REGEXP_OTHER_NA,
138     XML_REGEXP_BLOCK_NAME
139 } xmlRegAtomType;
140 
141 typedef enum {
142     XML_REGEXP_QUANT_EPSILON = 1,
143     XML_REGEXP_QUANT_ONCE,
144     XML_REGEXP_QUANT_OPT,
145     XML_REGEXP_QUANT_MULT,
146     XML_REGEXP_QUANT_PLUS,
147     XML_REGEXP_QUANT_ONCEONLY,
148     XML_REGEXP_QUANT_ALL,
149     XML_REGEXP_QUANT_RANGE
150 } xmlRegQuantType;
151 
152 typedef enum {
153     XML_REGEXP_START_STATE = 1,
154     XML_REGEXP_FINAL_STATE,
155     XML_REGEXP_TRANS_STATE,
156     XML_REGEXP_SINK_STATE,
157     XML_REGEXP_UNREACH_STATE
158 } xmlRegStateType;
159 
160 typedef enum {
161     XML_REGEXP_MARK_NORMAL = 0,
162     XML_REGEXP_MARK_START,
163     XML_REGEXP_MARK_VISITED
164 } xmlRegMarkedType;
165 
166 typedef struct _xmlRegRange xmlRegRange;
167 typedef xmlRegRange *xmlRegRangePtr;
168 
169 struct _xmlRegRange {
170     int neg;		/* 0 normal, 1 not, 2 exclude */
171     xmlRegAtomType type;
172     int start;
173     int end;
174     xmlChar *blockName;
175 };
176 
177 typedef struct _xmlRegAtom xmlRegAtom;
178 typedef xmlRegAtom *xmlRegAtomPtr;
179 
180 typedef struct _xmlAutomataState xmlRegState;
181 typedef xmlRegState *xmlRegStatePtr;
182 
183 struct _xmlRegAtom {
184     int no;
185     xmlRegAtomType type;
186     xmlRegQuantType quant;
187     int min;
188     int max;
189 
190     void *valuep;
191     void *valuep2;
192     int neg;
193     int codepoint;
194     xmlRegStatePtr start;
195     xmlRegStatePtr start0;
196     xmlRegStatePtr stop;
197     int maxRanges;
198     int nbRanges;
199     xmlRegRangePtr *ranges;
200     void *data;
201 };
202 
203 typedef struct _xmlRegCounter xmlRegCounter;
204 typedef xmlRegCounter *xmlRegCounterPtr;
205 
206 struct _xmlRegCounter {
207     int min;
208     int max;
209 };
210 
211 typedef struct _xmlRegTrans xmlRegTrans;
212 typedef xmlRegTrans *xmlRegTransPtr;
213 
214 struct _xmlRegTrans {
215     xmlRegAtomPtr atom;
216     int to;
217     int counter;
218     int count;
219     int nd;
220 };
221 
222 struct _xmlAutomataState {
223     xmlRegStateType type;
224     xmlRegMarkedType mark;
225     xmlRegMarkedType markd;
226     xmlRegMarkedType reached;
227     int no;
228     int maxTrans;
229     int nbTrans;
230     xmlRegTrans *trans;
231     /*  knowing states ponting to us can speed things up */
232     int maxTransTo;
233     int nbTransTo;
234     int *transTo;
235 };
236 
237 typedef struct _xmlAutomata xmlRegParserCtxt;
238 typedef xmlRegParserCtxt *xmlRegParserCtxtPtr;
239 
240 #define AM_AUTOMATA_RNG 1
241 
242 struct _xmlAutomata {
243     xmlChar *string;
244     xmlChar *cur;
245 
246     int error;
247     int neg;
248 
249     xmlRegStatePtr start;
250     xmlRegStatePtr end;
251     xmlRegStatePtr state;
252 
253     xmlRegAtomPtr atom;
254 
255     int maxAtoms;
256     int nbAtoms;
257     xmlRegAtomPtr *atoms;
258 
259     int maxStates;
260     int nbStates;
261     xmlRegStatePtr *states;
262 
263     int maxCounters;
264     int nbCounters;
265     xmlRegCounter *counters;
266 
267     int determinist;
268     int negs;
269     int flags;
270 };
271 
272 struct _xmlRegexp {
273     xmlChar *string;
274     int nbStates;
275     xmlRegStatePtr *states;
276     int nbAtoms;
277     xmlRegAtomPtr *atoms;
278     int nbCounters;
279     xmlRegCounter *counters;
280     int determinist;
281     int flags;
282     /*
283      * That's the compact form for determinists automatas
284      */
285     int nbstates;
286     int *compact;
287     void **transdata;
288     int nbstrings;
289     xmlChar **stringMap;
290 };
291 
292 typedef struct _xmlRegExecRollback xmlRegExecRollback;
293 typedef xmlRegExecRollback *xmlRegExecRollbackPtr;
294 
295 struct _xmlRegExecRollback {
296     xmlRegStatePtr state;/* the current state */
297     int index;		/* the index in the input stack */
298     int nextbranch;	/* the next transition to explore in that state */
299     int *counts;	/* save the automata state if it has some */
300 };
301 
302 typedef struct _xmlRegInputToken xmlRegInputToken;
303 typedef xmlRegInputToken *xmlRegInputTokenPtr;
304 
305 struct _xmlRegInputToken {
306     xmlChar *value;
307     void *data;
308 };
309 
310 struct _xmlRegExecCtxt {
311     int status;		/* execution status != 0 indicate an error */
312     int determinist;	/* did we find an indeterministic behaviour */
313     xmlRegexpPtr comp;	/* the compiled regexp */
314     xmlRegExecCallbacks callback;
315     void *data;
316 
317     xmlRegStatePtr state;/* the current state */
318     int transno;	/* the current transition on that state */
319     int transcount;	/* the number of chars in char counted transitions */
320 
321     /*
322      * A stack of rollback states
323      */
324     int maxRollbacks;
325     int nbRollbacks;
326     xmlRegExecRollback *rollbacks;
327 
328     /*
329      * The state of the automata if any
330      */
331     int *counts;
332 
333     /*
334      * The input stack
335      */
336     int inputStackMax;
337     int inputStackNr;
338     int index;
339     int *charStack;
340     const xmlChar *inputString; /* when operating on characters */
341     xmlRegInputTokenPtr inputStack;/* when operating on strings */
342 
343     /*
344      * error handling
345      */
346     int errStateNo;		/* the error state number */
347     xmlRegStatePtr errState;    /* the error state */
348     xmlChar *errString;		/* the string raising the error */
349     int *errCounts;		/* counters at the error state */
350     int nbPush;
351 };
352 
353 #define REGEXP_ALL_COUNTER	0x123456
354 #define REGEXP_ALL_LAX_COUNTER	0x123457
355 
356 static void xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top);
357 static void xmlRegFreeState(xmlRegStatePtr state);
358 static void xmlRegFreeAtom(xmlRegAtomPtr atom);
359 static int xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr);
360 static int xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint);
361 static int xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint,
362                   int neg, int start, int end, const xmlChar *blockName);
363 
364 void xmlAutomataSetFlags(xmlAutomataPtr am, int flags);
365 
366 /************************************************************************
367  *									*
368  *		Regexp memory error handler				*
369  *									*
370  ************************************************************************/
371 /**
372  * xmlRegexpErrMemory:
373  * @extra:  extra information
374  *
375  * Handle an out of memory condition
376  */
377 static void
378 xmlRegexpErrMemory(xmlRegParserCtxtPtr ctxt, const char *extra)
379 {
380     const char *regexp = NULL;
381     if (ctxt != NULL) {
382         regexp = (const char *) ctxt->string;
383 	ctxt->error = XML_ERR_NO_MEMORY;
384     }
385     __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
386 		    XML_ERR_NO_MEMORY, XML_ERR_FATAL, NULL, 0, extra,
387 		    regexp, NULL, 0, 0,
388 		    "Memory allocation failed : %s\n", extra);
389 }
390 
391 /**
392  * xmlRegexpErrCompile:
393  * @extra:  extra information
394  *
395  * Handle a compilation failure
396  */
397 static void
398 xmlRegexpErrCompile(xmlRegParserCtxtPtr ctxt, const char *extra)
399 {
400     const char *regexp = NULL;
401     int idx = 0;
402 
403     if (ctxt != NULL) {
404         regexp = (const char *) ctxt->string;
405 	idx = ctxt->cur - ctxt->string;
406 	ctxt->error = XML_REGEXP_COMPILE_ERROR;
407     }
408     __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
409 		    XML_REGEXP_COMPILE_ERROR, XML_ERR_FATAL, NULL, 0, extra,
410 		    regexp, NULL, idx, 0,
411 		    "failed to compile: %s\n", extra);
412 }
413 
414 /************************************************************************
415  *									*
416  *			Allocation/Deallocation				*
417  *									*
418  ************************************************************************/
419 
420 static int xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt);
421 /**
422  * xmlRegEpxFromParse:
423  * @ctxt:  the parser context used to build it
424  *
425  * Allocate a new regexp and fill it with the result from the parser
426  *
427  * Returns the new regexp or NULL in case of error
428  */
429 static xmlRegexpPtr
430 xmlRegEpxFromParse(xmlRegParserCtxtPtr ctxt) {
431     xmlRegexpPtr ret;
432 
433     ret = (xmlRegexpPtr) xmlMalloc(sizeof(xmlRegexp));
434     if (ret == NULL) {
435 	xmlRegexpErrMemory(ctxt, "compiling regexp");
436 	return(NULL);
437     }
438     memset(ret, 0, sizeof(xmlRegexp));
439     ret->string = ctxt->string;
440     ret->nbStates = ctxt->nbStates;
441     ret->states = ctxt->states;
442     ret->nbAtoms = ctxt->nbAtoms;
443     ret->atoms = ctxt->atoms;
444     ret->nbCounters = ctxt->nbCounters;
445     ret->counters = ctxt->counters;
446     ret->determinist = ctxt->determinist;
447     ret->flags = ctxt->flags;
448     if (ret->determinist == -1) {
449         xmlRegexpIsDeterminist(ret);
450     }
451 
452     if ((ret->determinist != 0) &&
453 	(ret->nbCounters == 0) &&
454 	(ctxt->negs == 0) &&
455 	(ret->atoms != NULL) &&
456 	(ret->atoms[0] != NULL) &&
457 	(ret->atoms[0]->type == XML_REGEXP_STRING)) {
458 	int i, j, nbstates = 0, nbatoms = 0;
459 	int *stateRemap;
460 	int *stringRemap;
461 	int *transitions;
462 	void **transdata;
463 	xmlChar **stringMap;
464         xmlChar *value;
465 
466 	/*
467 	 * Switch to a compact representation
468 	 * 1/ counting the effective number of states left
469 	 * 2/ counting the unique number of atoms, and check that
470 	 *    they are all of the string type
471 	 * 3/ build a table state x atom for the transitions
472 	 */
473 
474 	stateRemap = xmlMalloc(ret->nbStates * sizeof(int));
475 	if (stateRemap == NULL) {
476 	    xmlRegexpErrMemory(ctxt, "compiling regexp");
477 	    xmlFree(ret);
478 	    return(NULL);
479 	}
480 	for (i = 0;i < ret->nbStates;i++) {
481 	    if (ret->states[i] != NULL) {
482 		stateRemap[i] = nbstates;
483 		nbstates++;
484 	    } else {
485 		stateRemap[i] = -1;
486 	    }
487 	}
488 #ifdef DEBUG_COMPACTION
489 	printf("Final: %d states\n", nbstates);
490 #endif
491 	stringMap = xmlMalloc(ret->nbAtoms * sizeof(char *));
492 	if (stringMap == NULL) {
493 	    xmlRegexpErrMemory(ctxt, "compiling regexp");
494 	    xmlFree(stateRemap);
495 	    xmlFree(ret);
496 	    return(NULL);
497 	}
498 	stringRemap = xmlMalloc(ret->nbAtoms * sizeof(int));
499 	if (stringRemap == NULL) {
500 	    xmlRegexpErrMemory(ctxt, "compiling regexp");
501 	    xmlFree(stringMap);
502 	    xmlFree(stateRemap);
503 	    xmlFree(ret);
504 	    return(NULL);
505 	}
506 	for (i = 0;i < ret->nbAtoms;i++) {
507 	    if ((ret->atoms[i]->type == XML_REGEXP_STRING) &&
508 		(ret->atoms[i]->quant == XML_REGEXP_QUANT_ONCE)) {
509 		value = ret->atoms[i]->valuep;
510                 for (j = 0;j < nbatoms;j++) {
511 		    if (xmlStrEqual(stringMap[j], value)) {
512 			stringRemap[i] = j;
513 			break;
514 		    }
515 		}
516 		if (j >= nbatoms) {
517 		    stringRemap[i] = nbatoms;
518 		    stringMap[nbatoms] = xmlStrdup(value);
519 		    if (stringMap[nbatoms] == NULL) {
520 			for (i = 0;i < nbatoms;i++)
521 			    xmlFree(stringMap[i]);
522 			xmlFree(stringRemap);
523 			xmlFree(stringMap);
524 			xmlFree(stateRemap);
525 			xmlFree(ret);
526 			return(NULL);
527 		    }
528 		    nbatoms++;
529 		}
530 	    } else {
531 		xmlFree(stateRemap);
532 		xmlFree(stringRemap);
533 		for (i = 0;i < nbatoms;i++)
534 		    xmlFree(stringMap[i]);
535 		xmlFree(stringMap);
536 		xmlFree(ret);
537 		return(NULL);
538 	    }
539 	}
540 #ifdef DEBUG_COMPACTION
541 	printf("Final: %d atoms\n", nbatoms);
542 #endif
543 	transitions = (int *) xmlMalloc((nbstates + 1) *
544 	                                (nbatoms + 1) * sizeof(int));
545 	if (transitions == NULL) {
546 	    xmlFree(stateRemap);
547 	    xmlFree(stringRemap);
548 	    xmlFree(stringMap);
549 	    xmlFree(ret);
550 	    return(NULL);
551 	}
552 	memset(transitions, 0, (nbstates + 1) * (nbatoms + 1) * sizeof(int));
553 
554 	/*
555 	 * Allocate the transition table. The first entry for each
556 	 * state corresponds to the state type.
557 	 */
558 	transdata = NULL;
559 
560 	for (i = 0;i < ret->nbStates;i++) {
561 	    int stateno, atomno, targetno, prev;
562 	    xmlRegStatePtr state;
563 	    xmlRegTransPtr trans;
564 
565 	    stateno = stateRemap[i];
566 	    if (stateno == -1)
567 		continue;
568 	    state = ret->states[i];
569 
570 	    transitions[stateno * (nbatoms + 1)] = state->type;
571 
572 	    for (j = 0;j < state->nbTrans;j++) {
573 		trans = &(state->trans[j]);
574 		if ((trans->to == -1) || (trans->atom == NULL))
575 		    continue;
576                 atomno = stringRemap[trans->atom->no];
577 		if ((trans->atom->data != NULL) && (transdata == NULL)) {
578 		    transdata = (void **) xmlMalloc(nbstates * nbatoms *
579 			                            sizeof(void *));
580 		    if (transdata != NULL)
581 			memset(transdata, 0,
582 			       nbstates * nbatoms * sizeof(void *));
583 		    else {
584 			xmlRegexpErrMemory(ctxt, "compiling regexp");
585 			break;
586 		    }
587 		}
588 		targetno = stateRemap[trans->to];
589 		/*
590 		 * if the same atom can generate transitions to 2 different
591 		 * states then it means the automata is not determinist and
592 		 * the compact form can't be used !
593 		 */
594 		prev = transitions[stateno * (nbatoms + 1) + atomno + 1];
595 		if (prev != 0) {
596 		    if (prev != targetno + 1) {
597 			ret->determinist = 0;
598 #ifdef DEBUG_COMPACTION
599 			printf("Indet: state %d trans %d, atom %d to %d : %d to %d\n",
600 			       i, j, trans->atom->no, trans->to, atomno, targetno);
601 			printf("       previous to is %d\n", prev);
602 #endif
603 			if (transdata != NULL)
604 			    xmlFree(transdata);
605 			xmlFree(transitions);
606 			xmlFree(stateRemap);
607 			xmlFree(stringRemap);
608 			for (i = 0;i < nbatoms;i++)
609 			    xmlFree(stringMap[i]);
610 			xmlFree(stringMap);
611 			goto not_determ;
612 		    }
613 		} else {
614 #if 0
615 		    printf("State %d trans %d: atom %d to %d : %d to %d\n",
616 			   i, j, trans->atom->no, trans->to, atomno, targetno);
617 #endif
618 		    transitions[stateno * (nbatoms + 1) + atomno + 1] =
619 			targetno + 1; /* to avoid 0 */
620 		    if (transdata != NULL)
621 			transdata[stateno * nbatoms + atomno] =
622 			    trans->atom->data;
623 		}
624 	    }
625 	}
626 	ret->determinist = 1;
627 #ifdef DEBUG_COMPACTION
628 	/*
629 	 * Debug
630 	 */
631 	for (i = 0;i < nbstates;i++) {
632 	    for (j = 0;j < nbatoms + 1;j++) {
633                 printf("%02d ", transitions[i * (nbatoms + 1) + j]);
634 	    }
635 	    printf("\n");
636 	}
637 	printf("\n");
638 #endif
639 	/*
640 	 * Cleanup of the old data
641 	 */
642 	if (ret->states != NULL) {
643 	    for (i = 0;i < ret->nbStates;i++)
644 		xmlRegFreeState(ret->states[i]);
645 	    xmlFree(ret->states);
646 	}
647 	ret->states = NULL;
648 	ret->nbStates = 0;
649 	if (ret->atoms != NULL) {
650 	    for (i = 0;i < ret->nbAtoms;i++)
651 		xmlRegFreeAtom(ret->atoms[i]);
652 	    xmlFree(ret->atoms);
653 	}
654 	ret->atoms = NULL;
655 	ret->nbAtoms = 0;
656 
657 	ret->compact = transitions;
658 	ret->transdata = transdata;
659 	ret->stringMap = stringMap;
660 	ret->nbstrings = nbatoms;
661 	ret->nbstates = nbstates;
662 	xmlFree(stateRemap);
663 	xmlFree(stringRemap);
664     }
665 not_determ:
666     ctxt->string = NULL;
667     ctxt->nbStates = 0;
668     ctxt->states = NULL;
669     ctxt->nbAtoms = 0;
670     ctxt->atoms = NULL;
671     ctxt->nbCounters = 0;
672     ctxt->counters = NULL;
673     return(ret);
674 }
675 
676 /**
677  * xmlRegNewParserCtxt:
678  * @string:  the string to parse
679  *
680  * Allocate a new regexp parser context
681  *
682  * Returns the new context or NULL in case of error
683  */
684 static xmlRegParserCtxtPtr
685 xmlRegNewParserCtxt(const xmlChar *string) {
686     xmlRegParserCtxtPtr ret;
687 
688     ret = (xmlRegParserCtxtPtr) xmlMalloc(sizeof(xmlRegParserCtxt));
689     if (ret == NULL)
690 	return(NULL);
691     memset(ret, 0, sizeof(xmlRegParserCtxt));
692     if (string != NULL)
693 	ret->string = xmlStrdup(string);
694     ret->cur = ret->string;
695     ret->neg = 0;
696     ret->negs = 0;
697     ret->error = 0;
698     ret->determinist = -1;
699     return(ret);
700 }
701 
702 /**
703  * xmlRegNewRange:
704  * @ctxt:  the regexp parser context
705  * @neg:  is that negative
706  * @type:  the type of range
707  * @start:  the start codepoint
708  * @end:  the end codepoint
709  *
710  * Allocate a new regexp range
711  *
712  * Returns the new range or NULL in case of error
713  */
714 static xmlRegRangePtr
715 xmlRegNewRange(xmlRegParserCtxtPtr ctxt,
716 	       int neg, xmlRegAtomType type, int start, int end) {
717     xmlRegRangePtr ret;
718 
719     ret = (xmlRegRangePtr) xmlMalloc(sizeof(xmlRegRange));
720     if (ret == NULL) {
721 	xmlRegexpErrMemory(ctxt, "allocating range");
722 	return(NULL);
723     }
724     ret->neg = neg;
725     ret->type = type;
726     ret->start = start;
727     ret->end = end;
728     return(ret);
729 }
730 
731 /**
732  * xmlRegFreeRange:
733  * @range:  the regexp range
734  *
735  * Free a regexp range
736  */
737 static void
738 xmlRegFreeRange(xmlRegRangePtr range) {
739     if (range == NULL)
740 	return;
741 
742     if (range->blockName != NULL)
743 	xmlFree(range->blockName);
744     xmlFree(range);
745 }
746 
747 /**
748  * xmlRegCopyRange:
749  * @range:  the regexp range
750  *
751  * Copy a regexp range
752  *
753  * Returns the new copy or NULL in case of error.
754  */
755 static xmlRegRangePtr
756 xmlRegCopyRange(xmlRegParserCtxtPtr ctxt, xmlRegRangePtr range) {
757     xmlRegRangePtr ret;
758 
759     if (range == NULL)
760 	return(NULL);
761 
762     ret = xmlRegNewRange(ctxt, range->neg, range->type, range->start,
763                          range->end);
764     if (ret == NULL)
765         return(NULL);
766     if (range->blockName != NULL) {
767 	ret->blockName = xmlStrdup(range->blockName);
768 	if (ret->blockName == NULL) {
769 	    xmlRegexpErrMemory(ctxt, "allocating range");
770 	    xmlRegFreeRange(ret);
771 	    return(NULL);
772 	}
773     }
774     return(ret);
775 }
776 
777 /**
778  * xmlRegNewAtom:
779  * @ctxt:  the regexp parser context
780  * @type:  the type of atom
781  *
782  * Allocate a new atom
783  *
784  * Returns the new atom or NULL in case of error
785  */
786 static xmlRegAtomPtr
787 xmlRegNewAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomType type) {
788     xmlRegAtomPtr ret;
789 
790     ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
791     if (ret == NULL) {
792 	xmlRegexpErrMemory(ctxt, "allocating atom");
793 	return(NULL);
794     }
795     memset(ret, 0, sizeof(xmlRegAtom));
796     ret->type = type;
797     ret->quant = XML_REGEXP_QUANT_ONCE;
798     ret->min = 0;
799     ret->max = 0;
800     return(ret);
801 }
802 
803 /**
804  * xmlRegFreeAtom:
805  * @atom:  the regexp atom
806  *
807  * Free a regexp atom
808  */
809 static void
810 xmlRegFreeAtom(xmlRegAtomPtr atom) {
811     int i;
812 
813     if (atom == NULL)
814 	return;
815 
816     for (i = 0;i < atom->nbRanges;i++)
817 	xmlRegFreeRange(atom->ranges[i]);
818     if (atom->ranges != NULL)
819 	xmlFree(atom->ranges);
820     if ((atom->type == XML_REGEXP_STRING) && (atom->valuep != NULL))
821 	xmlFree(atom->valuep);
822     if ((atom->type == XML_REGEXP_STRING) && (atom->valuep2 != NULL))
823 	xmlFree(atom->valuep2);
824     if ((atom->type == XML_REGEXP_BLOCK_NAME) && (atom->valuep != NULL))
825 	xmlFree(atom->valuep);
826     xmlFree(atom);
827 }
828 
829 /**
830  * xmlRegCopyAtom:
831  * @ctxt:  the regexp parser context
832  * @atom:  the oiginal atom
833  *
834  * Allocate a new regexp range
835  *
836  * Returns the new atom or NULL in case of error
837  */
838 static xmlRegAtomPtr
839 xmlRegCopyAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
840     xmlRegAtomPtr ret;
841 
842     ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
843     if (ret == NULL) {
844 	xmlRegexpErrMemory(ctxt, "copying atom");
845 	return(NULL);
846     }
847     memset(ret, 0, sizeof(xmlRegAtom));
848     ret->type = atom->type;
849     ret->quant = atom->quant;
850     ret->min = atom->min;
851     ret->max = atom->max;
852     if (atom->nbRanges > 0) {
853         int i;
854 
855         ret->ranges = (xmlRegRangePtr *) xmlMalloc(sizeof(xmlRegRangePtr) *
856 	                                           atom->nbRanges);
857 	if (ret->ranges == NULL) {
858 	    xmlRegexpErrMemory(ctxt, "copying atom");
859 	    goto error;
860 	}
861 	for (i = 0;i < atom->nbRanges;i++) {
862 	    ret->ranges[i] = xmlRegCopyRange(ctxt, atom->ranges[i]);
863 	    if (ret->ranges[i] == NULL)
864 	        goto error;
865 	    ret->nbRanges = i + 1;
866 	}
867     }
868     return(ret);
869 
870 error:
871     xmlRegFreeAtom(ret);
872     return(NULL);
873 }
874 
875 static xmlRegStatePtr
876 xmlRegNewState(xmlRegParserCtxtPtr ctxt) {
877     xmlRegStatePtr ret;
878 
879     ret = (xmlRegStatePtr) xmlMalloc(sizeof(xmlRegState));
880     if (ret == NULL) {
881 	xmlRegexpErrMemory(ctxt, "allocating state");
882 	return(NULL);
883     }
884     memset(ret, 0, sizeof(xmlRegState));
885     ret->type = XML_REGEXP_TRANS_STATE;
886     ret->mark = XML_REGEXP_MARK_NORMAL;
887     return(ret);
888 }
889 
890 /**
891  * xmlRegFreeState:
892  * @state:  the regexp state
893  *
894  * Free a regexp state
895  */
896 static void
897 xmlRegFreeState(xmlRegStatePtr state) {
898     if (state == NULL)
899 	return;
900 
901     if (state->trans != NULL)
902 	xmlFree(state->trans);
903     if (state->transTo != NULL)
904 	xmlFree(state->transTo);
905     xmlFree(state);
906 }
907 
908 /**
909  * xmlRegFreeParserCtxt:
910  * @ctxt:  the regexp parser context
911  *
912  * Free a regexp parser context
913  */
914 static void
915 xmlRegFreeParserCtxt(xmlRegParserCtxtPtr ctxt) {
916     int i;
917     if (ctxt == NULL)
918 	return;
919 
920     if (ctxt->string != NULL)
921 	xmlFree(ctxt->string);
922     if (ctxt->states != NULL) {
923 	for (i = 0;i < ctxt->nbStates;i++)
924 	    xmlRegFreeState(ctxt->states[i]);
925 	xmlFree(ctxt->states);
926     }
927     if (ctxt->atoms != NULL) {
928 	for (i = 0;i < ctxt->nbAtoms;i++)
929 	    xmlRegFreeAtom(ctxt->atoms[i]);
930 	xmlFree(ctxt->atoms);
931     }
932     if (ctxt->counters != NULL)
933 	xmlFree(ctxt->counters);
934     xmlFree(ctxt);
935 }
936 
937 /************************************************************************
938  *									*
939  *			Display of Data structures			*
940  *									*
941  ************************************************************************/
942 
943 static void
944 xmlRegPrintAtomType(FILE *output, xmlRegAtomType type) {
945     switch (type) {
946         case XML_REGEXP_EPSILON:
947 	    fprintf(output, "epsilon "); break;
948         case XML_REGEXP_CHARVAL:
949 	    fprintf(output, "charval "); break;
950         case XML_REGEXP_RANGES:
951 	    fprintf(output, "ranges "); break;
952         case XML_REGEXP_SUBREG:
953 	    fprintf(output, "subexpr "); break;
954         case XML_REGEXP_STRING:
955 	    fprintf(output, "string "); break;
956         case XML_REGEXP_ANYCHAR:
957 	    fprintf(output, "anychar "); break;
958         case XML_REGEXP_ANYSPACE:
959 	    fprintf(output, "anyspace "); break;
960         case XML_REGEXP_NOTSPACE:
961 	    fprintf(output, "notspace "); break;
962         case XML_REGEXP_INITNAME:
963 	    fprintf(output, "initname "); break;
964         case XML_REGEXP_NOTINITNAME:
965 	    fprintf(output, "notinitname "); break;
966         case XML_REGEXP_NAMECHAR:
967 	    fprintf(output, "namechar "); break;
968         case XML_REGEXP_NOTNAMECHAR:
969 	    fprintf(output, "notnamechar "); break;
970         case XML_REGEXP_DECIMAL:
971 	    fprintf(output, "decimal "); break;
972         case XML_REGEXP_NOTDECIMAL:
973 	    fprintf(output, "notdecimal "); break;
974         case XML_REGEXP_REALCHAR:
975 	    fprintf(output, "realchar "); break;
976         case XML_REGEXP_NOTREALCHAR:
977 	    fprintf(output, "notrealchar "); break;
978         case XML_REGEXP_LETTER:
979             fprintf(output, "LETTER "); break;
980         case XML_REGEXP_LETTER_UPPERCASE:
981             fprintf(output, "LETTER_UPPERCASE "); break;
982         case XML_REGEXP_LETTER_LOWERCASE:
983             fprintf(output, "LETTER_LOWERCASE "); break;
984         case XML_REGEXP_LETTER_TITLECASE:
985             fprintf(output, "LETTER_TITLECASE "); break;
986         case XML_REGEXP_LETTER_MODIFIER:
987             fprintf(output, "LETTER_MODIFIER "); break;
988         case XML_REGEXP_LETTER_OTHERS:
989             fprintf(output, "LETTER_OTHERS "); break;
990         case XML_REGEXP_MARK:
991             fprintf(output, "MARK "); break;
992         case XML_REGEXP_MARK_NONSPACING:
993             fprintf(output, "MARK_NONSPACING "); break;
994         case XML_REGEXP_MARK_SPACECOMBINING:
995             fprintf(output, "MARK_SPACECOMBINING "); break;
996         case XML_REGEXP_MARK_ENCLOSING:
997             fprintf(output, "MARK_ENCLOSING "); break;
998         case XML_REGEXP_NUMBER:
999             fprintf(output, "NUMBER "); break;
1000         case XML_REGEXP_NUMBER_DECIMAL:
1001             fprintf(output, "NUMBER_DECIMAL "); break;
1002         case XML_REGEXP_NUMBER_LETTER:
1003             fprintf(output, "NUMBER_LETTER "); break;
1004         case XML_REGEXP_NUMBER_OTHERS:
1005             fprintf(output, "NUMBER_OTHERS "); break;
1006         case XML_REGEXP_PUNCT:
1007             fprintf(output, "PUNCT "); break;
1008         case XML_REGEXP_PUNCT_CONNECTOR:
1009             fprintf(output, "PUNCT_CONNECTOR "); break;
1010         case XML_REGEXP_PUNCT_DASH:
1011             fprintf(output, "PUNCT_DASH "); break;
1012         case XML_REGEXP_PUNCT_OPEN:
1013             fprintf(output, "PUNCT_OPEN "); break;
1014         case XML_REGEXP_PUNCT_CLOSE:
1015             fprintf(output, "PUNCT_CLOSE "); break;
1016         case XML_REGEXP_PUNCT_INITQUOTE:
1017             fprintf(output, "PUNCT_INITQUOTE "); break;
1018         case XML_REGEXP_PUNCT_FINQUOTE:
1019             fprintf(output, "PUNCT_FINQUOTE "); break;
1020         case XML_REGEXP_PUNCT_OTHERS:
1021             fprintf(output, "PUNCT_OTHERS "); break;
1022         case XML_REGEXP_SEPAR:
1023             fprintf(output, "SEPAR "); break;
1024         case XML_REGEXP_SEPAR_SPACE:
1025             fprintf(output, "SEPAR_SPACE "); break;
1026         case XML_REGEXP_SEPAR_LINE:
1027             fprintf(output, "SEPAR_LINE "); break;
1028         case XML_REGEXP_SEPAR_PARA:
1029             fprintf(output, "SEPAR_PARA "); break;
1030         case XML_REGEXP_SYMBOL:
1031             fprintf(output, "SYMBOL "); break;
1032         case XML_REGEXP_SYMBOL_MATH:
1033             fprintf(output, "SYMBOL_MATH "); break;
1034         case XML_REGEXP_SYMBOL_CURRENCY:
1035             fprintf(output, "SYMBOL_CURRENCY "); break;
1036         case XML_REGEXP_SYMBOL_MODIFIER:
1037             fprintf(output, "SYMBOL_MODIFIER "); break;
1038         case XML_REGEXP_SYMBOL_OTHERS:
1039             fprintf(output, "SYMBOL_OTHERS "); break;
1040         case XML_REGEXP_OTHER:
1041             fprintf(output, "OTHER "); break;
1042         case XML_REGEXP_OTHER_CONTROL:
1043             fprintf(output, "OTHER_CONTROL "); break;
1044         case XML_REGEXP_OTHER_FORMAT:
1045             fprintf(output, "OTHER_FORMAT "); break;
1046         case XML_REGEXP_OTHER_PRIVATE:
1047             fprintf(output, "OTHER_PRIVATE "); break;
1048         case XML_REGEXP_OTHER_NA:
1049             fprintf(output, "OTHER_NA "); break;
1050         case XML_REGEXP_BLOCK_NAME:
1051 	    fprintf(output, "BLOCK "); break;
1052     }
1053 }
1054 
1055 static void
1056 xmlRegPrintQuantType(FILE *output, xmlRegQuantType type) {
1057     switch (type) {
1058         case XML_REGEXP_QUANT_EPSILON:
1059 	    fprintf(output, "epsilon "); break;
1060         case XML_REGEXP_QUANT_ONCE:
1061 	    fprintf(output, "once "); break;
1062         case XML_REGEXP_QUANT_OPT:
1063 	    fprintf(output, "? "); break;
1064         case XML_REGEXP_QUANT_MULT:
1065 	    fprintf(output, "* "); break;
1066         case XML_REGEXP_QUANT_PLUS:
1067 	    fprintf(output, "+ "); break;
1068 	case XML_REGEXP_QUANT_RANGE:
1069 	    fprintf(output, "range "); break;
1070 	case XML_REGEXP_QUANT_ONCEONLY:
1071 	    fprintf(output, "onceonly "); break;
1072 	case XML_REGEXP_QUANT_ALL:
1073 	    fprintf(output, "all "); break;
1074     }
1075 }
1076 static void
1077 xmlRegPrintRange(FILE *output, xmlRegRangePtr range) {
1078     fprintf(output, "  range: ");
1079     if (range->neg)
1080 	fprintf(output, "negative ");
1081     xmlRegPrintAtomType(output, range->type);
1082     fprintf(output, "%c - %c\n", range->start, range->end);
1083 }
1084 
1085 static void
1086 xmlRegPrintAtom(FILE *output, xmlRegAtomPtr atom) {
1087     fprintf(output, " atom: ");
1088     if (atom == NULL) {
1089 	fprintf(output, "NULL\n");
1090 	return;
1091     }
1092     if (atom->neg)
1093         fprintf(output, "not ");
1094     xmlRegPrintAtomType(output, atom->type);
1095     xmlRegPrintQuantType(output, atom->quant);
1096     if (atom->quant == XML_REGEXP_QUANT_RANGE)
1097 	fprintf(output, "%d-%d ", atom->min, atom->max);
1098     if (atom->type == XML_REGEXP_STRING)
1099 	fprintf(output, "'%s' ", (char *) atom->valuep);
1100     if (atom->type == XML_REGEXP_CHARVAL)
1101 	fprintf(output, "char %c\n", atom->codepoint);
1102     else if (atom->type == XML_REGEXP_RANGES) {
1103 	int i;
1104 	fprintf(output, "%d entries\n", atom->nbRanges);
1105 	for (i = 0; i < atom->nbRanges;i++)
1106 	    xmlRegPrintRange(output, atom->ranges[i]);
1107     } else if (atom->type == XML_REGEXP_SUBREG) {
1108 	fprintf(output, "start %d end %d\n", atom->start->no, atom->stop->no);
1109     } else {
1110 	fprintf(output, "\n");
1111     }
1112 }
1113 
1114 static void
1115 xmlRegPrintTrans(FILE *output, xmlRegTransPtr trans) {
1116     fprintf(output, "  trans: ");
1117     if (trans == NULL) {
1118 	fprintf(output, "NULL\n");
1119 	return;
1120     }
1121     if (trans->to < 0) {
1122 	fprintf(output, "removed\n");
1123 	return;
1124     }
1125     if (trans->nd != 0) {
1126 	if (trans->nd == 2)
1127 	    fprintf(output, "last not determinist, ");
1128 	else
1129 	    fprintf(output, "not determinist, ");
1130     }
1131     if (trans->counter >= 0) {
1132 	fprintf(output, "counted %d, ", trans->counter);
1133     }
1134     if (trans->count == REGEXP_ALL_COUNTER) {
1135 	fprintf(output, "all transition, ");
1136     } else if (trans->count >= 0) {
1137 	fprintf(output, "count based %d, ", trans->count);
1138     }
1139     if (trans->atom == NULL) {
1140 	fprintf(output, "epsilon to %d\n", trans->to);
1141 	return;
1142     }
1143     if (trans->atom->type == XML_REGEXP_CHARVAL)
1144 	fprintf(output, "char %c ", trans->atom->codepoint);
1145     fprintf(output, "atom %d, to %d\n", trans->atom->no, trans->to);
1146 }
1147 
1148 static void
1149 xmlRegPrintState(FILE *output, xmlRegStatePtr state) {
1150     int i;
1151 
1152     fprintf(output, " state: ");
1153     if (state == NULL) {
1154 	fprintf(output, "NULL\n");
1155 	return;
1156     }
1157     if (state->type == XML_REGEXP_START_STATE)
1158 	fprintf(output, "START ");
1159     if (state->type == XML_REGEXP_FINAL_STATE)
1160 	fprintf(output, "FINAL ");
1161 
1162     fprintf(output, "%d, %d transitions:\n", state->no, state->nbTrans);
1163     for (i = 0;i < state->nbTrans; i++) {
1164 	xmlRegPrintTrans(output, &(state->trans[i]));
1165     }
1166 }
1167 
1168 #ifdef DEBUG_REGEXP_GRAPH
1169 static void
1170 xmlRegPrintCtxt(FILE *output, xmlRegParserCtxtPtr ctxt) {
1171     int i;
1172 
1173     fprintf(output, " ctxt: ");
1174     if (ctxt == NULL) {
1175 	fprintf(output, "NULL\n");
1176 	return;
1177     }
1178     fprintf(output, "'%s' ", ctxt->string);
1179     if (ctxt->error)
1180 	fprintf(output, "error ");
1181     if (ctxt->neg)
1182 	fprintf(output, "neg ");
1183     fprintf(output, "\n");
1184     fprintf(output, "%d atoms:\n", ctxt->nbAtoms);
1185     for (i = 0;i < ctxt->nbAtoms; i++) {
1186 	fprintf(output, " %02d ", i);
1187 	xmlRegPrintAtom(output, ctxt->atoms[i]);
1188     }
1189     if (ctxt->atom != NULL) {
1190 	fprintf(output, "current atom:\n");
1191 	xmlRegPrintAtom(output, ctxt->atom);
1192     }
1193     fprintf(output, "%d states:", ctxt->nbStates);
1194     if (ctxt->start != NULL)
1195 	fprintf(output, " start: %d", ctxt->start->no);
1196     if (ctxt->end != NULL)
1197 	fprintf(output, " end: %d", ctxt->end->no);
1198     fprintf(output, "\n");
1199     for (i = 0;i < ctxt->nbStates; i++) {
1200 	xmlRegPrintState(output, ctxt->states[i]);
1201     }
1202     fprintf(output, "%d counters:\n", ctxt->nbCounters);
1203     for (i = 0;i < ctxt->nbCounters; i++) {
1204 	fprintf(output, " %d: min %d max %d\n", i, ctxt->counters[i].min,
1205 		                                ctxt->counters[i].max);
1206     }
1207 }
1208 #endif
1209 
1210 /************************************************************************
1211  *									*
1212  *		 Finite Automata structures manipulations		*
1213  *									*
1214  ************************************************************************/
1215 
1216 static void
1217 xmlRegAtomAddRange(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom,
1218 	           int neg, xmlRegAtomType type, int start, int end,
1219 		   xmlChar *blockName) {
1220     xmlRegRangePtr range;
1221 
1222     if (atom == NULL) {
1223 	ERROR("add range: atom is NULL");
1224 	return;
1225     }
1226     if (atom->type != XML_REGEXP_RANGES) {
1227 	ERROR("add range: atom is not ranges");
1228 	return;
1229     }
1230     if (atom->maxRanges == 0) {
1231 	atom->maxRanges = 4;
1232 	atom->ranges = (xmlRegRangePtr *) xmlMalloc(atom->maxRanges *
1233 		                             sizeof(xmlRegRangePtr));
1234 	if (atom->ranges == NULL) {
1235 	    xmlRegexpErrMemory(ctxt, "adding ranges");
1236 	    atom->maxRanges = 0;
1237 	    return;
1238 	}
1239     } else if (atom->nbRanges >= atom->maxRanges) {
1240 	xmlRegRangePtr *tmp;
1241 	atom->maxRanges *= 2;
1242 	tmp = (xmlRegRangePtr *) xmlRealloc(atom->ranges, atom->maxRanges *
1243 		                             sizeof(xmlRegRangePtr));
1244 	if (tmp == NULL) {
1245 	    xmlRegexpErrMemory(ctxt, "adding ranges");
1246 	    atom->maxRanges /= 2;
1247 	    return;
1248 	}
1249 	atom->ranges = tmp;
1250     }
1251     range = xmlRegNewRange(ctxt, neg, type, start, end);
1252     if (range == NULL)
1253 	return;
1254     range->blockName = blockName;
1255     atom->ranges[atom->nbRanges++] = range;
1256 
1257 }
1258 
1259 static int
1260 xmlRegGetCounter(xmlRegParserCtxtPtr ctxt) {
1261     if (ctxt->maxCounters == 0) {
1262 	ctxt->maxCounters = 4;
1263 	ctxt->counters = (xmlRegCounter *) xmlMalloc(ctxt->maxCounters *
1264 		                             sizeof(xmlRegCounter));
1265 	if (ctxt->counters == NULL) {
1266 	    xmlRegexpErrMemory(ctxt, "allocating counter");
1267 	    ctxt->maxCounters = 0;
1268 	    return(-1);
1269 	}
1270     } else if (ctxt->nbCounters >= ctxt->maxCounters) {
1271 	xmlRegCounter *tmp;
1272 	ctxt->maxCounters *= 2;
1273 	tmp = (xmlRegCounter *) xmlRealloc(ctxt->counters, ctxt->maxCounters *
1274 		                           sizeof(xmlRegCounter));
1275 	if (tmp == NULL) {
1276 	    xmlRegexpErrMemory(ctxt, "allocating counter");
1277 	    ctxt->maxCounters /= 2;
1278 	    return(-1);
1279 	}
1280 	ctxt->counters = tmp;
1281     }
1282     ctxt->counters[ctxt->nbCounters].min = -1;
1283     ctxt->counters[ctxt->nbCounters].max = -1;
1284     return(ctxt->nbCounters++);
1285 }
1286 
1287 static int
1288 xmlRegAtomPush(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
1289     if (atom == NULL) {
1290 	ERROR("atom push: atom is NULL");
1291 	return(-1);
1292     }
1293     if (ctxt->maxAtoms == 0) {
1294 	ctxt->maxAtoms = 4;
1295 	ctxt->atoms = (xmlRegAtomPtr *) xmlMalloc(ctxt->maxAtoms *
1296 		                             sizeof(xmlRegAtomPtr));
1297 	if (ctxt->atoms == NULL) {
1298 	    xmlRegexpErrMemory(ctxt, "pushing atom");
1299 	    ctxt->maxAtoms = 0;
1300 	    return(-1);
1301 	}
1302     } else if (ctxt->nbAtoms >= ctxt->maxAtoms) {
1303 	xmlRegAtomPtr *tmp;
1304 	ctxt->maxAtoms *= 2;
1305 	tmp = (xmlRegAtomPtr *) xmlRealloc(ctxt->atoms, ctxt->maxAtoms *
1306 		                             sizeof(xmlRegAtomPtr));
1307 	if (tmp == NULL) {
1308 	    xmlRegexpErrMemory(ctxt, "allocating counter");
1309 	    ctxt->maxAtoms /= 2;
1310 	    return(-1);
1311 	}
1312 	ctxt->atoms = tmp;
1313     }
1314     atom->no = ctxt->nbAtoms;
1315     ctxt->atoms[ctxt->nbAtoms++] = atom;
1316     return(0);
1317 }
1318 
1319 static void
1320 xmlRegStateAddTransTo(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr target,
1321                       int from) {
1322     if (target->maxTransTo == 0) {
1323 	target->maxTransTo = 8;
1324 	target->transTo = (int *) xmlMalloc(target->maxTransTo *
1325 		                             sizeof(int));
1326 	if (target->transTo == NULL) {
1327 	    xmlRegexpErrMemory(ctxt, "adding transition");
1328 	    target->maxTransTo = 0;
1329 	    return;
1330 	}
1331     } else if (target->nbTransTo >= target->maxTransTo) {
1332 	int *tmp;
1333 	target->maxTransTo *= 2;
1334 	tmp = (int *) xmlRealloc(target->transTo, target->maxTransTo *
1335 		                             sizeof(int));
1336 	if (tmp == NULL) {
1337 	    xmlRegexpErrMemory(ctxt, "adding transition");
1338 	    target->maxTransTo /= 2;
1339 	    return;
1340 	}
1341 	target->transTo = tmp;
1342     }
1343     target->transTo[target->nbTransTo] = from;
1344     target->nbTransTo++;
1345 }
1346 
1347 static void
1348 xmlRegStateAddTrans(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
1349 	            xmlRegAtomPtr atom, xmlRegStatePtr target,
1350 		    int counter, int count) {
1351 
1352     int nrtrans;
1353 
1354     if (state == NULL) {
1355 	ERROR("add state: state is NULL");
1356 	return;
1357     }
1358     if (target == NULL) {
1359 	ERROR("add state: target is NULL");
1360 	return;
1361     }
1362     /*
1363      * Other routines follow the philosophy 'When in doubt, add a transition'
1364      * so we check here whether such a transition is already present and, if
1365      * so, silently ignore this request.
1366      */
1367 
1368     for (nrtrans = state->nbTrans - 1; nrtrans >= 0; nrtrans--) {
1369 	xmlRegTransPtr trans = &(state->trans[nrtrans]);
1370 	if ((trans->atom == atom) &&
1371 	    (trans->to == target->no) &&
1372 	    (trans->counter == counter) &&
1373 	    (trans->count == count)) {
1374 #ifdef DEBUG_REGEXP_GRAPH
1375 	    printf("Ignoring duplicate transition from %d to %d\n",
1376 		    state->no, target->no);
1377 #endif
1378 	    return;
1379 	}
1380     }
1381 
1382     if (state->maxTrans == 0) {
1383 	state->maxTrans = 8;
1384 	state->trans = (xmlRegTrans *) xmlMalloc(state->maxTrans *
1385 		                             sizeof(xmlRegTrans));
1386 	if (state->trans == NULL) {
1387 	    xmlRegexpErrMemory(ctxt, "adding transition");
1388 	    state->maxTrans = 0;
1389 	    return;
1390 	}
1391     } else if (state->nbTrans >= state->maxTrans) {
1392 	xmlRegTrans *tmp;
1393 	state->maxTrans *= 2;
1394 	tmp = (xmlRegTrans *) xmlRealloc(state->trans, state->maxTrans *
1395 		                             sizeof(xmlRegTrans));
1396 	if (tmp == NULL) {
1397 	    xmlRegexpErrMemory(ctxt, "adding transition");
1398 	    state->maxTrans /= 2;
1399 	    return;
1400 	}
1401 	state->trans = tmp;
1402     }
1403 #ifdef DEBUG_REGEXP_GRAPH
1404     printf("Add trans from %d to %d ", state->no, target->no);
1405     if (count == REGEXP_ALL_COUNTER)
1406 	printf("all transition\n");
1407     else if (count >= 0)
1408 	printf("count based %d\n", count);
1409     else if (counter >= 0)
1410 	printf("counted %d\n", counter);
1411     else if (atom == NULL)
1412 	printf("epsilon transition\n");
1413     else if (atom != NULL)
1414         xmlRegPrintAtom(stdout, atom);
1415 #endif
1416 
1417     state->trans[state->nbTrans].atom = atom;
1418     state->trans[state->nbTrans].to = target->no;
1419     state->trans[state->nbTrans].counter = counter;
1420     state->trans[state->nbTrans].count = count;
1421     state->trans[state->nbTrans].nd = 0;
1422     state->nbTrans++;
1423     xmlRegStateAddTransTo(ctxt, target, state->no);
1424 }
1425 
1426 static int
1427 xmlRegStatePush(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) {
1428     if (state == NULL) return(-1);
1429     if (ctxt->maxStates == 0) {
1430 	ctxt->maxStates = 4;
1431 	ctxt->states = (xmlRegStatePtr *) xmlMalloc(ctxt->maxStates *
1432 		                             sizeof(xmlRegStatePtr));
1433 	if (ctxt->states == NULL) {
1434 	    xmlRegexpErrMemory(ctxt, "adding state");
1435 	    ctxt->maxStates = 0;
1436 	    return(-1);
1437 	}
1438     } else if (ctxt->nbStates >= ctxt->maxStates) {
1439 	xmlRegStatePtr *tmp;
1440 	ctxt->maxStates *= 2;
1441 	tmp = (xmlRegStatePtr *) xmlRealloc(ctxt->states, ctxt->maxStates *
1442 		                             sizeof(xmlRegStatePtr));
1443 	if (tmp == NULL) {
1444 	    xmlRegexpErrMemory(ctxt, "adding state");
1445 	    ctxt->maxStates /= 2;
1446 	    return(-1);
1447 	}
1448 	ctxt->states = tmp;
1449     }
1450     state->no = ctxt->nbStates;
1451     ctxt->states[ctxt->nbStates++] = state;
1452     return(0);
1453 }
1454 
1455 /**
1456  * xmlFAGenerateAllTransition:
1457  * @ctxt:  a regexp parser context
1458  * @from:  the from state
1459  * @to:  the target state or NULL for building a new one
1460  * @lax:
1461  *
1462  */
1463 static void
1464 xmlFAGenerateAllTransition(xmlRegParserCtxtPtr ctxt,
1465 			   xmlRegStatePtr from, xmlRegStatePtr to,
1466 			   int lax) {
1467     if (to == NULL) {
1468 	to = xmlRegNewState(ctxt);
1469 	xmlRegStatePush(ctxt, to);
1470 	ctxt->state = to;
1471     }
1472     if (lax)
1473 	xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_LAX_COUNTER);
1474     else
1475 	xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_COUNTER);
1476 }
1477 
1478 /**
1479  * xmlFAGenerateEpsilonTransition:
1480  * @ctxt:  a regexp parser context
1481  * @from:  the from state
1482  * @to:  the target state or NULL for building a new one
1483  *
1484  */
1485 static void
1486 xmlFAGenerateEpsilonTransition(xmlRegParserCtxtPtr ctxt,
1487 			       xmlRegStatePtr from, xmlRegStatePtr to) {
1488     if (to == NULL) {
1489 	to = xmlRegNewState(ctxt);
1490 	xmlRegStatePush(ctxt, to);
1491 	ctxt->state = to;
1492     }
1493     xmlRegStateAddTrans(ctxt, from, NULL, to, -1, -1);
1494 }
1495 
1496 /**
1497  * xmlFAGenerateCountedEpsilonTransition:
1498  * @ctxt:  a regexp parser context
1499  * @from:  the from state
1500  * @to:  the target state or NULL for building a new one
1501  * counter:  the counter for that transition
1502  *
1503  */
1504 static void
1505 xmlFAGenerateCountedEpsilonTransition(xmlRegParserCtxtPtr ctxt,
1506 	    xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
1507     if (to == NULL) {
1508 	to = xmlRegNewState(ctxt);
1509 	xmlRegStatePush(ctxt, to);
1510 	ctxt->state = to;
1511     }
1512     xmlRegStateAddTrans(ctxt, from, NULL, to, counter, -1);
1513 }
1514 
1515 /**
1516  * xmlFAGenerateCountedTransition:
1517  * @ctxt:  a regexp parser context
1518  * @from:  the from state
1519  * @to:  the target state or NULL for building a new one
1520  * counter:  the counter for that transition
1521  *
1522  */
1523 static void
1524 xmlFAGenerateCountedTransition(xmlRegParserCtxtPtr ctxt,
1525 	    xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
1526     if (to == NULL) {
1527 	to = xmlRegNewState(ctxt);
1528 	xmlRegStatePush(ctxt, to);
1529 	ctxt->state = to;
1530     }
1531     xmlRegStateAddTrans(ctxt, from, NULL, to, -1, counter);
1532 }
1533 
1534 /**
1535  * xmlFAGenerateTransitions:
1536  * @ctxt:  a regexp parser context
1537  * @from:  the from state
1538  * @to:  the target state or NULL for building a new one
1539  * @atom:  the atom generating the transition
1540  *
1541  * Returns 0 if success and -1 in case of error.
1542  */
1543 static int
1544 xmlFAGenerateTransitions(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr from,
1545 	                 xmlRegStatePtr to, xmlRegAtomPtr atom) {
1546     xmlRegStatePtr end;
1547     int nullable = 0;
1548 
1549     if (atom == NULL) {
1550 	ERROR("genrate transition: atom == NULL");
1551 	return(-1);
1552     }
1553     if (atom->type == XML_REGEXP_SUBREG) {
1554 	/*
1555 	 * this is a subexpression handling one should not need to
1556 	 * create a new node except for XML_REGEXP_QUANT_RANGE.
1557 	 */
1558 	if (xmlRegAtomPush(ctxt, atom) < 0) {
1559 	    return(-1);
1560 	}
1561 	if ((to != NULL) && (atom->stop != to) &&
1562 	    (atom->quant != XML_REGEXP_QUANT_RANGE)) {
1563 	    /*
1564 	     * Generate an epsilon transition to link to the target
1565 	     */
1566 	    xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
1567 #ifdef DV
1568 	} else if ((to == NULL) && (atom->quant != XML_REGEXP_QUANT_RANGE) &&
1569 		   (atom->quant != XML_REGEXP_QUANT_ONCE)) {
1570 	    to = xmlRegNewState(ctxt);
1571 	    xmlRegStatePush(ctxt, to);
1572 	    ctxt->state = to;
1573 	    xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
1574 #endif
1575 	}
1576 	switch (atom->quant) {
1577 	    case XML_REGEXP_QUANT_OPT:
1578 		atom->quant = XML_REGEXP_QUANT_ONCE;
1579 		/*
1580 		 * transition done to the state after end of atom.
1581 		 *      1. set transition from atom start to new state
1582 		 *      2. set transition from atom end to this state.
1583 		 */
1584                 if (to == NULL) {
1585                     xmlFAGenerateEpsilonTransition(ctxt, atom->start, 0);
1586                     xmlFAGenerateEpsilonTransition(ctxt, atom->stop,
1587                                                    ctxt->state);
1588                 } else {
1589                     xmlFAGenerateEpsilonTransition(ctxt, atom->start, to);
1590                 }
1591 		break;
1592 	    case XML_REGEXP_QUANT_MULT:
1593 		atom->quant = XML_REGEXP_QUANT_ONCE;
1594 		xmlFAGenerateEpsilonTransition(ctxt, atom->start, atom->stop);
1595 		xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
1596 		break;
1597 	    case XML_REGEXP_QUANT_PLUS:
1598 		atom->quant = XML_REGEXP_QUANT_ONCE;
1599 		xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
1600 		break;
1601 	    case XML_REGEXP_QUANT_RANGE: {
1602 		int counter;
1603 		xmlRegStatePtr inter, newstate;
1604 
1605 		/*
1606 		 * create the final state now if needed
1607 		 */
1608 		if (to != NULL) {
1609 		    newstate = to;
1610 		} else {
1611 		    newstate = xmlRegNewState(ctxt);
1612 		    xmlRegStatePush(ctxt, newstate);
1613 		}
1614 
1615 		/*
1616 		 * The principle here is to use counted transition
1617 		 * to avoid explosion in the number of states in the
1618 		 * graph. This is clearly more complex but should not
1619 		 * be exploitable at runtime.
1620 		 */
1621 		if ((atom->min == 0) && (atom->start0 == NULL)) {
1622 		    xmlRegAtomPtr copy;
1623 		    /*
1624 		     * duplicate a transition based on atom to count next
1625 		     * occurences after 1. We cannot loop to atom->start
1626 		     * directly because we need an epsilon transition to
1627 		     * newstate.
1628 		     */
1629 		     /* ???? For some reason it seems we never reach that
1630 		        case, I suppose this got optimized out before when
1631 			building the automata */
1632 		    copy = xmlRegCopyAtom(ctxt, atom);
1633 		    if (copy == NULL)
1634 		        return(-1);
1635 		    copy->quant = XML_REGEXP_QUANT_ONCE;
1636 		    copy->min = 0;
1637 		    copy->max = 0;
1638 
1639 		    if (xmlFAGenerateTransitions(ctxt, atom->start, NULL, copy)
1640 		        < 0)
1641 			return(-1);
1642 		    inter = ctxt->state;
1643 		    counter = xmlRegGetCounter(ctxt);
1644 		    ctxt->counters[counter].min = atom->min - 1;
1645 		    ctxt->counters[counter].max = atom->max - 1;
1646 		    /* count the number of times we see it again */
1647 		    xmlFAGenerateCountedEpsilonTransition(ctxt, inter,
1648 						   atom->stop, counter);
1649 		    /* allow a way out based on the count */
1650 		    xmlFAGenerateCountedTransition(ctxt, inter,
1651 			                           newstate, counter);
1652 		    /* and also allow a direct exit for 0 */
1653 		    xmlFAGenerateEpsilonTransition(ctxt, atom->start,
1654 		                                   newstate);
1655 		} else {
1656 		    /*
1657 		     * either we need the atom at least once or there
1658 		     * is an atom->start0 allowing to easilly plug the
1659 		     * epsilon transition.
1660 		     */
1661 		    counter = xmlRegGetCounter(ctxt);
1662 		    ctxt->counters[counter].min = atom->min - 1;
1663 		    ctxt->counters[counter].max = atom->max - 1;
1664 		    /* count the number of times we see it again */
1665 		    xmlFAGenerateCountedEpsilonTransition(ctxt, atom->stop,
1666 						   atom->start, counter);
1667 		    /* allow a way out based on the count */
1668 		    xmlFAGenerateCountedTransition(ctxt, atom->stop,
1669 			                           newstate, counter);
1670 		    /* and if needed allow a direct exit for 0 */
1671 		    if (atom->min == 0)
1672 			xmlFAGenerateEpsilonTransition(ctxt, atom->start0,
1673 						       newstate);
1674 
1675 		}
1676 		atom->min = 0;
1677 		atom->max = 0;
1678 		atom->quant = XML_REGEXP_QUANT_ONCE;
1679 		ctxt->state = newstate;
1680 	    }
1681 	    default:
1682 		break;
1683 	}
1684 	return(0);
1685     }
1686     if ((atom->min == 0) && (atom->max == 0) &&
1687                (atom->quant == XML_REGEXP_QUANT_RANGE)) {
1688         /*
1689 	 * we can discard the atom and generate an epsilon transition instead
1690 	 */
1691 	if (to == NULL) {
1692 	    to = xmlRegNewState(ctxt);
1693 	    if (to != NULL)
1694 		xmlRegStatePush(ctxt, to);
1695 	    else {
1696 		return(-1);
1697 	    }
1698 	}
1699 	xmlFAGenerateEpsilonTransition(ctxt, from, to);
1700 	ctxt->state = to;
1701 	xmlRegFreeAtom(atom);
1702 	return(0);
1703     }
1704     if (to == NULL) {
1705 	to = xmlRegNewState(ctxt);
1706 	if (to != NULL)
1707 	    xmlRegStatePush(ctxt, to);
1708 	else {
1709 	    return(-1);
1710 	}
1711     }
1712     end = to;
1713     if ((atom->quant == XML_REGEXP_QUANT_MULT) ||
1714         (atom->quant == XML_REGEXP_QUANT_PLUS)) {
1715 	/*
1716 	 * Do not pollute the target state by adding transitions from
1717 	 * it as it is likely to be the shared target of multiple branches.
1718 	 * So isolate with an epsilon transition.
1719 	 */
1720         xmlRegStatePtr tmp;
1721 
1722 	tmp = xmlRegNewState(ctxt);
1723 	if (tmp != NULL)
1724 	    xmlRegStatePush(ctxt, tmp);
1725 	else {
1726 	    return(-1);
1727 	}
1728 	xmlFAGenerateEpsilonTransition(ctxt, tmp, to);
1729 	to = tmp;
1730     }
1731     if (xmlRegAtomPush(ctxt, atom) < 0) {
1732 	return(-1);
1733     }
1734     if ((atom->quant == XML_REGEXP_QUANT_RANGE) &&
1735         (atom->min == 0) && (atom->max > 0)) {
1736 	nullable = 1;
1737 	atom->min = 1;
1738         if (atom->max == 1)
1739 	    atom->quant = XML_REGEXP_QUANT_OPT;
1740     }
1741     xmlRegStateAddTrans(ctxt, from, atom, to, -1, -1);
1742     ctxt->state = end;
1743     switch (atom->quant) {
1744 	case XML_REGEXP_QUANT_OPT:
1745 	    atom->quant = XML_REGEXP_QUANT_ONCE;
1746 	    xmlFAGenerateEpsilonTransition(ctxt, from, to);
1747 	    break;
1748 	case XML_REGEXP_QUANT_MULT:
1749 	    atom->quant = XML_REGEXP_QUANT_ONCE;
1750 	    xmlFAGenerateEpsilonTransition(ctxt, from, to);
1751 	    xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
1752 	    break;
1753 	case XML_REGEXP_QUANT_PLUS:
1754 	    atom->quant = XML_REGEXP_QUANT_ONCE;
1755 	    xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
1756 	    break;
1757 	case XML_REGEXP_QUANT_RANGE:
1758 	    if (nullable)
1759 		xmlFAGenerateEpsilonTransition(ctxt, from, to);
1760 	    break;
1761 	default:
1762 	    break;
1763     }
1764     return(0);
1765 }
1766 
1767 /**
1768  * xmlFAReduceEpsilonTransitions:
1769  * @ctxt:  a regexp parser context
1770  * @fromnr:  the from state
1771  * @tonr:  the to state
1772  * @counter:  should that transition be associated to a counted
1773  *
1774  */
1775 static void
1776 xmlFAReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int fromnr,
1777 	                      int tonr, int counter) {
1778     int transnr;
1779     xmlRegStatePtr from;
1780     xmlRegStatePtr to;
1781 
1782 #ifdef DEBUG_REGEXP_GRAPH
1783     printf("xmlFAReduceEpsilonTransitions(%d, %d)\n", fromnr, tonr);
1784 #endif
1785     from = ctxt->states[fromnr];
1786     if (from == NULL)
1787 	return;
1788     to = ctxt->states[tonr];
1789     if (to == NULL)
1790 	return;
1791     if ((to->mark == XML_REGEXP_MARK_START) ||
1792 	(to->mark == XML_REGEXP_MARK_VISITED))
1793 	return;
1794 
1795     to->mark = XML_REGEXP_MARK_VISITED;
1796     if (to->type == XML_REGEXP_FINAL_STATE) {
1797 #ifdef DEBUG_REGEXP_GRAPH
1798 	printf("State %d is final, so %d becomes final\n", tonr, fromnr);
1799 #endif
1800 	from->type = XML_REGEXP_FINAL_STATE;
1801     }
1802     for (transnr = 0;transnr < to->nbTrans;transnr++) {
1803         if (to->trans[transnr].to < 0)
1804 	    continue;
1805 	if (to->trans[transnr].atom == NULL) {
1806 	    /*
1807 	     * Don't remove counted transitions
1808 	     * Don't loop either
1809 	     */
1810 	    if (to->trans[transnr].to != fromnr) {
1811 		if (to->trans[transnr].count >= 0) {
1812 		    int newto = to->trans[transnr].to;
1813 
1814 		    xmlRegStateAddTrans(ctxt, from, NULL,
1815 					ctxt->states[newto],
1816 					-1, to->trans[transnr].count);
1817 		} else {
1818 #ifdef DEBUG_REGEXP_GRAPH
1819 		    printf("Found epsilon trans %d from %d to %d\n",
1820 			   transnr, tonr, to->trans[transnr].to);
1821 #endif
1822 		    if (to->trans[transnr].counter >= 0) {
1823 			xmlFAReduceEpsilonTransitions(ctxt, fromnr,
1824 					      to->trans[transnr].to,
1825 					      to->trans[transnr].counter);
1826 		    } else {
1827 			xmlFAReduceEpsilonTransitions(ctxt, fromnr,
1828 					      to->trans[transnr].to,
1829 					      counter);
1830 		    }
1831 		}
1832 	    }
1833 	} else {
1834 	    int newto = to->trans[transnr].to;
1835 
1836 	    if (to->trans[transnr].counter >= 0) {
1837 		xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom,
1838 				    ctxt->states[newto],
1839 				    to->trans[transnr].counter, -1);
1840 	    } else {
1841 		xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom,
1842 				    ctxt->states[newto], counter, -1);
1843 	    }
1844 	}
1845     }
1846     to->mark = XML_REGEXP_MARK_NORMAL;
1847 }
1848 
1849 /**
1850  * xmlFAEliminateSimpleEpsilonTransitions:
1851  * @ctxt:  a regexp parser context
1852  *
1853  * Eliminating general epsilon transitions can get costly in the general
1854  * algorithm due to the large amount of generated new transitions and
1855  * associated comparisons. However for simple epsilon transition used just
1856  * to separate building blocks when generating the automata this can be
1857  * reduced to state elimination:
1858  *    - if there exists an epsilon from X to Y
1859  *    - if there is no other transition from X
1860  * then X and Y are semantically equivalent and X can be eliminated
1861  * If X is the start state then make Y the start state, else replace the
1862  * target of all transitions to X by transitions to Y.
1863  */
1864 static void
1865 xmlFAEliminateSimpleEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
1866     int statenr, i, j, newto;
1867     xmlRegStatePtr state, tmp;
1868 
1869     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
1870 	state = ctxt->states[statenr];
1871 	if (state == NULL)
1872 	    continue;
1873 	if (state->nbTrans != 1)
1874 	    continue;
1875 	if (state->type == XML_REGEXP_UNREACH_STATE)
1876 	    continue;
1877 	/* is the only transition out a basic transition */
1878 	if ((state->trans[0].atom == NULL) &&
1879 	    (state->trans[0].to >= 0) &&
1880 	    (state->trans[0].to != statenr) &&
1881 	    (state->trans[0].counter < 0) &&
1882 	    (state->trans[0].count < 0)) {
1883 	    newto = state->trans[0].to;
1884 
1885             if (state->type == XML_REGEXP_START_STATE) {
1886 #ifdef DEBUG_REGEXP_GRAPH
1887 		printf("Found simple epsilon trans from start %d to %d\n",
1888 		       statenr, newto);
1889 #endif
1890             } else {
1891 #ifdef DEBUG_REGEXP_GRAPH
1892 		printf("Found simple epsilon trans from %d to %d\n",
1893 		       statenr, newto);
1894 #endif
1895 	        for (i = 0;i < state->nbTransTo;i++) {
1896 		    tmp = ctxt->states[state->transTo[i]];
1897 		    for (j = 0;j < tmp->nbTrans;j++) {
1898 			if (tmp->trans[j].to == statenr) {
1899 #ifdef DEBUG_REGEXP_GRAPH
1900 			    printf("Changed transition %d on %d to go to %d\n",
1901 				   j, tmp->no, newto);
1902 #endif
1903 			    tmp->trans[j].to = -1;
1904 			    xmlRegStateAddTrans(ctxt, tmp, tmp->trans[j].atom,
1905 						ctxt->states[newto],
1906 					        tmp->trans[j].counter,
1907 						tmp->trans[j].count);
1908 			}
1909 		    }
1910 		}
1911 		if (state->type == XML_REGEXP_FINAL_STATE)
1912 		    ctxt->states[newto]->type = XML_REGEXP_FINAL_STATE;
1913 		/* eliminate the transition completely */
1914 		state->nbTrans = 0;
1915 
1916                 state->type = XML_REGEXP_UNREACH_STATE;
1917 
1918 	    }
1919 
1920 	}
1921     }
1922 }
1923 /**
1924  * xmlFAEliminateEpsilonTransitions:
1925  * @ctxt:  a regexp parser context
1926  *
1927  */
1928 static void
1929 xmlFAEliminateEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
1930     int statenr, transnr;
1931     xmlRegStatePtr state;
1932     int has_epsilon;
1933 
1934     if (ctxt->states == NULL) return;
1935 
1936     /*
1937      * Eliminate simple epsilon transition and the associated unreachable
1938      * states.
1939      */
1940     xmlFAEliminateSimpleEpsilonTransitions(ctxt);
1941     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
1942 	state = ctxt->states[statenr];
1943 	if ((state != NULL) && (state->type == XML_REGEXP_UNREACH_STATE)) {
1944 #ifdef DEBUG_REGEXP_GRAPH
1945 	    printf("Removed unreachable state %d\n", statenr);
1946 #endif
1947 	    xmlRegFreeState(state);
1948 	    ctxt->states[statenr] = NULL;
1949 	}
1950     }
1951 
1952     has_epsilon = 0;
1953 
1954     /*
1955      * Build the completed transitions bypassing the epsilons
1956      * Use a marking algorithm to avoid loops
1957      * Mark sink states too.
1958      * Process from the latests states backward to the start when
1959      * there is long cascading epsilon chains this minimize the
1960      * recursions and transition compares when adding the new ones
1961      */
1962     for (statenr = ctxt->nbStates - 1;statenr >= 0;statenr--) {
1963 	state = ctxt->states[statenr];
1964 	if (state == NULL)
1965 	    continue;
1966 	if ((state->nbTrans == 0) &&
1967 	    (state->type != XML_REGEXP_FINAL_STATE)) {
1968 	    state->type = XML_REGEXP_SINK_STATE;
1969 	}
1970 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
1971 	    if ((state->trans[transnr].atom == NULL) &&
1972 		(state->trans[transnr].to >= 0)) {
1973 		if (state->trans[transnr].to == statenr) {
1974 		    state->trans[transnr].to = -1;
1975 #ifdef DEBUG_REGEXP_GRAPH
1976 		    printf("Removed loopback epsilon trans %d on %d\n",
1977 			   transnr, statenr);
1978 #endif
1979 		} else if (state->trans[transnr].count < 0) {
1980 		    int newto = state->trans[transnr].to;
1981 
1982 #ifdef DEBUG_REGEXP_GRAPH
1983 		    printf("Found epsilon trans %d from %d to %d\n",
1984 			   transnr, statenr, newto);
1985 #endif
1986 		    has_epsilon = 1;
1987 		    state->trans[transnr].to = -2;
1988 		    state->mark = XML_REGEXP_MARK_START;
1989 		    xmlFAReduceEpsilonTransitions(ctxt, statenr,
1990 				      newto, state->trans[transnr].counter);
1991 		    state->mark = XML_REGEXP_MARK_NORMAL;
1992 #ifdef DEBUG_REGEXP_GRAPH
1993 		} else {
1994 		    printf("Found counted transition %d on %d\n",
1995 			   transnr, statenr);
1996 #endif
1997 	        }
1998 	    }
1999 	}
2000     }
2001     /*
2002      * Eliminate the epsilon transitions
2003      */
2004     if (has_epsilon) {
2005 	for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2006 	    state = ctxt->states[statenr];
2007 	    if (state == NULL)
2008 		continue;
2009 	    for (transnr = 0;transnr < state->nbTrans;transnr++) {
2010 		xmlRegTransPtr trans = &(state->trans[transnr]);
2011 		if ((trans->atom == NULL) &&
2012 		    (trans->count < 0) &&
2013 		    (trans->to >= 0)) {
2014 		    trans->to = -1;
2015 		}
2016 	    }
2017 	}
2018     }
2019 
2020     /*
2021      * Use this pass to detect unreachable states too
2022      */
2023     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2024 	state = ctxt->states[statenr];
2025 	if (state != NULL)
2026 	    state->reached = XML_REGEXP_MARK_NORMAL;
2027     }
2028     state = ctxt->states[0];
2029     if (state != NULL)
2030 	state->reached = XML_REGEXP_MARK_START;
2031     while (state != NULL) {
2032 	xmlRegStatePtr target = NULL;
2033 	state->reached = XML_REGEXP_MARK_VISITED;
2034 	/*
2035 	 * Mark all states reachable from the current reachable state
2036 	 */
2037 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
2038 	    if ((state->trans[transnr].to >= 0) &&
2039 		((state->trans[transnr].atom != NULL) ||
2040 		 (state->trans[transnr].count >= 0))) {
2041 		int newto = state->trans[transnr].to;
2042 
2043 		if (ctxt->states[newto] == NULL)
2044 		    continue;
2045 		if (ctxt->states[newto]->reached == XML_REGEXP_MARK_NORMAL) {
2046 		    ctxt->states[newto]->reached = XML_REGEXP_MARK_START;
2047 		    target = ctxt->states[newto];
2048 		}
2049 	    }
2050 	}
2051 
2052 	/*
2053 	 * find the next accessible state not explored
2054 	 */
2055 	if (target == NULL) {
2056 	    for (statenr = 1;statenr < ctxt->nbStates;statenr++) {
2057 		state = ctxt->states[statenr];
2058 		if ((state != NULL) && (state->reached ==
2059 			XML_REGEXP_MARK_START)) {
2060 		    target = state;
2061 		    break;
2062 		}
2063 	    }
2064 	}
2065 	state = target;
2066     }
2067     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2068 	state = ctxt->states[statenr];
2069 	if ((state != NULL) && (state->reached == XML_REGEXP_MARK_NORMAL)) {
2070 #ifdef DEBUG_REGEXP_GRAPH
2071 	    printf("Removed unreachable state %d\n", statenr);
2072 #endif
2073 	    xmlRegFreeState(state);
2074 	    ctxt->states[statenr] = NULL;
2075 	}
2076     }
2077 
2078 }
2079 
2080 static int
2081 xmlFACompareRanges(xmlRegRangePtr range1, xmlRegRangePtr range2) {
2082     int ret = 0;
2083 
2084     if ((range1->type == XML_REGEXP_RANGES) ||
2085         (range2->type == XML_REGEXP_RANGES) ||
2086         (range2->type == XML_REGEXP_SUBREG) ||
2087         (range1->type == XML_REGEXP_SUBREG) ||
2088         (range1->type == XML_REGEXP_STRING) ||
2089         (range2->type == XML_REGEXP_STRING))
2090 	return(-1);
2091 
2092     /* put them in order */
2093     if (range1->type > range2->type) {
2094         xmlRegRangePtr tmp;
2095 
2096 	tmp = range1;
2097 	range1 = range2;
2098 	range2 = tmp;
2099     }
2100     if ((range1->type == XML_REGEXP_ANYCHAR) ||
2101         (range2->type == XML_REGEXP_ANYCHAR)) {
2102 	ret = 1;
2103     } else if ((range1->type == XML_REGEXP_EPSILON) ||
2104                (range2->type == XML_REGEXP_EPSILON)) {
2105 	return(0);
2106     } else if (range1->type == range2->type) {
2107         if (range1->type != XML_REGEXP_CHARVAL)
2108             ret = 1;
2109         else if ((range1->end < range2->start) ||
2110 	         (range2->end < range1->start))
2111 	    ret = 0;
2112 	else
2113 	    ret = 1;
2114     } else if (range1->type == XML_REGEXP_CHARVAL) {
2115         int codepoint;
2116 	int neg = 0;
2117 
2118 	/*
2119 	 * just check all codepoints in the range for acceptance,
2120 	 * this is usually way cheaper since done only once at
2121 	 * compilation than testing over and over at runtime or
2122 	 * pushing too many states when evaluating.
2123 	 */
2124 	if (((range1->neg == 0) && (range2->neg != 0)) ||
2125 	    ((range1->neg != 0) && (range2->neg == 0)))
2126 	    neg = 1;
2127 
2128 	for (codepoint = range1->start;codepoint <= range1->end ;codepoint++) {
2129 	    ret = xmlRegCheckCharacterRange(range2->type, codepoint,
2130 					    0, range2->start, range2->end,
2131 					    range2->blockName);
2132 	    if (ret < 0)
2133 	        return(-1);
2134 	    if (((neg == 1) && (ret == 0)) ||
2135 	        ((neg == 0) && (ret == 1)))
2136 		return(1);
2137 	}
2138 	return(0);
2139     } else if ((range1->type == XML_REGEXP_BLOCK_NAME) ||
2140                (range2->type == XML_REGEXP_BLOCK_NAME)) {
2141 	if (range1->type == range2->type) {
2142 	    ret = xmlStrEqual(range1->blockName, range2->blockName);
2143 	} else {
2144 	    /*
2145 	     * comparing a block range with anything else is way
2146 	     * too costly, and maintining the table is like too much
2147 	     * memory too, so let's force the automata to save state
2148 	     * here.
2149 	     */
2150 	    return(1);
2151 	}
2152     } else if ((range1->type < XML_REGEXP_LETTER) ||
2153                (range2->type < XML_REGEXP_LETTER)) {
2154 	if ((range1->type == XML_REGEXP_ANYSPACE) &&
2155 	    (range2->type == XML_REGEXP_NOTSPACE))
2156 	    ret = 0;
2157 	else if ((range1->type == XML_REGEXP_INITNAME) &&
2158 	         (range2->type == XML_REGEXP_NOTINITNAME))
2159 	    ret = 0;
2160 	else if ((range1->type == XML_REGEXP_NAMECHAR) &&
2161 	         (range2->type == XML_REGEXP_NOTNAMECHAR))
2162 	    ret = 0;
2163 	else if ((range1->type == XML_REGEXP_DECIMAL) &&
2164 	         (range2->type == XML_REGEXP_NOTDECIMAL))
2165 	    ret = 0;
2166 	else if ((range1->type == XML_REGEXP_REALCHAR) &&
2167 	         (range2->type == XML_REGEXP_NOTREALCHAR))
2168 	    ret = 0;
2169 	else {
2170 	    /* same thing to limit complexity */
2171 	    return(1);
2172 	}
2173     } else {
2174         ret = 0;
2175         /* range1->type < range2->type here */
2176         switch (range1->type) {
2177 	    case XML_REGEXP_LETTER:
2178 	         /* all disjoint except in the subgroups */
2179 	         if ((range2->type == XML_REGEXP_LETTER_UPPERCASE) ||
2180 		     (range2->type == XML_REGEXP_LETTER_LOWERCASE) ||
2181 		     (range2->type == XML_REGEXP_LETTER_TITLECASE) ||
2182 		     (range2->type == XML_REGEXP_LETTER_MODIFIER) ||
2183 		     (range2->type == XML_REGEXP_LETTER_OTHERS))
2184 		     ret = 1;
2185 		 break;
2186 	    case XML_REGEXP_MARK:
2187 	         if ((range2->type == XML_REGEXP_MARK_NONSPACING) ||
2188 		     (range2->type == XML_REGEXP_MARK_SPACECOMBINING) ||
2189 		     (range2->type == XML_REGEXP_MARK_ENCLOSING))
2190 		     ret = 1;
2191 		 break;
2192 	    case XML_REGEXP_NUMBER:
2193 	         if ((range2->type == XML_REGEXP_NUMBER_DECIMAL) ||
2194 		     (range2->type == XML_REGEXP_NUMBER_LETTER) ||
2195 		     (range2->type == XML_REGEXP_NUMBER_OTHERS))
2196 		     ret = 1;
2197 		 break;
2198 	    case XML_REGEXP_PUNCT:
2199 	         if ((range2->type == XML_REGEXP_PUNCT_CONNECTOR) ||
2200 		     (range2->type == XML_REGEXP_PUNCT_DASH) ||
2201 		     (range2->type == XML_REGEXP_PUNCT_OPEN) ||
2202 		     (range2->type == XML_REGEXP_PUNCT_CLOSE) ||
2203 		     (range2->type == XML_REGEXP_PUNCT_INITQUOTE) ||
2204 		     (range2->type == XML_REGEXP_PUNCT_FINQUOTE) ||
2205 		     (range2->type == XML_REGEXP_PUNCT_OTHERS))
2206 		     ret = 1;
2207 		 break;
2208 	    case XML_REGEXP_SEPAR:
2209 	         if ((range2->type == XML_REGEXP_SEPAR_SPACE) ||
2210 		     (range2->type == XML_REGEXP_SEPAR_LINE) ||
2211 		     (range2->type == XML_REGEXP_SEPAR_PARA))
2212 		     ret = 1;
2213 		 break;
2214 	    case XML_REGEXP_SYMBOL:
2215 	         if ((range2->type == XML_REGEXP_SYMBOL_MATH) ||
2216 		     (range2->type == XML_REGEXP_SYMBOL_CURRENCY) ||
2217 		     (range2->type == XML_REGEXP_SYMBOL_MODIFIER) ||
2218 		     (range2->type == XML_REGEXP_SYMBOL_OTHERS))
2219 		     ret = 1;
2220 		 break;
2221 	    case XML_REGEXP_OTHER:
2222 	         if ((range2->type == XML_REGEXP_OTHER_CONTROL) ||
2223 		     (range2->type == XML_REGEXP_OTHER_FORMAT) ||
2224 		     (range2->type == XML_REGEXP_OTHER_PRIVATE))
2225 		     ret = 1;
2226 		 break;
2227             default:
2228 	         if ((range2->type >= XML_REGEXP_LETTER) &&
2229 		     (range2->type < XML_REGEXP_BLOCK_NAME))
2230 		     ret = 0;
2231 		 else {
2232 		     /* safety net ! */
2233 		     return(1);
2234 		 }
2235 	}
2236     }
2237     if (((range1->neg == 0) && (range2->neg != 0)) ||
2238         ((range1->neg != 0) && (range2->neg == 0)))
2239 	ret = !ret;
2240     return(ret);
2241 }
2242 
2243 /**
2244  * xmlFACompareAtomTypes:
2245  * @type1:  an atom type
2246  * @type2:  an atom type
2247  *
2248  * Compares two atoms type to check whether they intersect in some ways,
2249  * this is used by xmlFACompareAtoms only
2250  *
2251  * Returns 1 if they may intersect and 0 otherwise
2252  */
2253 static int
2254 xmlFACompareAtomTypes(xmlRegAtomType type1, xmlRegAtomType type2) {
2255     if ((type1 == XML_REGEXP_EPSILON) ||
2256         (type1 == XML_REGEXP_CHARVAL) ||
2257 	(type1 == XML_REGEXP_RANGES) ||
2258 	(type1 == XML_REGEXP_SUBREG) ||
2259 	(type1 == XML_REGEXP_STRING) ||
2260 	(type1 == XML_REGEXP_ANYCHAR))
2261 	return(1);
2262     if ((type2 == XML_REGEXP_EPSILON) ||
2263         (type2 == XML_REGEXP_CHARVAL) ||
2264 	(type2 == XML_REGEXP_RANGES) ||
2265 	(type2 == XML_REGEXP_SUBREG) ||
2266 	(type2 == XML_REGEXP_STRING) ||
2267 	(type2 == XML_REGEXP_ANYCHAR))
2268 	return(1);
2269 
2270     if (type1 == type2) return(1);
2271 
2272     /* simplify subsequent compares by making sure type1 < type2 */
2273     if (type1 > type2) {
2274         xmlRegAtomType tmp = type1;
2275 	type1 = type2;
2276 	type2 = tmp;
2277     }
2278     switch (type1) {
2279         case XML_REGEXP_ANYSPACE: /* \s */
2280 	    /* can't be a letter, number, mark, pontuation, symbol */
2281 	    if ((type2 == XML_REGEXP_NOTSPACE) ||
2282 		((type2 >= XML_REGEXP_LETTER) &&
2283 		 (type2 <= XML_REGEXP_LETTER_OTHERS)) ||
2284 	        ((type2 >= XML_REGEXP_NUMBER) &&
2285 		 (type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
2286 	        ((type2 >= XML_REGEXP_MARK) &&
2287 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2288 	        ((type2 >= XML_REGEXP_PUNCT) &&
2289 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2290 	        ((type2 >= XML_REGEXP_SYMBOL) &&
2291 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS))
2292 	        ) return(0);
2293 	    break;
2294         case XML_REGEXP_NOTSPACE: /* \S */
2295 	    break;
2296         case XML_REGEXP_INITNAME: /* \l */
2297 	    /* can't be a number, mark, separator, pontuation, symbol or other */
2298 	    if ((type2 == XML_REGEXP_NOTINITNAME) ||
2299 	        ((type2 >= XML_REGEXP_NUMBER) &&
2300 		 (type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
2301 	        ((type2 >= XML_REGEXP_MARK) &&
2302 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2303 	        ((type2 >= XML_REGEXP_SEPAR) &&
2304 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2305 	        ((type2 >= XML_REGEXP_PUNCT) &&
2306 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2307 	        ((type2 >= XML_REGEXP_SYMBOL) &&
2308 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2309 	        ((type2 >= XML_REGEXP_OTHER) &&
2310 		 (type2 <= XML_REGEXP_OTHER_NA))
2311 		) return(0);
2312 	    break;
2313         case XML_REGEXP_NOTINITNAME: /* \L */
2314 	    break;
2315         case XML_REGEXP_NAMECHAR: /* \c */
2316 	    /* can't be a mark, separator, pontuation, symbol or other */
2317 	    if ((type2 == XML_REGEXP_NOTNAMECHAR) ||
2318 	        ((type2 >= XML_REGEXP_MARK) &&
2319 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2320 	        ((type2 >= XML_REGEXP_PUNCT) &&
2321 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2322 	        ((type2 >= XML_REGEXP_SEPAR) &&
2323 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2324 	        ((type2 >= XML_REGEXP_SYMBOL) &&
2325 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2326 	        ((type2 >= XML_REGEXP_OTHER) &&
2327 		 (type2 <= XML_REGEXP_OTHER_NA))
2328 		) return(0);
2329 	    break;
2330         case XML_REGEXP_NOTNAMECHAR: /* \C */
2331 	    break;
2332         case XML_REGEXP_DECIMAL: /* \d */
2333 	    /* can't be a letter, mark, separator, pontuation, symbol or other */
2334 	    if ((type2 == XML_REGEXP_NOTDECIMAL) ||
2335 	        (type2 == XML_REGEXP_REALCHAR) ||
2336 		((type2 >= XML_REGEXP_LETTER) &&
2337 		 (type2 <= XML_REGEXP_LETTER_OTHERS)) ||
2338 	        ((type2 >= XML_REGEXP_MARK) &&
2339 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2340 	        ((type2 >= XML_REGEXP_PUNCT) &&
2341 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2342 	        ((type2 >= XML_REGEXP_SEPAR) &&
2343 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2344 	        ((type2 >= XML_REGEXP_SYMBOL) &&
2345 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2346 	        ((type2 >= XML_REGEXP_OTHER) &&
2347 		 (type2 <= XML_REGEXP_OTHER_NA))
2348 		)return(0);
2349 	    break;
2350         case XML_REGEXP_NOTDECIMAL: /* \D */
2351 	    break;
2352         case XML_REGEXP_REALCHAR: /* \w */
2353 	    /* can't be a mark, separator, pontuation, symbol or other */
2354 	    if ((type2 == XML_REGEXP_NOTDECIMAL) ||
2355 	        ((type2 >= XML_REGEXP_MARK) &&
2356 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2357 	        ((type2 >= XML_REGEXP_PUNCT) &&
2358 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2359 	        ((type2 >= XML_REGEXP_SEPAR) &&
2360 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2361 	        ((type2 >= XML_REGEXP_SYMBOL) &&
2362 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2363 	        ((type2 >= XML_REGEXP_OTHER) &&
2364 		 (type2 <= XML_REGEXP_OTHER_NA))
2365 		)return(0);
2366 	    break;
2367         case XML_REGEXP_NOTREALCHAR: /* \W */
2368 	    break;
2369 	/*
2370 	 * at that point we know both type 1 and type2 are from
2371 	 * character categories are ordered and are different,
2372 	 * it becomes simple because this is a partition
2373 	 */
2374         case XML_REGEXP_LETTER:
2375 	    if (type2 <= XML_REGEXP_LETTER_OTHERS)
2376 	        return(1);
2377 	    return(0);
2378         case XML_REGEXP_LETTER_UPPERCASE:
2379         case XML_REGEXP_LETTER_LOWERCASE:
2380         case XML_REGEXP_LETTER_TITLECASE:
2381         case XML_REGEXP_LETTER_MODIFIER:
2382         case XML_REGEXP_LETTER_OTHERS:
2383 	    return(0);
2384         case XML_REGEXP_MARK:
2385 	    if (type2 <= XML_REGEXP_MARK_ENCLOSING)
2386 	        return(1);
2387 	    return(0);
2388         case XML_REGEXP_MARK_NONSPACING:
2389         case XML_REGEXP_MARK_SPACECOMBINING:
2390         case XML_REGEXP_MARK_ENCLOSING:
2391 	    return(0);
2392         case XML_REGEXP_NUMBER:
2393 	    if (type2 <= XML_REGEXP_NUMBER_OTHERS)
2394 	        return(1);
2395 	    return(0);
2396         case XML_REGEXP_NUMBER_DECIMAL:
2397         case XML_REGEXP_NUMBER_LETTER:
2398         case XML_REGEXP_NUMBER_OTHERS:
2399 	    return(0);
2400         case XML_REGEXP_PUNCT:
2401 	    if (type2 <= XML_REGEXP_PUNCT_OTHERS)
2402 	        return(1);
2403 	    return(0);
2404         case XML_REGEXP_PUNCT_CONNECTOR:
2405         case XML_REGEXP_PUNCT_DASH:
2406         case XML_REGEXP_PUNCT_OPEN:
2407         case XML_REGEXP_PUNCT_CLOSE:
2408         case XML_REGEXP_PUNCT_INITQUOTE:
2409         case XML_REGEXP_PUNCT_FINQUOTE:
2410         case XML_REGEXP_PUNCT_OTHERS:
2411 	    return(0);
2412         case XML_REGEXP_SEPAR:
2413 	    if (type2 <= XML_REGEXP_SEPAR_PARA)
2414 	        return(1);
2415 	    return(0);
2416         case XML_REGEXP_SEPAR_SPACE:
2417         case XML_REGEXP_SEPAR_LINE:
2418         case XML_REGEXP_SEPAR_PARA:
2419 	    return(0);
2420         case XML_REGEXP_SYMBOL:
2421 	    if (type2 <= XML_REGEXP_SYMBOL_OTHERS)
2422 	        return(1);
2423 	    return(0);
2424         case XML_REGEXP_SYMBOL_MATH:
2425         case XML_REGEXP_SYMBOL_CURRENCY:
2426         case XML_REGEXP_SYMBOL_MODIFIER:
2427         case XML_REGEXP_SYMBOL_OTHERS:
2428 	    return(0);
2429         case XML_REGEXP_OTHER:
2430 	    if (type2 <= XML_REGEXP_OTHER_NA)
2431 	        return(1);
2432 	    return(0);
2433         case XML_REGEXP_OTHER_CONTROL:
2434         case XML_REGEXP_OTHER_FORMAT:
2435         case XML_REGEXP_OTHER_PRIVATE:
2436         case XML_REGEXP_OTHER_NA:
2437 	    return(0);
2438 	default:
2439 	    break;
2440     }
2441     return(1);
2442 }
2443 
2444 /**
2445  * xmlFAEqualAtoms:
2446  * @atom1:  an atom
2447  * @atom2:  an atom
2448  * @deep: if not set only compare string pointers
2449  *
2450  * Compares two atoms to check whether they are the same exactly
2451  * this is used to remove equivalent transitions
2452  *
2453  * Returns 1 if same and 0 otherwise
2454  */
2455 static int
2456 xmlFAEqualAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
2457     int ret = 0;
2458 
2459     if (atom1 == atom2)
2460 	return(1);
2461     if ((atom1 == NULL) || (atom2 == NULL))
2462 	return(0);
2463 
2464     if (atom1->type != atom2->type)
2465         return(0);
2466     switch (atom1->type) {
2467         case XML_REGEXP_EPSILON:
2468 	    ret = 0;
2469 	    break;
2470         case XML_REGEXP_STRING:
2471             if (!deep)
2472                 ret = (atom1->valuep == atom2->valuep);
2473             else
2474                 ret = xmlStrEqual((xmlChar *)atom1->valuep,
2475                                   (xmlChar *)atom2->valuep);
2476 	    break;
2477         case XML_REGEXP_CHARVAL:
2478 	    ret = (atom1->codepoint == atom2->codepoint);
2479 	    break;
2480 	case XML_REGEXP_RANGES:
2481 	    /* too hard to do in the general case */
2482 	    ret = 0;
2483 	default:
2484 	    break;
2485     }
2486     return(ret);
2487 }
2488 
2489 /**
2490  * xmlFACompareAtoms:
2491  * @atom1:  an atom
2492  * @atom2:  an atom
2493  * @deep: if not set only compare string pointers
2494  *
2495  * Compares two atoms to check whether they intersect in some ways,
2496  * this is used by xmlFAComputesDeterminism and xmlFARecurseDeterminism only
2497  *
2498  * Returns 1 if yes and 0 otherwise
2499  */
2500 static int
2501 xmlFACompareAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
2502     int ret = 1;
2503 
2504     if (atom1 == atom2)
2505 	return(1);
2506     if ((atom1 == NULL) || (atom2 == NULL))
2507 	return(0);
2508 
2509     if ((atom1->type == XML_REGEXP_ANYCHAR) ||
2510         (atom2->type == XML_REGEXP_ANYCHAR))
2511 	return(1);
2512 
2513     if (atom1->type > atom2->type) {
2514 	xmlRegAtomPtr tmp;
2515 	tmp = atom1;
2516 	atom1 = atom2;
2517 	atom2 = tmp;
2518     }
2519     if (atom1->type != atom2->type) {
2520         ret = xmlFACompareAtomTypes(atom1->type, atom2->type);
2521 	/* if they can't intersect at the type level break now */
2522 	if (ret == 0)
2523 	    return(0);
2524     }
2525     switch (atom1->type) {
2526         case XML_REGEXP_STRING:
2527             if (!deep)
2528                 ret = (atom1->valuep != atom2->valuep);
2529             else
2530                 ret = xmlRegStrEqualWildcard((xmlChar *)atom1->valuep,
2531                                              (xmlChar *)atom2->valuep);
2532 	    break;
2533         case XML_REGEXP_EPSILON:
2534 	    goto not_determinist;
2535         case XML_REGEXP_CHARVAL:
2536 	    if (atom2->type == XML_REGEXP_CHARVAL) {
2537 		ret = (atom1->codepoint == atom2->codepoint);
2538 	    } else {
2539 	        ret = xmlRegCheckCharacter(atom2, atom1->codepoint);
2540 		if (ret < 0)
2541 		    ret = 1;
2542 	    }
2543 	    break;
2544         case XML_REGEXP_RANGES:
2545 	    if (atom2->type == XML_REGEXP_RANGES) {
2546 	        int i, j, res;
2547 		xmlRegRangePtr r1, r2;
2548 
2549 		/*
2550 		 * need to check that none of the ranges eventually matches
2551 		 */
2552 		for (i = 0;i < atom1->nbRanges;i++) {
2553 		    for (j = 0;j < atom2->nbRanges;j++) {
2554 			r1 = atom1->ranges[i];
2555 			r2 = atom2->ranges[j];
2556 			res = xmlFACompareRanges(r1, r2);
2557 			if (res == 1) {
2558 			    ret = 1;
2559 			    goto done;
2560 			}
2561 		    }
2562 		}
2563 		ret = 0;
2564 	    }
2565 	    break;
2566 	default:
2567 	    goto not_determinist;
2568     }
2569 done:
2570     if (atom1->neg != atom2->neg) {
2571         ret = !ret;
2572     }
2573     if (ret == 0)
2574         return(0);
2575 not_determinist:
2576     return(1);
2577 }
2578 
2579 /**
2580  * xmlFARecurseDeterminism:
2581  * @ctxt:  a regexp parser context
2582  *
2583  * Check whether the associated regexp is determinist,
2584  * should be called after xmlFAEliminateEpsilonTransitions()
2585  *
2586  */
2587 static int
2588 xmlFARecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
2589 	                 int to, xmlRegAtomPtr atom) {
2590     int ret = 1;
2591     int res;
2592     int transnr, nbTrans;
2593     xmlRegTransPtr t1;
2594     int deep = 1;
2595 
2596     if (state == NULL)
2597 	return(ret);
2598     if (state->markd == XML_REGEXP_MARK_VISITED)
2599 	return(ret);
2600 
2601     if (ctxt->flags & AM_AUTOMATA_RNG)
2602         deep = 0;
2603 
2604     /*
2605      * don't recurse on transitions potentially added in the course of
2606      * the elimination.
2607      */
2608     nbTrans = state->nbTrans;
2609     for (transnr = 0;transnr < nbTrans;transnr++) {
2610 	t1 = &(state->trans[transnr]);
2611 	/*
2612 	 * check transitions conflicting with the one looked at
2613 	 */
2614 	if (t1->atom == NULL) {
2615 	    if (t1->to < 0)
2616 		continue;
2617 	    state->markd = XML_REGEXP_MARK_VISITED;
2618 	    res = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
2619 		                           to, atom);
2620 	    state->markd = 0;
2621 	    if (res == 0) {
2622 	        ret = 0;
2623 		/* t1->nd = 1; */
2624 	    }
2625 	    continue;
2626 	}
2627 	if (t1->to != to)
2628 	    continue;
2629 	if (xmlFACompareAtoms(t1->atom, atom, deep)) {
2630 	    ret = 0;
2631 	    /* mark the transition as non-deterministic */
2632 	    t1->nd = 1;
2633 	}
2634     }
2635     return(ret);
2636 }
2637 
2638 /**
2639  * xmlFAComputesDeterminism:
2640  * @ctxt:  a regexp parser context
2641  *
2642  * Check whether the associated regexp is determinist,
2643  * should be called after xmlFAEliminateEpsilonTransitions()
2644  *
2645  */
2646 static int
2647 xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt) {
2648     int statenr, transnr;
2649     xmlRegStatePtr state;
2650     xmlRegTransPtr t1, t2, last;
2651     int i;
2652     int ret = 1;
2653     int deep = 1;
2654 
2655 #ifdef DEBUG_REGEXP_GRAPH
2656     printf("xmlFAComputesDeterminism\n");
2657     xmlRegPrintCtxt(stdout, ctxt);
2658 #endif
2659     if (ctxt->determinist != -1)
2660 	return(ctxt->determinist);
2661 
2662     if (ctxt->flags & AM_AUTOMATA_RNG)
2663         deep = 0;
2664 
2665     /*
2666      * First cleanup the automata removing cancelled transitions
2667      */
2668     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2669 	state = ctxt->states[statenr];
2670 	if (state == NULL)
2671 	    continue;
2672 	if (state->nbTrans < 2)
2673 	    continue;
2674 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
2675 	    t1 = &(state->trans[transnr]);
2676 	    /*
2677 	     * Determinism checks in case of counted or all transitions
2678 	     * will have to be handled separately
2679 	     */
2680 	    if (t1->atom == NULL) {
2681 		/* t1->nd = 1; */
2682 		continue;
2683 	    }
2684 	    if (t1->to == -1) /* eliminated */
2685 		continue;
2686 	    for (i = 0;i < transnr;i++) {
2687 		t2 = &(state->trans[i]);
2688 		if (t2->to == -1) /* eliminated */
2689 		    continue;
2690 		if (t2->atom != NULL) {
2691 		    if (t1->to == t2->to) {
2692                         /*
2693                          * Here we use deep because we want to keep the
2694                          * transitions which indicate a conflict
2695                          */
2696 			if (xmlFAEqualAtoms(t1->atom, t2->atom, deep) &&
2697                             (t1->counter == t2->counter) &&
2698                             (t1->count == t2->count))
2699 			    t2->to = -1; /* eliminated */
2700 		    }
2701 		}
2702 	    }
2703 	}
2704     }
2705 
2706     /*
2707      * Check for all states that there aren't 2 transitions
2708      * with the same atom and a different target.
2709      */
2710     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2711 	state = ctxt->states[statenr];
2712 	if (state == NULL)
2713 	    continue;
2714 	if (state->nbTrans < 2)
2715 	    continue;
2716 	last = NULL;
2717 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
2718 	    t1 = &(state->trans[transnr]);
2719 	    /*
2720 	     * Determinism checks in case of counted or all transitions
2721 	     * will have to be handled separately
2722 	     */
2723 	    if (t1->atom == NULL) {
2724 		continue;
2725 	    }
2726 	    if (t1->to == -1) /* eliminated */
2727 		continue;
2728 	    for (i = 0;i < transnr;i++) {
2729 		t2 = &(state->trans[i]);
2730 		if (t2->to == -1) /* eliminated */
2731 		    continue;
2732 		if (t2->atom != NULL) {
2733                     /*
2734                      * But here we don't use deep because we want to
2735                      * find transitions which indicate a conflict
2736                      */
2737 		    if (xmlFACompareAtoms(t1->atom, t2->atom, 1)) {
2738 			ret = 0;
2739 			/* mark the transitions as non-deterministic ones */
2740 			t1->nd = 1;
2741 			t2->nd = 1;
2742 			last = t1;
2743 		    }
2744 		} else if (t1->to != -1) {
2745 		    /*
2746 		     * do the closure in case of remaining specific
2747 		     * epsilon transitions like choices or all
2748 		     */
2749 		    ret = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
2750 						   t2->to, t2->atom);
2751 		    /* don't shortcut the computation so all non deterministic
2752 		       transition get marked down
2753 		    if (ret == 0)
2754 			return(0);
2755 		     */
2756 		    if (ret == 0) {
2757 			t1->nd = 1;
2758 			/* t2->nd = 1; */
2759 			last = t1;
2760 		    }
2761 		}
2762 	    }
2763 	    /* don't shortcut the computation so all non deterministic
2764 	       transition get marked down
2765 	    if (ret == 0)
2766 		break; */
2767 	}
2768 
2769 	/*
2770 	 * mark specifically the last non-deterministic transition
2771 	 * from a state since there is no need to set-up rollback
2772 	 * from it
2773 	 */
2774 	if (last != NULL) {
2775 	    last->nd = 2;
2776 	}
2777 
2778 	/* don't shortcut the computation so all non deterministic
2779 	   transition get marked down
2780 	if (ret == 0)
2781 	    break; */
2782     }
2783 
2784     ctxt->determinist = ret;
2785     return(ret);
2786 }
2787 
2788 /************************************************************************
2789  *									*
2790  *	Routines to check input against transition atoms		*
2791  *									*
2792  ************************************************************************/
2793 
2794 static int
2795 xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, int neg,
2796 	                  int start, int end, const xmlChar *blockName) {
2797     int ret = 0;
2798 
2799     switch (type) {
2800         case XML_REGEXP_STRING:
2801         case XML_REGEXP_SUBREG:
2802         case XML_REGEXP_RANGES:
2803         case XML_REGEXP_EPSILON:
2804 	    return(-1);
2805         case XML_REGEXP_ANYCHAR:
2806 	    ret = ((codepoint != '\n') && (codepoint != '\r'));
2807 	    break;
2808         case XML_REGEXP_CHARVAL:
2809 	    ret = ((codepoint >= start) && (codepoint <= end));
2810 	    break;
2811         case XML_REGEXP_NOTSPACE:
2812 	    neg = !neg;
2813             /* Falls through. */
2814         case XML_REGEXP_ANYSPACE:
2815 	    ret = ((codepoint == '\n') || (codepoint == '\r') ||
2816 		   (codepoint == '\t') || (codepoint == ' '));
2817 	    break;
2818         case XML_REGEXP_NOTINITNAME:
2819 	    neg = !neg;
2820             /* Falls through. */
2821         case XML_REGEXP_INITNAME:
2822 	    ret = (IS_LETTER(codepoint) ||
2823 		   (codepoint == '_') || (codepoint == ':'));
2824 	    break;
2825         case XML_REGEXP_NOTNAMECHAR:
2826 	    neg = !neg;
2827             /* Falls through. */
2828         case XML_REGEXP_NAMECHAR:
2829 	    ret = (IS_LETTER(codepoint) || IS_DIGIT(codepoint) ||
2830 		   (codepoint == '.') || (codepoint == '-') ||
2831 		   (codepoint == '_') || (codepoint == ':') ||
2832 		   IS_COMBINING(codepoint) || IS_EXTENDER(codepoint));
2833 	    break;
2834         case XML_REGEXP_NOTDECIMAL:
2835 	    neg = !neg;
2836             /* Falls through. */
2837         case XML_REGEXP_DECIMAL:
2838 	    ret = xmlUCSIsCatNd(codepoint);
2839 	    break;
2840         case XML_REGEXP_REALCHAR:
2841 	    neg = !neg;
2842             /* Falls through. */
2843         case XML_REGEXP_NOTREALCHAR:
2844 	    ret = xmlUCSIsCatP(codepoint);
2845 	    if (ret == 0)
2846 		ret = xmlUCSIsCatZ(codepoint);
2847 	    if (ret == 0)
2848 		ret = xmlUCSIsCatC(codepoint);
2849 	    break;
2850         case XML_REGEXP_LETTER:
2851 	    ret = xmlUCSIsCatL(codepoint);
2852 	    break;
2853         case XML_REGEXP_LETTER_UPPERCASE:
2854 	    ret = xmlUCSIsCatLu(codepoint);
2855 	    break;
2856         case XML_REGEXP_LETTER_LOWERCASE:
2857 	    ret = xmlUCSIsCatLl(codepoint);
2858 	    break;
2859         case XML_REGEXP_LETTER_TITLECASE:
2860 	    ret = xmlUCSIsCatLt(codepoint);
2861 	    break;
2862         case XML_REGEXP_LETTER_MODIFIER:
2863 	    ret = xmlUCSIsCatLm(codepoint);
2864 	    break;
2865         case XML_REGEXP_LETTER_OTHERS:
2866 	    ret = xmlUCSIsCatLo(codepoint);
2867 	    break;
2868         case XML_REGEXP_MARK:
2869 	    ret = xmlUCSIsCatM(codepoint);
2870 	    break;
2871         case XML_REGEXP_MARK_NONSPACING:
2872 	    ret = xmlUCSIsCatMn(codepoint);
2873 	    break;
2874         case XML_REGEXP_MARK_SPACECOMBINING:
2875 	    ret = xmlUCSIsCatMc(codepoint);
2876 	    break;
2877         case XML_REGEXP_MARK_ENCLOSING:
2878 	    ret = xmlUCSIsCatMe(codepoint);
2879 	    break;
2880         case XML_REGEXP_NUMBER:
2881 	    ret = xmlUCSIsCatN(codepoint);
2882 	    break;
2883         case XML_REGEXP_NUMBER_DECIMAL:
2884 	    ret = xmlUCSIsCatNd(codepoint);
2885 	    break;
2886         case XML_REGEXP_NUMBER_LETTER:
2887 	    ret = xmlUCSIsCatNl(codepoint);
2888 	    break;
2889         case XML_REGEXP_NUMBER_OTHERS:
2890 	    ret = xmlUCSIsCatNo(codepoint);
2891 	    break;
2892         case XML_REGEXP_PUNCT:
2893 	    ret = xmlUCSIsCatP(codepoint);
2894 	    break;
2895         case XML_REGEXP_PUNCT_CONNECTOR:
2896 	    ret = xmlUCSIsCatPc(codepoint);
2897 	    break;
2898         case XML_REGEXP_PUNCT_DASH:
2899 	    ret = xmlUCSIsCatPd(codepoint);
2900 	    break;
2901         case XML_REGEXP_PUNCT_OPEN:
2902 	    ret = xmlUCSIsCatPs(codepoint);
2903 	    break;
2904         case XML_REGEXP_PUNCT_CLOSE:
2905 	    ret = xmlUCSIsCatPe(codepoint);
2906 	    break;
2907         case XML_REGEXP_PUNCT_INITQUOTE:
2908 	    ret = xmlUCSIsCatPi(codepoint);
2909 	    break;
2910         case XML_REGEXP_PUNCT_FINQUOTE:
2911 	    ret = xmlUCSIsCatPf(codepoint);
2912 	    break;
2913         case XML_REGEXP_PUNCT_OTHERS:
2914 	    ret = xmlUCSIsCatPo(codepoint);
2915 	    break;
2916         case XML_REGEXP_SEPAR:
2917 	    ret = xmlUCSIsCatZ(codepoint);
2918 	    break;
2919         case XML_REGEXP_SEPAR_SPACE:
2920 	    ret = xmlUCSIsCatZs(codepoint);
2921 	    break;
2922         case XML_REGEXP_SEPAR_LINE:
2923 	    ret = xmlUCSIsCatZl(codepoint);
2924 	    break;
2925         case XML_REGEXP_SEPAR_PARA:
2926 	    ret = xmlUCSIsCatZp(codepoint);
2927 	    break;
2928         case XML_REGEXP_SYMBOL:
2929 	    ret = xmlUCSIsCatS(codepoint);
2930 	    break;
2931         case XML_REGEXP_SYMBOL_MATH:
2932 	    ret = xmlUCSIsCatSm(codepoint);
2933 	    break;
2934         case XML_REGEXP_SYMBOL_CURRENCY:
2935 	    ret = xmlUCSIsCatSc(codepoint);
2936 	    break;
2937         case XML_REGEXP_SYMBOL_MODIFIER:
2938 	    ret = xmlUCSIsCatSk(codepoint);
2939 	    break;
2940         case XML_REGEXP_SYMBOL_OTHERS:
2941 	    ret = xmlUCSIsCatSo(codepoint);
2942 	    break;
2943         case XML_REGEXP_OTHER:
2944 	    ret = xmlUCSIsCatC(codepoint);
2945 	    break;
2946         case XML_REGEXP_OTHER_CONTROL:
2947 	    ret = xmlUCSIsCatCc(codepoint);
2948 	    break;
2949         case XML_REGEXP_OTHER_FORMAT:
2950 	    ret = xmlUCSIsCatCf(codepoint);
2951 	    break;
2952         case XML_REGEXP_OTHER_PRIVATE:
2953 	    ret = xmlUCSIsCatCo(codepoint);
2954 	    break;
2955         case XML_REGEXP_OTHER_NA:
2956 	    /* ret = xmlUCSIsCatCn(codepoint); */
2957 	    /* Seems it doesn't exist anymore in recent Unicode releases */
2958 	    ret = 0;
2959 	    break;
2960         case XML_REGEXP_BLOCK_NAME:
2961 	    ret = xmlUCSIsBlock(codepoint, (const char *) blockName);
2962 	    break;
2963     }
2964     if (neg)
2965 	return(!ret);
2966     return(ret);
2967 }
2968 
2969 static int
2970 xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint) {
2971     int i, ret = 0;
2972     xmlRegRangePtr range;
2973 
2974     if ((atom == NULL) || (!IS_CHAR(codepoint)))
2975 	return(-1);
2976 
2977     switch (atom->type) {
2978         case XML_REGEXP_SUBREG:
2979         case XML_REGEXP_EPSILON:
2980 	    return(-1);
2981         case XML_REGEXP_CHARVAL:
2982             return(codepoint == atom->codepoint);
2983         case XML_REGEXP_RANGES: {
2984 	    int accept = 0;
2985 
2986 	    for (i = 0;i < atom->nbRanges;i++) {
2987 		range = atom->ranges[i];
2988 		if (range->neg == 2) {
2989 		    ret = xmlRegCheckCharacterRange(range->type, codepoint,
2990 						0, range->start, range->end,
2991 						range->blockName);
2992 		    if (ret != 0)
2993 			return(0); /* excluded char */
2994 		} else if (range->neg) {
2995 		    ret = xmlRegCheckCharacterRange(range->type, codepoint,
2996 						0, range->start, range->end,
2997 						range->blockName);
2998 		    if (ret == 0)
2999 		        accept = 1;
3000 		    else
3001 		        return(0);
3002 		} else {
3003 		    ret = xmlRegCheckCharacterRange(range->type, codepoint,
3004 						0, range->start, range->end,
3005 						range->blockName);
3006 		    if (ret != 0)
3007 			accept = 1; /* might still be excluded */
3008 		}
3009 	    }
3010 	    return(accept);
3011 	}
3012         case XML_REGEXP_STRING:
3013 	    printf("TODO: XML_REGEXP_STRING\n");
3014 	    return(-1);
3015         case XML_REGEXP_ANYCHAR:
3016         case XML_REGEXP_ANYSPACE:
3017         case XML_REGEXP_NOTSPACE:
3018         case XML_REGEXP_INITNAME:
3019         case XML_REGEXP_NOTINITNAME:
3020         case XML_REGEXP_NAMECHAR:
3021         case XML_REGEXP_NOTNAMECHAR:
3022         case XML_REGEXP_DECIMAL:
3023         case XML_REGEXP_NOTDECIMAL:
3024         case XML_REGEXP_REALCHAR:
3025         case XML_REGEXP_NOTREALCHAR:
3026         case XML_REGEXP_LETTER:
3027         case XML_REGEXP_LETTER_UPPERCASE:
3028         case XML_REGEXP_LETTER_LOWERCASE:
3029         case XML_REGEXP_LETTER_TITLECASE:
3030         case XML_REGEXP_LETTER_MODIFIER:
3031         case XML_REGEXP_LETTER_OTHERS:
3032         case XML_REGEXP_MARK:
3033         case XML_REGEXP_MARK_NONSPACING:
3034         case XML_REGEXP_MARK_SPACECOMBINING:
3035         case XML_REGEXP_MARK_ENCLOSING:
3036         case XML_REGEXP_NUMBER:
3037         case XML_REGEXP_NUMBER_DECIMAL:
3038         case XML_REGEXP_NUMBER_LETTER:
3039         case XML_REGEXP_NUMBER_OTHERS:
3040         case XML_REGEXP_PUNCT:
3041         case XML_REGEXP_PUNCT_CONNECTOR:
3042         case XML_REGEXP_PUNCT_DASH:
3043         case XML_REGEXP_PUNCT_OPEN:
3044         case XML_REGEXP_PUNCT_CLOSE:
3045         case XML_REGEXP_PUNCT_INITQUOTE:
3046         case XML_REGEXP_PUNCT_FINQUOTE:
3047         case XML_REGEXP_PUNCT_OTHERS:
3048         case XML_REGEXP_SEPAR:
3049         case XML_REGEXP_SEPAR_SPACE:
3050         case XML_REGEXP_SEPAR_LINE:
3051         case XML_REGEXP_SEPAR_PARA:
3052         case XML_REGEXP_SYMBOL:
3053         case XML_REGEXP_SYMBOL_MATH:
3054         case XML_REGEXP_SYMBOL_CURRENCY:
3055         case XML_REGEXP_SYMBOL_MODIFIER:
3056         case XML_REGEXP_SYMBOL_OTHERS:
3057         case XML_REGEXP_OTHER:
3058         case XML_REGEXP_OTHER_CONTROL:
3059         case XML_REGEXP_OTHER_FORMAT:
3060         case XML_REGEXP_OTHER_PRIVATE:
3061         case XML_REGEXP_OTHER_NA:
3062 	case XML_REGEXP_BLOCK_NAME:
3063 	    ret = xmlRegCheckCharacterRange(atom->type, codepoint, 0, 0, 0,
3064 		                            (const xmlChar *)atom->valuep);
3065 	    if (atom->neg)
3066 		ret = !ret;
3067 	    break;
3068     }
3069     return(ret);
3070 }
3071 
3072 /************************************************************************
3073  *									*
3074  *	Saving and restoring state of an execution context		*
3075  *									*
3076  ************************************************************************/
3077 
3078 #ifdef DEBUG_REGEXP_EXEC
3079 static void
3080 xmlFARegDebugExec(xmlRegExecCtxtPtr exec) {
3081     printf("state: %d:%d:idx %d", exec->state->no, exec->transno, exec->index);
3082     if (exec->inputStack != NULL) {
3083 	int i;
3084 	printf(": ");
3085 	for (i = 0;(i < 3) && (i < exec->inputStackNr);i++)
3086 	    printf("%s ", (const char *)
3087 	           exec->inputStack[exec->inputStackNr - (i + 1)].value);
3088     } else {
3089 	printf(": %s", &(exec->inputString[exec->index]));
3090     }
3091     printf("\n");
3092 }
3093 #endif
3094 
3095 static void
3096 xmlFARegExecSave(xmlRegExecCtxtPtr exec) {
3097 #ifdef DEBUG_REGEXP_EXEC
3098     printf("saving ");
3099     exec->transno++;
3100     xmlFARegDebugExec(exec);
3101     exec->transno--;
3102 #endif
3103 #ifdef MAX_PUSH
3104     if (exec->nbPush > MAX_PUSH) {
3105         return;
3106     }
3107     exec->nbPush++;
3108 #endif
3109 
3110     if (exec->maxRollbacks == 0) {
3111 	exec->maxRollbacks = 4;
3112 	exec->rollbacks = (xmlRegExecRollback *) xmlMalloc(exec->maxRollbacks *
3113 		                             sizeof(xmlRegExecRollback));
3114 	if (exec->rollbacks == NULL) {
3115 	    xmlRegexpErrMemory(NULL, "saving regexp");
3116 	    exec->maxRollbacks = 0;
3117 	    return;
3118 	}
3119 	memset(exec->rollbacks, 0,
3120 	       exec->maxRollbacks * sizeof(xmlRegExecRollback));
3121     } else if (exec->nbRollbacks >= exec->maxRollbacks) {
3122 	xmlRegExecRollback *tmp;
3123 	int len = exec->maxRollbacks;
3124 
3125 	exec->maxRollbacks *= 2;
3126 	tmp = (xmlRegExecRollback *) xmlRealloc(exec->rollbacks,
3127 			exec->maxRollbacks * sizeof(xmlRegExecRollback));
3128 	if (tmp == NULL) {
3129 	    xmlRegexpErrMemory(NULL, "saving regexp");
3130 	    exec->maxRollbacks /= 2;
3131 	    return;
3132 	}
3133 	exec->rollbacks = tmp;
3134 	tmp = &exec->rollbacks[len];
3135 	memset(tmp, 0, (exec->maxRollbacks - len) * sizeof(xmlRegExecRollback));
3136     }
3137     exec->rollbacks[exec->nbRollbacks].state = exec->state;
3138     exec->rollbacks[exec->nbRollbacks].index = exec->index;
3139     exec->rollbacks[exec->nbRollbacks].nextbranch = exec->transno + 1;
3140     if (exec->comp->nbCounters > 0) {
3141 	if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
3142 	    exec->rollbacks[exec->nbRollbacks].counts = (int *)
3143 		xmlMalloc(exec->comp->nbCounters * sizeof(int));
3144 	    if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
3145 		xmlRegexpErrMemory(NULL, "saving regexp");
3146 		exec->status = -5;
3147 		return;
3148 	    }
3149 	}
3150 	memcpy(exec->rollbacks[exec->nbRollbacks].counts, exec->counts,
3151 	       exec->comp->nbCounters * sizeof(int));
3152     }
3153     exec->nbRollbacks++;
3154 }
3155 
3156 static void
3157 xmlFARegExecRollBack(xmlRegExecCtxtPtr exec) {
3158     if (exec->nbRollbacks <= 0) {
3159 	exec->status = -1;
3160 #ifdef DEBUG_REGEXP_EXEC
3161 	printf("rollback failed on empty stack\n");
3162 #endif
3163 	return;
3164     }
3165     exec->nbRollbacks--;
3166     exec->state = exec->rollbacks[exec->nbRollbacks].state;
3167     exec->index = exec->rollbacks[exec->nbRollbacks].index;
3168     exec->transno = exec->rollbacks[exec->nbRollbacks].nextbranch;
3169     if (exec->comp->nbCounters > 0) {
3170 	if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
3171 	    fprintf(stderr, "exec save: allocation failed");
3172 	    exec->status = -6;
3173 	    return;
3174 	}
3175 	if (exec->counts) {
3176 	    memcpy(exec->counts, exec->rollbacks[exec->nbRollbacks].counts,
3177 	       exec->comp->nbCounters * sizeof(int));
3178 	}
3179     }
3180 
3181 #ifdef DEBUG_REGEXP_EXEC
3182     printf("restored ");
3183     xmlFARegDebugExec(exec);
3184 #endif
3185 }
3186 
3187 /************************************************************************
3188  *									*
3189  *	Verifier, running an input against a compiled regexp		*
3190  *									*
3191  ************************************************************************/
3192 
3193 static int
3194 xmlFARegExec(xmlRegexpPtr comp, const xmlChar *content) {
3195     xmlRegExecCtxt execval;
3196     xmlRegExecCtxtPtr exec = &execval;
3197     int ret, codepoint = 0, len, deter;
3198 
3199     exec->inputString = content;
3200     exec->index = 0;
3201     exec->nbPush = 0;
3202     exec->determinist = 1;
3203     exec->maxRollbacks = 0;
3204     exec->nbRollbacks = 0;
3205     exec->rollbacks = NULL;
3206     exec->status = 0;
3207     exec->comp = comp;
3208     exec->state = comp->states[0];
3209     exec->transno = 0;
3210     exec->transcount = 0;
3211     exec->inputStack = NULL;
3212     exec->inputStackMax = 0;
3213     if (comp->nbCounters > 0) {
3214 	exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int));
3215 	if (exec->counts == NULL) {
3216 	    xmlRegexpErrMemory(NULL, "running regexp");
3217 	    return(-1);
3218 	}
3219         memset(exec->counts, 0, comp->nbCounters * sizeof(int));
3220     } else
3221 	exec->counts = NULL;
3222     while ((exec->status == 0) && (exec->state != NULL) &&
3223 	   ((exec->inputString[exec->index] != 0) ||
3224 	    ((exec->state != NULL) &&
3225 	     (exec->state->type != XML_REGEXP_FINAL_STATE)))) {
3226 	xmlRegTransPtr trans;
3227 	xmlRegAtomPtr atom;
3228 
3229 	/*
3230 	 * If end of input on non-terminal state, rollback, however we may
3231 	 * still have epsilon like transition for counted transitions
3232 	 * on counters, in that case don't break too early.  Additionally,
3233 	 * if we are working on a range like "AB{0,2}", where B is not present,
3234 	 * we don't want to break.
3235 	 */
3236 	len = 1;
3237 	if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) {
3238 	    /*
3239 	     * if there is a transition, we must check if
3240 	     *  atom allows minOccurs of 0
3241 	     */
3242 	    if (exec->transno < exec->state->nbTrans) {
3243 	        trans = &exec->state->trans[exec->transno];
3244 		if (trans->to >=0) {
3245 		    atom = trans->atom;
3246 		    if (!((atom->min == 0) && (atom->max > 0)))
3247 		        goto rollback;
3248 		}
3249 	    } else
3250 	        goto rollback;
3251 	}
3252 
3253 	exec->transcount = 0;
3254 	for (;exec->transno < exec->state->nbTrans;exec->transno++) {
3255 	    trans = &exec->state->trans[exec->transno];
3256 	    if (trans->to < 0)
3257 		continue;
3258 	    atom = trans->atom;
3259 	    ret = 0;
3260 	    deter = 1;
3261 	    if (trans->count >= 0) {
3262 		int count;
3263 		xmlRegCounterPtr counter;
3264 
3265 		if (exec->counts == NULL) {
3266 		    exec->status = -1;
3267 		    goto error;
3268 		}
3269 		/*
3270 		 * A counted transition.
3271 		 */
3272 
3273 		count = exec->counts[trans->count];
3274 		counter = &exec->comp->counters[trans->count];
3275 #ifdef DEBUG_REGEXP_EXEC
3276 		printf("testing count %d: val %d, min %d, max %d\n",
3277 		       trans->count, count, counter->min,  counter->max);
3278 #endif
3279 		ret = ((count >= counter->min) && (count <= counter->max));
3280 		if ((ret) && (counter->min != counter->max))
3281 		    deter = 0;
3282 	    } else if (atom == NULL) {
3283 		fprintf(stderr, "epsilon transition left at runtime\n");
3284 		exec->status = -2;
3285 		break;
3286 	    } else if (exec->inputString[exec->index] != 0) {
3287                 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
3288 		ret = xmlRegCheckCharacter(atom, codepoint);
3289 		if ((ret == 1) && (atom->min >= 0) && (atom->max > 0)) {
3290 		    xmlRegStatePtr to = comp->states[trans->to];
3291 
3292 		    /*
3293 		     * this is a multiple input sequence
3294 		     * If there is a counter associated increment it now.
3295 		     * before potentially saving and rollback
3296 		     * do not increment if the counter is already over the
3297 		     * maximum limit in which case get to next transition
3298 		     */
3299 		    if (trans->counter >= 0) {
3300 			xmlRegCounterPtr counter;
3301 
3302 			if ((exec->counts == NULL) ||
3303 			    (exec->comp == NULL) ||
3304 			    (exec->comp->counters == NULL)) {
3305 			    exec->status = -1;
3306 			    goto error;
3307 			}
3308 			counter = &exec->comp->counters[trans->counter];
3309 			if (exec->counts[trans->counter] >= counter->max)
3310 			    continue; /* for loop on transitions */
3311 
3312 #ifdef DEBUG_REGEXP_EXEC
3313 			printf("Increasing count %d\n", trans->counter);
3314 #endif
3315 			exec->counts[trans->counter]++;
3316 		    }
3317 		    if (exec->state->nbTrans > exec->transno + 1) {
3318 			xmlFARegExecSave(exec);
3319 		    }
3320 		    exec->transcount = 1;
3321 		    do {
3322 			/*
3323 			 * Try to progress as much as possible on the input
3324 			 */
3325 			if (exec->transcount == atom->max) {
3326 			    break;
3327 			}
3328 			exec->index += len;
3329 			/*
3330 			 * End of input: stop here
3331 			 */
3332 			if (exec->inputString[exec->index] == 0) {
3333 			    exec->index -= len;
3334 			    break;
3335 			}
3336 			if (exec->transcount >= atom->min) {
3337 			    int transno = exec->transno;
3338 			    xmlRegStatePtr state = exec->state;
3339 
3340 			    /*
3341 			     * The transition is acceptable save it
3342 			     */
3343 			    exec->transno = -1; /* trick */
3344 			    exec->state = to;
3345 			    xmlFARegExecSave(exec);
3346 			    exec->transno = transno;
3347 			    exec->state = state;
3348 			}
3349 			codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
3350 				              len);
3351 			ret = xmlRegCheckCharacter(atom, codepoint);
3352 			exec->transcount++;
3353 		    } while (ret == 1);
3354 		    if (exec->transcount < atom->min)
3355 			ret = 0;
3356 
3357 		    /*
3358 		     * If the last check failed but one transition was found
3359 		     * possible, rollback
3360 		     */
3361 		    if (ret < 0)
3362 			ret = 0;
3363 		    if (ret == 0) {
3364 			goto rollback;
3365 		    }
3366 		    if (trans->counter >= 0) {
3367 			if (exec->counts == NULL) {
3368 			    exec->status = -1;
3369 			    goto error;
3370 			}
3371 #ifdef DEBUG_REGEXP_EXEC
3372 			printf("Decreasing count %d\n", trans->counter);
3373 #endif
3374 			exec->counts[trans->counter]--;
3375 		    }
3376 		} else if ((ret == 0) && (atom->min == 0) && (atom->max > 0)) {
3377 		    /*
3378 		     * we don't match on the codepoint, but minOccurs of 0
3379 		     * says that's ok.  Setting len to 0 inhibits stepping
3380 		     * over the codepoint.
3381 		     */
3382 		    exec->transcount = 1;
3383 		    len = 0;
3384 		    ret = 1;
3385 		}
3386 	    } else if ((atom->min == 0) && (atom->max > 0)) {
3387 	        /* another spot to match when minOccurs is 0 */
3388 		exec->transcount = 1;
3389 		len = 0;
3390 		ret = 1;
3391 	    }
3392 	    if (ret == 1) {
3393 		if ((trans->nd == 1) ||
3394 		    ((trans->count >= 0) && (deter == 0) &&
3395 		     (exec->state->nbTrans > exec->transno + 1))) {
3396 #ifdef DEBUG_REGEXP_EXEC
3397 		    if (trans->nd == 1)
3398 		        printf("Saving on nd transition atom %d for %c at %d\n",
3399 			       trans->atom->no, codepoint, exec->index);
3400 		    else
3401 		        printf("Saving on counted transition count %d for %c at %d\n",
3402 			       trans->count, codepoint, exec->index);
3403 #endif
3404 		    xmlFARegExecSave(exec);
3405 		}
3406 		if (trans->counter >= 0) {
3407 		    xmlRegCounterPtr counter;
3408 
3409                     /* make sure we don't go over the counter maximum value */
3410 		    if ((exec->counts == NULL) ||
3411 			(exec->comp == NULL) ||
3412 			(exec->comp->counters == NULL)) {
3413 			exec->status = -1;
3414 			goto error;
3415 		    }
3416 		    counter = &exec->comp->counters[trans->counter];
3417 		    if (exec->counts[trans->counter] >= counter->max)
3418 			continue; /* for loop on transitions */
3419 #ifdef DEBUG_REGEXP_EXEC
3420 		    printf("Increasing count %d\n", trans->counter);
3421 #endif
3422 		    exec->counts[trans->counter]++;
3423 		}
3424 		if ((trans->count >= 0) &&
3425 		    (trans->count < REGEXP_ALL_COUNTER)) {
3426 		    if (exec->counts == NULL) {
3427 		        exec->status = -1;
3428 			goto error;
3429 		    }
3430 #ifdef DEBUG_REGEXP_EXEC
3431 		    printf("resetting count %d on transition\n",
3432 		           trans->count);
3433 #endif
3434 		    exec->counts[trans->count] = 0;
3435 		}
3436 #ifdef DEBUG_REGEXP_EXEC
3437 		printf("entering state %d\n", trans->to);
3438 #endif
3439 		exec->state = comp->states[trans->to];
3440 		exec->transno = 0;
3441 		if (trans->atom != NULL) {
3442 		    exec->index += len;
3443 		}
3444 		goto progress;
3445 	    } else if (ret < 0) {
3446 		exec->status = -4;
3447 		break;
3448 	    }
3449 	}
3450 	if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
3451 rollback:
3452 	    /*
3453 	     * Failed to find a way out
3454 	     */
3455 	    exec->determinist = 0;
3456 #ifdef DEBUG_REGEXP_EXEC
3457 	    printf("rollback from state %d on %d:%c\n", exec->state->no,
3458 	           codepoint,codepoint);
3459 #endif
3460 	    xmlFARegExecRollBack(exec);
3461 	}
3462 progress:
3463 	continue;
3464     }
3465 error:
3466     if (exec->rollbacks != NULL) {
3467 	if (exec->counts != NULL) {
3468 	    int i;
3469 
3470 	    for (i = 0;i < exec->maxRollbacks;i++)
3471 		if (exec->rollbacks[i].counts != NULL)
3472 		    xmlFree(exec->rollbacks[i].counts);
3473 	}
3474 	xmlFree(exec->rollbacks);
3475     }
3476     if (exec->state == NULL)
3477         return(-1);
3478     if (exec->counts != NULL)
3479 	xmlFree(exec->counts);
3480     if (exec->status == 0)
3481 	return(1);
3482     if (exec->status == -1) {
3483 	if (exec->nbPush > MAX_PUSH)
3484 	    return(-1);
3485 	return(0);
3486     }
3487     return(exec->status);
3488 }
3489 
3490 /************************************************************************
3491  *									*
3492  *	Progressive interface to the verifier one atom at a time	*
3493  *									*
3494  ************************************************************************/
3495 #ifdef DEBUG_ERR
3496 static void testerr(xmlRegExecCtxtPtr exec);
3497 #endif
3498 
3499 /**
3500  * xmlRegNewExecCtxt:
3501  * @comp: a precompiled regular expression
3502  * @callback: a callback function used for handling progresses in the
3503  *            automata matching phase
3504  * @data: the context data associated to the callback in this context
3505  *
3506  * Build a context used for progressive evaluation of a regexp.
3507  *
3508  * Returns the new context
3509  */
3510 xmlRegExecCtxtPtr
3511 xmlRegNewExecCtxt(xmlRegexpPtr comp, xmlRegExecCallbacks callback, void *data) {
3512     xmlRegExecCtxtPtr exec;
3513 
3514     if (comp == NULL)
3515 	return(NULL);
3516     if ((comp->compact == NULL) && (comp->states == NULL))
3517         return(NULL);
3518     exec = (xmlRegExecCtxtPtr) xmlMalloc(sizeof(xmlRegExecCtxt));
3519     if (exec == NULL) {
3520 	xmlRegexpErrMemory(NULL, "creating execution context");
3521 	return(NULL);
3522     }
3523     memset(exec, 0, sizeof(xmlRegExecCtxt));
3524     exec->inputString = NULL;
3525     exec->index = 0;
3526     exec->determinist = 1;
3527     exec->maxRollbacks = 0;
3528     exec->nbRollbacks = 0;
3529     exec->rollbacks = NULL;
3530     exec->status = 0;
3531     exec->comp = comp;
3532     if (comp->compact == NULL)
3533 	exec->state = comp->states[0];
3534     exec->transno = 0;
3535     exec->transcount = 0;
3536     exec->callback = callback;
3537     exec->data = data;
3538     if (comp->nbCounters > 0) {
3539         /*
3540 	 * For error handling, exec->counts is allocated twice the size
3541 	 * the second half is used to store the data in case of rollback
3542 	 */
3543 	exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int)
3544 	                                 * 2);
3545 	if (exec->counts == NULL) {
3546 	    xmlRegexpErrMemory(NULL, "creating execution context");
3547 	    xmlFree(exec);
3548 	    return(NULL);
3549 	}
3550         memset(exec->counts, 0, comp->nbCounters * sizeof(int) * 2);
3551 	exec->errCounts = &exec->counts[comp->nbCounters];
3552     } else {
3553 	exec->counts = NULL;
3554 	exec->errCounts = NULL;
3555     }
3556     exec->inputStackMax = 0;
3557     exec->inputStackNr = 0;
3558     exec->inputStack = NULL;
3559     exec->errStateNo = -1;
3560     exec->errString = NULL;
3561     exec->nbPush = 0;
3562     return(exec);
3563 }
3564 
3565 /**
3566  * xmlRegFreeExecCtxt:
3567  * @exec: a regular expression evaulation context
3568  *
3569  * Free the structures associated to a regular expression evaulation context.
3570  */
3571 void
3572 xmlRegFreeExecCtxt(xmlRegExecCtxtPtr exec) {
3573     if (exec == NULL)
3574 	return;
3575 
3576     if (exec->rollbacks != NULL) {
3577 	if (exec->counts != NULL) {
3578 	    int i;
3579 
3580 	    for (i = 0;i < exec->maxRollbacks;i++)
3581 		if (exec->rollbacks[i].counts != NULL)
3582 		    xmlFree(exec->rollbacks[i].counts);
3583 	}
3584 	xmlFree(exec->rollbacks);
3585     }
3586     if (exec->counts != NULL)
3587 	xmlFree(exec->counts);
3588     if (exec->inputStack != NULL) {
3589 	int i;
3590 
3591 	for (i = 0;i < exec->inputStackNr;i++) {
3592 	    if (exec->inputStack[i].value != NULL)
3593 		xmlFree(exec->inputStack[i].value);
3594 	}
3595 	xmlFree(exec->inputStack);
3596     }
3597     if (exec->errString != NULL)
3598         xmlFree(exec->errString);
3599     xmlFree(exec);
3600 }
3601 
3602 static void
3603 xmlFARegExecSaveInputString(xmlRegExecCtxtPtr exec, const xmlChar *value,
3604 	                    void *data) {
3605 #ifdef DEBUG_PUSH
3606     printf("saving value: %d:%s\n", exec->inputStackNr, value);
3607 #endif
3608     if (exec->inputStackMax == 0) {
3609 	exec->inputStackMax = 4;
3610 	exec->inputStack = (xmlRegInputTokenPtr)
3611 	    xmlMalloc(exec->inputStackMax * sizeof(xmlRegInputToken));
3612 	if (exec->inputStack == NULL) {
3613 	    xmlRegexpErrMemory(NULL, "pushing input string");
3614 	    exec->inputStackMax = 0;
3615 	    return;
3616 	}
3617     } else if (exec->inputStackNr + 1 >= exec->inputStackMax) {
3618 	xmlRegInputTokenPtr tmp;
3619 
3620 	exec->inputStackMax *= 2;
3621 	tmp = (xmlRegInputTokenPtr) xmlRealloc(exec->inputStack,
3622 			exec->inputStackMax * sizeof(xmlRegInputToken));
3623 	if (tmp == NULL) {
3624 	    xmlRegexpErrMemory(NULL, "pushing input string");
3625 	    exec->inputStackMax /= 2;
3626 	    return;
3627 	}
3628 	exec->inputStack = tmp;
3629     }
3630     exec->inputStack[exec->inputStackNr].value = xmlStrdup(value);
3631     exec->inputStack[exec->inputStackNr].data = data;
3632     exec->inputStackNr++;
3633     exec->inputStack[exec->inputStackNr].value = NULL;
3634     exec->inputStack[exec->inputStackNr].data = NULL;
3635 }
3636 
3637 /**
3638  * xmlRegStrEqualWildcard:
3639  * @expStr:  the string to be evaluated
3640  * @valStr:  the validation string
3641  *
3642  * Checks if both strings are equal or have the same content. "*"
3643  * can be used as a wildcard in @valStr; "|" is used as a seperator of
3644  * substrings in both @expStr and @valStr.
3645  *
3646  * Returns 1 if the comparison is satisfied and the number of substrings
3647  * is equal, 0 otherwise.
3648  */
3649 
3650 static int
3651 xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr) {
3652     if (expStr == valStr) return(1);
3653     if (expStr == NULL) return(0);
3654     if (valStr == NULL) return(0);
3655     do {
3656 	/*
3657 	* Eval if we have a wildcard for the current item.
3658 	*/
3659         if (*expStr != *valStr) {
3660 	    /* if one of them starts with a wildcard make valStr be it */
3661 	    if (*valStr == '*') {
3662 	        const xmlChar *tmp;
3663 
3664 		tmp = valStr;
3665 		valStr = expStr;
3666 		expStr = tmp;
3667 	    }
3668 	    if ((*valStr != 0) && (*expStr != 0) && (*expStr++ == '*')) {
3669 		do {
3670 		    if (*valStr == XML_REG_STRING_SEPARATOR)
3671 			break;
3672 		    valStr++;
3673 		} while (*valStr != 0);
3674 		continue;
3675 	    } else
3676 		return(0);
3677 	}
3678 	expStr++;
3679 	valStr++;
3680     } while (*valStr != 0);
3681     if (*expStr != 0)
3682 	return (0);
3683     else
3684 	return (1);
3685 }
3686 
3687 /**
3688  * xmlRegCompactPushString:
3689  * @exec: a regexp execution context
3690  * @comp:  the precompiled exec with a compact table
3691  * @value: a string token input
3692  * @data: data associated to the token to reuse in callbacks
3693  *
3694  * Push one input token in the execution context
3695  *
3696  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
3697  *     a negative value in case of error.
3698  */
3699 static int
3700 xmlRegCompactPushString(xmlRegExecCtxtPtr exec,
3701 	                xmlRegexpPtr comp,
3702 	                const xmlChar *value,
3703 	                void *data) {
3704     int state = exec->index;
3705     int i, target;
3706 
3707     if ((comp == NULL) || (comp->compact == NULL) || (comp->stringMap == NULL))
3708 	return(-1);
3709 
3710     if (value == NULL) {
3711 	/*
3712 	 * are we at a final state ?
3713 	 */
3714 	if (comp->compact[state * (comp->nbstrings + 1)] ==
3715             XML_REGEXP_FINAL_STATE)
3716 	    return(1);
3717 	return(0);
3718     }
3719 
3720 #ifdef DEBUG_PUSH
3721     printf("value pushed: %s\n", value);
3722 #endif
3723 
3724     /*
3725      * Examine all outside transitions from current state
3726      */
3727     for (i = 0;i < comp->nbstrings;i++) {
3728 	target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
3729 	if ((target > 0) && (target <= comp->nbstates)) {
3730 	    target--; /* to avoid 0 */
3731 	    if (xmlRegStrEqualWildcard(comp->stringMap[i], value)) {
3732 		exec->index = target;
3733 		if ((exec->callback != NULL) && (comp->transdata != NULL)) {
3734 		    exec->callback(exec->data, value,
3735 			  comp->transdata[state * comp->nbstrings + i], data);
3736 		}
3737 #ifdef DEBUG_PUSH
3738 		printf("entering state %d\n", target);
3739 #endif
3740 		if (comp->compact[target * (comp->nbstrings + 1)] ==
3741 		    XML_REGEXP_SINK_STATE)
3742 		    goto error;
3743 
3744 		if (comp->compact[target * (comp->nbstrings + 1)] ==
3745 		    XML_REGEXP_FINAL_STATE)
3746 		    return(1);
3747 		return(0);
3748 	    }
3749 	}
3750     }
3751     /*
3752      * Failed to find an exit transition out from current state for the
3753      * current token
3754      */
3755 #ifdef DEBUG_PUSH
3756     printf("failed to find a transition for %s on state %d\n", value, state);
3757 #endif
3758 error:
3759     if (exec->errString != NULL)
3760         xmlFree(exec->errString);
3761     exec->errString = xmlStrdup(value);
3762     exec->errStateNo = state;
3763     exec->status = -1;
3764 #ifdef DEBUG_ERR
3765     testerr(exec);
3766 #endif
3767     return(-1);
3768 }
3769 
3770 /**
3771  * xmlRegExecPushStringInternal:
3772  * @exec: a regexp execution context or NULL to indicate the end
3773  * @value: a string token input
3774  * @data: data associated to the token to reuse in callbacks
3775  * @compound: value was assembled from 2 strings
3776  *
3777  * Push one input token in the execution context
3778  *
3779  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
3780  *     a negative value in case of error.
3781  */
3782 static int
3783 xmlRegExecPushStringInternal(xmlRegExecCtxtPtr exec, const xmlChar *value,
3784 	                     void *data, int compound) {
3785     xmlRegTransPtr trans;
3786     xmlRegAtomPtr atom;
3787     int ret;
3788     int final = 0;
3789     int progress = 1;
3790 
3791     if (exec == NULL)
3792 	return(-1);
3793     if (exec->comp == NULL)
3794 	return(-1);
3795     if (exec->status != 0)
3796 	return(exec->status);
3797 
3798     if (exec->comp->compact != NULL)
3799 	return(xmlRegCompactPushString(exec, exec->comp, value, data));
3800 
3801     if (value == NULL) {
3802         if (exec->state->type == XML_REGEXP_FINAL_STATE)
3803 	    return(1);
3804 	final = 1;
3805     }
3806 
3807 #ifdef DEBUG_PUSH
3808     printf("value pushed: %s\n", value);
3809 #endif
3810     /*
3811      * If we have an active rollback stack push the new value there
3812      * and get back to where we were left
3813      */
3814     if ((value != NULL) && (exec->inputStackNr > 0)) {
3815 	xmlFARegExecSaveInputString(exec, value, data);
3816 	value = exec->inputStack[exec->index].value;
3817 	data = exec->inputStack[exec->index].data;
3818 #ifdef DEBUG_PUSH
3819 	printf("value loaded: %s\n", value);
3820 #endif
3821     }
3822 
3823     while ((exec->status == 0) &&
3824 	   ((value != NULL) ||
3825 	    ((final == 1) &&
3826 	     (exec->state->type != XML_REGEXP_FINAL_STATE)))) {
3827 
3828 	/*
3829 	 * End of input on non-terminal state, rollback, however we may
3830 	 * still have epsilon like transition for counted transitions
3831 	 * on counters, in that case don't break too early.
3832 	 */
3833 	if ((value == NULL) && (exec->counts == NULL))
3834 	    goto rollback;
3835 
3836 	exec->transcount = 0;
3837 	for (;exec->transno < exec->state->nbTrans;exec->transno++) {
3838 	    trans = &exec->state->trans[exec->transno];
3839 	    if (trans->to < 0)
3840 		continue;
3841 	    atom = trans->atom;
3842 	    ret = 0;
3843 	    if (trans->count == REGEXP_ALL_LAX_COUNTER) {
3844 		int i;
3845 		int count;
3846 		xmlRegTransPtr t;
3847 		xmlRegCounterPtr counter;
3848 
3849 		ret = 0;
3850 
3851 #ifdef DEBUG_PUSH
3852 		printf("testing all lax %d\n", trans->count);
3853 #endif
3854 		/*
3855 		 * Check all counted transitions from the current state
3856 		 */
3857 		if ((value == NULL) && (final)) {
3858 		    ret = 1;
3859 		} else if (value != NULL) {
3860 		    for (i = 0;i < exec->state->nbTrans;i++) {
3861 			t = &exec->state->trans[i];
3862 			if ((t->counter < 0) || (t == trans))
3863 			    continue;
3864 			counter = &exec->comp->counters[t->counter];
3865 			count = exec->counts[t->counter];
3866 			if ((count < counter->max) &&
3867 		            (t->atom != NULL) &&
3868 			    (xmlStrEqual(value, t->atom->valuep))) {
3869 			    ret = 0;
3870 			    break;
3871 			}
3872 			if ((count >= counter->min) &&
3873 			    (count < counter->max) &&
3874 			    (t->atom != NULL) &&
3875 			    (xmlStrEqual(value, t->atom->valuep))) {
3876 			    ret = 1;
3877 			    break;
3878 			}
3879 		    }
3880 		}
3881 	    } else if (trans->count == REGEXP_ALL_COUNTER) {
3882 		int i;
3883 		int count;
3884 		xmlRegTransPtr t;
3885 		xmlRegCounterPtr counter;
3886 
3887 		ret = 1;
3888 
3889 #ifdef DEBUG_PUSH
3890 		printf("testing all %d\n", trans->count);
3891 #endif
3892 		/*
3893 		 * Check all counted transitions from the current state
3894 		 */
3895 		for (i = 0;i < exec->state->nbTrans;i++) {
3896                     t = &exec->state->trans[i];
3897 		    if ((t->counter < 0) || (t == trans))
3898 			continue;
3899                     counter = &exec->comp->counters[t->counter];
3900 		    count = exec->counts[t->counter];
3901 		    if ((count < counter->min) || (count > counter->max)) {
3902 			ret = 0;
3903 			break;
3904 		    }
3905 		}
3906 	    } else if (trans->count >= 0) {
3907 		int count;
3908 		xmlRegCounterPtr counter;
3909 
3910 		/*
3911 		 * A counted transition.
3912 		 */
3913 
3914 		count = exec->counts[trans->count];
3915 		counter = &exec->comp->counters[trans->count];
3916 #ifdef DEBUG_PUSH
3917 		printf("testing count %d: val %d, min %d, max %d\n",
3918 		       trans->count, count, counter->min,  counter->max);
3919 #endif
3920 		ret = ((count >= counter->min) && (count <= counter->max));
3921 	    } else if (atom == NULL) {
3922 		fprintf(stderr, "epsilon transition left at runtime\n");
3923 		exec->status = -2;
3924 		break;
3925 	    } else if (value != NULL) {
3926 		ret = xmlRegStrEqualWildcard(atom->valuep, value);
3927 		if (atom->neg) {
3928 		    ret = !ret;
3929 		    if (!compound)
3930 		        ret = 0;
3931 		}
3932 		if ((ret == 1) && (trans->counter >= 0)) {
3933 		    xmlRegCounterPtr counter;
3934 		    int count;
3935 
3936 		    count = exec->counts[trans->counter];
3937 		    counter = &exec->comp->counters[trans->counter];
3938 		    if (count >= counter->max)
3939 			ret = 0;
3940 		}
3941 
3942 		if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
3943 		    xmlRegStatePtr to = exec->comp->states[trans->to];
3944 
3945 		    /*
3946 		     * this is a multiple input sequence
3947 		     */
3948 		    if (exec->state->nbTrans > exec->transno + 1) {
3949 			if (exec->inputStackNr <= 0) {
3950 			    xmlFARegExecSaveInputString(exec, value, data);
3951 			}
3952 			xmlFARegExecSave(exec);
3953 		    }
3954 		    exec->transcount = 1;
3955 		    do {
3956 			/*
3957 			 * Try to progress as much as possible on the input
3958 			 */
3959 			if (exec->transcount == atom->max) {
3960 			    break;
3961 			}
3962 			exec->index++;
3963 			value = exec->inputStack[exec->index].value;
3964 			data = exec->inputStack[exec->index].data;
3965 #ifdef DEBUG_PUSH
3966 			printf("value loaded: %s\n", value);
3967 #endif
3968 
3969 			/*
3970 			 * End of input: stop here
3971 			 */
3972 			if (value == NULL) {
3973 			    exec->index --;
3974 			    break;
3975 			}
3976 			if (exec->transcount >= atom->min) {
3977 			    int transno = exec->transno;
3978 			    xmlRegStatePtr state = exec->state;
3979 
3980 			    /*
3981 			     * The transition is acceptable save it
3982 			     */
3983 			    exec->transno = -1; /* trick */
3984 			    exec->state = to;
3985 			    if (exec->inputStackNr <= 0) {
3986 				xmlFARegExecSaveInputString(exec, value, data);
3987 			    }
3988 			    xmlFARegExecSave(exec);
3989 			    exec->transno = transno;
3990 			    exec->state = state;
3991 			}
3992 			ret = xmlStrEqual(value, atom->valuep);
3993 			exec->transcount++;
3994 		    } while (ret == 1);
3995 		    if (exec->transcount < atom->min)
3996 			ret = 0;
3997 
3998 		    /*
3999 		     * If the last check failed but one transition was found
4000 		     * possible, rollback
4001 		     */
4002 		    if (ret < 0)
4003 			ret = 0;
4004 		    if (ret == 0) {
4005 			goto rollback;
4006 		    }
4007 		}
4008 	    }
4009 	    if (ret == 1) {
4010 		if ((exec->callback != NULL) && (atom != NULL) &&
4011 			(data != NULL)) {
4012 		    exec->callback(exec->data, atom->valuep,
4013 			           atom->data, data);
4014 		}
4015 		if (exec->state->nbTrans > exec->transno + 1) {
4016 		    if (exec->inputStackNr <= 0) {
4017 			xmlFARegExecSaveInputString(exec, value, data);
4018 		    }
4019 		    xmlFARegExecSave(exec);
4020 		}
4021 		if (trans->counter >= 0) {
4022 #ifdef DEBUG_PUSH
4023 		    printf("Increasing count %d\n", trans->counter);
4024 #endif
4025 		    exec->counts[trans->counter]++;
4026 		}
4027 		if ((trans->count >= 0) &&
4028 		    (trans->count < REGEXP_ALL_COUNTER)) {
4029 #ifdef DEBUG_REGEXP_EXEC
4030 		    printf("resetting count %d on transition\n",
4031 		           trans->count);
4032 #endif
4033 		    exec->counts[trans->count] = 0;
4034 		}
4035 #ifdef DEBUG_PUSH
4036 		printf("entering state %d\n", trans->to);
4037 #endif
4038                 if ((exec->comp->states[trans->to] != NULL) &&
4039 		    (exec->comp->states[trans->to]->type ==
4040 		     XML_REGEXP_SINK_STATE)) {
4041 		    /*
4042 		     * entering a sink state, save the current state as error
4043 		     * state.
4044 		     */
4045 		    if (exec->errString != NULL)
4046 			xmlFree(exec->errString);
4047 		    exec->errString = xmlStrdup(value);
4048 		    exec->errState = exec->state;
4049 		    memcpy(exec->errCounts, exec->counts,
4050 			   exec->comp->nbCounters * sizeof(int));
4051 		}
4052 		exec->state = exec->comp->states[trans->to];
4053 		exec->transno = 0;
4054 		if (trans->atom != NULL) {
4055 		    if (exec->inputStack != NULL) {
4056 			exec->index++;
4057 			if (exec->index < exec->inputStackNr) {
4058 			    value = exec->inputStack[exec->index].value;
4059 			    data = exec->inputStack[exec->index].data;
4060 #ifdef DEBUG_PUSH
4061 			    printf("value loaded: %s\n", value);
4062 #endif
4063 			} else {
4064 			    value = NULL;
4065 			    data = NULL;
4066 #ifdef DEBUG_PUSH
4067 			    printf("end of input\n");
4068 #endif
4069 			}
4070 		    } else {
4071 			value = NULL;
4072 			data = NULL;
4073 #ifdef DEBUG_PUSH
4074 			printf("end of input\n");
4075 #endif
4076 		    }
4077 		}
4078 		goto progress;
4079 	    } else if (ret < 0) {
4080 		exec->status = -4;
4081 		break;
4082 	    }
4083 	}
4084 	if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
4085 rollback:
4086             /*
4087 	     * if we didn't yet rollback on the current input
4088 	     * store the current state as the error state.
4089 	     */
4090 	    if ((progress) && (exec->state != NULL) &&
4091 	        (exec->state->type != XML_REGEXP_SINK_STATE)) {
4092 	        progress = 0;
4093 		if (exec->errString != NULL)
4094 		    xmlFree(exec->errString);
4095 		exec->errString = xmlStrdup(value);
4096 		exec->errState = exec->state;
4097                 if (exec->comp->nbCounters)
4098                     memcpy(exec->errCounts, exec->counts,
4099                            exec->comp->nbCounters * sizeof(int));
4100 	    }
4101 
4102 	    /*
4103 	     * Failed to find a way out
4104 	     */
4105 	    exec->determinist = 0;
4106 	    xmlFARegExecRollBack(exec);
4107 	    if ((exec->inputStack != NULL ) && (exec->status == 0)) {
4108 		value = exec->inputStack[exec->index].value;
4109 		data = exec->inputStack[exec->index].data;
4110 #ifdef DEBUG_PUSH
4111 		printf("value loaded: %s\n", value);
4112 #endif
4113 	    }
4114 	}
4115 	continue;
4116 progress:
4117         progress = 1;
4118 	continue;
4119     }
4120     if (exec->status == 0) {
4121         return(exec->state->type == XML_REGEXP_FINAL_STATE);
4122     }
4123 #ifdef DEBUG_ERR
4124     if (exec->status < 0) {
4125 	testerr(exec);
4126     }
4127 #endif
4128     return(exec->status);
4129 }
4130 
4131 /**
4132  * xmlRegExecPushString:
4133  * @exec: a regexp execution context or NULL to indicate the end
4134  * @value: a string token input
4135  * @data: data associated to the token to reuse in callbacks
4136  *
4137  * Push one input token in the execution context
4138  *
4139  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
4140  *     a negative value in case of error.
4141  */
4142 int
4143 xmlRegExecPushString(xmlRegExecCtxtPtr exec, const xmlChar *value,
4144 	             void *data) {
4145     return(xmlRegExecPushStringInternal(exec, value, data, 0));
4146 }
4147 
4148 /**
4149  * xmlRegExecPushString2:
4150  * @exec: a regexp execution context or NULL to indicate the end
4151  * @value: the first string token input
4152  * @value2: the second string token input
4153  * @data: data associated to the token to reuse in callbacks
4154  *
4155  * Push one input token in the execution context
4156  *
4157  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
4158  *     a negative value in case of error.
4159  */
4160 int
4161 xmlRegExecPushString2(xmlRegExecCtxtPtr exec, const xmlChar *value,
4162                       const xmlChar *value2, void *data) {
4163     xmlChar buf[150];
4164     int lenn, lenp, ret;
4165     xmlChar *str;
4166 
4167     if (exec == NULL)
4168 	return(-1);
4169     if (exec->comp == NULL)
4170 	return(-1);
4171     if (exec->status != 0)
4172 	return(exec->status);
4173 
4174     if (value2 == NULL)
4175         return(xmlRegExecPushString(exec, value, data));
4176 
4177     lenn = strlen((char *) value2);
4178     lenp = strlen((char *) value);
4179 
4180     if (150 < lenn + lenp + 2) {
4181 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
4182 	if (str == NULL) {
4183 	    exec->status = -1;
4184 	    return(-1);
4185 	}
4186     } else {
4187 	str = buf;
4188     }
4189     memcpy(&str[0], value, lenp);
4190     str[lenp] = XML_REG_STRING_SEPARATOR;
4191     memcpy(&str[lenp + 1], value2, lenn);
4192     str[lenn + lenp + 1] = 0;
4193 
4194     if (exec->comp->compact != NULL)
4195 	ret = xmlRegCompactPushString(exec, exec->comp, str, data);
4196     else
4197         ret = xmlRegExecPushStringInternal(exec, str, data, 1);
4198 
4199     if (str != buf)
4200         xmlFree(str);
4201     return(ret);
4202 }
4203 
4204 /**
4205  * xmlRegExecGetValues:
4206  * @exec: a regexp execution context
4207  * @err: error extraction or normal one
4208  * @nbval: pointer to the number of accepted values IN/OUT
4209  * @nbneg: return number of negative transitions
4210  * @values: pointer to the array of acceptable values
4211  * @terminal: return value if this was a terminal state
4212  *
4213  * Extract informations from the regexp execution, internal routine to
4214  * implement xmlRegExecNextValues() and xmlRegExecErrInfo()
4215  *
4216  * Returns: 0 in case of success or -1 in case of error.
4217  */
4218 static int
4219 xmlRegExecGetValues(xmlRegExecCtxtPtr exec, int err,
4220                     int *nbval, int *nbneg,
4221 		    xmlChar **values, int *terminal) {
4222     int maxval;
4223     int nb = 0;
4224 
4225     if ((exec == NULL) || (nbval == NULL) || (nbneg == NULL) ||
4226         (values == NULL) || (*nbval <= 0))
4227         return(-1);
4228 
4229     maxval = *nbval;
4230     *nbval = 0;
4231     *nbneg = 0;
4232     if ((exec->comp != NULL) && (exec->comp->compact != NULL)) {
4233         xmlRegexpPtr comp;
4234 	int target, i, state;
4235 
4236         comp = exec->comp;
4237 
4238 	if (err) {
4239 	    if (exec->errStateNo == -1) return(-1);
4240 	    state = exec->errStateNo;
4241 	} else {
4242 	    state = exec->index;
4243 	}
4244 	if (terminal != NULL) {
4245 	    if (comp->compact[state * (comp->nbstrings + 1)] ==
4246 	        XML_REGEXP_FINAL_STATE)
4247 		*terminal = 1;
4248 	    else
4249 		*terminal = 0;
4250 	}
4251 	for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
4252 	    target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
4253 	    if ((target > 0) && (target <= comp->nbstates) &&
4254 	        (comp->compact[(target - 1) * (comp->nbstrings + 1)] !=
4255 		 XML_REGEXP_SINK_STATE)) {
4256 	        values[nb++] = comp->stringMap[i];
4257 		(*nbval)++;
4258 	    }
4259 	}
4260 	for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
4261 	    target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
4262 	    if ((target > 0) && (target <= comp->nbstates) &&
4263 	        (comp->compact[(target - 1) * (comp->nbstrings + 1)] ==
4264 		 XML_REGEXP_SINK_STATE)) {
4265 	        values[nb++] = comp->stringMap[i];
4266 		(*nbneg)++;
4267 	    }
4268 	}
4269     } else {
4270         int transno;
4271 	xmlRegTransPtr trans;
4272 	xmlRegAtomPtr atom;
4273 	xmlRegStatePtr state;
4274 
4275 	if (terminal != NULL) {
4276 	    if (exec->state->type == XML_REGEXP_FINAL_STATE)
4277 		*terminal = 1;
4278 	    else
4279 		*terminal = 0;
4280 	}
4281 
4282 	if (err) {
4283 	    if (exec->errState == NULL) return(-1);
4284 	    state = exec->errState;
4285 	} else {
4286 	    if (exec->state == NULL) return(-1);
4287 	    state = exec->state;
4288 	}
4289 	for (transno = 0;
4290 	     (transno < state->nbTrans) && (nb < maxval);
4291 	     transno++) {
4292 	    trans = &state->trans[transno];
4293 	    if (trans->to < 0)
4294 		continue;
4295 	    atom = trans->atom;
4296 	    if ((atom == NULL) || (atom->valuep == NULL))
4297 		continue;
4298 	    if (trans->count == REGEXP_ALL_LAX_COUNTER) {
4299 	        /* this should not be reached but ... */
4300 	        TODO;
4301 	    } else if (trans->count == REGEXP_ALL_COUNTER) {
4302 	        /* this should not be reached but ... */
4303 	        TODO;
4304 	    } else if (trans->counter >= 0) {
4305 		xmlRegCounterPtr counter = NULL;
4306 		int count;
4307 
4308 		if (err)
4309 		    count = exec->errCounts[trans->counter];
4310 		else
4311 		    count = exec->counts[trans->counter];
4312 		if (exec->comp != NULL)
4313 		    counter = &exec->comp->counters[trans->counter];
4314 		if ((counter == NULL) || (count < counter->max)) {
4315 		    if (atom->neg)
4316 			values[nb++] = (xmlChar *) atom->valuep2;
4317 		    else
4318 			values[nb++] = (xmlChar *) atom->valuep;
4319 		    (*nbval)++;
4320 		}
4321 	    } else {
4322                 if ((exec->comp != NULL) && (exec->comp->states[trans->to] != NULL) &&
4323 		    (exec->comp->states[trans->to]->type !=
4324 		     XML_REGEXP_SINK_STATE)) {
4325 		    if (atom->neg)
4326 			values[nb++] = (xmlChar *) atom->valuep2;
4327 		    else
4328 			values[nb++] = (xmlChar *) atom->valuep;
4329 		    (*nbval)++;
4330 		}
4331 	    }
4332 	}
4333 	for (transno = 0;
4334 	     (transno < state->nbTrans) && (nb < maxval);
4335 	     transno++) {
4336 	    trans = &state->trans[transno];
4337 	    if (trans->to < 0)
4338 		continue;
4339 	    atom = trans->atom;
4340 	    if ((atom == NULL) || (atom->valuep == NULL))
4341 		continue;
4342 	    if (trans->count == REGEXP_ALL_LAX_COUNTER) {
4343 	        continue;
4344 	    } else if (trans->count == REGEXP_ALL_COUNTER) {
4345 	        continue;
4346 	    } else if (trans->counter >= 0) {
4347 	        continue;
4348 	    } else {
4349                 if ((exec->comp->states[trans->to] != NULL) &&
4350 		    (exec->comp->states[trans->to]->type ==
4351 		     XML_REGEXP_SINK_STATE)) {
4352 		    if (atom->neg)
4353 			values[nb++] = (xmlChar *) atom->valuep2;
4354 		    else
4355 			values[nb++] = (xmlChar *) atom->valuep;
4356 		    (*nbneg)++;
4357 		}
4358 	    }
4359 	}
4360     }
4361     return(0);
4362 }
4363 
4364 /**
4365  * xmlRegExecNextValues:
4366  * @exec: a regexp execution context
4367  * @nbval: pointer to the number of accepted values IN/OUT
4368  * @nbneg: return number of negative transitions
4369  * @values: pointer to the array of acceptable values
4370  * @terminal: return value if this was a terminal state
4371  *
4372  * Extract informations from the regexp execution,
4373  * the parameter @values must point to an array of @nbval string pointers
4374  * on return nbval will contain the number of possible strings in that
4375  * state and the @values array will be updated with them. The string values
4376  * returned will be freed with the @exec context and don't need to be
4377  * deallocated.
4378  *
4379  * Returns: 0 in case of success or -1 in case of error.
4380  */
4381 int
4382 xmlRegExecNextValues(xmlRegExecCtxtPtr exec, int *nbval, int *nbneg,
4383                      xmlChar **values, int *terminal) {
4384     return(xmlRegExecGetValues(exec, 0, nbval, nbneg, values, terminal));
4385 }
4386 
4387 /**
4388  * xmlRegExecErrInfo:
4389  * @exec: a regexp execution context generating an error
4390  * @string: return value for the error string
4391  * @nbval: pointer to the number of accepted values IN/OUT
4392  * @nbneg: return number of negative transitions
4393  * @values: pointer to the array of acceptable values
4394  * @terminal: return value if this was a terminal state
4395  *
4396  * Extract error informations from the regexp execution, the parameter
4397  * @string will be updated with the value pushed and not accepted,
4398  * the parameter @values must point to an array of @nbval string pointers
4399  * on return nbval will contain the number of possible strings in that
4400  * state and the @values array will be updated with them. The string values
4401  * returned will be freed with the @exec context and don't need to be
4402  * deallocated.
4403  *
4404  * Returns: 0 in case of success or -1 in case of error.
4405  */
4406 int
4407 xmlRegExecErrInfo(xmlRegExecCtxtPtr exec, const xmlChar **string,
4408                   int *nbval, int *nbneg, xmlChar **values, int *terminal) {
4409     if (exec == NULL)
4410         return(-1);
4411     if (string != NULL) {
4412         if (exec->status != 0)
4413 	    *string = exec->errString;
4414 	else
4415 	    *string = NULL;
4416     }
4417     return(xmlRegExecGetValues(exec, 1, nbval, nbneg, values, terminal));
4418 }
4419 
4420 #ifdef DEBUG_ERR
4421 static void testerr(xmlRegExecCtxtPtr exec) {
4422     const xmlChar *string;
4423     xmlChar *values[5];
4424     int nb = 5;
4425     int nbneg;
4426     int terminal;
4427     xmlRegExecErrInfo(exec, &string, &nb, &nbneg, &values[0], &terminal);
4428 }
4429 #endif
4430 
4431 #if 0
4432 static int
4433 xmlRegExecPushChar(xmlRegExecCtxtPtr exec, int UCS) {
4434     xmlRegTransPtr trans;
4435     xmlRegAtomPtr atom;
4436     int ret;
4437     int codepoint, len;
4438 
4439     if (exec == NULL)
4440 	return(-1);
4441     if (exec->status != 0)
4442 	return(exec->status);
4443 
4444     while ((exec->status == 0) &&
4445 	   ((exec->inputString[exec->index] != 0) ||
4446 	    (exec->state->type != XML_REGEXP_FINAL_STATE))) {
4447 
4448 	/*
4449 	 * End of input on non-terminal state, rollback, however we may
4450 	 * still have epsilon like transition for counted transitions
4451 	 * on counters, in that case don't break too early.
4452 	 */
4453 	if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL))
4454 	    goto rollback;
4455 
4456 	exec->transcount = 0;
4457 	for (;exec->transno < exec->state->nbTrans;exec->transno++) {
4458 	    trans = &exec->state->trans[exec->transno];
4459 	    if (trans->to < 0)
4460 		continue;
4461 	    atom = trans->atom;
4462 	    ret = 0;
4463 	    if (trans->count >= 0) {
4464 		int count;
4465 		xmlRegCounterPtr counter;
4466 
4467 		/*
4468 		 * A counted transition.
4469 		 */
4470 
4471 		count = exec->counts[trans->count];
4472 		counter = &exec->comp->counters[trans->count];
4473 #ifdef DEBUG_REGEXP_EXEC
4474 		printf("testing count %d: val %d, min %d, max %d\n",
4475 		       trans->count, count, counter->min,  counter->max);
4476 #endif
4477 		ret = ((count >= counter->min) && (count <= counter->max));
4478 	    } else if (atom == NULL) {
4479 		fprintf(stderr, "epsilon transition left at runtime\n");
4480 		exec->status = -2;
4481 		break;
4482 	    } else if (exec->inputString[exec->index] != 0) {
4483                 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
4484 		ret = xmlRegCheckCharacter(atom, codepoint);
4485 		if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
4486 		    xmlRegStatePtr to = exec->comp->states[trans->to];
4487 
4488 		    /*
4489 		     * this is a multiple input sequence
4490 		     */
4491 		    if (exec->state->nbTrans > exec->transno + 1) {
4492 			xmlFARegExecSave(exec);
4493 		    }
4494 		    exec->transcount = 1;
4495 		    do {
4496 			/*
4497 			 * Try to progress as much as possible on the input
4498 			 */
4499 			if (exec->transcount == atom->max) {
4500 			    break;
4501 			}
4502 			exec->index += len;
4503 			/*
4504 			 * End of input: stop here
4505 			 */
4506 			if (exec->inputString[exec->index] == 0) {
4507 			    exec->index -= len;
4508 			    break;
4509 			}
4510 			if (exec->transcount >= atom->min) {
4511 			    int transno = exec->transno;
4512 			    xmlRegStatePtr state = exec->state;
4513 
4514 			    /*
4515 			     * The transition is acceptable save it
4516 			     */
4517 			    exec->transno = -1; /* trick */
4518 			    exec->state = to;
4519 			    xmlFARegExecSave(exec);
4520 			    exec->transno = transno;
4521 			    exec->state = state;
4522 			}
4523 			codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
4524 				              len);
4525 			ret = xmlRegCheckCharacter(atom, codepoint);
4526 			exec->transcount++;
4527 		    } while (ret == 1);
4528 		    if (exec->transcount < atom->min)
4529 			ret = 0;
4530 
4531 		    /*
4532 		     * If the last check failed but one transition was found
4533 		     * possible, rollback
4534 		     */
4535 		    if (ret < 0)
4536 			ret = 0;
4537 		    if (ret == 0) {
4538 			goto rollback;
4539 		    }
4540 		}
4541 	    }
4542 	    if (ret == 1) {
4543 		if (exec->state->nbTrans > exec->transno + 1) {
4544 		    xmlFARegExecSave(exec);
4545 		}
4546 		/*
4547 		 * restart count for expressions like this ((abc){2})*
4548 		 */
4549 		if (trans->count >= 0) {
4550 #ifdef DEBUG_REGEXP_EXEC
4551 		    printf("Reset count %d\n", trans->count);
4552 #endif
4553 		    exec->counts[trans->count] = 0;
4554 		}
4555 		if (trans->counter >= 0) {
4556 #ifdef DEBUG_REGEXP_EXEC
4557 		    printf("Increasing count %d\n", trans->counter);
4558 #endif
4559 		    exec->counts[trans->counter]++;
4560 		}
4561 #ifdef DEBUG_REGEXP_EXEC
4562 		printf("entering state %d\n", trans->to);
4563 #endif
4564 		exec->state = exec->comp->states[trans->to];
4565 		exec->transno = 0;
4566 		if (trans->atom != NULL) {
4567 		    exec->index += len;
4568 		}
4569 		goto progress;
4570 	    } else if (ret < 0) {
4571 		exec->status = -4;
4572 		break;
4573 	    }
4574 	}
4575 	if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
4576 rollback:
4577 	    /*
4578 	     * Failed to find a way out
4579 	     */
4580 	    exec->determinist = 0;
4581 	    xmlFARegExecRollBack(exec);
4582 	}
4583 progress:
4584 	continue;
4585     }
4586 }
4587 #endif
4588 /************************************************************************
4589  *									*
4590  *	Parser for the Schemas Datatype Regular Expressions		*
4591  *	http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#regexs	*
4592  *									*
4593  ************************************************************************/
4594 
4595 /**
4596  * xmlFAIsChar:
4597  * @ctxt:  a regexp parser context
4598  *
4599  * [10]   Char   ::=   [^.\?*+()|#x5B#x5D]
4600  */
4601 static int
4602 xmlFAIsChar(xmlRegParserCtxtPtr ctxt) {
4603     int cur;
4604     int len;
4605 
4606     cur = CUR_SCHAR(ctxt->cur, len);
4607     if ((cur == '.') || (cur == '\\') || (cur == '?') ||
4608 	(cur == '*') || (cur == '+') || (cur == '(') ||
4609 	(cur == ')') || (cur == '|') || (cur == 0x5B) ||
4610 	(cur == 0x5D) || (cur == 0))
4611 	return(-1);
4612     return(cur);
4613 }
4614 
4615 /**
4616  * xmlFAParseCharProp:
4617  * @ctxt:  a regexp parser context
4618  *
4619  * [27]   charProp   ::=   IsCategory | IsBlock
4620  * [28]   IsCategory ::= Letters | Marks | Numbers | Punctuation |
4621  *                       Separators | Symbols | Others
4622  * [29]   Letters   ::=   'L' [ultmo]?
4623  * [30]   Marks   ::=   'M' [nce]?
4624  * [31]   Numbers   ::=   'N' [dlo]?
4625  * [32]   Punctuation   ::=   'P' [cdseifo]?
4626  * [33]   Separators   ::=   'Z' [slp]?
4627  * [34]   Symbols   ::=   'S' [mcko]?
4628  * [35]   Others   ::=   'C' [cfon]?
4629  * [36]   IsBlock   ::=   'Is' [a-zA-Z0-9#x2D]+
4630  */
4631 static void
4632 xmlFAParseCharProp(xmlRegParserCtxtPtr ctxt) {
4633     int cur;
4634     xmlRegAtomType type = (xmlRegAtomType) 0;
4635     xmlChar *blockName = NULL;
4636 
4637     cur = CUR;
4638     if (cur == 'L') {
4639 	NEXT;
4640 	cur = CUR;
4641 	if (cur == 'u') {
4642 	    NEXT;
4643 	    type = XML_REGEXP_LETTER_UPPERCASE;
4644 	} else if (cur == 'l') {
4645 	    NEXT;
4646 	    type = XML_REGEXP_LETTER_LOWERCASE;
4647 	} else if (cur == 't') {
4648 	    NEXT;
4649 	    type = XML_REGEXP_LETTER_TITLECASE;
4650 	} else if (cur == 'm') {
4651 	    NEXT;
4652 	    type = XML_REGEXP_LETTER_MODIFIER;
4653 	} else if (cur == 'o') {
4654 	    NEXT;
4655 	    type = XML_REGEXP_LETTER_OTHERS;
4656 	} else {
4657 	    type = XML_REGEXP_LETTER;
4658 	}
4659     } else if (cur == 'M') {
4660 	NEXT;
4661 	cur = CUR;
4662 	if (cur == 'n') {
4663 	    NEXT;
4664 	    /* nonspacing */
4665 	    type = XML_REGEXP_MARK_NONSPACING;
4666 	} else if (cur == 'c') {
4667 	    NEXT;
4668 	    /* spacing combining */
4669 	    type = XML_REGEXP_MARK_SPACECOMBINING;
4670 	} else if (cur == 'e') {
4671 	    NEXT;
4672 	    /* enclosing */
4673 	    type = XML_REGEXP_MARK_ENCLOSING;
4674 	} else {
4675 	    /* all marks */
4676 	    type = XML_REGEXP_MARK;
4677 	}
4678     } else if (cur == 'N') {
4679 	NEXT;
4680 	cur = CUR;
4681 	if (cur == 'd') {
4682 	    NEXT;
4683 	    /* digital */
4684 	    type = XML_REGEXP_NUMBER_DECIMAL;
4685 	} else if (cur == 'l') {
4686 	    NEXT;
4687 	    /* letter */
4688 	    type = XML_REGEXP_NUMBER_LETTER;
4689 	} else if (cur == 'o') {
4690 	    NEXT;
4691 	    /* other */
4692 	    type = XML_REGEXP_NUMBER_OTHERS;
4693 	} else {
4694 	    /* all numbers */
4695 	    type = XML_REGEXP_NUMBER;
4696 	}
4697     } else if (cur == 'P') {
4698 	NEXT;
4699 	cur = CUR;
4700 	if (cur == 'c') {
4701 	    NEXT;
4702 	    /* connector */
4703 	    type = XML_REGEXP_PUNCT_CONNECTOR;
4704 	} else if (cur == 'd') {
4705 	    NEXT;
4706 	    /* dash */
4707 	    type = XML_REGEXP_PUNCT_DASH;
4708 	} else if (cur == 's') {
4709 	    NEXT;
4710 	    /* open */
4711 	    type = XML_REGEXP_PUNCT_OPEN;
4712 	} else if (cur == 'e') {
4713 	    NEXT;
4714 	    /* close */
4715 	    type = XML_REGEXP_PUNCT_CLOSE;
4716 	} else if (cur == 'i') {
4717 	    NEXT;
4718 	    /* initial quote */
4719 	    type = XML_REGEXP_PUNCT_INITQUOTE;
4720 	} else if (cur == 'f') {
4721 	    NEXT;
4722 	    /* final quote */
4723 	    type = XML_REGEXP_PUNCT_FINQUOTE;
4724 	} else if (cur == 'o') {
4725 	    NEXT;
4726 	    /* other */
4727 	    type = XML_REGEXP_PUNCT_OTHERS;
4728 	} else {
4729 	    /* all punctuation */
4730 	    type = XML_REGEXP_PUNCT;
4731 	}
4732     } else if (cur == 'Z') {
4733 	NEXT;
4734 	cur = CUR;
4735 	if (cur == 's') {
4736 	    NEXT;
4737 	    /* space */
4738 	    type = XML_REGEXP_SEPAR_SPACE;
4739 	} else if (cur == 'l') {
4740 	    NEXT;
4741 	    /* line */
4742 	    type = XML_REGEXP_SEPAR_LINE;
4743 	} else if (cur == 'p') {
4744 	    NEXT;
4745 	    /* paragraph */
4746 	    type = XML_REGEXP_SEPAR_PARA;
4747 	} else {
4748 	    /* all separators */
4749 	    type = XML_REGEXP_SEPAR;
4750 	}
4751     } else if (cur == 'S') {
4752 	NEXT;
4753 	cur = CUR;
4754 	if (cur == 'm') {
4755 	    NEXT;
4756 	    type = XML_REGEXP_SYMBOL_MATH;
4757 	    /* math */
4758 	} else if (cur == 'c') {
4759 	    NEXT;
4760 	    type = XML_REGEXP_SYMBOL_CURRENCY;
4761 	    /* currency */
4762 	} else if (cur == 'k') {
4763 	    NEXT;
4764 	    type = XML_REGEXP_SYMBOL_MODIFIER;
4765 	    /* modifiers */
4766 	} else if (cur == 'o') {
4767 	    NEXT;
4768 	    type = XML_REGEXP_SYMBOL_OTHERS;
4769 	    /* other */
4770 	} else {
4771 	    /* all symbols */
4772 	    type = XML_REGEXP_SYMBOL;
4773 	}
4774     } else if (cur == 'C') {
4775 	NEXT;
4776 	cur = CUR;
4777 	if (cur == 'c') {
4778 	    NEXT;
4779 	    /* control */
4780 	    type = XML_REGEXP_OTHER_CONTROL;
4781 	} else if (cur == 'f') {
4782 	    NEXT;
4783 	    /* format */
4784 	    type = XML_REGEXP_OTHER_FORMAT;
4785 	} else if (cur == 'o') {
4786 	    NEXT;
4787 	    /* private use */
4788 	    type = XML_REGEXP_OTHER_PRIVATE;
4789 	} else if (cur == 'n') {
4790 	    NEXT;
4791 	    /* not assigned */
4792 	    type = XML_REGEXP_OTHER_NA;
4793 	} else {
4794 	    /* all others */
4795 	    type = XML_REGEXP_OTHER;
4796 	}
4797     } else if (cur == 'I') {
4798 	const xmlChar *start;
4799 	NEXT;
4800 	cur = CUR;
4801 	if (cur != 's') {
4802 	    ERROR("IsXXXX expected");
4803 	    return;
4804 	}
4805 	NEXT;
4806 	start = ctxt->cur;
4807 	cur = CUR;
4808 	if (((cur >= 'a') && (cur <= 'z')) ||
4809 	    ((cur >= 'A') && (cur <= 'Z')) ||
4810 	    ((cur >= '0') && (cur <= '9')) ||
4811 	    (cur == 0x2D)) {
4812 	    NEXT;
4813 	    cur = CUR;
4814 	    while (((cur >= 'a') && (cur <= 'z')) ||
4815 		((cur >= 'A') && (cur <= 'Z')) ||
4816 		((cur >= '0') && (cur <= '9')) ||
4817 		(cur == 0x2D)) {
4818 		NEXT;
4819 		cur = CUR;
4820 	    }
4821 	}
4822 	type = XML_REGEXP_BLOCK_NAME;
4823 	blockName = xmlStrndup(start, ctxt->cur - start);
4824     } else {
4825 	ERROR("Unknown char property");
4826 	return;
4827     }
4828     if (ctxt->atom == NULL) {
4829 	ctxt->atom = xmlRegNewAtom(ctxt, type);
4830 	if (ctxt->atom != NULL)
4831 	    ctxt->atom->valuep = blockName;
4832     } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4833         xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4834 		           type, 0, 0, blockName);
4835     }
4836 }
4837 
4838 /**
4839  * xmlFAParseCharClassEsc:
4840  * @ctxt:  a regexp parser context
4841  *
4842  * [23] charClassEsc ::= ( SingleCharEsc | MultiCharEsc | catEsc | complEsc )
4843  * [24] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]
4844  * [25] catEsc   ::=   '\p{' charProp '}'
4845  * [26] complEsc ::=   '\P{' charProp '}'
4846  * [37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])
4847  */
4848 static void
4849 xmlFAParseCharClassEsc(xmlRegParserCtxtPtr ctxt) {
4850     int cur;
4851 
4852     if (CUR == '.') {
4853 	if (ctxt->atom == NULL) {
4854 	    ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_ANYCHAR);
4855 	} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4856 	    xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4857 			       XML_REGEXP_ANYCHAR, 0, 0, NULL);
4858 	}
4859 	NEXT;
4860 	return;
4861     }
4862     if (CUR != '\\') {
4863 	ERROR("Escaped sequence: expecting \\");
4864 	return;
4865     }
4866     NEXT;
4867     cur = CUR;
4868     if (cur == 'p') {
4869 	NEXT;
4870 	if (CUR != '{') {
4871 	    ERROR("Expecting '{'");
4872 	    return;
4873 	}
4874 	NEXT;
4875 	xmlFAParseCharProp(ctxt);
4876 	if (CUR != '}') {
4877 	    ERROR("Expecting '}'");
4878 	    return;
4879 	}
4880 	NEXT;
4881     } else if (cur == 'P') {
4882 	NEXT;
4883 	if (CUR != '{') {
4884 	    ERROR("Expecting '{'");
4885 	    return;
4886 	}
4887 	NEXT;
4888 	xmlFAParseCharProp(ctxt);
4889         if (ctxt->atom != NULL)
4890 	    ctxt->atom->neg = 1;
4891 	if (CUR != '}') {
4892 	    ERROR("Expecting '}'");
4893 	    return;
4894 	}
4895 	NEXT;
4896     } else if ((cur == 'n') || (cur == 'r') || (cur == 't') || (cur == '\\') ||
4897 	(cur == '|') || (cur == '.') || (cur == '?') || (cur == '*') ||
4898 	(cur == '+') || (cur == '(') || (cur == ')') || (cur == '{') ||
4899 	(cur == '}') || (cur == 0x2D) || (cur == 0x5B) || (cur == 0x5D) ||
4900 	(cur == 0x5E)) {
4901 	if (ctxt->atom == NULL) {
4902 	    ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
4903 	    if (ctxt->atom != NULL) {
4904 	        switch (cur) {
4905 		    case 'n':
4906 		        ctxt->atom->codepoint = '\n';
4907 			break;
4908 		    case 'r':
4909 		        ctxt->atom->codepoint = '\r';
4910 			break;
4911 		    case 't':
4912 		        ctxt->atom->codepoint = '\t';
4913 			break;
4914 		    default:
4915 			ctxt->atom->codepoint = cur;
4916 		}
4917 	    }
4918 	} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4919             switch (cur) {
4920                 case 'n':
4921                     cur = '\n';
4922                     break;
4923                 case 'r':
4924                     cur = '\r';
4925                     break;
4926                 case 't':
4927                     cur = '\t';
4928                     break;
4929             }
4930 	    xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4931 			       XML_REGEXP_CHARVAL, cur, cur, NULL);
4932 	}
4933 	NEXT;
4934     } else if ((cur == 's') || (cur == 'S') || (cur == 'i') || (cur == 'I') ||
4935 	(cur == 'c') || (cur == 'C') || (cur == 'd') || (cur == 'D') ||
4936 	(cur == 'w') || (cur == 'W')) {
4937 	xmlRegAtomType type = XML_REGEXP_ANYSPACE;
4938 
4939 	switch (cur) {
4940 	    case 's':
4941 		type = XML_REGEXP_ANYSPACE;
4942 		break;
4943 	    case 'S':
4944 		type = XML_REGEXP_NOTSPACE;
4945 		break;
4946 	    case 'i':
4947 		type = XML_REGEXP_INITNAME;
4948 		break;
4949 	    case 'I':
4950 		type = XML_REGEXP_NOTINITNAME;
4951 		break;
4952 	    case 'c':
4953 		type = XML_REGEXP_NAMECHAR;
4954 		break;
4955 	    case 'C':
4956 		type = XML_REGEXP_NOTNAMECHAR;
4957 		break;
4958 	    case 'd':
4959 		type = XML_REGEXP_DECIMAL;
4960 		break;
4961 	    case 'D':
4962 		type = XML_REGEXP_NOTDECIMAL;
4963 		break;
4964 	    case 'w':
4965 		type = XML_REGEXP_REALCHAR;
4966 		break;
4967 	    case 'W':
4968 		type = XML_REGEXP_NOTREALCHAR;
4969 		break;
4970 	}
4971 	NEXT;
4972 	if (ctxt->atom == NULL) {
4973 	    ctxt->atom = xmlRegNewAtom(ctxt, type);
4974 	} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4975 	    xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4976 			       type, 0, 0, NULL);
4977 	}
4978     } else {
4979 	ERROR("Wrong escape sequence, misuse of character '\\'");
4980     }
4981 }
4982 
4983 /**
4984  * xmlFAParseCharRange:
4985  * @ctxt:  a regexp parser context
4986  *
4987  * [17]   charRange   ::=     seRange | XmlCharRef | XmlCharIncDash
4988  * [18]   seRange   ::=   charOrEsc '-' charOrEsc
4989  * [20]   charOrEsc   ::=   XmlChar | SingleCharEsc
4990  * [21]   XmlChar   ::=   [^\#x2D#x5B#x5D]
4991  * [22]   XmlCharIncDash   ::=   [^\#x5B#x5D]
4992  */
4993 static void
4994 xmlFAParseCharRange(xmlRegParserCtxtPtr ctxt) {
4995     int cur, len;
4996     int start = -1;
4997     int end = -1;
4998 
4999     if (CUR == '\0') {
5000         ERROR("Expecting ']'");
5001 	return;
5002     }
5003 
5004     cur = CUR;
5005     if (cur == '\\') {
5006 	NEXT;
5007 	cur = CUR;
5008 	switch (cur) {
5009 	    case 'n': start = 0xA; break;
5010 	    case 'r': start = 0xD; break;
5011 	    case 't': start = 0x9; break;
5012 	    case '\\': case '|': case '.': case '-': case '^': case '?':
5013 	    case '*': case '+': case '{': case '}': case '(': case ')':
5014 	    case '[': case ']':
5015 		start = cur; break;
5016 	    default:
5017 		ERROR("Invalid escape value");
5018 		return;
5019 	}
5020 	end = start;
5021         len = 1;
5022     } else if ((cur != 0x5B) && (cur != 0x5D)) {
5023         end = start = CUR_SCHAR(ctxt->cur, len);
5024     } else {
5025 	ERROR("Expecting a char range");
5026 	return;
5027     }
5028     /*
5029      * Since we are "inside" a range, we can assume ctxt->cur is past
5030      * the start of ctxt->string, and PREV should be safe
5031      */
5032     if ((start == '-') && (NXT(1) != ']') && (PREV != '[') && (PREV != '^')) {
5033 	NEXTL(len);
5034 	return;
5035     }
5036     NEXTL(len);
5037     cur = CUR;
5038     if ((cur != '-') || (NXT(1) == ']')) {
5039         xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
5040 		              XML_REGEXP_CHARVAL, start, end, NULL);
5041 	return;
5042     }
5043     NEXT;
5044     cur = CUR;
5045     if (cur == '\\') {
5046 	NEXT;
5047 	cur = CUR;
5048 	switch (cur) {
5049 	    case 'n': end = 0xA; break;
5050 	    case 'r': end = 0xD; break;
5051 	    case 't': end = 0x9; break;
5052 	    case '\\': case '|': case '.': case '-': case '^': case '?':
5053 	    case '*': case '+': case '{': case '}': case '(': case ')':
5054 	    case '[': case ']':
5055 		end = cur; break;
5056 	    default:
5057 		ERROR("Invalid escape value");
5058 		return;
5059 	}
5060         len = 1;
5061     } else if ((cur != '\0') && (cur != 0x5B) && (cur != 0x5D)) {
5062         end = CUR_SCHAR(ctxt->cur, len);
5063     } else {
5064 	ERROR("Expecting the end of a char range");
5065 	return;
5066     }
5067 
5068     /* TODO check that the values are acceptable character ranges for XML */
5069     if (end < start) {
5070 	ERROR("End of range is before start of range");
5071     } else {
5072         NEXTL(len);
5073         xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
5074 		           XML_REGEXP_CHARVAL, start, end, NULL);
5075     }
5076     return;
5077 }
5078 
5079 /**
5080  * xmlFAParsePosCharGroup:
5081  * @ctxt:  a regexp parser context
5082  *
5083  * [14]   posCharGroup ::= ( charRange | charClassEsc  )+
5084  */
5085 static void
5086 xmlFAParsePosCharGroup(xmlRegParserCtxtPtr ctxt) {
5087     do {
5088 	if (CUR == '\\') {
5089 	    xmlFAParseCharClassEsc(ctxt);
5090 	} else {
5091 	    xmlFAParseCharRange(ctxt);
5092 	}
5093     } while ((CUR != ']') && (CUR != '^') && (CUR != '-') &&
5094              (CUR != 0) && (ctxt->error == 0));
5095 }
5096 
5097 /**
5098  * xmlFAParseCharGroup:
5099  * @ctxt:  a regexp parser context
5100  *
5101  * [13]   charGroup    ::= posCharGroup | negCharGroup | charClassSub
5102  * [15]   negCharGroup ::= '^' posCharGroup
5103  * [16]   charClassSub ::= ( posCharGroup | negCharGroup ) '-' charClassExpr
5104  * [12]   charClassExpr ::= '[' charGroup ']'
5105  */
5106 static void
5107 xmlFAParseCharGroup(xmlRegParserCtxtPtr ctxt) {
5108     int n = ctxt->neg;
5109     while ((CUR != ']') && (ctxt->error == 0)) {
5110 	if (CUR == '^') {
5111 	    int neg = ctxt->neg;
5112 
5113 	    NEXT;
5114 	    ctxt->neg = !ctxt->neg;
5115 	    xmlFAParsePosCharGroup(ctxt);
5116 	    ctxt->neg = neg;
5117 	} else if ((CUR == '-') && (NXT(1) == '[')) {
5118 	    int neg = ctxt->neg;
5119 	    ctxt->neg = 2;
5120 	    NEXT;	/* eat the '-' */
5121 	    NEXT;	/* eat the '[' */
5122 	    xmlFAParseCharGroup(ctxt);
5123 	    if (CUR == ']') {
5124 		NEXT;
5125 	    } else {
5126 		ERROR("charClassExpr: ']' expected");
5127 		break;
5128 	    }
5129 	    ctxt->neg = neg;
5130 	    break;
5131 	} else if (CUR != ']') {
5132 	    xmlFAParsePosCharGroup(ctxt);
5133 	}
5134     }
5135     ctxt->neg = n;
5136 }
5137 
5138 /**
5139  * xmlFAParseCharClass:
5140  * @ctxt:  a regexp parser context
5141  *
5142  * [11]   charClass   ::=     charClassEsc | charClassExpr
5143  * [12]   charClassExpr   ::=   '[' charGroup ']'
5144  */
5145 static void
5146 xmlFAParseCharClass(xmlRegParserCtxtPtr ctxt) {
5147     if (CUR == '[') {
5148 	NEXT;
5149 	ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_RANGES);
5150 	if (ctxt->atom == NULL)
5151 	    return;
5152 	xmlFAParseCharGroup(ctxt);
5153 	if (CUR == ']') {
5154 	    NEXT;
5155 	} else {
5156 	    ERROR("xmlFAParseCharClass: ']' expected");
5157 	}
5158     } else {
5159 	xmlFAParseCharClassEsc(ctxt);
5160     }
5161 }
5162 
5163 /**
5164  * xmlFAParseQuantExact:
5165  * @ctxt:  a regexp parser context
5166  *
5167  * [8]   QuantExact   ::=   [0-9]+
5168  *
5169  * Returns 0 if success or -1 in case of error
5170  */
5171 static int
5172 xmlFAParseQuantExact(xmlRegParserCtxtPtr ctxt) {
5173     int ret = 0;
5174     int ok = 0;
5175 
5176     while ((CUR >= '0') && (CUR <= '9')) {
5177 	ret = ret * 10 + (CUR - '0');
5178 	ok = 1;
5179 	NEXT;
5180     }
5181     if (ok != 1) {
5182 	return(-1);
5183     }
5184     return(ret);
5185 }
5186 
5187 /**
5188  * xmlFAParseQuantifier:
5189  * @ctxt:  a regexp parser context
5190  *
5191  * [4]   quantifier   ::=   [?*+] | ( '{' quantity '}' )
5192  * [5]   quantity   ::=   quantRange | quantMin | QuantExact
5193  * [6]   quantRange   ::=   QuantExact ',' QuantExact
5194  * [7]   quantMin   ::=   QuantExact ','
5195  * [8]   QuantExact   ::=   [0-9]+
5196  */
5197 static int
5198 xmlFAParseQuantifier(xmlRegParserCtxtPtr ctxt) {
5199     int cur;
5200 
5201     cur = CUR;
5202     if ((cur == '?') || (cur == '*') || (cur == '+')) {
5203 	if (ctxt->atom != NULL) {
5204 	    if (cur == '?')
5205 		ctxt->atom->quant = XML_REGEXP_QUANT_OPT;
5206 	    else if (cur == '*')
5207 		ctxt->atom->quant = XML_REGEXP_QUANT_MULT;
5208 	    else if (cur == '+')
5209 		ctxt->atom->quant = XML_REGEXP_QUANT_PLUS;
5210 	}
5211 	NEXT;
5212 	return(1);
5213     }
5214     if (cur == '{') {
5215 	int min = 0, max = 0;
5216 
5217 	NEXT;
5218 	cur = xmlFAParseQuantExact(ctxt);
5219 	if (cur >= 0)
5220 	    min = cur;
5221 	if (CUR == ',') {
5222 	    NEXT;
5223 	    if (CUR == '}')
5224 	        max = INT_MAX;
5225 	    else {
5226 	        cur = xmlFAParseQuantExact(ctxt);
5227 	        if (cur >= 0)
5228 		    max = cur;
5229 		else {
5230 		    ERROR("Improper quantifier");
5231 		}
5232 	    }
5233 	}
5234 	if (CUR == '}') {
5235 	    NEXT;
5236 	} else {
5237 	    ERROR("Unterminated quantifier");
5238 	}
5239 	if (max == 0)
5240 	    max = min;
5241 	if (ctxt->atom != NULL) {
5242 	    ctxt->atom->quant = XML_REGEXP_QUANT_RANGE;
5243 	    ctxt->atom->min = min;
5244 	    ctxt->atom->max = max;
5245 	}
5246 	return(1);
5247     }
5248     return(0);
5249 }
5250 
5251 /**
5252  * xmlFAParseAtom:
5253  * @ctxt:  a regexp parser context
5254  *
5255  * [9]   atom   ::=   Char | charClass | ( '(' regExp ')' )
5256  */
5257 static int
5258 xmlFAParseAtom(xmlRegParserCtxtPtr ctxt) {
5259     int codepoint, len;
5260 
5261     codepoint = xmlFAIsChar(ctxt);
5262     if (codepoint > 0) {
5263 	ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
5264 	if (ctxt->atom == NULL)
5265 	    return(-1);
5266 	codepoint = CUR_SCHAR(ctxt->cur, len);
5267 	ctxt->atom->codepoint = codepoint;
5268 	NEXTL(len);
5269 	return(1);
5270     } else if (CUR == '|') {
5271 	return(0);
5272     } else if (CUR == 0) {
5273 	return(0);
5274     } else if (CUR == ')') {
5275 	return(0);
5276     } else if (CUR == '(') {
5277 	xmlRegStatePtr start, oldend, start0;
5278 
5279 	NEXT;
5280 	/*
5281 	 * this extra Epsilon transition is needed if we count with 0 allowed
5282 	 * unfortunately this can't be known at that point
5283 	 */
5284 	xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
5285 	start0 = ctxt->state;
5286 	xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
5287 	start = ctxt->state;
5288 	oldend = ctxt->end;
5289 	ctxt->end = NULL;
5290 	ctxt->atom = NULL;
5291 	xmlFAParseRegExp(ctxt, 0);
5292 	if (CUR == ')') {
5293 	    NEXT;
5294 	} else {
5295 	    ERROR("xmlFAParseAtom: expecting ')'");
5296 	}
5297 	ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_SUBREG);
5298 	if (ctxt->atom == NULL)
5299 	    return(-1);
5300 	ctxt->atom->start = start;
5301 	ctxt->atom->start0 = start0;
5302 	ctxt->atom->stop = ctxt->state;
5303 	ctxt->end = oldend;
5304 	return(1);
5305     } else if ((CUR == '[') || (CUR == '\\') || (CUR == '.')) {
5306 	xmlFAParseCharClass(ctxt);
5307 	return(1);
5308     }
5309     return(0);
5310 }
5311 
5312 /**
5313  * xmlFAParsePiece:
5314  * @ctxt:  a regexp parser context
5315  *
5316  * [3]   piece   ::=   atom quantifier?
5317  */
5318 static int
5319 xmlFAParsePiece(xmlRegParserCtxtPtr ctxt) {
5320     int ret;
5321 
5322     ctxt->atom = NULL;
5323     ret = xmlFAParseAtom(ctxt);
5324     if (ret == 0)
5325 	return(0);
5326     if (ctxt->atom == NULL) {
5327 	ERROR("internal: no atom generated");
5328     }
5329     xmlFAParseQuantifier(ctxt);
5330     return(1);
5331 }
5332 
5333 /**
5334  * xmlFAParseBranch:
5335  * @ctxt:  a regexp parser context
5336  * @to: optional target to the end of the branch
5337  *
5338  * @to is used to optimize by removing duplicate path in automata
5339  * in expressions like (a|b)(c|d)
5340  *
5341  * [2]   branch   ::=   piece*
5342  */
5343 static int
5344 xmlFAParseBranch(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr to) {
5345     xmlRegStatePtr previous;
5346     int ret;
5347 
5348     previous = ctxt->state;
5349     ret = xmlFAParsePiece(ctxt);
5350     if (ret != 0) {
5351 	if (xmlFAGenerateTransitions(ctxt, previous,
5352 	        (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0)
5353 	    return(-1);
5354 	previous = ctxt->state;
5355 	ctxt->atom = NULL;
5356     }
5357     while ((ret != 0) && (ctxt->error == 0)) {
5358 	ret = xmlFAParsePiece(ctxt);
5359 	if (ret != 0) {
5360 	    if (xmlFAGenerateTransitions(ctxt, previous,
5361 	            (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0)
5362 		    return(-1);
5363 	    previous = ctxt->state;
5364 	    ctxt->atom = NULL;
5365 	}
5366     }
5367     return(0);
5368 }
5369 
5370 /**
5371  * xmlFAParseRegExp:
5372  * @ctxt:  a regexp parser context
5373  * @top:  is this the top-level expression ?
5374  *
5375  * [1]   regExp   ::=     branch  ( '|' branch )*
5376  */
5377 static void
5378 xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top) {
5379     xmlRegStatePtr start, end;
5380 
5381     /* if not top start should have been generated by an epsilon trans */
5382     start = ctxt->state;
5383     ctxt->end = NULL;
5384     xmlFAParseBranch(ctxt, NULL);
5385     if (top) {
5386 #ifdef DEBUG_REGEXP_GRAPH
5387 	printf("State %d is final\n", ctxt->state->no);
5388 #endif
5389 	ctxt->state->type = XML_REGEXP_FINAL_STATE;
5390     }
5391     if (CUR != '|') {
5392 	ctxt->end = ctxt->state;
5393 	return;
5394     }
5395     end = ctxt->state;
5396     while ((CUR == '|') && (ctxt->error == 0)) {
5397 	NEXT;
5398 	if (CUR == 0) {
5399 	    ERROR("expecting a branch after |")
5400 	    return;
5401 	}
5402 	ctxt->state = start;
5403 	ctxt->end = NULL;
5404 	xmlFAParseBranch(ctxt, end);
5405     }
5406     if (!top) {
5407 	ctxt->state = end;
5408 	ctxt->end = end;
5409     }
5410 }
5411 
5412 /************************************************************************
5413  *									*
5414  *			The basic API					*
5415  *									*
5416  ************************************************************************/
5417 
5418 /**
5419  * xmlRegexpPrint:
5420  * @output: the file for the output debug
5421  * @regexp: the compiled regexp
5422  *
5423  * Print the content of the compiled regular expression
5424  */
5425 void
5426 xmlRegexpPrint(FILE *output, xmlRegexpPtr regexp) {
5427     int i;
5428 
5429     if (output == NULL)
5430         return;
5431     fprintf(output, " regexp: ");
5432     if (regexp == NULL) {
5433 	fprintf(output, "NULL\n");
5434 	return;
5435     }
5436     fprintf(output, "'%s' ", regexp->string);
5437     fprintf(output, "\n");
5438     fprintf(output, "%d atoms:\n", regexp->nbAtoms);
5439     for (i = 0;i < regexp->nbAtoms; i++) {
5440 	fprintf(output, " %02d ", i);
5441 	xmlRegPrintAtom(output, regexp->atoms[i]);
5442     }
5443     fprintf(output, "%d states:", regexp->nbStates);
5444     fprintf(output, "\n");
5445     for (i = 0;i < regexp->nbStates; i++) {
5446 	xmlRegPrintState(output, regexp->states[i]);
5447     }
5448     fprintf(output, "%d counters:\n", regexp->nbCounters);
5449     for (i = 0;i < regexp->nbCounters; i++) {
5450 	fprintf(output, " %d: min %d max %d\n", i, regexp->counters[i].min,
5451 		                                regexp->counters[i].max);
5452     }
5453 }
5454 
5455 /**
5456  * xmlRegexpCompile:
5457  * @regexp:  a regular expression string
5458  *
5459  * Parses a regular expression conforming to XML Schemas Part 2 Datatype
5460  * Appendix F and builds an automata suitable for testing strings against
5461  * that regular expression
5462  *
5463  * Returns the compiled expression or NULL in case of error
5464  */
5465 xmlRegexpPtr
5466 xmlRegexpCompile(const xmlChar *regexp) {
5467     xmlRegexpPtr ret;
5468     xmlRegParserCtxtPtr ctxt;
5469 
5470     ctxt = xmlRegNewParserCtxt(regexp);
5471     if (ctxt == NULL)
5472 	return(NULL);
5473 
5474     /* initialize the parser */
5475     ctxt->end = NULL;
5476     ctxt->start = ctxt->state = xmlRegNewState(ctxt);
5477     xmlRegStatePush(ctxt, ctxt->start);
5478 
5479     /* parse the expression building an automata */
5480     xmlFAParseRegExp(ctxt, 1);
5481     if (CUR != 0) {
5482 	ERROR("xmlFAParseRegExp: extra characters");
5483     }
5484     if (ctxt->error != 0) {
5485 	xmlRegFreeParserCtxt(ctxt);
5486 	return(NULL);
5487     }
5488     ctxt->end = ctxt->state;
5489     ctxt->start->type = XML_REGEXP_START_STATE;
5490     ctxt->end->type = XML_REGEXP_FINAL_STATE;
5491 
5492     /* remove the Epsilon except for counted transitions */
5493     xmlFAEliminateEpsilonTransitions(ctxt);
5494 
5495 
5496     if (ctxt->error != 0) {
5497 	xmlRegFreeParserCtxt(ctxt);
5498 	return(NULL);
5499     }
5500     ret = xmlRegEpxFromParse(ctxt);
5501     xmlRegFreeParserCtxt(ctxt);
5502     return(ret);
5503 }
5504 
5505 /**
5506  * xmlRegexpExec:
5507  * @comp:  the compiled regular expression
5508  * @content:  the value to check against the regular expression
5509  *
5510  * Check if the regular expression generates the value
5511  *
5512  * Returns 1 if it matches, 0 if not and a negative value in case of error
5513  */
5514 int
5515 xmlRegexpExec(xmlRegexpPtr comp, const xmlChar *content) {
5516     if ((comp == NULL) || (content == NULL))
5517 	return(-1);
5518     return(xmlFARegExec(comp, content));
5519 }
5520 
5521 /**
5522  * xmlRegexpIsDeterminist:
5523  * @comp:  the compiled regular expression
5524  *
5525  * Check if the regular expression is determinist
5526  *
5527  * Returns 1 if it yes, 0 if not and a negative value in case of error
5528  */
5529 int
5530 xmlRegexpIsDeterminist(xmlRegexpPtr comp) {
5531     xmlAutomataPtr am;
5532     int ret;
5533 
5534     if (comp == NULL)
5535 	return(-1);
5536     if (comp->determinist != -1)
5537 	return(comp->determinist);
5538 
5539     am = xmlNewAutomata();
5540     if (am->states != NULL) {
5541 	int i;
5542 
5543 	for (i = 0;i < am->nbStates;i++)
5544 	    xmlRegFreeState(am->states[i]);
5545 	xmlFree(am->states);
5546     }
5547     am->nbAtoms = comp->nbAtoms;
5548     am->atoms = comp->atoms;
5549     am->nbStates = comp->nbStates;
5550     am->states = comp->states;
5551     am->determinist = -1;
5552     am->flags = comp->flags;
5553     ret = xmlFAComputesDeterminism(am);
5554     am->atoms = NULL;
5555     am->states = NULL;
5556     xmlFreeAutomata(am);
5557     comp->determinist = ret;
5558     return(ret);
5559 }
5560 
5561 /**
5562  * xmlRegFreeRegexp:
5563  * @regexp:  the regexp
5564  *
5565  * Free a regexp
5566  */
5567 void
5568 xmlRegFreeRegexp(xmlRegexpPtr regexp) {
5569     int i;
5570     if (regexp == NULL)
5571 	return;
5572 
5573     if (regexp->string != NULL)
5574 	xmlFree(regexp->string);
5575     if (regexp->states != NULL) {
5576 	for (i = 0;i < regexp->nbStates;i++)
5577 	    xmlRegFreeState(regexp->states[i]);
5578 	xmlFree(regexp->states);
5579     }
5580     if (regexp->atoms != NULL) {
5581 	for (i = 0;i < regexp->nbAtoms;i++)
5582 	    xmlRegFreeAtom(regexp->atoms[i]);
5583 	xmlFree(regexp->atoms);
5584     }
5585     if (regexp->counters != NULL)
5586 	xmlFree(regexp->counters);
5587     if (regexp->compact != NULL)
5588 	xmlFree(regexp->compact);
5589     if (regexp->transdata != NULL)
5590 	xmlFree(regexp->transdata);
5591     if (regexp->stringMap != NULL) {
5592 	for (i = 0; i < regexp->nbstrings;i++)
5593 	    xmlFree(regexp->stringMap[i]);
5594 	xmlFree(regexp->stringMap);
5595     }
5596 
5597     xmlFree(regexp);
5598 }
5599 
5600 #ifdef LIBXML_AUTOMATA_ENABLED
5601 /************************************************************************
5602  *									*
5603  *			The Automata interface				*
5604  *									*
5605  ************************************************************************/
5606 
5607 /**
5608  * xmlNewAutomata:
5609  *
5610  * Create a new automata
5611  *
5612  * Returns the new object or NULL in case of failure
5613  */
5614 xmlAutomataPtr
5615 xmlNewAutomata(void) {
5616     xmlAutomataPtr ctxt;
5617 
5618     ctxt = xmlRegNewParserCtxt(NULL);
5619     if (ctxt == NULL)
5620 	return(NULL);
5621 
5622     /* initialize the parser */
5623     ctxt->end = NULL;
5624     ctxt->start = ctxt->state = xmlRegNewState(ctxt);
5625     if (ctxt->start == NULL) {
5626 	xmlFreeAutomata(ctxt);
5627 	return(NULL);
5628     }
5629     ctxt->start->type = XML_REGEXP_START_STATE;
5630     if (xmlRegStatePush(ctxt, ctxt->start) < 0) {
5631         xmlRegFreeState(ctxt->start);
5632 	xmlFreeAutomata(ctxt);
5633 	return(NULL);
5634     }
5635     ctxt->flags = 0;
5636 
5637     return(ctxt);
5638 }
5639 
5640 /**
5641  * xmlFreeAutomata:
5642  * @am: an automata
5643  *
5644  * Free an automata
5645  */
5646 void
5647 xmlFreeAutomata(xmlAutomataPtr am) {
5648     if (am == NULL)
5649 	return;
5650     xmlRegFreeParserCtxt(am);
5651 }
5652 
5653 /**
5654  * xmlAutomataSetFlags:
5655  * @am: an automata
5656  * @flags:  a set of internal flags
5657  *
5658  * Set some flags on the automata
5659  */
5660 void
5661 xmlAutomataSetFlags(xmlAutomataPtr am, int flags) {
5662     if (am == NULL)
5663 	return;
5664     am->flags |= flags;
5665 }
5666 
5667 /**
5668  * xmlAutomataGetInitState:
5669  * @am: an automata
5670  *
5671  * Initial state lookup
5672  *
5673  * Returns the initial state of the automata
5674  */
5675 xmlAutomataStatePtr
5676 xmlAutomataGetInitState(xmlAutomataPtr am) {
5677     if (am == NULL)
5678 	return(NULL);
5679     return(am->start);
5680 }
5681 
5682 /**
5683  * xmlAutomataSetFinalState:
5684  * @am: an automata
5685  * @state: a state in this automata
5686  *
5687  * Makes that state a final state
5688  *
5689  * Returns 0 or -1 in case of error
5690  */
5691 int
5692 xmlAutomataSetFinalState(xmlAutomataPtr am, xmlAutomataStatePtr state) {
5693     if ((am == NULL) || (state == NULL))
5694 	return(-1);
5695     state->type = XML_REGEXP_FINAL_STATE;
5696     return(0);
5697 }
5698 
5699 /**
5700  * xmlAutomataNewTransition:
5701  * @am: an automata
5702  * @from: the starting point of the transition
5703  * @to: the target point of the transition or NULL
5704  * @token: the input string associated to that transition
5705  * @data: data passed to the callback function if the transition is activated
5706  *
5707  * If @to is NULL, this creates first a new target state in the automata
5708  * and then adds a transition from the @from state to the target state
5709  * activated by the value of @token
5710  *
5711  * Returns the target state or NULL in case of error
5712  */
5713 xmlAutomataStatePtr
5714 xmlAutomataNewTransition(xmlAutomataPtr am, xmlAutomataStatePtr from,
5715 			 xmlAutomataStatePtr to, const xmlChar *token,
5716 			 void *data) {
5717     xmlRegAtomPtr atom;
5718 
5719     if ((am == NULL) || (from == NULL) || (token == NULL))
5720 	return(NULL);
5721     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5722     if (atom == NULL)
5723         return(NULL);
5724     atom->data = data;
5725     atom->valuep = xmlStrdup(token);
5726 
5727     if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
5728         xmlRegFreeAtom(atom);
5729 	return(NULL);
5730     }
5731     if (to == NULL)
5732 	return(am->state);
5733     return(to);
5734 }
5735 
5736 /**
5737  * xmlAutomataNewTransition2:
5738  * @am: an automata
5739  * @from: the starting point of the transition
5740  * @to: the target point of the transition or NULL
5741  * @token: the first input string associated to that transition
5742  * @token2: the second input string associated to that transition
5743  * @data: data passed to the callback function if the transition is activated
5744  *
5745  * If @to is NULL, this creates first a new target state in the automata
5746  * and then adds a transition from the @from state to the target state
5747  * activated by the value of @token
5748  *
5749  * Returns the target state or NULL in case of error
5750  */
5751 xmlAutomataStatePtr
5752 xmlAutomataNewTransition2(xmlAutomataPtr am, xmlAutomataStatePtr from,
5753 			  xmlAutomataStatePtr to, const xmlChar *token,
5754 			  const xmlChar *token2, void *data) {
5755     xmlRegAtomPtr atom;
5756 
5757     if ((am == NULL) || (from == NULL) || (token == NULL))
5758 	return(NULL);
5759     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5760     if (atom == NULL)
5761 	return(NULL);
5762     atom->data = data;
5763     if ((token2 == NULL) || (*token2 == 0)) {
5764 	atom->valuep = xmlStrdup(token);
5765     } else {
5766 	int lenn, lenp;
5767 	xmlChar *str;
5768 
5769 	lenn = strlen((char *) token2);
5770 	lenp = strlen((char *) token);
5771 
5772 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
5773 	if (str == NULL) {
5774 	    xmlRegFreeAtom(atom);
5775 	    return(NULL);
5776 	}
5777 	memcpy(&str[0], token, lenp);
5778 	str[lenp] = '|';
5779 	memcpy(&str[lenp + 1], token2, lenn);
5780 	str[lenn + lenp + 1] = 0;
5781 
5782 	atom->valuep = str;
5783     }
5784 
5785     if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
5786         xmlRegFreeAtom(atom);
5787 	return(NULL);
5788     }
5789     if (to == NULL)
5790 	return(am->state);
5791     return(to);
5792 }
5793 
5794 /**
5795  * xmlAutomataNewNegTrans:
5796  * @am: an automata
5797  * @from: the starting point of the transition
5798  * @to: the target point of the transition or NULL
5799  * @token: the first input string associated to that transition
5800  * @token2: the second input string associated to that transition
5801  * @data: data passed to the callback function if the transition is activated
5802  *
5803  * If @to is NULL, this creates first a new target state in the automata
5804  * and then adds a transition from the @from state to the target state
5805  * activated by any value except (@token,@token2)
5806  * Note that if @token2 is not NULL, then (X, NULL) won't match to follow
5807  # the semantic of XSD ##other
5808  *
5809  * Returns the target state or NULL in case of error
5810  */
5811 xmlAutomataStatePtr
5812 xmlAutomataNewNegTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
5813 		       xmlAutomataStatePtr to, const xmlChar *token,
5814 		       const xmlChar *token2, void *data) {
5815     xmlRegAtomPtr atom;
5816     xmlChar err_msg[200];
5817 
5818     if ((am == NULL) || (from == NULL) || (token == NULL))
5819 	return(NULL);
5820     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5821     if (atom == NULL)
5822 	return(NULL);
5823     atom->data = data;
5824     atom->neg = 1;
5825     if ((token2 == NULL) || (*token2 == 0)) {
5826 	atom->valuep = xmlStrdup(token);
5827     } else {
5828 	int lenn, lenp;
5829 	xmlChar *str;
5830 
5831 	lenn = strlen((char *) token2);
5832 	lenp = strlen((char *) token);
5833 
5834 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
5835 	if (str == NULL) {
5836 	    xmlRegFreeAtom(atom);
5837 	    return(NULL);
5838 	}
5839 	memcpy(&str[0], token, lenp);
5840 	str[lenp] = '|';
5841 	memcpy(&str[lenp + 1], token2, lenn);
5842 	str[lenn + lenp + 1] = 0;
5843 
5844 	atom->valuep = str;
5845     }
5846     snprintf((char *) err_msg, 199, "not %s", (const char *) atom->valuep);
5847     err_msg[199] = 0;
5848     atom->valuep2 = xmlStrdup(err_msg);
5849 
5850     if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
5851         xmlRegFreeAtom(atom);
5852 	return(NULL);
5853     }
5854     am->negs++;
5855     if (to == NULL)
5856 	return(am->state);
5857     return(to);
5858 }
5859 
5860 /**
5861  * xmlAutomataNewCountTrans2:
5862  * @am: an automata
5863  * @from: the starting point of the transition
5864  * @to: the target point of the transition or NULL
5865  * @token: the input string associated to that transition
5866  * @token2: the second input string associated to that transition
5867  * @min:  the minimum successive occurences of token
5868  * @max:  the maximum successive occurences of token
5869  * @data:  data associated to the transition
5870  *
5871  * If @to is NULL, this creates first a new target state in the automata
5872  * and then adds a transition from the @from state to the target state
5873  * activated by a succession of input of value @token and @token2 and
5874  * whose number is between @min and @max
5875  *
5876  * Returns the target state or NULL in case of error
5877  */
5878 xmlAutomataStatePtr
5879 xmlAutomataNewCountTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
5880 			 xmlAutomataStatePtr to, const xmlChar *token,
5881 			 const xmlChar *token2,
5882 			 int min, int max, void *data) {
5883     xmlRegAtomPtr atom;
5884     int counter;
5885 
5886     if ((am == NULL) || (from == NULL) || (token == NULL))
5887 	return(NULL);
5888     if (min < 0)
5889 	return(NULL);
5890     if ((max < min) || (max < 1))
5891 	return(NULL);
5892     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5893     if (atom == NULL)
5894 	return(NULL);
5895     if ((token2 == NULL) || (*token2 == 0)) {
5896 	atom->valuep = xmlStrdup(token);
5897     } else {
5898 	int lenn, lenp;
5899 	xmlChar *str;
5900 
5901 	lenn = strlen((char *) token2);
5902 	lenp = strlen((char *) token);
5903 
5904 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
5905 	if (str == NULL) {
5906 	    xmlRegFreeAtom(atom);
5907 	    return(NULL);
5908 	}
5909 	memcpy(&str[0], token, lenp);
5910 	str[lenp] = '|';
5911 	memcpy(&str[lenp + 1], token2, lenn);
5912 	str[lenn + lenp + 1] = 0;
5913 
5914 	atom->valuep = str;
5915     }
5916     atom->data = data;
5917     if (min == 0)
5918 	atom->min = 1;
5919     else
5920 	atom->min = min;
5921     atom->max = max;
5922 
5923     /*
5924      * associate a counter to the transition.
5925      */
5926     counter = xmlRegGetCounter(am);
5927     am->counters[counter].min = min;
5928     am->counters[counter].max = max;
5929 
5930     /* xmlFAGenerateTransitions(am, from, to, atom); */
5931     if (to == NULL) {
5932         to = xmlRegNewState(am);
5933 	xmlRegStatePush(am, to);
5934     }
5935     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
5936     xmlRegAtomPush(am, atom);
5937     am->state = to;
5938 
5939     if (to == NULL)
5940 	to = am->state;
5941     if (to == NULL)
5942 	return(NULL);
5943     if (min == 0)
5944 	xmlFAGenerateEpsilonTransition(am, from, to);
5945     return(to);
5946 }
5947 
5948 /**
5949  * xmlAutomataNewCountTrans:
5950  * @am: an automata
5951  * @from: the starting point of the transition
5952  * @to: the target point of the transition or NULL
5953  * @token: the input string associated to that transition
5954  * @min:  the minimum successive occurences of token
5955  * @max:  the maximum successive occurences of token
5956  * @data:  data associated to the transition
5957  *
5958  * If @to is NULL, this creates first a new target state in the automata
5959  * and then adds a transition from the @from state to the target state
5960  * activated by a succession of input of value @token and whose number
5961  * is between @min and @max
5962  *
5963  * Returns the target state or NULL in case of error
5964  */
5965 xmlAutomataStatePtr
5966 xmlAutomataNewCountTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
5967 			 xmlAutomataStatePtr to, const xmlChar *token,
5968 			 int min, int max, void *data) {
5969     xmlRegAtomPtr atom;
5970     int counter;
5971 
5972     if ((am == NULL) || (from == NULL) || (token == NULL))
5973 	return(NULL);
5974     if (min < 0)
5975 	return(NULL);
5976     if ((max < min) || (max < 1))
5977 	return(NULL);
5978     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5979     if (atom == NULL)
5980 	return(NULL);
5981     atom->valuep = xmlStrdup(token);
5982     atom->data = data;
5983     if (min == 0)
5984 	atom->min = 1;
5985     else
5986 	atom->min = min;
5987     atom->max = max;
5988 
5989     /*
5990      * associate a counter to the transition.
5991      */
5992     counter = xmlRegGetCounter(am);
5993     am->counters[counter].min = min;
5994     am->counters[counter].max = max;
5995 
5996     /* xmlFAGenerateTransitions(am, from, to, atom); */
5997     if (to == NULL) {
5998         to = xmlRegNewState(am);
5999 	xmlRegStatePush(am, to);
6000     }
6001     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
6002     xmlRegAtomPush(am, atom);
6003     am->state = to;
6004 
6005     if (to == NULL)
6006 	to = am->state;
6007     if (to == NULL)
6008 	return(NULL);
6009     if (min == 0)
6010 	xmlFAGenerateEpsilonTransition(am, from, to);
6011     return(to);
6012 }
6013 
6014 /**
6015  * xmlAutomataNewOnceTrans2:
6016  * @am: an automata
6017  * @from: the starting point of the transition
6018  * @to: the target point of the transition or NULL
6019  * @token: the input string associated to that transition
6020  * @token2: the second input string associated to that transition
6021  * @min:  the minimum successive occurences of token
6022  * @max:  the maximum successive occurences of token
6023  * @data:  data associated to the transition
6024  *
6025  * If @to is NULL, this creates first a new target state in the automata
6026  * and then adds a transition from the @from state to the target state
6027  * activated by a succession of input of value @token and @token2 and whose
6028  * number is between @min and @max, moreover that transition can only be
6029  * crossed once.
6030  *
6031  * Returns the target state or NULL in case of error
6032  */
6033 xmlAutomataStatePtr
6034 xmlAutomataNewOnceTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
6035 			 xmlAutomataStatePtr to, const xmlChar *token,
6036 			 const xmlChar *token2,
6037 			 int min, int max, void *data) {
6038     xmlRegAtomPtr atom;
6039     int counter;
6040 
6041     if ((am == NULL) || (from == NULL) || (token == NULL))
6042 	return(NULL);
6043     if (min < 1)
6044 	return(NULL);
6045     if ((max < min) || (max < 1))
6046 	return(NULL);
6047     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
6048     if (atom == NULL)
6049 	return(NULL);
6050     if ((token2 == NULL) || (*token2 == 0)) {
6051 	atom->valuep = xmlStrdup(token);
6052     } else {
6053 	int lenn, lenp;
6054 	xmlChar *str;
6055 
6056 	lenn = strlen((char *) token2);
6057 	lenp = strlen((char *) token);
6058 
6059 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
6060 	if (str == NULL) {
6061 	    xmlRegFreeAtom(atom);
6062 	    return(NULL);
6063 	}
6064 	memcpy(&str[0], token, lenp);
6065 	str[lenp] = '|';
6066 	memcpy(&str[lenp + 1], token2, lenn);
6067 	str[lenn + lenp + 1] = 0;
6068 
6069 	atom->valuep = str;
6070     }
6071     atom->data = data;
6072     atom->quant = XML_REGEXP_QUANT_ONCEONLY;
6073     atom->min = min;
6074     atom->max = max;
6075     /*
6076      * associate a counter to the transition.
6077      */
6078     counter = xmlRegGetCounter(am);
6079     am->counters[counter].min = 1;
6080     am->counters[counter].max = 1;
6081 
6082     /* xmlFAGenerateTransitions(am, from, to, atom); */
6083     if (to == NULL) {
6084 	to = xmlRegNewState(am);
6085 	xmlRegStatePush(am, to);
6086     }
6087     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
6088     xmlRegAtomPush(am, atom);
6089     am->state = to;
6090     return(to);
6091 }
6092 
6093 
6094 
6095 /**
6096  * xmlAutomataNewOnceTrans:
6097  * @am: an automata
6098  * @from: the starting point of the transition
6099  * @to: the target point of the transition or NULL
6100  * @token: the input string associated to that transition
6101  * @min:  the minimum successive occurences of token
6102  * @max:  the maximum successive occurences of token
6103  * @data:  data associated to the transition
6104  *
6105  * If @to is NULL, this creates first a new target state in the automata
6106  * and then adds a transition from the @from state to the target state
6107  * activated by a succession of input of value @token and whose number
6108  * is between @min and @max, moreover that transition can only be crossed
6109  * once.
6110  *
6111  * Returns the target state or NULL in case of error
6112  */
6113 xmlAutomataStatePtr
6114 xmlAutomataNewOnceTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6115 			 xmlAutomataStatePtr to, const xmlChar *token,
6116 			 int min, int max, void *data) {
6117     xmlRegAtomPtr atom;
6118     int counter;
6119 
6120     if ((am == NULL) || (from == NULL) || (token == NULL))
6121 	return(NULL);
6122     if (min < 1)
6123 	return(NULL);
6124     if ((max < min) || (max < 1))
6125 	return(NULL);
6126     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
6127     if (atom == NULL)
6128 	return(NULL);
6129     atom->valuep = xmlStrdup(token);
6130     atom->data = data;
6131     atom->quant = XML_REGEXP_QUANT_ONCEONLY;
6132     atom->min = min;
6133     atom->max = max;
6134     /*
6135      * associate a counter to the transition.
6136      */
6137     counter = xmlRegGetCounter(am);
6138     am->counters[counter].min = 1;
6139     am->counters[counter].max = 1;
6140 
6141     /* xmlFAGenerateTransitions(am, from, to, atom); */
6142     if (to == NULL) {
6143 	to = xmlRegNewState(am);
6144 	xmlRegStatePush(am, to);
6145     }
6146     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
6147     xmlRegAtomPush(am, atom);
6148     am->state = to;
6149     return(to);
6150 }
6151 
6152 /**
6153  * xmlAutomataNewState:
6154  * @am: an automata
6155  *
6156  * Create a new disconnected state in the automata
6157  *
6158  * Returns the new state or NULL in case of error
6159  */
6160 xmlAutomataStatePtr
6161 xmlAutomataNewState(xmlAutomataPtr am) {
6162     xmlAutomataStatePtr to;
6163 
6164     if (am == NULL)
6165 	return(NULL);
6166     to = xmlRegNewState(am);
6167     xmlRegStatePush(am, to);
6168     return(to);
6169 }
6170 
6171 /**
6172  * xmlAutomataNewEpsilon:
6173  * @am: an automata
6174  * @from: the starting point of the transition
6175  * @to: the target point of the transition or NULL
6176  *
6177  * If @to is NULL, this creates first a new target state in the automata
6178  * and then adds an epsilon transition from the @from state to the
6179  * target state
6180  *
6181  * Returns the target state or NULL in case of error
6182  */
6183 xmlAutomataStatePtr
6184 xmlAutomataNewEpsilon(xmlAutomataPtr am, xmlAutomataStatePtr from,
6185 		      xmlAutomataStatePtr to) {
6186     if ((am == NULL) || (from == NULL))
6187 	return(NULL);
6188     xmlFAGenerateEpsilonTransition(am, from, to);
6189     if (to == NULL)
6190 	return(am->state);
6191     return(to);
6192 }
6193 
6194 /**
6195  * xmlAutomataNewAllTrans:
6196  * @am: an automata
6197  * @from: the starting point of the transition
6198  * @to: the target point of the transition or NULL
6199  * @lax: allow to transition if not all all transitions have been activated
6200  *
6201  * If @to is NULL, this creates first a new target state in the automata
6202  * and then adds a an ALL transition from the @from state to the
6203  * target state. That transition is an epsilon transition allowed only when
6204  * all transitions from the @from node have been activated.
6205  *
6206  * Returns the target state or NULL in case of error
6207  */
6208 xmlAutomataStatePtr
6209 xmlAutomataNewAllTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6210 		       xmlAutomataStatePtr to, int lax) {
6211     if ((am == NULL) || (from == NULL))
6212 	return(NULL);
6213     xmlFAGenerateAllTransition(am, from, to, lax);
6214     if (to == NULL)
6215 	return(am->state);
6216     return(to);
6217 }
6218 
6219 /**
6220  * xmlAutomataNewCounter:
6221  * @am: an automata
6222  * @min:  the minimal value on the counter
6223  * @max:  the maximal value on the counter
6224  *
6225  * Create a new counter
6226  *
6227  * Returns the counter number or -1 in case of error
6228  */
6229 int
6230 xmlAutomataNewCounter(xmlAutomataPtr am, int min, int max) {
6231     int ret;
6232 
6233     if (am == NULL)
6234 	return(-1);
6235 
6236     ret = xmlRegGetCounter(am);
6237     if (ret < 0)
6238 	return(-1);
6239     am->counters[ret].min = min;
6240     am->counters[ret].max = max;
6241     return(ret);
6242 }
6243 
6244 /**
6245  * xmlAutomataNewCountedTrans:
6246  * @am: an automata
6247  * @from: the starting point of the transition
6248  * @to: the target point of the transition or NULL
6249  * @counter: the counter associated to that transition
6250  *
6251  * If @to is NULL, this creates first a new target state in the automata
6252  * and then adds an epsilon transition from the @from state to the target state
6253  * which will increment the counter provided
6254  *
6255  * Returns the target state or NULL in case of error
6256  */
6257 xmlAutomataStatePtr
6258 xmlAutomataNewCountedTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6259 		xmlAutomataStatePtr to, int counter) {
6260     if ((am == NULL) || (from == NULL) || (counter < 0))
6261 	return(NULL);
6262     xmlFAGenerateCountedEpsilonTransition(am, from, to, counter);
6263     if (to == NULL)
6264 	return(am->state);
6265     return(to);
6266 }
6267 
6268 /**
6269  * xmlAutomataNewCounterTrans:
6270  * @am: an automata
6271  * @from: the starting point of the transition
6272  * @to: the target point of the transition or NULL
6273  * @counter: the counter associated to that transition
6274  *
6275  * If @to is NULL, this creates first a new target state in the automata
6276  * and then adds an epsilon transition from the @from state to the target state
6277  * which will be allowed only if the counter is within the right range.
6278  *
6279  * Returns the target state or NULL in case of error
6280  */
6281 xmlAutomataStatePtr
6282 xmlAutomataNewCounterTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6283 		xmlAutomataStatePtr to, int counter) {
6284     if ((am == NULL) || (from == NULL) || (counter < 0))
6285 	return(NULL);
6286     xmlFAGenerateCountedTransition(am, from, to, counter);
6287     if (to == NULL)
6288 	return(am->state);
6289     return(to);
6290 }
6291 
6292 /**
6293  * xmlAutomataCompile:
6294  * @am: an automata
6295  *
6296  * Compile the automata into a Reg Exp ready for being executed.
6297  * The automata should be free after this point.
6298  *
6299  * Returns the compiled regexp or NULL in case of error
6300  */
6301 xmlRegexpPtr
6302 xmlAutomataCompile(xmlAutomataPtr am) {
6303     xmlRegexpPtr ret;
6304 
6305     if ((am == NULL) || (am->error != 0)) return(NULL);
6306     xmlFAEliminateEpsilonTransitions(am);
6307     /* xmlFAComputesDeterminism(am); */
6308     ret = xmlRegEpxFromParse(am);
6309 
6310     return(ret);
6311 }
6312 
6313 /**
6314  * xmlAutomataIsDeterminist:
6315  * @am: an automata
6316  *
6317  * Checks if an automata is determinist.
6318  *
6319  * Returns 1 if true, 0 if not, and -1 in case of error
6320  */
6321 int
6322 xmlAutomataIsDeterminist(xmlAutomataPtr am) {
6323     int ret;
6324 
6325     if (am == NULL)
6326 	return(-1);
6327 
6328     ret = xmlFAComputesDeterminism(am);
6329     return(ret);
6330 }
6331 #endif /* LIBXML_AUTOMATA_ENABLED */
6332 
6333 #ifdef LIBXML_EXPR_ENABLED
6334 /************************************************************************
6335  *									*
6336  *		Formal Expression handling code				*
6337  *									*
6338  ************************************************************************/
6339 /************************************************************************
6340  *									*
6341  *		Expression handling context				*
6342  *									*
6343  ************************************************************************/
6344 
6345 struct _xmlExpCtxt {
6346     xmlDictPtr dict;
6347     xmlExpNodePtr *table;
6348     int size;
6349     int nbElems;
6350     int nb_nodes;
6351     int maxNodes;
6352     const char *expr;
6353     const char *cur;
6354     int nb_cons;
6355     int tabSize;
6356 };
6357 
6358 /**
6359  * xmlExpNewCtxt:
6360  * @maxNodes:  the maximum number of nodes
6361  * @dict:  optional dictionary to use internally
6362  *
6363  * Creates a new context for manipulating expressions
6364  *
6365  * Returns the context or NULL in case of error
6366  */
6367 xmlExpCtxtPtr
6368 xmlExpNewCtxt(int maxNodes, xmlDictPtr dict) {
6369     xmlExpCtxtPtr ret;
6370     int size = 256;
6371 
6372     if (maxNodes <= 4096)
6373         maxNodes = 4096;
6374 
6375     ret = (xmlExpCtxtPtr) xmlMalloc(sizeof(xmlExpCtxt));
6376     if (ret == NULL)
6377         return(NULL);
6378     memset(ret, 0, sizeof(xmlExpCtxt));
6379     ret->size = size;
6380     ret->nbElems = 0;
6381     ret->maxNodes = maxNodes;
6382     ret->table = xmlMalloc(size * sizeof(xmlExpNodePtr));
6383     if (ret->table == NULL) {
6384         xmlFree(ret);
6385 	return(NULL);
6386     }
6387     memset(ret->table, 0, size * sizeof(xmlExpNodePtr));
6388     if (dict == NULL) {
6389         ret->dict = xmlDictCreate();
6390 	if (ret->dict == NULL) {
6391 	    xmlFree(ret->table);
6392 	    xmlFree(ret);
6393 	    return(NULL);
6394 	}
6395     } else {
6396         ret->dict = dict;
6397 	xmlDictReference(ret->dict);
6398     }
6399     return(ret);
6400 }
6401 
6402 /**
6403  * xmlExpFreeCtxt:
6404  * @ctxt:  an expression context
6405  *
6406  * Free an expression context
6407  */
6408 void
6409 xmlExpFreeCtxt(xmlExpCtxtPtr ctxt) {
6410     if (ctxt == NULL)
6411         return;
6412     xmlDictFree(ctxt->dict);
6413     if (ctxt->table != NULL)
6414 	xmlFree(ctxt->table);
6415     xmlFree(ctxt);
6416 }
6417 
6418 /************************************************************************
6419  *									*
6420  *		Structure associated to an expression node		*
6421  *									*
6422  ************************************************************************/
6423 #define MAX_NODES 10000
6424 
6425 /* #define DEBUG_DERIV */
6426 
6427 /*
6428  * TODO:
6429  * - Wildcards
6430  * - public API for creation
6431  *
6432  * Started
6433  * - regression testing
6434  *
6435  * Done
6436  * - split into module and test tool
6437  * - memleaks
6438  */
6439 
6440 typedef enum {
6441     XML_EXP_NILABLE = (1 << 0)
6442 } xmlExpNodeInfo;
6443 
6444 #define IS_NILLABLE(node) ((node)->info & XML_EXP_NILABLE)
6445 
6446 struct _xmlExpNode {
6447     unsigned char type;/* xmlExpNodeType */
6448     unsigned char info;/* OR of xmlExpNodeInfo */
6449     unsigned short key;	/* the hash key */
6450     unsigned int ref;	/* The number of references */
6451     int c_max;		/* the maximum length it can consume */
6452     xmlExpNodePtr exp_left;
6453     xmlExpNodePtr next;/* the next node in the hash table or free list */
6454     union {
6455 	struct {
6456 	    int f_min;
6457 	    int f_max;
6458 	} count;
6459 	struct {
6460 	    xmlExpNodePtr f_right;
6461 	} children;
6462         const xmlChar *f_str;
6463     } field;
6464 };
6465 
6466 #define exp_min field.count.f_min
6467 #define exp_max field.count.f_max
6468 /* #define exp_left field.children.f_left */
6469 #define exp_right field.children.f_right
6470 #define exp_str field.f_str
6471 
6472 static xmlExpNodePtr xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type);
6473 static xmlExpNode forbiddenExpNode = {
6474     XML_EXP_FORBID, 0, 0, 0, 0, NULL, NULL, {{ 0, 0}}
6475 };
6476 xmlExpNodePtr forbiddenExp = &forbiddenExpNode;
6477 static xmlExpNode emptyExpNode = {
6478     XML_EXP_EMPTY, 1, 0, 0, 0, NULL, NULL, {{ 0, 0}}
6479 };
6480 xmlExpNodePtr emptyExp = &emptyExpNode;
6481 
6482 /************************************************************************
6483  *									*
6484  *  The custom hash table for unicity and canonicalization		*
6485  *  of sub-expressions pointers						*
6486  *									*
6487  ************************************************************************/
6488 /*
6489  * xmlExpHashNameComputeKey:
6490  * Calculate the hash key for a token
6491  */
6492 static unsigned short
6493 xmlExpHashNameComputeKey(const xmlChar *name) {
6494     unsigned short value = 0L;
6495     char ch;
6496 
6497     if (name != NULL) {
6498 	value += 30 * (*name);
6499 	while ((ch = *name++) != 0) {
6500 	    value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch);
6501 	}
6502     }
6503     return (value);
6504 }
6505 
6506 /*
6507  * xmlExpHashComputeKey:
6508  * Calculate the hash key for a compound expression
6509  */
6510 static unsigned short
6511 xmlExpHashComputeKey(xmlExpNodeType type, xmlExpNodePtr left,
6512                      xmlExpNodePtr right) {
6513     unsigned long value;
6514     unsigned short ret;
6515 
6516     switch (type) {
6517         case XML_EXP_SEQ:
6518 	    value = left->key;
6519 	    value += right->key;
6520 	    value *= 3;
6521 	    ret = (unsigned short) value;
6522 	    break;
6523         case XML_EXP_OR:
6524 	    value = left->key;
6525 	    value += right->key;
6526 	    value *= 7;
6527 	    ret = (unsigned short) value;
6528 	    break;
6529         case XML_EXP_COUNT:
6530 	    value = left->key;
6531 	    value += right->key;
6532 	    ret = (unsigned short) value;
6533 	    break;
6534 	default:
6535 	    ret = 0;
6536     }
6537     return(ret);
6538 }
6539 
6540 
6541 static xmlExpNodePtr
6542 xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type) {
6543     xmlExpNodePtr ret;
6544 
6545     if (ctxt->nb_nodes >= MAX_NODES)
6546         return(NULL);
6547     ret = (xmlExpNodePtr) xmlMalloc(sizeof(xmlExpNode));
6548     if (ret == NULL)
6549         return(NULL);
6550     memset(ret, 0, sizeof(xmlExpNode));
6551     ret->type = type;
6552     ret->next = NULL;
6553     ctxt->nb_nodes++;
6554     ctxt->nb_cons++;
6555     return(ret);
6556 }
6557 
6558 /**
6559  * xmlExpHashGetEntry:
6560  * @table: the hash table
6561  *
6562  * Get the unique entry from the hash table. The entry is created if
6563  * needed. @left and @right are consumed, i.e. their ref count will
6564  * be decremented by the operation.
6565  *
6566  * Returns the pointer or NULL in case of error
6567  */
6568 static xmlExpNodePtr
6569 xmlExpHashGetEntry(xmlExpCtxtPtr ctxt, xmlExpNodeType type,
6570                    xmlExpNodePtr left, xmlExpNodePtr right,
6571 		   const xmlChar *name, int min, int max) {
6572     unsigned short kbase, key;
6573     xmlExpNodePtr entry;
6574     xmlExpNodePtr insert;
6575 
6576     if (ctxt == NULL)
6577 	return(NULL);
6578 
6579     /*
6580      * Check for duplicate and insertion location.
6581      */
6582     if (type == XML_EXP_ATOM) {
6583 	kbase = xmlExpHashNameComputeKey(name);
6584     } else if (type == XML_EXP_COUNT) {
6585         /* COUNT reduction rule 1 */
6586 	/* a{1} -> a */
6587 	if (min == max) {
6588 	    if (min == 1) {
6589 		return(left);
6590 	    }
6591 	    if (min == 0) {
6592 		xmlExpFree(ctxt, left);
6593 	        return(emptyExp);
6594 	    }
6595 	}
6596 	if (min < 0) {
6597 	    xmlExpFree(ctxt, left);
6598 	    return(forbiddenExp);
6599 	}
6600         if (max == -1)
6601 	    kbase = min + 79;
6602 	else
6603 	    kbase = max - min;
6604 	kbase += left->key;
6605     } else if (type == XML_EXP_OR) {
6606         /* Forbid reduction rules */
6607         if (left->type == XML_EXP_FORBID) {
6608 	    xmlExpFree(ctxt, left);
6609 	    return(right);
6610 	}
6611         if (right->type == XML_EXP_FORBID) {
6612 	    xmlExpFree(ctxt, right);
6613 	    return(left);
6614 	}
6615 
6616         /* OR reduction rule 1 */
6617 	/* a | a reduced to a */
6618         if (left == right) {
6619 	    left->ref--;
6620 	    return(left);
6621 	}
6622         /* OR canonicalization rule 1 */
6623 	/* linearize (a | b) | c into a | (b | c) */
6624         if ((left->type == XML_EXP_OR) && (right->type != XML_EXP_OR)) {
6625 	    xmlExpNodePtr tmp = left;
6626             left = right;
6627 	    right = tmp;
6628 	}
6629         /* OR reduction rule 2 */
6630 	/* a | (a | b) and b | (a | b) are reduced to a | b */
6631         if (right->type == XML_EXP_OR) {
6632 	    if ((left == right->exp_left) ||
6633 	        (left == right->exp_right)) {
6634 		xmlExpFree(ctxt, left);
6635 		return(right);
6636 	    }
6637 	}
6638         /* OR canonicalization rule 2 */
6639 	/* linearize (a | b) | c into a | (b | c) */
6640         if (left->type == XML_EXP_OR) {
6641 	    xmlExpNodePtr tmp;
6642 
6643 	    /* OR canonicalization rule 2 */
6644 	    if ((left->exp_right->type != XML_EXP_OR) &&
6645 	        (left->exp_right->key < left->exp_left->key)) {
6646 	        tmp = left->exp_right;
6647 		left->exp_right = left->exp_left;
6648 		left->exp_left = tmp;
6649 	    }
6650 	    left->exp_right->ref++;
6651 	    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_right, right,
6652 	                             NULL, 0, 0);
6653 	    left->exp_left->ref++;
6654 	    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_left, tmp,
6655 	                             NULL, 0, 0);
6656 
6657 	    xmlExpFree(ctxt, left);
6658 	    return(tmp);
6659 	}
6660 	if (right->type == XML_EXP_OR) {
6661 	    /* Ordering in the tree */
6662 	    /* C | (A | B) -> A | (B | C) */
6663 	    if (left->key > right->exp_right->key) {
6664 		xmlExpNodePtr tmp;
6665 		right->exp_right->ref++;
6666 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_right,
6667 		                         left, NULL, 0, 0);
6668 		right->exp_left->ref++;
6669 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
6670 		                         tmp, NULL, 0, 0);
6671 		xmlExpFree(ctxt, right);
6672 		return(tmp);
6673 	    }
6674 	    /* Ordering in the tree */
6675 	    /* B | (A | C) -> A | (B | C) */
6676 	    if (left->key > right->exp_left->key) {
6677 		xmlExpNodePtr tmp;
6678 		right->exp_right->ref++;
6679 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left,
6680 		                         right->exp_right, NULL, 0, 0);
6681 		right->exp_left->ref++;
6682 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
6683 		                         tmp, NULL, 0, 0);
6684 		xmlExpFree(ctxt, right);
6685 		return(tmp);
6686 	    }
6687 	}
6688 	/* we know both types are != XML_EXP_OR here */
6689         else if (left->key > right->key) {
6690 	    xmlExpNodePtr tmp = left;
6691             left = right;
6692 	    right = tmp;
6693 	}
6694 	kbase = xmlExpHashComputeKey(type, left, right);
6695     } else if (type == XML_EXP_SEQ) {
6696         /* Forbid reduction rules */
6697         if (left->type == XML_EXP_FORBID) {
6698 	    xmlExpFree(ctxt, right);
6699 	    return(left);
6700 	}
6701         if (right->type == XML_EXP_FORBID) {
6702 	    xmlExpFree(ctxt, left);
6703 	    return(right);
6704 	}
6705         /* Empty reduction rules */
6706         if (right->type == XML_EXP_EMPTY) {
6707 	    return(left);
6708 	}
6709         if (left->type == XML_EXP_EMPTY) {
6710 	    return(right);
6711 	}
6712 	kbase = xmlExpHashComputeKey(type, left, right);
6713     } else
6714         return(NULL);
6715 
6716     key = kbase % ctxt->size;
6717     if (ctxt->table[key] != NULL) {
6718 	for (insert = ctxt->table[key]; insert != NULL;
6719 	     insert = insert->next) {
6720 	    if ((insert->key == kbase) &&
6721 	        (insert->type == type)) {
6722 		if (type == XML_EXP_ATOM) {
6723 		    if (name == insert->exp_str) {
6724 			insert->ref++;
6725 			return(insert);
6726 		    }
6727 		} else if (type == XML_EXP_COUNT) {
6728 		    if ((insert->exp_min == min) && (insert->exp_max == max) &&
6729 		        (insert->exp_left == left)) {
6730 			insert->ref++;
6731 			left->ref--;
6732 			return(insert);
6733 		    }
6734 		} else if ((insert->exp_left == left) &&
6735 			   (insert->exp_right == right)) {
6736 		    insert->ref++;
6737 		    left->ref--;
6738 		    right->ref--;
6739 		    return(insert);
6740 		}
6741 	    }
6742 	}
6743     }
6744 
6745     entry = xmlExpNewNode(ctxt, type);
6746     if (entry == NULL)
6747         return(NULL);
6748     entry->key = kbase;
6749     if (type == XML_EXP_ATOM) {
6750 	entry->exp_str = name;
6751 	entry->c_max = 1;
6752     } else if (type == XML_EXP_COUNT) {
6753         entry->exp_min = min;
6754         entry->exp_max = max;
6755 	entry->exp_left = left;
6756 	if ((min == 0) || (IS_NILLABLE(left)))
6757 	    entry->info |= XML_EXP_NILABLE;
6758 	if (max < 0)
6759 	    entry->c_max = -1;
6760 	else
6761 	    entry->c_max = max * entry->exp_left->c_max;
6762     } else {
6763 	entry->exp_left = left;
6764 	entry->exp_right = right;
6765 	if (type == XML_EXP_OR) {
6766 	    if ((IS_NILLABLE(left)) || (IS_NILLABLE(right)))
6767 		entry->info |= XML_EXP_NILABLE;
6768 	    if ((entry->exp_left->c_max == -1) ||
6769 	        (entry->exp_right->c_max == -1))
6770 		entry->c_max = -1;
6771 	    else if (entry->exp_left->c_max > entry->exp_right->c_max)
6772 	        entry->c_max = entry->exp_left->c_max;
6773 	    else
6774 	        entry->c_max = entry->exp_right->c_max;
6775 	} else {
6776 	    if ((IS_NILLABLE(left)) && (IS_NILLABLE(right)))
6777 		entry->info |= XML_EXP_NILABLE;
6778 	    if ((entry->exp_left->c_max == -1) ||
6779 	        (entry->exp_right->c_max == -1))
6780 		entry->c_max = -1;
6781 	    else
6782 	        entry->c_max = entry->exp_left->c_max + entry->exp_right->c_max;
6783 	}
6784     }
6785     entry->ref = 1;
6786     if (ctxt->table[key] != NULL)
6787         entry->next = ctxt->table[key];
6788 
6789     ctxt->table[key] = entry;
6790     ctxt->nbElems++;
6791 
6792     return(entry);
6793 }
6794 
6795 /**
6796  * xmlExpFree:
6797  * @ctxt: the expression context
6798  * @exp: the expression
6799  *
6800  * Dereference the expression
6801  */
6802 void
6803 xmlExpFree(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp) {
6804     if ((exp == NULL) || (exp == forbiddenExp) || (exp == emptyExp))
6805         return;
6806     exp->ref--;
6807     if (exp->ref == 0) {
6808         unsigned short key;
6809 
6810         /* Unlink it first from the hash table */
6811 	key = exp->key % ctxt->size;
6812 	if (ctxt->table[key] == exp) {
6813 	    ctxt->table[key] = exp->next;
6814 	} else {
6815 	    xmlExpNodePtr tmp;
6816 
6817 	    tmp = ctxt->table[key];
6818 	    while (tmp != NULL) {
6819 	        if (tmp->next == exp) {
6820 		    tmp->next = exp->next;
6821 		    break;
6822 		}
6823 	        tmp = tmp->next;
6824 	    }
6825 	}
6826 
6827         if ((exp->type == XML_EXP_SEQ) || (exp->type == XML_EXP_OR)) {
6828 	    xmlExpFree(ctxt, exp->exp_left);
6829 	    xmlExpFree(ctxt, exp->exp_right);
6830 	} else if (exp->type == XML_EXP_COUNT) {
6831 	    xmlExpFree(ctxt, exp->exp_left);
6832 	}
6833         xmlFree(exp);
6834 	ctxt->nb_nodes--;
6835     }
6836 }
6837 
6838 /**
6839  * xmlExpRef:
6840  * @exp: the expression
6841  *
6842  * Increase the reference count of the expression
6843  */
6844 void
6845 xmlExpRef(xmlExpNodePtr exp) {
6846     if (exp != NULL)
6847         exp->ref++;
6848 }
6849 
6850 /**
6851  * xmlExpNewAtom:
6852  * @ctxt: the expression context
6853  * @name: the atom name
6854  * @len: the atom name length in byte (or -1);
6855  *
6856  * Get the atom associated to this name from that context
6857  *
6858  * Returns the node or NULL in case of error
6859  */
6860 xmlExpNodePtr
6861 xmlExpNewAtom(xmlExpCtxtPtr ctxt, const xmlChar *name, int len) {
6862     if ((ctxt == NULL) || (name == NULL))
6863         return(NULL);
6864     name = xmlDictLookup(ctxt->dict, name, len);
6865     if (name == NULL)
6866         return(NULL);
6867     return(xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, name, 0, 0));
6868 }
6869 
6870 /**
6871  * xmlExpNewOr:
6872  * @ctxt: the expression context
6873  * @left: left expression
6874  * @right: right expression
6875  *
6876  * Get the atom associated to the choice @left | @right
6877  * Note that @left and @right are consumed in the operation, to keep
6878  * an handle on them use xmlExpRef() and use xmlExpFree() to release them,
6879  * this is true even in case of failure (unless ctxt == NULL).
6880  *
6881  * Returns the node or NULL in case of error
6882  */
6883 xmlExpNodePtr
6884 xmlExpNewOr(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
6885     if (ctxt == NULL)
6886         return(NULL);
6887     if ((left == NULL) || (right == NULL)) {
6888         xmlExpFree(ctxt, left);
6889         xmlExpFree(ctxt, right);
6890         return(NULL);
6891     }
6892     return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, left, right, NULL, 0, 0));
6893 }
6894 
6895 /**
6896  * xmlExpNewSeq:
6897  * @ctxt: the expression context
6898  * @left: left expression
6899  * @right: right expression
6900  *
6901  * Get the atom associated to the sequence @left , @right
6902  * Note that @left and @right are consumed in the operation, to keep
6903  * an handle on them use xmlExpRef() and use xmlExpFree() to release them,
6904  * this is true even in case of failure (unless ctxt == NULL).
6905  *
6906  * Returns the node or NULL in case of error
6907  */
6908 xmlExpNodePtr
6909 xmlExpNewSeq(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
6910     if (ctxt == NULL)
6911         return(NULL);
6912     if ((left == NULL) || (right == NULL)) {
6913         xmlExpFree(ctxt, left);
6914         xmlExpFree(ctxt, right);
6915         return(NULL);
6916     }
6917     return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, left, right, NULL, 0, 0));
6918 }
6919 
6920 /**
6921  * xmlExpNewRange:
6922  * @ctxt: the expression context
6923  * @subset: the expression to be repeated
6924  * @min: the lower bound for the repetition
6925  * @max: the upper bound for the repetition, -1 means infinite
6926  *
6927  * Get the atom associated to the range (@subset){@min, @max}
6928  * Note that @subset is consumed in the operation, to keep
6929  * an handle on it use xmlExpRef() and use xmlExpFree() to release it,
6930  * this is true even in case of failure (unless ctxt == NULL).
6931  *
6932  * Returns the node or NULL in case of error
6933  */
6934 xmlExpNodePtr
6935 xmlExpNewRange(xmlExpCtxtPtr ctxt, xmlExpNodePtr subset, int min, int max) {
6936     if (ctxt == NULL)
6937         return(NULL);
6938     if ((subset == NULL) || (min < 0) || (max < -1) ||
6939         ((max >= 0) && (min > max))) {
6940 	xmlExpFree(ctxt, subset);
6941         return(NULL);
6942     }
6943     return(xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, subset,
6944                               NULL, NULL, min, max));
6945 }
6946 
6947 /************************************************************************
6948  *									*
6949  *		Public API for operations on expressions		*
6950  *									*
6951  ************************************************************************/
6952 
6953 static int
6954 xmlExpGetLanguageInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
6955                      const xmlChar**list, int len, int nb) {
6956     int tmp, tmp2;
6957 tail:
6958     switch (exp->type) {
6959         case XML_EXP_EMPTY:
6960 	    return(0);
6961         case XML_EXP_ATOM:
6962 	    for (tmp = 0;tmp < nb;tmp++)
6963 	        if (list[tmp] == exp->exp_str)
6964 		    return(0);
6965             if (nb >= len)
6966 	        return(-2);
6967 	    list[nb] = exp->exp_str;
6968 	    return(1);
6969         case XML_EXP_COUNT:
6970 	    exp = exp->exp_left;
6971 	    goto tail;
6972         case XML_EXP_SEQ:
6973         case XML_EXP_OR:
6974 	    tmp = xmlExpGetLanguageInt(ctxt, exp->exp_left, list, len, nb);
6975 	    if (tmp < 0)
6976 	        return(tmp);
6977 	    tmp2 = xmlExpGetLanguageInt(ctxt, exp->exp_right, list, len,
6978 	                                nb + tmp);
6979 	    if (tmp2 < 0)
6980 	        return(tmp2);
6981             return(tmp + tmp2);
6982     }
6983     return(-1);
6984 }
6985 
6986 /**
6987  * xmlExpGetLanguage:
6988  * @ctxt: the expression context
6989  * @exp: the expression
6990  * @langList: where to store the tokens
6991  * @len: the allocated length of @list
6992  *
6993  * Find all the strings used in @exp and store them in @list
6994  *
6995  * Returns the number of unique strings found, -1 in case of errors and
6996  *         -2 if there is more than @len strings
6997  */
6998 int
6999 xmlExpGetLanguage(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7000                   const xmlChar**langList, int len) {
7001     if ((ctxt == NULL) || (exp == NULL) || (langList == NULL) || (len <= 0))
7002         return(-1);
7003     return(xmlExpGetLanguageInt(ctxt, exp, langList, len, 0));
7004 }
7005 
7006 static int
7007 xmlExpGetStartInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7008                   const xmlChar**list, int len, int nb) {
7009     int tmp, tmp2;
7010 tail:
7011     switch (exp->type) {
7012         case XML_EXP_FORBID:
7013 	    return(0);
7014         case XML_EXP_EMPTY:
7015 	    return(0);
7016         case XML_EXP_ATOM:
7017 	    for (tmp = 0;tmp < nb;tmp++)
7018 	        if (list[tmp] == exp->exp_str)
7019 		    return(0);
7020             if (nb >= len)
7021 	        return(-2);
7022 	    list[nb] = exp->exp_str;
7023 	    return(1);
7024         case XML_EXP_COUNT:
7025 	    exp = exp->exp_left;
7026 	    goto tail;
7027         case XML_EXP_SEQ:
7028 	    tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
7029 	    if (tmp < 0)
7030 	        return(tmp);
7031 	    if (IS_NILLABLE(exp->exp_left)) {
7032 		tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
7033 					    nb + tmp);
7034 		if (tmp2 < 0)
7035 		    return(tmp2);
7036 		tmp += tmp2;
7037 	    }
7038             return(tmp);
7039         case XML_EXP_OR:
7040 	    tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
7041 	    if (tmp < 0)
7042 	        return(tmp);
7043 	    tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
7044 	                                nb + tmp);
7045 	    if (tmp2 < 0)
7046 	        return(tmp2);
7047             return(tmp + tmp2);
7048     }
7049     return(-1);
7050 }
7051 
7052 /**
7053  * xmlExpGetStart:
7054  * @ctxt: the expression context
7055  * @exp: the expression
7056  * @tokList: where to store the tokens
7057  * @len: the allocated length of @list
7058  *
7059  * Find all the strings that appears at the start of the languages
7060  * accepted by @exp and store them in @list. E.g. for (a, b) | c
7061  * it will return the list [a, c]
7062  *
7063  * Returns the number of unique strings found, -1 in case of errors and
7064  *         -2 if there is more than @len strings
7065  */
7066 int
7067 xmlExpGetStart(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7068                const xmlChar**tokList, int len) {
7069     if ((ctxt == NULL) || (exp == NULL) || (tokList == NULL) || (len <= 0))
7070         return(-1);
7071     return(xmlExpGetStartInt(ctxt, exp, tokList, len, 0));
7072 }
7073 
7074 /**
7075  * xmlExpIsNillable:
7076  * @exp: the expression
7077  *
7078  * Finds if the expression is nillable, i.e. if it accepts the empty sequqnce
7079  *
7080  * Returns 1 if nillable, 0 if not and -1 in case of error
7081  */
7082 int
7083 xmlExpIsNillable(xmlExpNodePtr exp) {
7084     if (exp == NULL)
7085         return(-1);
7086     return(IS_NILLABLE(exp) != 0);
7087 }
7088 
7089 static xmlExpNodePtr
7090 xmlExpStringDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, const xmlChar *str)
7091 {
7092     xmlExpNodePtr ret;
7093 
7094     switch (exp->type) {
7095 	case XML_EXP_EMPTY:
7096 	    return(forbiddenExp);
7097 	case XML_EXP_FORBID:
7098 	    return(forbiddenExp);
7099 	case XML_EXP_ATOM:
7100 	    if (exp->exp_str == str) {
7101 #ifdef DEBUG_DERIV
7102 		printf("deriv atom: equal => Empty\n");
7103 #endif
7104 	        ret = emptyExp;
7105 	    } else {
7106 #ifdef DEBUG_DERIV
7107 		printf("deriv atom: mismatch => forbid\n");
7108 #endif
7109 	        /* TODO wildcards here */
7110 		ret = forbiddenExp;
7111 	    }
7112 	    return(ret);
7113 	case XML_EXP_OR: {
7114 	    xmlExpNodePtr tmp;
7115 
7116 #ifdef DEBUG_DERIV
7117 	    printf("deriv or: => or(derivs)\n");
7118 #endif
7119 	    tmp = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
7120 	    if (tmp == NULL) {
7121 		return(NULL);
7122 	    }
7123 	    ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
7124 	    if (ret == NULL) {
7125 	        xmlExpFree(ctxt, tmp);
7126 		return(NULL);
7127 	    }
7128             ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret,
7129 			     NULL, 0, 0);
7130 	    return(ret);
7131 	}
7132 	case XML_EXP_SEQ:
7133 #ifdef DEBUG_DERIV
7134 	    printf("deriv seq: starting with left\n");
7135 #endif
7136 	    ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
7137 	    if (ret == NULL) {
7138 	        return(NULL);
7139 	    } else if (ret == forbiddenExp) {
7140 	        if (IS_NILLABLE(exp->exp_left)) {
7141 #ifdef DEBUG_DERIV
7142 		    printf("deriv seq: left failed but nillable\n");
7143 #endif
7144 		    ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
7145 		}
7146 	    } else {
7147 #ifdef DEBUG_DERIV
7148 		printf("deriv seq: left match => sequence\n");
7149 #endif
7150 	        exp->exp_right->ref++;
7151 	        ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, exp->exp_right,
7152 		                         NULL, 0, 0);
7153 	    }
7154 	    return(ret);
7155 	case XML_EXP_COUNT: {
7156 	    int min, max;
7157 	    xmlExpNodePtr tmp;
7158 
7159 	    if (exp->exp_max == 0)
7160 		return(forbiddenExp);
7161 	    ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
7162 	    if (ret == NULL)
7163 	        return(NULL);
7164 	    if (ret == forbiddenExp) {
7165 #ifdef DEBUG_DERIV
7166 		printf("deriv count: pattern mismatch => forbid\n");
7167 #endif
7168 	        return(ret);
7169 	    }
7170 	    if (exp->exp_max == 1)
7171 		return(ret);
7172 	    if (exp->exp_max < 0) /* unbounded */
7173 		max = -1;
7174 	    else
7175 		max = exp->exp_max - 1;
7176 	    if (exp->exp_min > 0)
7177 		min = exp->exp_min - 1;
7178 	    else
7179 		min = 0;
7180 	    exp->exp_left->ref++;
7181 	    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, NULL,
7182 				     NULL, min, max);
7183 	    if (ret == emptyExp) {
7184 #ifdef DEBUG_DERIV
7185 		printf("deriv count: match to empty => new count\n");
7186 #endif
7187 	        return(tmp);
7188 	    }
7189 #ifdef DEBUG_DERIV
7190 	    printf("deriv count: match => sequence with new count\n");
7191 #endif
7192 	    return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, tmp,
7193 	                              NULL, 0, 0));
7194 	}
7195     }
7196     return(NULL);
7197 }
7198 
7199 /**
7200  * xmlExpStringDerive:
7201  * @ctxt: the expression context
7202  * @exp: the expression
7203  * @str: the string
7204  * @len: the string len in bytes if available
7205  *
7206  * Do one step of Brzozowski derivation of the expression @exp with
7207  * respect to the input string
7208  *
7209  * Returns the resulting expression or NULL in case of internal error
7210  */
7211 xmlExpNodePtr
7212 xmlExpStringDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7213                    const xmlChar *str, int len) {
7214     const xmlChar *input;
7215 
7216     if ((exp == NULL) || (ctxt == NULL) || (str == NULL)) {
7217         return(NULL);
7218     }
7219     /*
7220      * check the string is in the dictionary, if yes use an interned
7221      * copy, otherwise we know it's not an acceptable input
7222      */
7223     input = xmlDictExists(ctxt->dict, str, len);
7224     if (input == NULL) {
7225         return(forbiddenExp);
7226     }
7227     return(xmlExpStringDeriveInt(ctxt, exp, input));
7228 }
7229 
7230 static int
7231 xmlExpCheckCard(xmlExpNodePtr exp, xmlExpNodePtr sub) {
7232     int ret = 1;
7233 
7234     if (sub->c_max == -1) {
7235         if (exp->c_max != -1)
7236 	    ret = 0;
7237     } else if ((exp->c_max >= 0) && (exp->c_max < sub->c_max)) {
7238         ret = 0;
7239     }
7240 #if 0
7241     if ((IS_NILLABLE(sub)) && (!IS_NILLABLE(exp)))
7242         ret = 0;
7243 #endif
7244     return(ret);
7245 }
7246 
7247 static xmlExpNodePtr xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7248                                         xmlExpNodePtr sub);
7249 /**
7250  * xmlExpDivide:
7251  * @ctxt: the expressions context
7252  * @exp: the englobing expression
7253  * @sub: the subexpression
7254  * @mult: the multiple expression
7255  * @remain: the remain from the derivation of the multiple
7256  *
7257  * Check if exp is a multiple of sub, i.e. if there is a finite number n
7258  * so that sub{n} subsume exp
7259  *
7260  * Returns the multiple value if successful, 0 if it is not a multiple
7261  *         and -1 in case of internel error.
7262  */
7263 
7264 static int
7265 xmlExpDivide(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub,
7266              xmlExpNodePtr *mult, xmlExpNodePtr *remain) {
7267     int i;
7268     xmlExpNodePtr tmp, tmp2;
7269 
7270     if (mult != NULL) *mult = NULL;
7271     if (remain != NULL) *remain = NULL;
7272     if (exp->c_max == -1) return(0);
7273     if (IS_NILLABLE(exp) && (!IS_NILLABLE(sub))) return(0);
7274 
7275     for (i = 1;i <= exp->c_max;i++) {
7276         sub->ref++;
7277         tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
7278 				 sub, NULL, NULL, i, i);
7279 	if (tmp == NULL) {
7280 	    return(-1);
7281 	}
7282 	if (!xmlExpCheckCard(tmp, exp)) {
7283 	    xmlExpFree(ctxt, tmp);
7284 	    continue;
7285 	}
7286 	tmp2 = xmlExpExpDeriveInt(ctxt, tmp, exp);
7287 	if (tmp2 == NULL) {
7288 	    xmlExpFree(ctxt, tmp);
7289 	    return(-1);
7290 	}
7291 	if ((tmp2 != forbiddenExp) && (IS_NILLABLE(tmp2))) {
7292 	    if (remain != NULL)
7293 	        *remain = tmp2;
7294 	    else
7295 	        xmlExpFree(ctxt, tmp2);
7296 	    if (mult != NULL)
7297 	        *mult = tmp;
7298 	    else
7299 	        xmlExpFree(ctxt, tmp);
7300 #ifdef DEBUG_DERIV
7301 	    printf("Divide succeeded %d\n", i);
7302 #endif
7303 	    return(i);
7304 	}
7305 	xmlExpFree(ctxt, tmp);
7306 	xmlExpFree(ctxt, tmp2);
7307     }
7308 #ifdef DEBUG_DERIV
7309     printf("Divide failed\n");
7310 #endif
7311     return(0);
7312 }
7313 
7314 /**
7315  * xmlExpExpDeriveInt:
7316  * @ctxt: the expressions context
7317  * @exp: the englobing expression
7318  * @sub: the subexpression
7319  *
7320  * Try to do a step of Brzozowski derivation but at a higher level
7321  * the input being a subexpression.
7322  *
7323  * Returns the resulting expression or NULL in case of internal error
7324  */
7325 static xmlExpNodePtr
7326 xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
7327     xmlExpNodePtr ret, tmp, tmp2, tmp3;
7328     const xmlChar **tab;
7329     int len, i;
7330 
7331     /*
7332      * In case of equality and if the expression can only consume a finite
7333      * amount, then the derivation is empty
7334      */
7335     if ((exp == sub) && (exp->c_max >= 0)) {
7336 #ifdef DEBUG_DERIV
7337         printf("Equal(exp, sub) and finite -> Empty\n");
7338 #endif
7339         return(emptyExp);
7340     }
7341     /*
7342      * decompose sub sequence first
7343      */
7344     if (sub->type == XML_EXP_EMPTY) {
7345 #ifdef DEBUG_DERIV
7346         printf("Empty(sub) -> Empty\n");
7347 #endif
7348 	exp->ref++;
7349         return(exp);
7350     }
7351     if (sub->type == XML_EXP_SEQ) {
7352 #ifdef DEBUG_DERIV
7353         printf("Seq(sub) -> decompose\n");
7354 #endif
7355         tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
7356 	if (tmp == NULL)
7357 	    return(NULL);
7358 	if (tmp == forbiddenExp)
7359 	    return(tmp);
7360 	ret = xmlExpExpDeriveInt(ctxt, tmp, sub->exp_right);
7361 	xmlExpFree(ctxt, tmp);
7362 	return(ret);
7363     }
7364     if (sub->type == XML_EXP_OR) {
7365 #ifdef DEBUG_DERIV
7366         printf("Or(sub) -> decompose\n");
7367 #endif
7368         tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
7369 	if (tmp == forbiddenExp)
7370 	    return(tmp);
7371 	if (tmp == NULL)
7372 	    return(NULL);
7373 	ret = xmlExpExpDeriveInt(ctxt, exp, sub->exp_right);
7374 	if ((ret == NULL) || (ret == forbiddenExp)) {
7375 	    xmlExpFree(ctxt, tmp);
7376 	    return(ret);
7377 	}
7378 	return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret, NULL, 0, 0));
7379     }
7380     if (!xmlExpCheckCard(exp, sub)) {
7381 #ifdef DEBUG_DERIV
7382         printf("CheckCard(exp, sub) failed -> Forbid\n");
7383 #endif
7384         return(forbiddenExp);
7385     }
7386     switch (exp->type) {
7387         case XML_EXP_EMPTY:
7388 	    if (sub == emptyExp)
7389 	        return(emptyExp);
7390 #ifdef DEBUG_DERIV
7391 	    printf("Empty(exp) -> Forbid\n");
7392 #endif
7393 	    return(forbiddenExp);
7394         case XML_EXP_FORBID:
7395 #ifdef DEBUG_DERIV
7396 	    printf("Forbid(exp) -> Forbid\n");
7397 #endif
7398 	    return(forbiddenExp);
7399         case XML_EXP_ATOM:
7400 	    if (sub->type == XML_EXP_ATOM) {
7401 	        /* TODO: handle wildcards */
7402 	        if (exp->exp_str == sub->exp_str) {
7403 #ifdef DEBUG_DERIV
7404 		    printf("Atom match -> Empty\n");
7405 #endif
7406 		    return(emptyExp);
7407                 }
7408 #ifdef DEBUG_DERIV
7409 		printf("Atom mismatch -> Forbid\n");
7410 #endif
7411 	        return(forbiddenExp);
7412 	    }
7413 	    if ((sub->type == XML_EXP_COUNT) &&
7414 	        (sub->exp_max == 1) &&
7415 	        (sub->exp_left->type == XML_EXP_ATOM)) {
7416 	        /* TODO: handle wildcards */
7417 	        if (exp->exp_str == sub->exp_left->exp_str) {
7418 #ifdef DEBUG_DERIV
7419 		    printf("Atom match -> Empty\n");
7420 #endif
7421 		    return(emptyExp);
7422 		}
7423 #ifdef DEBUG_DERIV
7424 		printf("Atom mismatch -> Forbid\n");
7425 #endif
7426 	        return(forbiddenExp);
7427 	    }
7428 #ifdef DEBUG_DERIV
7429 	    printf("Compex exp vs Atom -> Forbid\n");
7430 #endif
7431 	    return(forbiddenExp);
7432         case XML_EXP_SEQ:
7433 	    /* try to get the sequence consumed only if possible */
7434 	    if (xmlExpCheckCard(exp->exp_left, sub)) {
7435 		/* See if the sequence can be consumed directly */
7436 #ifdef DEBUG_DERIV
7437 		printf("Seq trying left only\n");
7438 #endif
7439 		ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
7440 		if ((ret != forbiddenExp) && (ret != NULL)) {
7441 #ifdef DEBUG_DERIV
7442 		    printf("Seq trying left only worked\n");
7443 #endif
7444 		    /*
7445 		     * TODO: assumption here that we are determinist
7446 		     *       i.e. we won't get to a nillable exp left
7447 		     *       subset which could be matched by the right
7448 		     *       part too.
7449 		     * e.g.: (a | b)+,(a | c) and 'a+,a'
7450 		     */
7451 		    exp->exp_right->ref++;
7452 		    return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
7453 					      exp->exp_right, NULL, 0, 0));
7454 		}
7455 #ifdef DEBUG_DERIV
7456 	    } else {
7457 		printf("Seq: left too short\n");
7458 #endif
7459 	    }
7460 	    /* Try instead to decompose */
7461 	    if (sub->type == XML_EXP_COUNT) {
7462 		int min, max;
7463 
7464 #ifdef DEBUG_DERIV
7465 		printf("Seq: sub is a count\n");
7466 #endif
7467 	        ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
7468 		if (ret == NULL)
7469 		    return(NULL);
7470 		if (ret != forbiddenExp) {
7471 #ifdef DEBUG_DERIV
7472 		    printf("Seq , Count match on left\n");
7473 #endif
7474 		    if (sub->exp_max < 0)
7475 		        max = -1;
7476 	            else
7477 		        max = sub->exp_max -1;
7478 		    if (sub->exp_min > 0)
7479 		        min = sub->exp_min -1;
7480 		    else
7481 		        min = 0;
7482 		    exp->exp_right->ref++;
7483 		    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
7484 		                             exp->exp_right, NULL, 0, 0);
7485 		    if (tmp == NULL)
7486 		        return(NULL);
7487 
7488 		    sub->exp_left->ref++;
7489 		    tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
7490 				      sub->exp_left, NULL, NULL, min, max);
7491 		    if (tmp2 == NULL) {
7492 		        xmlExpFree(ctxt, tmp);
7493 			return(NULL);
7494 		    }
7495 		    ret = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
7496 		    xmlExpFree(ctxt, tmp);
7497 		    xmlExpFree(ctxt, tmp2);
7498 		    return(ret);
7499 		}
7500 	    }
7501 	    /* we made no progress on structured operations */
7502 	    break;
7503         case XML_EXP_OR:
7504 #ifdef DEBUG_DERIV
7505 	    printf("Or , trying both side\n");
7506 #endif
7507 	    ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
7508 	    if (ret == NULL)
7509 	        return(NULL);
7510 	    tmp = xmlExpExpDeriveInt(ctxt, exp->exp_right, sub);
7511 	    if (tmp == NULL) {
7512 		xmlExpFree(ctxt, ret);
7513 	        return(NULL);
7514 	    }
7515 	    return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp, NULL, 0, 0));
7516         case XML_EXP_COUNT: {
7517 	    int min, max;
7518 
7519 	    if (sub->type == XML_EXP_COUNT) {
7520 	        /*
7521 		 * Try to see if the loop is completely subsumed
7522 		 */
7523 	        tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
7524 		if (tmp == NULL)
7525 		    return(NULL);
7526 		if (tmp == forbiddenExp) {
7527 		    int mult;
7528 
7529 #ifdef DEBUG_DERIV
7530 		    printf("Count, Count inner don't subsume\n");
7531 #endif
7532 		    mult = xmlExpDivide(ctxt, sub->exp_left, exp->exp_left,
7533 		                        NULL, &tmp);
7534 		    if (mult <= 0) {
7535 #ifdef DEBUG_DERIV
7536 			printf("Count, Count not multiple => forbidden\n");
7537 #endif
7538                         return(forbiddenExp);
7539 		    }
7540 		    if (sub->exp_max == -1) {
7541 		        max = -1;
7542 			if (exp->exp_max == -1) {
7543 			    if (exp->exp_min <= sub->exp_min * mult)
7544 			        min = 0;
7545 			    else
7546 			        min = exp->exp_min - sub->exp_min * mult;
7547 			} else {
7548 #ifdef DEBUG_DERIV
7549 			    printf("Count, Count finite can't subsume infinite\n");
7550 #endif
7551                             xmlExpFree(ctxt, tmp);
7552 			    return(forbiddenExp);
7553 			}
7554 		    } else {
7555 			if (exp->exp_max == -1) {
7556 #ifdef DEBUG_DERIV
7557 			    printf("Infinite loop consume mult finite loop\n");
7558 #endif
7559 			    if (exp->exp_min > sub->exp_min * mult) {
7560 				max = -1;
7561 				min = exp->exp_min - sub->exp_min * mult;
7562 			    } else {
7563 				max = -1;
7564 				min = 0;
7565 			    }
7566 			} else {
7567 			    if (exp->exp_max < sub->exp_max * mult) {
7568 #ifdef DEBUG_DERIV
7569 				printf("loops max mult mismatch => forbidden\n");
7570 #endif
7571 				xmlExpFree(ctxt, tmp);
7572 				return(forbiddenExp);
7573 			    }
7574 			    if (sub->exp_max * mult > exp->exp_min)
7575 				min = 0;
7576 			    else
7577 				min = exp->exp_min - sub->exp_max * mult;
7578 			    max = exp->exp_max - sub->exp_max * mult;
7579 			}
7580 		    }
7581 		} else if (!IS_NILLABLE(tmp)) {
7582 		    /*
7583 		     * TODO: loop here to try to grow if working on finite
7584 		     *       blocks.
7585 		     */
7586 #ifdef DEBUG_DERIV
7587 		    printf("Count, Count remain not nillable => forbidden\n");
7588 #endif
7589 		    xmlExpFree(ctxt, tmp);
7590 		    return(forbiddenExp);
7591 		} else if (sub->exp_max == -1) {
7592 		    if (exp->exp_max == -1) {
7593 		        if (exp->exp_min <= sub->exp_min) {
7594 #ifdef DEBUG_DERIV
7595 			    printf("Infinite loops Okay => COUNT(0,Inf)\n");
7596 #endif
7597                             max = -1;
7598 			    min = 0;
7599 			} else {
7600 #ifdef DEBUG_DERIV
7601 			    printf("Infinite loops min => Count(X,Inf)\n");
7602 #endif
7603                             max = -1;
7604 			    min = exp->exp_min - sub->exp_min;
7605 			}
7606 		    } else if (exp->exp_min > sub->exp_min) {
7607 #ifdef DEBUG_DERIV
7608 			printf("loops min mismatch 1 => forbidden ???\n");
7609 #endif
7610 		        xmlExpFree(ctxt, tmp);
7611 		        return(forbiddenExp);
7612 		    } else {
7613 			max = -1;
7614 			min = 0;
7615 		    }
7616 		} else {
7617 		    if (exp->exp_max == -1) {
7618 #ifdef DEBUG_DERIV
7619 			printf("Infinite loop consume finite loop\n");
7620 #endif
7621 		        if (exp->exp_min > sub->exp_min) {
7622 			    max = -1;
7623 			    min = exp->exp_min - sub->exp_min;
7624 			} else {
7625 			    max = -1;
7626 			    min = 0;
7627 			}
7628 		    } else {
7629 		        if (exp->exp_max < sub->exp_max) {
7630 #ifdef DEBUG_DERIV
7631 			    printf("loops max mismatch => forbidden\n");
7632 #endif
7633 			    xmlExpFree(ctxt, tmp);
7634 			    return(forbiddenExp);
7635 			}
7636 			if (sub->exp_max > exp->exp_min)
7637 			    min = 0;
7638 			else
7639 			    min = exp->exp_min - sub->exp_max;
7640 			max = exp->exp_max - sub->exp_max;
7641 		    }
7642 		}
7643 #ifdef DEBUG_DERIV
7644 		printf("loops match => SEQ(COUNT())\n");
7645 #endif
7646 		exp->exp_left->ref++;
7647 		tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
7648 		                          NULL, NULL, min, max);
7649 		if (tmp2 == NULL) {
7650 		    return(NULL);
7651 		}
7652                 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
7653 		                         NULL, 0, 0);
7654 		return(ret);
7655 	    }
7656 	    tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
7657 	    if (tmp == NULL)
7658 		return(NULL);
7659 	    if (tmp == forbiddenExp) {
7660 #ifdef DEBUG_DERIV
7661 		printf("loop mismatch => forbidden\n");
7662 #endif
7663 		return(forbiddenExp);
7664 	    }
7665 	    if (exp->exp_min > 0)
7666 		min = exp->exp_min - 1;
7667 	    else
7668 		min = 0;
7669 	    if (exp->exp_max < 0)
7670 		max = -1;
7671 	    else
7672 		max = exp->exp_max - 1;
7673 
7674 #ifdef DEBUG_DERIV
7675 	    printf("loop match => SEQ(COUNT())\n");
7676 #endif
7677 	    exp->exp_left->ref++;
7678 	    tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
7679 				      NULL, NULL, min, max);
7680 	    if (tmp2 == NULL)
7681 		return(NULL);
7682 	    ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
7683 				     NULL, 0, 0);
7684 	    return(ret);
7685 	}
7686     }
7687 
7688 #ifdef DEBUG_DERIV
7689     printf("Fallback to derivative\n");
7690 #endif
7691     if (IS_NILLABLE(sub)) {
7692         if (!(IS_NILLABLE(exp)))
7693 	    return(forbiddenExp);
7694 	else
7695 	    ret = emptyExp;
7696     } else
7697 	ret = NULL;
7698     /*
7699      * here the structured derivation made no progress so
7700      * we use the default token based derivation to force one more step
7701      */
7702     if (ctxt->tabSize == 0)
7703         ctxt->tabSize = 40;
7704 
7705     tab = (const xmlChar **) xmlMalloc(ctxt->tabSize *
7706 	                               sizeof(const xmlChar *));
7707     if (tab == NULL) {
7708 	return(NULL);
7709     }
7710 
7711     /*
7712      * collect all the strings accepted by the subexpression on input
7713      */
7714     len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
7715     while (len < 0) {
7716         const xmlChar **temp;
7717 	temp = (const xmlChar **) xmlRealloc((xmlChar **) tab, ctxt->tabSize * 2 *
7718 	                                     sizeof(const xmlChar *));
7719 	if (temp == NULL) {
7720 	    xmlFree((xmlChar **) tab);
7721 	    return(NULL);
7722 	}
7723 	tab = temp;
7724 	ctxt->tabSize *= 2;
7725 	len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
7726     }
7727     for (i = 0;i < len;i++) {
7728         tmp = xmlExpStringDeriveInt(ctxt, exp, tab[i]);
7729 	if ((tmp == NULL) || (tmp == forbiddenExp)) {
7730 	    xmlExpFree(ctxt, ret);
7731 	    xmlFree((xmlChar **) tab);
7732 	    return(tmp);
7733 	}
7734 	tmp2 = xmlExpStringDeriveInt(ctxt, sub, tab[i]);
7735 	if ((tmp2 == NULL) || (tmp2 == forbiddenExp)) {
7736 	    xmlExpFree(ctxt, tmp);
7737 	    xmlExpFree(ctxt, ret);
7738 	    xmlFree((xmlChar **) tab);
7739 	    return(tmp);
7740 	}
7741 	tmp3 = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
7742 	xmlExpFree(ctxt, tmp);
7743 	xmlExpFree(ctxt, tmp2);
7744 
7745 	if ((tmp3 == NULL) || (tmp3 == forbiddenExp)) {
7746 	    xmlExpFree(ctxt, ret);
7747 	    xmlFree((xmlChar **) tab);
7748 	    return(tmp3);
7749 	}
7750 
7751 	if (ret == NULL)
7752 	    ret = tmp3;
7753 	else {
7754 	    ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp3, NULL, 0, 0);
7755 	    if (ret == NULL) {
7756 		xmlFree((xmlChar **) tab);
7757 	        return(NULL);
7758 	    }
7759 	}
7760     }
7761     xmlFree((xmlChar **) tab);
7762     return(ret);
7763 }
7764 
7765 /**
7766  * xmlExpExpDerive:
7767  * @ctxt: the expressions context
7768  * @exp: the englobing expression
7769  * @sub: the subexpression
7770  *
7771  * Evaluates the expression resulting from @exp consuming a sub expression @sub
7772  * Based on algebraic derivation and sometimes direct Brzozowski derivation
7773  * it usually tatkes less than linear time and can handle expressions generating
7774  * infinite languages.
7775  *
7776  * Returns the resulting expression or NULL in case of internal error, the
7777  *         result must be freed
7778  */
7779 xmlExpNodePtr
7780 xmlExpExpDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
7781     if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
7782         return(NULL);
7783 
7784     /*
7785      * O(1) speedups
7786      */
7787     if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
7788 #ifdef DEBUG_DERIV
7789 	printf("Sub nillable and not exp : can't subsume\n");
7790 #endif
7791         return(forbiddenExp);
7792     }
7793     if (xmlExpCheckCard(exp, sub) == 0) {
7794 #ifdef DEBUG_DERIV
7795 	printf("sub generate longuer sequances than exp : can't subsume\n");
7796 #endif
7797         return(forbiddenExp);
7798     }
7799     return(xmlExpExpDeriveInt(ctxt, exp, sub));
7800 }
7801 
7802 /**
7803  * xmlExpSubsume:
7804  * @ctxt: the expressions context
7805  * @exp: the englobing expression
7806  * @sub: the subexpression
7807  *
7808  * Check whether @exp accepts all the languages accexpted by @sub
7809  * the input being a subexpression.
7810  *
7811  * Returns 1 if true 0 if false and -1 in case of failure.
7812  */
7813 int
7814 xmlExpSubsume(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
7815     xmlExpNodePtr tmp;
7816 
7817     if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
7818         return(-1);
7819 
7820     /*
7821      * TODO: speedup by checking the language of sub is a subset of the
7822      *       language of exp
7823      */
7824     /*
7825      * O(1) speedups
7826      */
7827     if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
7828 #ifdef DEBUG_DERIV
7829 	printf("Sub nillable and not exp : can't subsume\n");
7830 #endif
7831         return(0);
7832     }
7833     if (xmlExpCheckCard(exp, sub) == 0) {
7834 #ifdef DEBUG_DERIV
7835 	printf("sub generate longuer sequances than exp : can't subsume\n");
7836 #endif
7837         return(0);
7838     }
7839     tmp = xmlExpExpDeriveInt(ctxt, exp, sub);
7840 #ifdef DEBUG_DERIV
7841     printf("Result derivation :\n");
7842     PRINT_EXP(tmp);
7843 #endif
7844     if (tmp == NULL)
7845         return(-1);
7846     if (tmp == forbiddenExp)
7847 	return(0);
7848     if (tmp == emptyExp)
7849 	return(1);
7850     if ((tmp != NULL) && (IS_NILLABLE(tmp))) {
7851         xmlExpFree(ctxt, tmp);
7852         return(1);
7853     }
7854     xmlExpFree(ctxt, tmp);
7855     return(0);
7856 }
7857 
7858 /************************************************************************
7859  *									*
7860  *			Parsing expression				*
7861  *									*
7862  ************************************************************************/
7863 
7864 static xmlExpNodePtr xmlExpParseExpr(xmlExpCtxtPtr ctxt);
7865 
7866 #undef CUR
7867 #define CUR (*ctxt->cur)
7868 #undef NEXT
7869 #define NEXT ctxt->cur++;
7870 #undef IS_BLANK
7871 #define IS_BLANK(c) ((c == ' ') || (c == '\n') || (c == '\r') || (c == '\t'))
7872 #define SKIP_BLANKS while (IS_BLANK(*ctxt->cur)) ctxt->cur++;
7873 
7874 static int
7875 xmlExpParseNumber(xmlExpCtxtPtr ctxt) {
7876     int ret = 0;
7877 
7878     SKIP_BLANKS
7879     if (CUR == '*') {
7880 	NEXT
7881 	return(-1);
7882     }
7883     if ((CUR < '0') || (CUR > '9'))
7884         return(-1);
7885     while ((CUR >= '0') && (CUR <= '9')) {
7886         ret = ret * 10 + (CUR - '0');
7887 	NEXT
7888     }
7889     return(ret);
7890 }
7891 
7892 static xmlExpNodePtr
7893 xmlExpParseOr(xmlExpCtxtPtr ctxt) {
7894     const char *base;
7895     xmlExpNodePtr ret;
7896     const xmlChar *val;
7897 
7898     SKIP_BLANKS
7899     base = ctxt->cur;
7900     if (*ctxt->cur == '(') {
7901         NEXT
7902 	ret = xmlExpParseExpr(ctxt);
7903 	SKIP_BLANKS
7904 	if (*ctxt->cur != ')') {
7905 	    fprintf(stderr, "unbalanced '(' : %s\n", base);
7906 	    xmlExpFree(ctxt, ret);
7907 	    return(NULL);
7908 	}
7909 	NEXT;
7910 	SKIP_BLANKS
7911 	goto parse_quantifier;
7912     }
7913     while ((CUR != 0) && (!(IS_BLANK(CUR))) && (CUR != '(') &&
7914            (CUR != ')') && (CUR != '|') && (CUR != ',') && (CUR != '{') &&
7915 	   (CUR != '*') && (CUR != '+') && (CUR != '?') && (CUR != '}'))
7916 	NEXT;
7917     val = xmlDictLookup(ctxt->dict, BAD_CAST base, ctxt->cur - base);
7918     if (val == NULL)
7919         return(NULL);
7920     ret = xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, val, 0, 0);
7921     if (ret == NULL)
7922         return(NULL);
7923     SKIP_BLANKS
7924 parse_quantifier:
7925     if (CUR == '{') {
7926         int min, max;
7927 
7928         NEXT
7929 	min = xmlExpParseNumber(ctxt);
7930 	if (min < 0) {
7931 	    xmlExpFree(ctxt, ret);
7932 	    return(NULL);
7933 	}
7934 	SKIP_BLANKS
7935 	if (CUR == ',') {
7936 	    NEXT
7937 	    max = xmlExpParseNumber(ctxt);
7938 	    SKIP_BLANKS
7939 	} else
7940 	    max = min;
7941 	if (CUR != '}') {
7942 	    xmlExpFree(ctxt, ret);
7943 	    return(NULL);
7944 	}
7945         NEXT
7946 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7947 	                         min, max);
7948 	SKIP_BLANKS
7949     } else if (CUR == '?') {
7950         NEXT
7951 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7952 	                         0, 1);
7953 	SKIP_BLANKS
7954     } else if (CUR == '+') {
7955         NEXT
7956 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7957 	                         1, -1);
7958 	SKIP_BLANKS
7959     } else if (CUR == '*') {
7960         NEXT
7961 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7962 	                         0, -1);
7963 	SKIP_BLANKS
7964     }
7965     return(ret);
7966 }
7967 
7968 
7969 static xmlExpNodePtr
7970 xmlExpParseSeq(xmlExpCtxtPtr ctxt) {
7971     xmlExpNodePtr ret, right;
7972 
7973     ret = xmlExpParseOr(ctxt);
7974     SKIP_BLANKS
7975     while (CUR == '|') {
7976         NEXT
7977 	right = xmlExpParseOr(ctxt);
7978 	if (right == NULL) {
7979 	    xmlExpFree(ctxt, ret);
7980 	    return(NULL);
7981 	}
7982 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, right, NULL, 0, 0);
7983 	if (ret == NULL)
7984 	    return(NULL);
7985     }
7986     return(ret);
7987 }
7988 
7989 static xmlExpNodePtr
7990 xmlExpParseExpr(xmlExpCtxtPtr ctxt) {
7991     xmlExpNodePtr ret, right;
7992 
7993     ret = xmlExpParseSeq(ctxt);
7994     SKIP_BLANKS
7995     while (CUR == ',') {
7996         NEXT
7997 	right = xmlExpParseSeq(ctxt);
7998 	if (right == NULL) {
7999 	    xmlExpFree(ctxt, ret);
8000 	    return(NULL);
8001 	}
8002 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, right, NULL, 0, 0);
8003 	if (ret == NULL)
8004 	    return(NULL);
8005     }
8006     return(ret);
8007 }
8008 
8009 /**
8010  * xmlExpParse:
8011  * @ctxt: the expressions context
8012  * @expr: the 0 terminated string
8013  *
8014  * Minimal parser for regexps, it understand the following constructs
8015  *  - string terminals
8016  *  - choice operator |
8017  *  - sequence operator ,
8018  *  - subexpressions (...)
8019  *  - usual cardinality operators + * and ?
8020  *  - finite sequences  { min, max }
8021  *  - infinite sequences { min, * }
8022  * There is minimal checkings made especially no checking on strings values
8023  *
8024  * Returns a new expression or NULL in case of failure
8025  */
8026 xmlExpNodePtr
8027 xmlExpParse(xmlExpCtxtPtr ctxt, const char *expr) {
8028     xmlExpNodePtr ret;
8029 
8030     ctxt->expr = expr;
8031     ctxt->cur = expr;
8032 
8033     ret = xmlExpParseExpr(ctxt);
8034     SKIP_BLANKS
8035     if (*ctxt->cur != 0) {
8036         xmlExpFree(ctxt, ret);
8037         return(NULL);
8038     }
8039     return(ret);
8040 }
8041 
8042 static void
8043 xmlExpDumpInt(xmlBufferPtr buf, xmlExpNodePtr expr, int glob) {
8044     xmlExpNodePtr c;
8045 
8046     if (expr == NULL) return;
8047     if (glob) xmlBufferWriteChar(buf, "(");
8048     switch (expr->type) {
8049         case XML_EXP_EMPTY:
8050 	    xmlBufferWriteChar(buf, "empty");
8051 	    break;
8052         case XML_EXP_FORBID:
8053 	    xmlBufferWriteChar(buf, "forbidden");
8054 	    break;
8055         case XML_EXP_ATOM:
8056 	    xmlBufferWriteCHAR(buf, expr->exp_str);
8057 	    break;
8058         case XML_EXP_SEQ:
8059 	    c = expr->exp_left;
8060 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
8061 	        xmlExpDumpInt(buf, c, 1);
8062 	    else
8063 	        xmlExpDumpInt(buf, c, 0);
8064 	    xmlBufferWriteChar(buf, " , ");
8065 	    c = expr->exp_right;
8066 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
8067 	        xmlExpDumpInt(buf, c, 1);
8068 	    else
8069 	        xmlExpDumpInt(buf, c, 0);
8070             break;
8071         case XML_EXP_OR:
8072 	    c = expr->exp_left;
8073 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
8074 	        xmlExpDumpInt(buf, c, 1);
8075 	    else
8076 	        xmlExpDumpInt(buf, c, 0);
8077 	    xmlBufferWriteChar(buf, " | ");
8078 	    c = expr->exp_right;
8079 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
8080 	        xmlExpDumpInt(buf, c, 1);
8081 	    else
8082 	        xmlExpDumpInt(buf, c, 0);
8083             break;
8084         case XML_EXP_COUNT: {
8085 	    char rep[40];
8086 
8087 	    c = expr->exp_left;
8088 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
8089 	        xmlExpDumpInt(buf, c, 1);
8090 	    else
8091 	        xmlExpDumpInt(buf, c, 0);
8092 	    if ((expr->exp_min == 0) && (expr->exp_max == 1)) {
8093 		rep[0] = '?';
8094 		rep[1] = 0;
8095 	    } else if ((expr->exp_min == 0) && (expr->exp_max == -1)) {
8096 		rep[0] = '*';
8097 		rep[1] = 0;
8098 	    } else if ((expr->exp_min == 1) && (expr->exp_max == -1)) {
8099 		rep[0] = '+';
8100 		rep[1] = 0;
8101 	    } else if (expr->exp_max == expr->exp_min) {
8102 	        snprintf(rep, 39, "{%d}", expr->exp_min);
8103 	    } else if (expr->exp_max < 0) {
8104 	        snprintf(rep, 39, "{%d,inf}", expr->exp_min);
8105 	    } else {
8106 	        snprintf(rep, 39, "{%d,%d}", expr->exp_min, expr->exp_max);
8107 	    }
8108 	    rep[39] = 0;
8109 	    xmlBufferWriteChar(buf, rep);
8110 	    break;
8111 	}
8112 	default:
8113 	    fprintf(stderr, "Error in tree\n");
8114     }
8115     if (glob)
8116         xmlBufferWriteChar(buf, ")");
8117 }
8118 /**
8119  * xmlExpDump:
8120  * @buf:  a buffer to receive the output
8121  * @expr:  the compiled expression
8122  *
8123  * Serialize the expression as compiled to the buffer
8124  */
8125 void
8126 xmlExpDump(xmlBufferPtr buf, xmlExpNodePtr expr) {
8127     if ((buf == NULL) || (expr == NULL))
8128         return;
8129     xmlExpDumpInt(buf, expr, 0);
8130 }
8131 
8132 /**
8133  * xmlExpMaxToken:
8134  * @expr: a compiled expression
8135  *
8136  * Indicate the maximum number of input a expression can accept
8137  *
8138  * Returns the maximum length or -1 in case of error
8139  */
8140 int
8141 xmlExpMaxToken(xmlExpNodePtr expr) {
8142     if (expr == NULL)
8143         return(-1);
8144     return(expr->c_max);
8145 }
8146 
8147 /**
8148  * xmlExpCtxtNbNodes:
8149  * @ctxt: an expression context
8150  *
8151  * Debugging facility provides the number of allocated nodes at a that point
8152  *
8153  * Returns the number of nodes in use or -1 in case of error
8154  */
8155 int
8156 xmlExpCtxtNbNodes(xmlExpCtxtPtr ctxt) {
8157     if (ctxt == NULL)
8158         return(-1);
8159     return(ctxt->nb_nodes);
8160 }
8161 
8162 /**
8163  * xmlExpCtxtNbCons:
8164  * @ctxt: an expression context
8165  *
8166  * Debugging facility provides the number of allocated nodes over lifetime
8167  *
8168  * Returns the number of nodes ever allocated or -1 in case of error
8169  */
8170 int
8171 xmlExpCtxtNbCons(xmlExpCtxtPtr ctxt) {
8172     if (ctxt == NULL)
8173         return(-1);
8174     return(ctxt->nb_cons);
8175 }
8176 
8177 #endif /* LIBXML_EXPR_ENABLED */
8178 #define bottom_xmlregexp
8179 #include "elfgcchack.h"
8180 #endif /* LIBXML_REGEXP_ENABLED */
8181