xref: /reactos/sdk/lib/3rdparty/zlib/deflate.c (revision 77e6348f)
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49 
50 /* @(#) $Id$ */
51 
52 #include "deflate.h"
53 
54 const char deflate_copyright[] =
55    " deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62 
63 /* ===========================================================================
64  *  Function prototypes.
65  */
66 typedef enum {
67     need_more,      /* block not completed, need more input or more output */
68     block_done,     /* block flush performed */
69     finish_started, /* finish started, need only more output at next deflate */
70     finish_done     /* finish done, accept no more input or output */
71 } block_state;
72 
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75 
76 local int deflateStateCheck      OF((z_streamp strm));
77 local void slide_hash     OF((deflate_state *s));
78 local void fill_window    OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast   OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow   OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle    OF((deflate_state *s, int flush));
85 local block_state deflate_huff   OF((deflate_state *s, int flush));
86 local void lm_init        OF((deflate_state *s));
87 local void putShortMSB    OF((deflate_state *s, uInt b));
88 local void flush_pending  OF((z_streamp strm));
89 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
91 
92 #ifdef ZLIB_DEBUG
93 local  void check_match OF((deflate_state *s, IPos start, IPos match,
94                             int length));
95 #endif
96 
97 /* ===========================================================================
98  * Local data
99  */
100 
101 #define NIL 0
102 /* Tail of hash chains */
103 
104 #ifndef TOO_FAR
105 #  define TOO_FAR 4096
106 #endif
107 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
108 
109 /* Values for max_lazy_match, good_match and max_chain_length, depending on
110  * the desired pack level (0..9). The values given below have been tuned to
111  * exclude worst case performance for pathological files. Better values may be
112  * found for specific files.
113  */
114 typedef struct config_s {
115    ush good_length; /* reduce lazy search above this match length */
116    ush max_lazy;    /* do not perform lazy search above this match length */
117    ush nice_length; /* quit search above this match length */
118    ush max_chain;
119    compress_func func;
120 } config;
121 
122 #ifdef FASTEST
123 local const config configuration_table[2] = {
124 /*      good lazy nice chain */
125 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
126 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
127 #else
128 local const config configuration_table[10] = {
129 /*      good lazy nice chain */
130 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
131 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
132 /* 2 */ {4,    5, 16,    8, deflate_fast},
133 /* 3 */ {4,    6, 32,   32, deflate_fast},
134 
135 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
136 /* 5 */ {8,   16, 32,   32, deflate_slow},
137 /* 6 */ {8,   16, 128, 128, deflate_slow},
138 /* 7 */ {8,   32, 128, 256, deflate_slow},
139 /* 8 */ {32, 128, 258, 1024, deflate_slow},
140 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
141 #endif
142 
143 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
144  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
145  * meaning.
146  */
147 
148 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
149 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
150 
151 /* ===========================================================================
152  * Update a hash value with the given input byte
153  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
154  *    characters, so that a running hash key can be computed from the previous
155  *    key instead of complete recalculation each time.
156  */
157 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
158 
159 
160 /* ===========================================================================
161  * Insert string str in the dictionary and set match_head to the previous head
162  * of the hash chain (the most recent string with same hash key). Return
163  * the previous length of the hash chain.
164  * If this file is compiled with -DFASTEST, the compression level is forced
165  * to 1, and no hash chains are maintained.
166  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
167  *    characters and the first MIN_MATCH bytes of str are valid (except for
168  *    the last MIN_MATCH-1 bytes of the input file).
169  */
170 #ifdef FASTEST
171 #define INSERT_STRING(s, str, match_head) \
172    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
173     match_head = s->head[s->ins_h], \
174     s->head[s->ins_h] = (Pos)(str))
175 #else
176 #define INSERT_STRING(s, str, match_head) \
177    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
178     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
179     s->head[s->ins_h] = (Pos)(str))
180 #endif
181 
182 /* ===========================================================================
183  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
184  * prev[] will be initialized on the fly.
185  */
186 #define CLEAR_HASH(s) \
187     do { \
188         s->head[s->hash_size - 1] = NIL; \
189         zmemzero((Bytef *)s->head, \
190                  (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
191     } while (0)
192 
193 /* ===========================================================================
194  * Slide the hash table when sliding the window down (could be avoided with 32
195  * bit values at the expense of memory usage). We slide even when level == 0 to
196  * keep the hash table consistent if we switch back to level > 0 later.
197  */
198 local void slide_hash(s)
199     deflate_state *s;
200 {
201     unsigned n, m;
202     Posf *p;
203     uInt wsize = s->w_size;
204 
205     n = s->hash_size;
206     p = &s->head[n];
207     do {
208         m = *--p;
209         *p = (Pos)(m >= wsize ? m - wsize : NIL);
210     } while (--n);
211     n = wsize;
212 #ifndef FASTEST
213     p = &s->prev[n];
214     do {
215         m = *--p;
216         *p = (Pos)(m >= wsize ? m - wsize : NIL);
217         /* If n is not on any hash chain, prev[n] is garbage but
218          * its value will never be used.
219          */
220     } while (--n);
221 #endif
222 }
223 
224 /* ========================================================================= */
225 int ZEXPORT deflateInit_(strm, level, version, stream_size)
226     z_streamp strm;
227     int level;
228     const char *version;
229     int stream_size;
230 {
231     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
232                          Z_DEFAULT_STRATEGY, version, stream_size);
233     /* To do: ignore strm->next_in if we use it as window */
234 }
235 
236 /* ========================================================================= */
237 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
238                   version, stream_size)
239     z_streamp strm;
240     int  level;
241     int  method;
242     int  windowBits;
243     int  memLevel;
244     int  strategy;
245     const char *version;
246     int stream_size;
247 {
248     deflate_state *s;
249     int wrap = 1;
250     static const char my_version[] = ZLIB_VERSION;
251 
252     if (version == Z_NULL || version[0] != my_version[0] ||
253         stream_size != sizeof(z_stream)) {
254         return Z_VERSION_ERROR;
255     }
256     if (strm == Z_NULL) return Z_STREAM_ERROR;
257 
258     strm->msg = Z_NULL;
259     if (strm->zalloc == (alloc_func)0) {
260 #ifdef Z_SOLO
261         return Z_STREAM_ERROR;
262 #else
263         strm->zalloc = zcalloc;
264         strm->opaque = (voidpf)0;
265 #endif
266     }
267     if (strm->zfree == (free_func)0)
268 #ifdef Z_SOLO
269         return Z_STREAM_ERROR;
270 #else
271         strm->zfree = zcfree;
272 #endif
273 
274 #ifdef FASTEST
275     if (level != 0) level = 1;
276 #else
277     if (level == Z_DEFAULT_COMPRESSION) level = 6;
278 #endif
279 
280     if (windowBits < 0) { /* suppress zlib wrapper */
281         wrap = 0;
282         if (windowBits < -15)
283             return Z_STREAM_ERROR;
284         windowBits = -windowBits;
285     }
286 #ifdef GZIP
287     else if (windowBits > 15) {
288         wrap = 2;       /* write gzip wrapper instead */
289         windowBits -= 16;
290     }
291 #endif
292     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
293         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
294         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
295         return Z_STREAM_ERROR;
296     }
297     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
298     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
299     if (s == Z_NULL) return Z_MEM_ERROR;
300     strm->state = (struct internal_state FAR *)s;
301     s->strm = strm;
302     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
303 
304     s->wrap = wrap;
305     s->gzhead = Z_NULL;
306     s->w_bits = (uInt)windowBits;
307     s->w_size = 1 << s->w_bits;
308     s->w_mask = s->w_size - 1;
309 
310     s->hash_bits = (uInt)memLevel + 7;
311     s->hash_size = 1 << s->hash_bits;
312     s->hash_mask = s->hash_size - 1;
313     s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
314 
315     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
316     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
317     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
318 
319     s->high_water = 0;      /* nothing written to s->window yet */
320 
321     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
322 
323     /* We overlay pending_buf and sym_buf. This works since the average size
324      * for length/distance pairs over any compressed block is assured to be 31
325      * bits or less.
326      *
327      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
328      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
329      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
330      * possible fixed-codes length/distance pair is then 31 bits total.
331      *
332      * sym_buf starts one-fourth of the way into pending_buf. So there are
333      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
334      * in sym_buf is three bytes -- two for the distance and one for the
335      * literal/length. As each symbol is consumed, the pointer to the next
336      * sym_buf value to read moves forward three bytes. From that symbol, up to
337      * 31 bits are written to pending_buf. The closest the written pending_buf
338      * bits gets to the next sym_buf symbol to read is just before the last
339      * code is written. At that time, 31*(n - 2) bits have been written, just
340      * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
341      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
342      * symbols are written.) The closest the writing gets to what is unread is
343      * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
344      * can range from 128 to 32768.
345      *
346      * Therefore, at a minimum, there are 142 bits of space between what is
347      * written and what is read in the overlain buffers, so the symbols cannot
348      * be overwritten by the compressed data. That space is actually 139 bits,
349      * due to the three-bit fixed-code block header.
350      *
351      * That covers the case where either Z_FIXED is specified, forcing fixed
352      * codes, or when the use of fixed codes is chosen, because that choice
353      * results in a smaller compressed block than dynamic codes. That latter
354      * condition then assures that the above analysis also covers all dynamic
355      * blocks. A dynamic-code block will only be chosen to be emitted if it has
356      * fewer bits than a fixed-code block would for the same set of symbols.
357      * Therefore its average symbol length is assured to be less than 31. So
358      * the compressed data for a dynamic block also cannot overwrite the
359      * symbols from which it is being constructed.
360      */
361 
362     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
363     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
364 
365     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
366         s->pending_buf == Z_NULL) {
367         s->status = FINISH_STATE;
368         strm->msg = ERR_MSG(Z_MEM_ERROR);
369         deflateEnd (strm);
370         return Z_MEM_ERROR;
371     }
372     s->sym_buf = s->pending_buf + s->lit_bufsize;
373     s->sym_end = (s->lit_bufsize - 1) * 3;
374     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
375      * on 16 bit machines and because stored blocks are restricted to
376      * 64K-1 bytes.
377      */
378 
379     s->level = level;
380     s->strategy = strategy;
381     s->method = (Byte)method;
382 
383     return deflateReset(strm);
384 }
385 
386 /* =========================================================================
387  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
388  */
389 local int deflateStateCheck(strm)
390     z_streamp strm;
391 {
392     deflate_state *s;
393     if (strm == Z_NULL ||
394         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
395         return 1;
396     s = strm->state;
397     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
398 #ifdef GZIP
399                                            s->status != GZIP_STATE &&
400 #endif
401                                            s->status != EXTRA_STATE &&
402                                            s->status != NAME_STATE &&
403                                            s->status != COMMENT_STATE &&
404                                            s->status != HCRC_STATE &&
405                                            s->status != BUSY_STATE &&
406                                            s->status != FINISH_STATE))
407         return 1;
408     return 0;
409 }
410 
411 /* ========================================================================= */
412 int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
413     z_streamp strm;
414     const Bytef *dictionary;
415     uInt  dictLength;
416 {
417     deflate_state *s;
418     uInt str, n;
419     int wrap;
420     unsigned avail;
421     z_const unsigned char *next;
422 
423     if (deflateStateCheck(strm) || dictionary == Z_NULL)
424         return Z_STREAM_ERROR;
425     s = strm->state;
426     wrap = s->wrap;
427     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
428         return Z_STREAM_ERROR;
429 
430     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
431     if (wrap == 1)
432         strm->adler = adler32(strm->adler, dictionary, dictLength);
433     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
434 
435     /* if dictionary would fill window, just replace the history */
436     if (dictLength >= s->w_size) {
437         if (wrap == 0) {            /* already empty otherwise */
438             CLEAR_HASH(s);
439             s->strstart = 0;
440             s->block_start = 0L;
441             s->insert = 0;
442         }
443         dictionary += dictLength - s->w_size;  /* use the tail */
444         dictLength = s->w_size;
445     }
446 
447     /* insert dictionary into window and hash */
448     avail = strm->avail_in;
449     next = strm->next_in;
450     strm->avail_in = dictLength;
451     strm->next_in = (z_const Bytef *)dictionary;
452     fill_window(s);
453     while (s->lookahead >= MIN_MATCH) {
454         str = s->strstart;
455         n = s->lookahead - (MIN_MATCH-1);
456         do {
457             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
458 #ifndef FASTEST
459             s->prev[str & s->w_mask] = s->head[s->ins_h];
460 #endif
461             s->head[s->ins_h] = (Pos)str;
462             str++;
463         } while (--n);
464         s->strstart = str;
465         s->lookahead = MIN_MATCH-1;
466         fill_window(s);
467     }
468     s->strstart += s->lookahead;
469     s->block_start = (long)s->strstart;
470     s->insert = s->lookahead;
471     s->lookahead = 0;
472     s->match_length = s->prev_length = MIN_MATCH-1;
473     s->match_available = 0;
474     strm->next_in = next;
475     strm->avail_in = avail;
476     s->wrap = wrap;
477     return Z_OK;
478 }
479 
480 /* ========================================================================= */
481 int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
482     z_streamp strm;
483     Bytef *dictionary;
484     uInt  *dictLength;
485 {
486     deflate_state *s;
487     uInt len;
488 
489     if (deflateStateCheck(strm))
490         return Z_STREAM_ERROR;
491     s = strm->state;
492     len = s->strstart + s->lookahead;
493     if (len > s->w_size)
494         len = s->w_size;
495     if (dictionary != Z_NULL && len)
496         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
497     if (dictLength != Z_NULL)
498         *dictLength = len;
499     return Z_OK;
500 }
501 
502 /* ========================================================================= */
503 int ZEXPORT deflateResetKeep(strm)
504     z_streamp strm;
505 {
506     deflate_state *s;
507 
508     if (deflateStateCheck(strm)) {
509         return Z_STREAM_ERROR;
510     }
511 
512     strm->total_in = strm->total_out = 0;
513     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
514     strm->data_type = Z_UNKNOWN;
515 
516     s = (deflate_state *)strm->state;
517     s->pending = 0;
518     s->pending_out = s->pending_buf;
519 
520     if (s->wrap < 0) {
521         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
522     }
523     s->status =
524 #ifdef GZIP
525         s->wrap == 2 ? GZIP_STATE :
526 #endif
527         INIT_STATE;
528     strm->adler =
529 #ifdef GZIP
530         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
531 #endif
532         adler32(0L, Z_NULL, 0);
533     s->last_flush = -2;
534 
535     _tr_init(s);
536 
537     return Z_OK;
538 }
539 
540 /* ========================================================================= */
541 int ZEXPORT deflateReset(strm)
542     z_streamp strm;
543 {
544     int ret;
545 
546     ret = deflateResetKeep(strm);
547     if (ret == Z_OK)
548         lm_init(strm->state);
549     return ret;
550 }
551 
552 /* ========================================================================= */
553 int ZEXPORT deflateSetHeader(strm, head)
554     z_streamp strm;
555     gz_headerp head;
556 {
557     if (deflateStateCheck(strm) || strm->state->wrap != 2)
558         return Z_STREAM_ERROR;
559     strm->state->gzhead = head;
560     return Z_OK;
561 }
562 
563 /* ========================================================================= */
564 int ZEXPORT deflatePending(strm, pending, bits)
565     unsigned *pending;
566     int *bits;
567     z_streamp strm;
568 {
569     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
570     if (pending != Z_NULL)
571         *pending = strm->state->pending;
572     if (bits != Z_NULL)
573         *bits = strm->state->bi_valid;
574     return Z_OK;
575 }
576 
577 /* ========================================================================= */
578 int ZEXPORT deflatePrime(strm, bits, value)
579     z_streamp strm;
580     int bits;
581     int value;
582 {
583     deflate_state *s;
584     int put;
585 
586     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
587     s = strm->state;
588     if (bits < 0 || bits > 16 ||
589         s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
590         return Z_BUF_ERROR;
591     do {
592         put = Buf_size - s->bi_valid;
593         if (put > bits)
594             put = bits;
595         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
596         s->bi_valid += put;
597         _tr_flush_bits(s);
598         value >>= put;
599         bits -= put;
600     } while (bits);
601     return Z_OK;
602 }
603 
604 /* ========================================================================= */
605 int ZEXPORT deflateParams(strm, level, strategy)
606     z_streamp strm;
607     int level;
608     int strategy;
609 {
610     deflate_state *s;
611     compress_func func;
612 
613     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
614     s = strm->state;
615 
616 #ifdef FASTEST
617     if (level != 0) level = 1;
618 #else
619     if (level == Z_DEFAULT_COMPRESSION) level = 6;
620 #endif
621     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
622         return Z_STREAM_ERROR;
623     }
624     func = configuration_table[s->level].func;
625 
626     if ((strategy != s->strategy || func != configuration_table[level].func) &&
627         s->last_flush != -2) {
628         /* Flush the last buffer: */
629         int err = deflate(strm, Z_BLOCK);
630         if (err == Z_STREAM_ERROR)
631             return err;
632         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
633             return Z_BUF_ERROR;
634     }
635     if (s->level != level) {
636         if (s->level == 0 && s->matches != 0) {
637             if (s->matches == 1)
638                 slide_hash(s);
639             else
640                 CLEAR_HASH(s);
641             s->matches = 0;
642         }
643         s->level = level;
644         s->max_lazy_match   = configuration_table[level].max_lazy;
645         s->good_match       = configuration_table[level].good_length;
646         s->nice_match       = configuration_table[level].nice_length;
647         s->max_chain_length = configuration_table[level].max_chain;
648     }
649     s->strategy = strategy;
650     return Z_OK;
651 }
652 
653 /* ========================================================================= */
654 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
655     z_streamp strm;
656     int good_length;
657     int max_lazy;
658     int nice_length;
659     int max_chain;
660 {
661     deflate_state *s;
662 
663     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
664     s = strm->state;
665     s->good_match = (uInt)good_length;
666     s->max_lazy_match = (uInt)max_lazy;
667     s->nice_match = nice_length;
668     s->max_chain_length = (uInt)max_chain;
669     return Z_OK;
670 }
671 
672 /* =========================================================================
673  * For the default windowBits of 15 and memLevel of 8, this function returns a
674  * close to exact, as well as small, upper bound on the compressed size. This
675  * is an expansion of ~0.03%, plus a small constant.
676  *
677  * For any setting other than those defaults for windowBits and memLevel, one
678  * of two worst case bounds is returned. This is at most an expansion of ~4% or
679  * ~13%, plus a small constant.
680  *
681  * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
682  * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
683  * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
684  * expansion results from five bytes of header for each stored block.
685  *
686  * The larger expansion of 13% results from a window size less than or equal to
687  * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
688  * the data being compressed may have slid out of the sliding window, impeding
689  * a stored block from being emitted. Then the only choice is a fixed or
690  * dynamic block, where a fixed block limits the maximum expansion to 9 bits
691  * per 8-bit byte, plus 10 bits for every block. The smallest block size for
692  * which this can occur is 255 (memLevel == 2).
693  *
694  * Shifts are used to approximate divisions, for speed.
695  */
696 uLong ZEXPORT deflateBound(strm, sourceLen)
697     z_streamp strm;
698     uLong sourceLen;
699 {
700     deflate_state *s;
701     uLong fixedlen, storelen, wraplen;
702 
703     /* upper bound for fixed blocks with 9-bit literals and length 255
704        (memLevel == 2, which is the lowest that may not use stored blocks) --
705        ~13% overhead plus a small constant */
706     fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
707                (sourceLen >> 9) + 4;
708 
709     /* upper bound for stored blocks with length 127 (memLevel == 1) --
710        ~4% overhead plus a small constant */
711     storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
712                (sourceLen >> 11) + 7;
713 
714     /* if can't get parameters, return larger bound plus a zlib wrapper */
715     if (deflateStateCheck(strm))
716         return (fixedlen > storelen ? fixedlen : storelen) + 6;
717 
718     /* compute wrapper length */
719     s = strm->state;
720     switch (s->wrap) {
721     case 0:                                 /* raw deflate */
722         wraplen = 0;
723         break;
724     case 1:                                 /* zlib wrapper */
725         wraplen = 6 + (s->strstart ? 4 : 0);
726         break;
727 #ifdef GZIP
728     case 2:                                 /* gzip wrapper */
729         wraplen = 18;
730         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
731             Bytef *str;
732             if (s->gzhead->extra != Z_NULL)
733                 wraplen += 2 + s->gzhead->extra_len;
734             str = s->gzhead->name;
735             if (str != Z_NULL)
736                 do {
737                     wraplen++;
738                 } while (*str++);
739             str = s->gzhead->comment;
740             if (str != Z_NULL)
741                 do {
742                     wraplen++;
743                 } while (*str++);
744             if (s->gzhead->hcrc)
745                 wraplen += 2;
746         }
747         break;
748 #endif
749     default:                                /* for compiler happiness */
750         wraplen = 6;
751     }
752 
753     /* if not default parameters, return one of the conservative bounds */
754     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
755         return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;
756 
757     /* default settings: return tight bound for that case -- ~0.03% overhead
758        plus a small constant */
759     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
760            (sourceLen >> 25) + 13 - 6 + wraplen;
761 }
762 
763 /* =========================================================================
764  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
765  * IN assertion: the stream state is correct and there is enough room in
766  * pending_buf.
767  */
768 local void putShortMSB(s, b)
769     deflate_state *s;
770     uInt b;
771 {
772     put_byte(s, (Byte)(b >> 8));
773     put_byte(s, (Byte)(b & 0xff));
774 }
775 
776 /* =========================================================================
777  * Flush as much pending output as possible. All deflate() output, except for
778  * some deflate_stored() output, goes through this function so some
779  * applications may wish to modify it to avoid allocating a large
780  * strm->next_out buffer and copying into it. (See also read_buf()).
781  */
782 local void flush_pending(strm)
783     z_streamp strm;
784 {
785     unsigned len;
786     deflate_state *s = strm->state;
787 
788     _tr_flush_bits(s);
789     len = s->pending;
790     if (len > strm->avail_out) len = strm->avail_out;
791     if (len == 0) return;
792 
793     zmemcpy(strm->next_out, s->pending_out, len);
794     strm->next_out  += len;
795     s->pending_out  += len;
796     strm->total_out += len;
797     strm->avail_out -= len;
798     s->pending      -= len;
799     if (s->pending == 0) {
800         s->pending_out = s->pending_buf;
801     }
802 }
803 
804 /* ===========================================================================
805  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
806  */
807 #define HCRC_UPDATE(beg) \
808     do { \
809         if (s->gzhead->hcrc && s->pending > (beg)) \
810             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
811                                 s->pending - (beg)); \
812     } while (0)
813 
814 /* ========================================================================= */
815 int ZEXPORT deflate(strm, flush)
816     z_streamp strm;
817     int flush;
818 {
819     int old_flush; /* value of flush param for previous deflate call */
820     deflate_state *s;
821 
822     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
823         return Z_STREAM_ERROR;
824     }
825     s = strm->state;
826 
827     if (strm->next_out == Z_NULL ||
828         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
829         (s->status == FINISH_STATE && flush != Z_FINISH)) {
830         ERR_RETURN(strm, Z_STREAM_ERROR);
831     }
832     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
833 
834     old_flush = s->last_flush;
835     s->last_flush = flush;
836 
837     /* Flush as much pending output as possible */
838     if (s->pending != 0) {
839         flush_pending(strm);
840         if (strm->avail_out == 0) {
841             /* Since avail_out is 0, deflate will be called again with
842              * more output space, but possibly with both pending and
843              * avail_in equal to zero. There won't be anything to do,
844              * but this is not an error situation so make sure we
845              * return OK instead of BUF_ERROR at next call of deflate:
846              */
847             s->last_flush = -1;
848             return Z_OK;
849         }
850 
851     /* Make sure there is something to do and avoid duplicate consecutive
852      * flushes. For repeated and useless calls with Z_FINISH, we keep
853      * returning Z_STREAM_END instead of Z_BUF_ERROR.
854      */
855     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
856                flush != Z_FINISH) {
857         ERR_RETURN(strm, Z_BUF_ERROR);
858     }
859 
860     /* User must not provide more input after the first FINISH: */
861     if (s->status == FINISH_STATE && strm->avail_in != 0) {
862         ERR_RETURN(strm, Z_BUF_ERROR);
863     }
864 
865     /* Write the header */
866     if (s->status == INIT_STATE && s->wrap == 0)
867         s->status = BUSY_STATE;
868     if (s->status == INIT_STATE) {
869         /* zlib header */
870         uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
871         uInt level_flags;
872 
873         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
874             level_flags = 0;
875         else if (s->level < 6)
876             level_flags = 1;
877         else if (s->level == 6)
878             level_flags = 2;
879         else
880             level_flags = 3;
881         header |= (level_flags << 6);
882         if (s->strstart != 0) header |= PRESET_DICT;
883         header += 31 - (header % 31);
884 
885         putShortMSB(s, header);
886 
887         /* Save the adler32 of the preset dictionary: */
888         if (s->strstart != 0) {
889             putShortMSB(s, (uInt)(strm->adler >> 16));
890             putShortMSB(s, (uInt)(strm->adler & 0xffff));
891         }
892         strm->adler = adler32(0L, Z_NULL, 0);
893         s->status = BUSY_STATE;
894 
895         /* Compression must start with an empty pending buffer */
896         flush_pending(strm);
897         if (s->pending != 0) {
898             s->last_flush = -1;
899             return Z_OK;
900         }
901     }
902 #ifdef GZIP
903     if (s->status == GZIP_STATE) {
904         /* gzip header */
905         strm->adler = crc32(0L, Z_NULL, 0);
906         put_byte(s, 31);
907         put_byte(s, 139);
908         put_byte(s, 8);
909         if (s->gzhead == Z_NULL) {
910             put_byte(s, 0);
911             put_byte(s, 0);
912             put_byte(s, 0);
913             put_byte(s, 0);
914             put_byte(s, 0);
915             put_byte(s, s->level == 9 ? 2 :
916                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
917                       4 : 0));
918             put_byte(s, OS_CODE);
919             s->status = BUSY_STATE;
920 
921             /* Compression must start with an empty pending buffer */
922             flush_pending(strm);
923             if (s->pending != 0) {
924                 s->last_flush = -1;
925                 return Z_OK;
926             }
927         }
928         else {
929             put_byte(s, (s->gzhead->text ? 1 : 0) +
930                      (s->gzhead->hcrc ? 2 : 0) +
931                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
932                      (s->gzhead->name == Z_NULL ? 0 : 8) +
933                      (s->gzhead->comment == Z_NULL ? 0 : 16)
934                      );
935             put_byte(s, (Byte)(s->gzhead->time & 0xff));
936             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
937             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
938             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
939             put_byte(s, s->level == 9 ? 2 :
940                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
941                       4 : 0));
942             put_byte(s, s->gzhead->os & 0xff);
943             if (s->gzhead->extra != Z_NULL) {
944                 put_byte(s, s->gzhead->extra_len & 0xff);
945                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
946             }
947             if (s->gzhead->hcrc)
948                 strm->adler = crc32(strm->adler, s->pending_buf,
949                                     s->pending);
950             s->gzindex = 0;
951             s->status = EXTRA_STATE;
952         }
953     }
954     if (s->status == EXTRA_STATE) {
955         if (s->gzhead->extra != Z_NULL) {
956             ulg beg = s->pending;   /* start of bytes to update crc */
957             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
958             while (s->pending + left > s->pending_buf_size) {
959                 uInt copy = s->pending_buf_size - s->pending;
960                 zmemcpy(s->pending_buf + s->pending,
961                         s->gzhead->extra + s->gzindex, copy);
962                 s->pending = s->pending_buf_size;
963                 HCRC_UPDATE(beg);
964                 s->gzindex += copy;
965                 flush_pending(strm);
966                 if (s->pending != 0) {
967                     s->last_flush = -1;
968                     return Z_OK;
969                 }
970                 beg = 0;
971                 left -= copy;
972             }
973             zmemcpy(s->pending_buf + s->pending,
974                     s->gzhead->extra + s->gzindex, left);
975             s->pending += left;
976             HCRC_UPDATE(beg);
977             s->gzindex = 0;
978         }
979         s->status = NAME_STATE;
980     }
981     if (s->status == NAME_STATE) {
982         if (s->gzhead->name != Z_NULL) {
983             ulg beg = s->pending;   /* start of bytes to update crc */
984             int val;
985             do {
986                 if (s->pending == s->pending_buf_size) {
987                     HCRC_UPDATE(beg);
988                     flush_pending(strm);
989                     if (s->pending != 0) {
990                         s->last_flush = -1;
991                         return Z_OK;
992                     }
993                     beg = 0;
994                 }
995                 val = s->gzhead->name[s->gzindex++];
996                 put_byte(s, val);
997             } while (val != 0);
998             HCRC_UPDATE(beg);
999             s->gzindex = 0;
1000         }
1001         s->status = COMMENT_STATE;
1002     }
1003     if (s->status == COMMENT_STATE) {
1004         if (s->gzhead->comment != Z_NULL) {
1005             ulg beg = s->pending;   /* start of bytes to update crc */
1006             int val;
1007             do {
1008                 if (s->pending == s->pending_buf_size) {
1009                     HCRC_UPDATE(beg);
1010                     flush_pending(strm);
1011                     if (s->pending != 0) {
1012                         s->last_flush = -1;
1013                         return Z_OK;
1014                     }
1015                     beg = 0;
1016                 }
1017                 val = s->gzhead->comment[s->gzindex++];
1018                 put_byte(s, val);
1019             } while (val != 0);
1020             HCRC_UPDATE(beg);
1021         }
1022         s->status = HCRC_STATE;
1023     }
1024     if (s->status == HCRC_STATE) {
1025         if (s->gzhead->hcrc) {
1026             if (s->pending + 2 > s->pending_buf_size) {
1027                 flush_pending(strm);
1028                 if (s->pending != 0) {
1029                     s->last_flush = -1;
1030                     return Z_OK;
1031                 }
1032             }
1033             put_byte(s, (Byte)(strm->adler & 0xff));
1034             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1035             strm->adler = crc32(0L, Z_NULL, 0);
1036         }
1037         s->status = BUSY_STATE;
1038 
1039         /* Compression must start with an empty pending buffer */
1040         flush_pending(strm);
1041         if (s->pending != 0) {
1042             s->last_flush = -1;
1043             return Z_OK;
1044         }
1045     }
1046 #endif
1047 
1048     /* Start a new block or continue the current one.
1049      */
1050     if (strm->avail_in != 0 || s->lookahead != 0 ||
1051         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1052         block_state bstate;
1053 
1054         bstate = s->level == 0 ? deflate_stored(s, flush) :
1055                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1056                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1057                  (*(configuration_table[s->level].func))(s, flush);
1058 
1059         if (bstate == finish_started || bstate == finish_done) {
1060             s->status = FINISH_STATE;
1061         }
1062         if (bstate == need_more || bstate == finish_started) {
1063             if (strm->avail_out == 0) {
1064                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1065             }
1066             return Z_OK;
1067             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1068              * of deflate should use the same flush parameter to make sure
1069              * that the flush is complete. So we don't have to output an
1070              * empty block here, this will be done at next call. This also
1071              * ensures that for a very small output buffer, we emit at most
1072              * one empty block.
1073              */
1074         }
1075         if (bstate == block_done) {
1076             if (flush == Z_PARTIAL_FLUSH) {
1077                 _tr_align(s);
1078             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1079                 _tr_stored_block(s, (char*)0, 0L, 0);
1080                 /* For a full flush, this empty block will be recognized
1081                  * as a special marker by inflate_sync().
1082                  */
1083                 if (flush == Z_FULL_FLUSH) {
1084                     CLEAR_HASH(s);             /* forget history */
1085                     if (s->lookahead == 0) {
1086                         s->strstart = 0;
1087                         s->block_start = 0L;
1088                         s->insert = 0;
1089                     }
1090                 }
1091             }
1092             flush_pending(strm);
1093             if (strm->avail_out == 0) {
1094               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1095               return Z_OK;
1096             }
1097         }
1098     }
1099 
1100     if (flush != Z_FINISH) return Z_OK;
1101     if (s->wrap <= 0) return Z_STREAM_END;
1102 
1103     /* Write the trailer */
1104 #ifdef GZIP
1105     if (s->wrap == 2) {
1106         put_byte(s, (Byte)(strm->adler & 0xff));
1107         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1108         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1109         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1110         put_byte(s, (Byte)(strm->total_in & 0xff));
1111         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1112         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1113         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1114     }
1115     else
1116 #endif
1117     {
1118         putShortMSB(s, (uInt)(strm->adler >> 16));
1119         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1120     }
1121     flush_pending(strm);
1122     /* If avail_out is zero, the application will call deflate again
1123      * to flush the rest.
1124      */
1125     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1126     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1127 }
1128 
1129 /* ========================================================================= */
1130 int ZEXPORT deflateEnd(strm)
1131     z_streamp strm;
1132 {
1133     int status;
1134 
1135     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1136 
1137     status = strm->state->status;
1138 
1139     /* Deallocate in reverse order of allocations: */
1140     TRY_FREE(strm, strm->state->pending_buf);
1141     TRY_FREE(strm, strm->state->head);
1142     TRY_FREE(strm, strm->state->prev);
1143     TRY_FREE(strm, strm->state->window);
1144 
1145     ZFREE(strm, strm->state);
1146     strm->state = Z_NULL;
1147 
1148     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1149 }
1150 
1151 /* =========================================================================
1152  * Copy the source state to the destination state.
1153  * To simplify the source, this is not supported for 16-bit MSDOS (which
1154  * doesn't have enough memory anyway to duplicate compression states).
1155  */
1156 int ZEXPORT deflateCopy(dest, source)
1157     z_streamp dest;
1158     z_streamp source;
1159 {
1160 #ifdef MAXSEG_64K
1161     return Z_STREAM_ERROR;
1162 #else
1163     deflate_state *ds;
1164     deflate_state *ss;
1165 
1166 
1167     if (deflateStateCheck(source) || dest == Z_NULL) {
1168         return Z_STREAM_ERROR;
1169     }
1170 
1171     ss = source->state;
1172 
1173     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1174 
1175     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1176     if (ds == Z_NULL) return Z_MEM_ERROR;
1177     dest->state = (struct internal_state FAR *) ds;
1178     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1179     ds->strm = dest;
1180 
1181     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1182     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1183     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1184     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1185 
1186     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1187         ds->pending_buf == Z_NULL) {
1188         deflateEnd (dest);
1189         return Z_MEM_ERROR;
1190     }
1191     /* following zmemcpy do not work for 16-bit MSDOS */
1192     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1193     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1194     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1195     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1196 
1197     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1198     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1199 
1200     ds->l_desc.dyn_tree = ds->dyn_ltree;
1201     ds->d_desc.dyn_tree = ds->dyn_dtree;
1202     ds->bl_desc.dyn_tree = ds->bl_tree;
1203 
1204     return Z_OK;
1205 #endif /* MAXSEG_64K */
1206 }
1207 
1208 /* ===========================================================================
1209  * Read a new buffer from the current input stream, update the adler32
1210  * and total number of bytes read.  All deflate() input goes through
1211  * this function so some applications may wish to modify it to avoid
1212  * allocating a large strm->next_in buffer and copying from it.
1213  * (See also flush_pending()).
1214  */
1215 local unsigned read_buf(strm, buf, size)
1216     z_streamp strm;
1217     Bytef *buf;
1218     unsigned size;
1219 {
1220     unsigned len = strm->avail_in;
1221 
1222     if (len > size) len = size;
1223     if (len == 0) return 0;
1224 
1225     strm->avail_in  -= len;
1226 
1227     zmemcpy(buf, strm->next_in, len);
1228     if (strm->state->wrap == 1) {
1229         strm->adler = adler32(strm->adler, buf, len);
1230     }
1231 #ifdef GZIP
1232     else if (strm->state->wrap == 2) {
1233         strm->adler = crc32(strm->adler, buf, len);
1234     }
1235 #endif
1236     strm->next_in  += len;
1237     strm->total_in += len;
1238 
1239     return len;
1240 }
1241 
1242 /* ===========================================================================
1243  * Initialize the "longest match" routines for a new zlib stream
1244  */
1245 local void lm_init(s)
1246     deflate_state *s;
1247 {
1248     s->window_size = (ulg)2L*s->w_size;
1249 
1250     CLEAR_HASH(s);
1251 
1252     /* Set the default configuration parameters:
1253      */
1254     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1255     s->good_match       = configuration_table[s->level].good_length;
1256     s->nice_match       = configuration_table[s->level].nice_length;
1257     s->max_chain_length = configuration_table[s->level].max_chain;
1258 
1259     s->strstart = 0;
1260     s->block_start = 0L;
1261     s->lookahead = 0;
1262     s->insert = 0;
1263     s->match_length = s->prev_length = MIN_MATCH-1;
1264     s->match_available = 0;
1265     s->ins_h = 0;
1266 }
1267 
1268 #ifndef FASTEST
1269 /* ===========================================================================
1270  * Set match_start to the longest match starting at the given string and
1271  * return its length. Matches shorter or equal to prev_length are discarded,
1272  * in which case the result is equal to prev_length and match_start is
1273  * garbage.
1274  * IN assertions: cur_match is the head of the hash chain for the current
1275  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1276  * OUT assertion: the match length is not greater than s->lookahead.
1277  */
1278 local uInt longest_match(s, cur_match)
1279     deflate_state *s;
1280     IPos cur_match;                             /* current match */
1281 {
1282     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1283     register Bytef *scan = s->window + s->strstart; /* current string */
1284     register Bytef *match;                      /* matched string */
1285     register int len;                           /* length of current match */
1286     int best_len = (int)s->prev_length;         /* best match length so far */
1287     int nice_match = s->nice_match;             /* stop if match long enough */
1288     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1289         s->strstart - (IPos)MAX_DIST(s) : NIL;
1290     /* Stop when cur_match becomes <= limit. To simplify the code,
1291      * we prevent matches with the string of window index 0.
1292      */
1293     Posf *prev = s->prev;
1294     uInt wmask = s->w_mask;
1295 
1296 #ifdef UNALIGNED_OK
1297     /* Compare two bytes at a time. Note: this is not always beneficial.
1298      * Try with and without -DUNALIGNED_OK to check.
1299      */
1300     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1301     register ush scan_start = *(ushf*)scan;
1302     register ush scan_end   = *(ushf*)(scan + best_len - 1);
1303 #else
1304     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1305     register Byte scan_end1  = scan[best_len - 1];
1306     register Byte scan_end   = scan[best_len];
1307 #endif
1308 
1309     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1310      * It is easy to get rid of this optimization if necessary.
1311      */
1312     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1313 
1314     /* Do not waste too much time if we already have a good match: */
1315     if (s->prev_length >= s->good_match) {
1316         chain_length >>= 2;
1317     }
1318     /* Do not look for matches beyond the end of the input. This is necessary
1319      * to make deflate deterministic.
1320      */
1321     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1322 
1323     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1324            "need lookahead");
1325 
1326     do {
1327         Assert(cur_match < s->strstart, "no future");
1328         match = s->window + cur_match;
1329 
1330         /* Skip to next match if the match length cannot increase
1331          * or if the match length is less than 2.  Note that the checks below
1332          * for insufficient lookahead only occur occasionally for performance
1333          * reasons.  Therefore uninitialized memory will be accessed, and
1334          * conditional jumps will be made that depend on those values.
1335          * However the length of the match is limited to the lookahead, so
1336          * the output of deflate is not affected by the uninitialized values.
1337          */
1338 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1339         /* This code assumes sizeof(unsigned short) == 2. Do not use
1340          * UNALIGNED_OK if your compiler uses a different size.
1341          */
1342         if (*(ushf*)(match + best_len - 1) != scan_end ||
1343             *(ushf*)match != scan_start) continue;
1344 
1345         /* It is not necessary to compare scan[2] and match[2] since they are
1346          * always equal when the other bytes match, given that the hash keys
1347          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1348          * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1349          * lookahead only every 4th comparison; the 128th check will be made
1350          * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1351          * necessary to put more guard bytes at the end of the window, or
1352          * to check more often for insufficient lookahead.
1353          */
1354         Assert(scan[2] == match[2], "scan[2]?");
1355         scan++, match++;
1356         do {
1357         } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1358                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1359                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1360                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1361                  scan < strend);
1362         /* The funny "do {}" generates better code on most compilers */
1363 
1364         /* Here, scan <= window + strstart + 257 */
1365         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1366                "wild scan");
1367         if (*scan == *match) scan++;
1368 
1369         len = (MAX_MATCH - 1) - (int)(strend - scan);
1370         scan = strend - (MAX_MATCH-1);
1371 
1372 #else /* UNALIGNED_OK */
1373 
1374         if (match[best_len]     != scan_end  ||
1375             match[best_len - 1] != scan_end1 ||
1376             *match              != *scan     ||
1377             *++match            != scan[1])      continue;
1378 
1379         /* The check at best_len - 1 can be removed because it will be made
1380          * again later. (This heuristic is not always a win.)
1381          * It is not necessary to compare scan[2] and match[2] since they
1382          * are always equal when the other bytes match, given that
1383          * the hash keys are equal and that HASH_BITS >= 8.
1384          */
1385         scan += 2, match++;
1386         Assert(*scan == *match, "match[2]?");
1387 
1388         /* We check for insufficient lookahead only every 8th comparison;
1389          * the 256th check will be made at strstart + 258.
1390          */
1391         do {
1392         } while (*++scan == *++match && *++scan == *++match &&
1393                  *++scan == *++match && *++scan == *++match &&
1394                  *++scan == *++match && *++scan == *++match &&
1395                  *++scan == *++match && *++scan == *++match &&
1396                  scan < strend);
1397 
1398         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1399                "wild scan");
1400 
1401         len = MAX_MATCH - (int)(strend - scan);
1402         scan = strend - MAX_MATCH;
1403 
1404 #endif /* UNALIGNED_OK */
1405 
1406         if (len > best_len) {
1407             s->match_start = cur_match;
1408             best_len = len;
1409             if (len >= nice_match) break;
1410 #ifdef UNALIGNED_OK
1411             scan_end = *(ushf*)(scan + best_len - 1);
1412 #else
1413             scan_end1  = scan[best_len - 1];
1414             scan_end   = scan[best_len];
1415 #endif
1416         }
1417     } while ((cur_match = prev[cur_match & wmask]) > limit
1418              && --chain_length != 0);
1419 
1420     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1421     return s->lookahead;
1422 }
1423 
1424 #else /* FASTEST */
1425 
1426 /* ---------------------------------------------------------------------------
1427  * Optimized version for FASTEST only
1428  */
1429 local uInt longest_match(s, cur_match)
1430     deflate_state *s;
1431     IPos cur_match;                             /* current match */
1432 {
1433     register Bytef *scan = s->window + s->strstart; /* current string */
1434     register Bytef *match;                       /* matched string */
1435     register int len;                           /* length of current match */
1436     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1437 
1438     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1439      * It is easy to get rid of this optimization if necessary.
1440      */
1441     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1442 
1443     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1444            "need lookahead");
1445 
1446     Assert(cur_match < s->strstart, "no future");
1447 
1448     match = s->window + cur_match;
1449 
1450     /* Return failure if the match length is less than 2:
1451      */
1452     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1453 
1454     /* The check at best_len - 1 can be removed because it will be made
1455      * again later. (This heuristic is not always a win.)
1456      * It is not necessary to compare scan[2] and match[2] since they
1457      * are always equal when the other bytes match, given that
1458      * the hash keys are equal and that HASH_BITS >= 8.
1459      */
1460     scan += 2, match += 2;
1461     Assert(*scan == *match, "match[2]?");
1462 
1463     /* We check for insufficient lookahead only every 8th comparison;
1464      * the 256th check will be made at strstart + 258.
1465      */
1466     do {
1467     } while (*++scan == *++match && *++scan == *++match &&
1468              *++scan == *++match && *++scan == *++match &&
1469              *++scan == *++match && *++scan == *++match &&
1470              *++scan == *++match && *++scan == *++match &&
1471              scan < strend);
1472 
1473     Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1474 
1475     len = MAX_MATCH - (int)(strend - scan);
1476 
1477     if (len < MIN_MATCH) return MIN_MATCH - 1;
1478 
1479     s->match_start = cur_match;
1480     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1481 }
1482 
1483 #endif /* FASTEST */
1484 
1485 #ifdef ZLIB_DEBUG
1486 
1487 #define EQUAL 0
1488 /* result of memcmp for equal strings */
1489 
1490 /* ===========================================================================
1491  * Check that the match at match_start is indeed a match.
1492  */
1493 local void check_match(s, start, match, length)
1494     deflate_state *s;
1495     IPos start, match;
1496     int length;
1497 {
1498     /* check that the match is indeed a match */
1499     if (zmemcmp(s->window + match,
1500                 s->window + start, length) != EQUAL) {
1501         fprintf(stderr, " start %u, match %u, length %d\n",
1502                 start, match, length);
1503         do {
1504             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1505         } while (--length != 0);
1506         z_error("invalid match");
1507     }
1508     if (z_verbose > 1) {
1509         fprintf(stderr,"\\[%d,%d]", start - match, length);
1510         do { putc(s->window[start++], stderr); } while (--length != 0);
1511     }
1512 }
1513 #else
1514 #  define check_match(s, start, match, length)
1515 #endif /* ZLIB_DEBUG */
1516 
1517 /* ===========================================================================
1518  * Fill the window when the lookahead becomes insufficient.
1519  * Updates strstart and lookahead.
1520  *
1521  * IN assertion: lookahead < MIN_LOOKAHEAD
1522  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1523  *    At least one byte has been read, or avail_in == 0; reads are
1524  *    performed for at least two bytes (required for the zip translate_eol
1525  *    option -- not supported here).
1526  */
1527 local void fill_window(s)
1528     deflate_state *s;
1529 {
1530     unsigned n;
1531     unsigned more;    /* Amount of free space at the end of the window. */
1532     uInt wsize = s->w_size;
1533 
1534     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1535 
1536     do {
1537         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1538 
1539         /* Deal with !@#$% 64K limit: */
1540         if (sizeof(int) <= 2) {
1541             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1542                 more = wsize;
1543 
1544             } else if (more == (unsigned)(-1)) {
1545                 /* Very unlikely, but possible on 16 bit machine if
1546                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1547                  */
1548                 more--;
1549             }
1550         }
1551 
1552         /* If the window is almost full and there is insufficient lookahead,
1553          * move the upper half to the lower one to make room in the upper half.
1554          */
1555         if (s->strstart >= wsize + MAX_DIST(s)) {
1556 
1557             zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
1558             s->match_start -= wsize;
1559             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1560             s->block_start -= (long) wsize;
1561             if (s->insert > s->strstart)
1562                 s->insert = s->strstart;
1563             slide_hash(s);
1564             more += wsize;
1565         }
1566         if (s->strm->avail_in == 0) break;
1567 
1568         /* If there was no sliding:
1569          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1570          *    more == window_size - lookahead - strstart
1571          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1572          * => more >= window_size - 2*WSIZE + 2
1573          * In the BIG_MEM or MMAP case (not yet supported),
1574          *   window_size == input_size + MIN_LOOKAHEAD  &&
1575          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1576          * Otherwise, window_size == 2*WSIZE so more >= 2.
1577          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1578          */
1579         Assert(more >= 2, "more < 2");
1580 
1581         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1582         s->lookahead += n;
1583 
1584         /* Initialize the hash value now that we have some input: */
1585         if (s->lookahead + s->insert >= MIN_MATCH) {
1586             uInt str = s->strstart - s->insert;
1587             s->ins_h = s->window[str];
1588             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1589 #if MIN_MATCH != 3
1590             Call UPDATE_HASH() MIN_MATCH-3 more times
1591 #endif
1592             while (s->insert) {
1593                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1594 #ifndef FASTEST
1595                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1596 #endif
1597                 s->head[s->ins_h] = (Pos)str;
1598                 str++;
1599                 s->insert--;
1600                 if (s->lookahead + s->insert < MIN_MATCH)
1601                     break;
1602             }
1603         }
1604         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1605          * but this is not important since only literal bytes will be emitted.
1606          */
1607 
1608     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1609 
1610     /* If the WIN_INIT bytes after the end of the current data have never been
1611      * written, then zero those bytes in order to avoid memory check reports of
1612      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1613      * the longest match routines.  Update the high water mark for the next
1614      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1615      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1616      */
1617     if (s->high_water < s->window_size) {
1618         ulg curr = s->strstart + (ulg)(s->lookahead);
1619         ulg init;
1620 
1621         if (s->high_water < curr) {
1622             /* Previous high water mark below current data -- zero WIN_INIT
1623              * bytes or up to end of window, whichever is less.
1624              */
1625             init = s->window_size - curr;
1626             if (init > WIN_INIT)
1627                 init = WIN_INIT;
1628             zmemzero(s->window + curr, (unsigned)init);
1629             s->high_water = curr + init;
1630         }
1631         else if (s->high_water < (ulg)curr + WIN_INIT) {
1632             /* High water mark at or above current data, but below current data
1633              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1634              * to end of window, whichever is less.
1635              */
1636             init = (ulg)curr + WIN_INIT - s->high_water;
1637             if (init > s->window_size - s->high_water)
1638                 init = s->window_size - s->high_water;
1639             zmemzero(s->window + s->high_water, (unsigned)init);
1640             s->high_water += init;
1641         }
1642     }
1643 
1644     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1645            "not enough room for search");
1646 }
1647 
1648 /* ===========================================================================
1649  * Flush the current block, with given end-of-file flag.
1650  * IN assertion: strstart is set to the end of the current match.
1651  */
1652 #define FLUSH_BLOCK_ONLY(s, last) { \
1653    _tr_flush_block(s, (s->block_start >= 0L ? \
1654                    (charf *)&s->window[(unsigned)s->block_start] : \
1655                    (charf *)Z_NULL), \
1656                 (ulg)((long)s->strstart - s->block_start), \
1657                 (last)); \
1658    s->block_start = s->strstart; \
1659    flush_pending(s->strm); \
1660    Tracev((stderr,"[FLUSH]")); \
1661 }
1662 
1663 /* Same but force premature exit if necessary. */
1664 #define FLUSH_BLOCK(s, last) { \
1665    FLUSH_BLOCK_ONLY(s, last); \
1666    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1667 }
1668 
1669 /* Maximum stored block length in deflate format (not including header). */
1670 #define MAX_STORED 65535
1671 
1672 /* Minimum of a and b. */
1673 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1674 
1675 /* ===========================================================================
1676  * Copy without compression as much as possible from the input stream, return
1677  * the current block state.
1678  *
1679  * In case deflateParams() is used to later switch to a non-zero compression
1680  * level, s->matches (otherwise unused when storing) keeps track of the number
1681  * of hash table slides to perform. If s->matches is 1, then one hash table
1682  * slide will be done when switching. If s->matches is 2, the maximum value
1683  * allowed here, then the hash table will be cleared, since two or more slides
1684  * is the same as a clear.
1685  *
1686  * deflate_stored() is written to minimize the number of times an input byte is
1687  * copied. It is most efficient with large input and output buffers, which
1688  * maximizes the opportunities to have a single copy from next_in to next_out.
1689  */
1690 local block_state deflate_stored(s, flush)
1691     deflate_state *s;
1692     int flush;
1693 {
1694     /* Smallest worthy block size when not flushing or finishing. By default
1695      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1696      * large input and output buffers, the stored block size will be larger.
1697      */
1698     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1699 
1700     /* Copy as many min_block or larger stored blocks directly to next_out as
1701      * possible. If flushing, copy the remaining available input to next_out as
1702      * stored blocks, if there is enough space.
1703      */
1704     unsigned len, left, have, last = 0;
1705     unsigned used = s->strm->avail_in;
1706     do {
1707         /* Set len to the maximum size block that we can copy directly with the
1708          * available input data and output space. Set left to how much of that
1709          * would be copied from what's left in the window.
1710          */
1711         len = MAX_STORED;       /* maximum deflate stored block length */
1712         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1713         if (s->strm->avail_out < have)          /* need room for header */
1714             break;
1715             /* maximum stored block length that will fit in avail_out: */
1716         have = s->strm->avail_out - have;
1717         left = s->strstart - s->block_start;    /* bytes left in window */
1718         if (len > (ulg)left + s->strm->avail_in)
1719             len = left + s->strm->avail_in;     /* limit len to the input */
1720         if (len > have)
1721             len = have;                         /* limit len to the output */
1722 
1723         /* If the stored block would be less than min_block in length, or if
1724          * unable to copy all of the available input when flushing, then try
1725          * copying to the window and the pending buffer instead. Also don't
1726          * write an empty block when flushing -- deflate() does that.
1727          */
1728         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1729                                 flush == Z_NO_FLUSH ||
1730                                 len != left + s->strm->avail_in))
1731             break;
1732 
1733         /* Make a dummy stored block in pending to get the header bytes,
1734          * including any pending bits. This also updates the debugging counts.
1735          */
1736         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1737         _tr_stored_block(s, (char *)0, 0L, last);
1738 
1739         /* Replace the lengths in the dummy stored block with len. */
1740         s->pending_buf[s->pending - 4] = len;
1741         s->pending_buf[s->pending - 3] = len >> 8;
1742         s->pending_buf[s->pending - 2] = ~len;
1743         s->pending_buf[s->pending - 1] = ~len >> 8;
1744 
1745         /* Write the stored block header bytes. */
1746         flush_pending(s->strm);
1747 
1748 #ifdef ZLIB_DEBUG
1749         /* Update debugging counts for the data about to be copied. */
1750         s->compressed_len += len << 3;
1751         s->bits_sent += len << 3;
1752 #endif
1753 
1754         /* Copy uncompressed bytes from the window to next_out. */
1755         if (left) {
1756             if (left > len)
1757                 left = len;
1758             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1759             s->strm->next_out += left;
1760             s->strm->avail_out -= left;
1761             s->strm->total_out += left;
1762             s->block_start += left;
1763             len -= left;
1764         }
1765 
1766         /* Copy uncompressed bytes directly from next_in to next_out, updating
1767          * the check value.
1768          */
1769         if (len) {
1770             read_buf(s->strm, s->strm->next_out, len);
1771             s->strm->next_out += len;
1772             s->strm->avail_out -= len;
1773             s->strm->total_out += len;
1774         }
1775     } while (last == 0);
1776 
1777     /* Update the sliding window with the last s->w_size bytes of the copied
1778      * data, or append all of the copied data to the existing window if less
1779      * than s->w_size bytes were copied. Also update the number of bytes to
1780      * insert in the hash tables, in the event that deflateParams() switches to
1781      * a non-zero compression level.
1782      */
1783     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1784     if (used) {
1785         /* If any input was used, then no unused input remains in the window,
1786          * therefore s->block_start == s->strstart.
1787          */
1788         if (used >= s->w_size) {    /* supplant the previous history */
1789             s->matches = 2;         /* clear hash */
1790             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1791             s->strstart = s->w_size;
1792             s->insert = s->strstart;
1793         }
1794         else {
1795             if (s->window_size - s->strstart <= used) {
1796                 /* Slide the window down. */
1797                 s->strstart -= s->w_size;
1798                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1799                 if (s->matches < 2)
1800                     s->matches++;   /* add a pending slide_hash() */
1801                 if (s->insert > s->strstart)
1802                     s->insert = s->strstart;
1803             }
1804             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1805             s->strstart += used;
1806             s->insert += MIN(used, s->w_size - s->insert);
1807         }
1808         s->block_start = s->strstart;
1809     }
1810     if (s->high_water < s->strstart)
1811         s->high_water = s->strstart;
1812 
1813     /* If the last block was written to next_out, then done. */
1814     if (last)
1815         return finish_done;
1816 
1817     /* If flushing and all input has been consumed, then done. */
1818     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1819         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1820         return block_done;
1821 
1822     /* Fill the window with any remaining input. */
1823     have = s->window_size - s->strstart;
1824     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1825         /* Slide the window down. */
1826         s->block_start -= s->w_size;
1827         s->strstart -= s->w_size;
1828         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1829         if (s->matches < 2)
1830             s->matches++;           /* add a pending slide_hash() */
1831         have += s->w_size;          /* more space now */
1832         if (s->insert > s->strstart)
1833             s->insert = s->strstart;
1834     }
1835     if (have > s->strm->avail_in)
1836         have = s->strm->avail_in;
1837     if (have) {
1838         read_buf(s->strm, s->window + s->strstart, have);
1839         s->strstart += have;
1840         s->insert += MIN(have, s->w_size - s->insert);
1841     }
1842     if (s->high_water < s->strstart)
1843         s->high_water = s->strstart;
1844 
1845     /* There was not enough avail_out to write a complete worthy or flushed
1846      * stored block to next_out. Write a stored block to pending instead, if we
1847      * have enough input for a worthy block, or if flushing and there is enough
1848      * room for the remaining input as a stored block in the pending buffer.
1849      */
1850     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1851         /* maximum stored block length that will fit in pending: */
1852     have = MIN(s->pending_buf_size - have, MAX_STORED);
1853     min_block = MIN(have, s->w_size);
1854     left = s->strstart - s->block_start;
1855     if (left >= min_block ||
1856         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1857          s->strm->avail_in == 0 && left <= have)) {
1858         len = MIN(left, have);
1859         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1860                len == left ? 1 : 0;
1861         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1862         s->block_start += len;
1863         flush_pending(s->strm);
1864     }
1865 
1866     /* We've done all we can with the available input and output. */
1867     return last ? finish_started : need_more;
1868 }
1869 
1870 /* ===========================================================================
1871  * Compress as much as possible from the input stream, return the current
1872  * block state.
1873  * This function does not perform lazy evaluation of matches and inserts
1874  * new strings in the dictionary only for unmatched strings or for short
1875  * matches. It is used only for the fast compression options.
1876  */
1877 local block_state deflate_fast(s, flush)
1878     deflate_state *s;
1879     int flush;
1880 {
1881     IPos hash_head;       /* head of the hash chain */
1882     int bflush;           /* set if current block must be flushed */
1883 
1884     for (;;) {
1885         /* Make sure that we always have enough lookahead, except
1886          * at the end of the input file. We need MAX_MATCH bytes
1887          * for the next match, plus MIN_MATCH bytes to insert the
1888          * string following the next match.
1889          */
1890         if (s->lookahead < MIN_LOOKAHEAD) {
1891             fill_window(s);
1892             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1893                 return need_more;
1894             }
1895             if (s->lookahead == 0) break; /* flush the current block */
1896         }
1897 
1898         /* Insert the string window[strstart .. strstart + 2] in the
1899          * dictionary, and set hash_head to the head of the hash chain:
1900          */
1901         hash_head = NIL;
1902         if (s->lookahead >= MIN_MATCH) {
1903             INSERT_STRING(s, s->strstart, hash_head);
1904         }
1905 
1906         /* Find the longest match, discarding those <= prev_length.
1907          * At this point we have always match_length < MIN_MATCH
1908          */
1909         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1910             /* To simplify the code, we prevent matches with the string
1911              * of window index 0 (in particular we have to avoid a match
1912              * of the string with itself at the start of the input file).
1913              */
1914             s->match_length = longest_match (s, hash_head);
1915             /* longest_match() sets match_start */
1916         }
1917         if (s->match_length >= MIN_MATCH) {
1918             check_match(s, s->strstart, s->match_start, s->match_length);
1919 
1920             _tr_tally_dist(s, s->strstart - s->match_start,
1921                            s->match_length - MIN_MATCH, bflush);
1922 
1923             s->lookahead -= s->match_length;
1924 
1925             /* Insert new strings in the hash table only if the match length
1926              * is not too large. This saves time but degrades compression.
1927              */
1928 #ifndef FASTEST
1929             if (s->match_length <= s->max_insert_length &&
1930                 s->lookahead >= MIN_MATCH) {
1931                 s->match_length--; /* string at strstart already in table */
1932                 do {
1933                     s->strstart++;
1934                     INSERT_STRING(s, s->strstart, hash_head);
1935                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1936                      * always MIN_MATCH bytes ahead.
1937                      */
1938                 } while (--s->match_length != 0);
1939                 s->strstart++;
1940             } else
1941 #endif
1942             {
1943                 s->strstart += s->match_length;
1944                 s->match_length = 0;
1945                 s->ins_h = s->window[s->strstart];
1946                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1947 #if MIN_MATCH != 3
1948                 Call UPDATE_HASH() MIN_MATCH-3 more times
1949 #endif
1950                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1951                  * matter since it will be recomputed at next deflate call.
1952                  */
1953             }
1954         } else {
1955             /* No match, output a literal byte */
1956             Tracevv((stderr,"%c", s->window[s->strstart]));
1957             _tr_tally_lit(s, s->window[s->strstart], bflush);
1958             s->lookahead--;
1959             s->strstart++;
1960         }
1961         if (bflush) FLUSH_BLOCK(s, 0);
1962     }
1963     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1964     if (flush == Z_FINISH) {
1965         FLUSH_BLOCK(s, 1);
1966         return finish_done;
1967     }
1968     if (s->sym_next)
1969         FLUSH_BLOCK(s, 0);
1970     return block_done;
1971 }
1972 
1973 #ifndef FASTEST
1974 /* ===========================================================================
1975  * Same as above, but achieves better compression. We use a lazy
1976  * evaluation for matches: a match is finally adopted only if there is
1977  * no better match at the next window position.
1978  */
1979 local block_state deflate_slow(s, flush)
1980     deflate_state *s;
1981     int flush;
1982 {
1983     IPos hash_head;          /* head of hash chain */
1984     int bflush;              /* set if current block must be flushed */
1985 
1986     /* Process the input block. */
1987     for (;;) {
1988         /* Make sure that we always have enough lookahead, except
1989          * at the end of the input file. We need MAX_MATCH bytes
1990          * for the next match, plus MIN_MATCH bytes to insert the
1991          * string following the next match.
1992          */
1993         if (s->lookahead < MIN_LOOKAHEAD) {
1994             fill_window(s);
1995             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1996                 return need_more;
1997             }
1998             if (s->lookahead == 0) break; /* flush the current block */
1999         }
2000 
2001         /* Insert the string window[strstart .. strstart + 2] in the
2002          * dictionary, and set hash_head to the head of the hash chain:
2003          */
2004         hash_head = NIL;
2005         if (s->lookahead >= MIN_MATCH) {
2006             INSERT_STRING(s, s->strstart, hash_head);
2007         }
2008 
2009         /* Find the longest match, discarding those <= prev_length.
2010          */
2011         s->prev_length = s->match_length, s->prev_match = s->match_start;
2012         s->match_length = MIN_MATCH-1;
2013 
2014         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2015             s->strstart - hash_head <= MAX_DIST(s)) {
2016             /* To simplify the code, we prevent matches with the string
2017              * of window index 0 (in particular we have to avoid a match
2018              * of the string with itself at the start of the input file).
2019              */
2020             s->match_length = longest_match (s, hash_head);
2021             /* longest_match() sets match_start */
2022 
2023             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2024 #if TOO_FAR <= 32767
2025                 || (s->match_length == MIN_MATCH &&
2026                     s->strstart - s->match_start > TOO_FAR)
2027 #endif
2028                 )) {
2029 
2030                 /* If prev_match is also MIN_MATCH, match_start is garbage
2031                  * but we will ignore the current match anyway.
2032                  */
2033                 s->match_length = MIN_MATCH-1;
2034             }
2035         }
2036         /* If there was a match at the previous step and the current
2037          * match is not better, output the previous match:
2038          */
2039         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2040             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2041             /* Do not insert strings in hash table beyond this. */
2042 
2043             check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
2044 
2045             _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
2046                            s->prev_length - MIN_MATCH, bflush);
2047 
2048             /* Insert in hash table all strings up to the end of the match.
2049              * strstart - 1 and strstart are already inserted. If there is not
2050              * enough lookahead, the last two strings are not inserted in
2051              * the hash table.
2052              */
2053             s->lookahead -= s->prev_length - 1;
2054             s->prev_length -= 2;
2055             do {
2056                 if (++s->strstart <= max_insert) {
2057                     INSERT_STRING(s, s->strstart, hash_head);
2058                 }
2059             } while (--s->prev_length != 0);
2060             s->match_available = 0;
2061             s->match_length = MIN_MATCH-1;
2062             s->strstart++;
2063 
2064             if (bflush) FLUSH_BLOCK(s, 0);
2065 
2066         } else if (s->match_available) {
2067             /* If there was no match at the previous position, output a
2068              * single literal. If there was a match but the current match
2069              * is longer, truncate the previous match to a single literal.
2070              */
2071             Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2072             _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2073             if (bflush) {
2074                 FLUSH_BLOCK_ONLY(s, 0);
2075             }
2076             s->strstart++;
2077             s->lookahead--;
2078             if (s->strm->avail_out == 0) return need_more;
2079         } else {
2080             /* There is no previous match to compare with, wait for
2081              * the next step to decide.
2082              */
2083             s->match_available = 1;
2084             s->strstart++;
2085             s->lookahead--;
2086         }
2087     }
2088     Assert (flush != Z_NO_FLUSH, "no flush?");
2089     if (s->match_available) {
2090         Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2091         _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2092         s->match_available = 0;
2093     }
2094     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2095     if (flush == Z_FINISH) {
2096         FLUSH_BLOCK(s, 1);
2097         return finish_done;
2098     }
2099     if (s->sym_next)
2100         FLUSH_BLOCK(s, 0);
2101     return block_done;
2102 }
2103 #endif /* FASTEST */
2104 
2105 /* ===========================================================================
2106  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2107  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2108  * deflate switches away from Z_RLE.)
2109  */
2110 local block_state deflate_rle(s, flush)
2111     deflate_state *s;
2112     int flush;
2113 {
2114     int bflush;             /* set if current block must be flushed */
2115     uInt prev;              /* byte at distance one to match */
2116     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2117 
2118     for (;;) {
2119         /* Make sure that we always have enough lookahead, except
2120          * at the end of the input file. We need MAX_MATCH bytes
2121          * for the longest run, plus one for the unrolled loop.
2122          */
2123         if (s->lookahead <= MAX_MATCH) {
2124             fill_window(s);
2125             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2126                 return need_more;
2127             }
2128             if (s->lookahead == 0) break; /* flush the current block */
2129         }
2130 
2131         /* See how many times the previous byte repeats */
2132         s->match_length = 0;
2133         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2134             scan = s->window + s->strstart - 1;
2135             prev = *scan;
2136             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2137                 strend = s->window + s->strstart + MAX_MATCH;
2138                 do {
2139                 } while (prev == *++scan && prev == *++scan &&
2140                          prev == *++scan && prev == *++scan &&
2141                          prev == *++scan && prev == *++scan &&
2142                          prev == *++scan && prev == *++scan &&
2143                          scan < strend);
2144                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2145                 if (s->match_length > s->lookahead)
2146                     s->match_length = s->lookahead;
2147             }
2148             Assert(scan <= s->window + (uInt)(s->window_size - 1),
2149                    "wild scan");
2150         }
2151 
2152         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2153         if (s->match_length >= MIN_MATCH) {
2154             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2155 
2156             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2157 
2158             s->lookahead -= s->match_length;
2159             s->strstart += s->match_length;
2160             s->match_length = 0;
2161         } else {
2162             /* No match, output a literal byte */
2163             Tracevv((stderr,"%c", s->window[s->strstart]));
2164             _tr_tally_lit(s, s->window[s->strstart], bflush);
2165             s->lookahead--;
2166             s->strstart++;
2167         }
2168         if (bflush) FLUSH_BLOCK(s, 0);
2169     }
2170     s->insert = 0;
2171     if (flush == Z_FINISH) {
2172         FLUSH_BLOCK(s, 1);
2173         return finish_done;
2174     }
2175     if (s->sym_next)
2176         FLUSH_BLOCK(s, 0);
2177     return block_done;
2178 }
2179 
2180 /* ===========================================================================
2181  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2182  * (It will be regenerated if this run of deflate switches away from Huffman.)
2183  */
2184 local block_state deflate_huff(s, flush)
2185     deflate_state *s;
2186     int flush;
2187 {
2188     int bflush;             /* set if current block must be flushed */
2189 
2190     for (;;) {
2191         /* Make sure that we have a literal to write. */
2192         if (s->lookahead == 0) {
2193             fill_window(s);
2194             if (s->lookahead == 0) {
2195                 if (flush == Z_NO_FLUSH)
2196                     return need_more;
2197                 break;      /* flush the current block */
2198             }
2199         }
2200 
2201         /* Output a literal byte */
2202         s->match_length = 0;
2203         Tracevv((stderr,"%c", s->window[s->strstart]));
2204         _tr_tally_lit(s, s->window[s->strstart], bflush);
2205         s->lookahead--;
2206         s->strstart++;
2207         if (bflush) FLUSH_BLOCK(s, 0);
2208     }
2209     s->insert = 0;
2210     if (flush == Z_FINISH) {
2211         FLUSH_BLOCK(s, 1);
2212         return finish_done;
2213     }
2214     if (s->sym_next)
2215         FLUSH_BLOCK(s, 0);
2216     return block_done;
2217 }
2218