xref: /reactos/sdk/lib/crt/math/i386/alldiv_asm.s (revision b5218987)
1/*
2 * COPYRIGHT:         See COPYING in the top level directory
3 * PROJECT:           ReactOS kernel
4 * PURPOSE:           Run-Time Library
5 * FILE:              lib/sdk/crt/math/i386/alldiv_asm.s
6 * PROGRAMER:         Alex Ionescu (alex@relsoft.net)
7 *
8 * Copyright (C) 2002 Michael Ringgaard.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the project nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES// LOSS OF USE, DATA, OR PROFITS// OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#include <asm.inc>
38
39PUBLIC __alldiv
40
41/* FUNCTIONS ***************************************************************/
42.code
43
44//
45// lldiv - signed long divide
46//
47// Purpose:
48//       Does a signed long divide of the arguments.  Arguments are
49//       not changed.
50//
51// Entry:
52//       Arguments are passed on the stack:
53//               1st pushed: divisor (QWORD)
54//               2nd pushed: dividend (QWORD)
55//
56// Exit:
57//       EDX:EAX contains the quotient (dividend/divisor)
58//       NOTE: this routine removes the parameters from the stack.
59//
60// Uses:
61//       ECX
62//
63
64__alldiv:
65
66        push    edi
67        push    esi
68        push    ebx
69
70// Set up the local stack and save the index registers.  When this is done
71// the stack frame will look as follows (assuming that the expression a/b will
72// generate a call to lldiv(a, b)):
73//
74//               -----------------
75//               |               |
76//               |---------------|
77//               |               |
78//               |--divisor (b)--|
79//               |               |
80//               |---------------|
81//               |               |
82//               |--dividend (a)-|
83//               |               |
84//               |---------------|
85//               | return addr** |
86//               |---------------|
87//               |      EDI      |
88//               |---------------|
89//               |      ESI      |
90//               |---------------|
91//       ESP---->|      EBX      |
92//               -----------------
93//
94
95#define DVNDLO  [esp + 16]       // stack address of dividend (a)
96#define DVNDHI  [esp + 20]       // stack address of dividend (a)
97#define DVSRLO  [esp + 24]      // stack address of divisor (b)
98#define DVSRHI  [esp + 28]      // stack address of divisor (b)
99
100// Determine sign of the result (edi = 0 if result is positive, non-zero
101// otherwise) and make operands positive.
102
103        xor     edi,edi         // result sign assumed positive
104
105        mov     eax,DVNDHI // hi word of a
106        or      eax,eax         // test to see if signed
107        jge     short L1        // skip rest if a is already positive
108        inc     edi             // complement result sign flag
109        mov     edx,DVNDLO // lo word of a
110        neg     eax             // make a positive
111        neg     edx
112        sbb     eax,0
113        mov     DVNDHI,eax // save positive value
114        mov     DVNDLO,edx
115L1:
116        mov     eax,DVSRHI // hi word of b
117        or      eax,eax         // test to see if signed
118        jge     short L2        // skip rest if b is already positive
119        inc     edi             // complement the result sign flag
120        mov     edx,DVSRLO // lo word of a
121        neg     eax             // make b positive
122        neg     edx
123        sbb     eax,0
124        mov     DVSRHI,eax // save positive value
125        mov     DVSRLO,edx
126L2:
127
128//
129// Now do the divide.  First look to see if the divisor is less than 4194304K.
130// If so, then we can use a simple algorithm with word divides, otherwise
131// things get a little more complex.
132//
133// NOTE - eax currently contains the high order word of DVSR
134//
135
136        or      eax,eax         // check to see if divisor < 4194304K
137        jnz     short L3        // nope, gotta do this the hard way
138        mov     ecx,DVSRLO // load divisor
139        mov     eax,DVNDHI // load high word of dividend
140        xor     edx,edx
141        div     ecx             // eax <- high order bits of quotient
142        mov     ebx,eax         // save high bits of quotient
143        mov     eax,DVNDLO // edx:eax <- remainder:lo word of dividend
144        div     ecx             // eax <- low order bits of quotient
145        mov     edx,ebx         // edx:eax <- quotient
146        jmp     short L4        // set sign, restore stack and return
147
148//
149// Here we do it the hard way.  Remember, eax contains the high word of DVSR
150//
151
152L3:
153        mov     ebx,eax         // ebx:ecx <- divisor
154        mov     ecx,DVSRLO
155        mov     edx,DVNDHI // edx:eax <- dividend
156        mov     eax,DVNDLO
157L5:
158        shr     ebx,1           // shift divisor right one bit
159        rcr     ecx,1
160        shr     edx,1           // shift dividend right one bit
161        rcr     eax,1
162        or      ebx,ebx
163        jnz     short L5        // loop until divisor < 4194304K
164        div     ecx             // now divide, ignore remainder
165        mov     esi,eax         // save quotient
166
167//
168// We may be off by one, so to check, we will multiply the quotient
169// by the divisor and check the result against the orignal dividend
170// Note that we must also check for overflow, which can occur if the
171// dividend is close to 2**64 and the quotient is off by 1.
172//
173
174        mul     dword ptr DVSRHI // QUOT * DVSRHI
175        mov     ecx,eax
176        mov     eax,DVSRLO
177        mul     esi             // QUOT * DVSRLO
178        add     edx,ecx         // EDX:EAX = QUOT * DVSR
179        jc      short L6        // carry means Quotient is off by 1
180
181//
182// do long compare here between original dividend and the result of the
183// multiply in edx:eax.  If original is larger or equal, we are ok, otherwise
184// subtract one (1) from the quotient.
185//
186
187        cmp     edx,DVNDHI // compare hi words of result and original
188        ja      short L6        // if result > original, do subtract
189        jb      short L7        // if result < original, we are ok
190        cmp     eax,DVNDLO // hi words are equal, compare lo words
191        jbe     short L7        // if less or equal we are ok, else subtract
192L6:
193        dec     esi             // subtract 1 from quotient
194L7:
195        xor     edx,edx         // edx:eax <- quotient
196        mov     eax,esi
197
198//
199// Just the cleanup left to do.  edx:eax contains the quotient.  Set the sign
200// according to the save value, cleanup the stack, and return.
201//
202
203L4:
204        dec     edi             // check to see if result is negative
205        jnz     short L8        // if EDI == 0, result should be negative
206        neg     edx             // otherwise, negate the result
207        neg     eax
208        sbb     edx,0
209
210//
211// Restore the saved registers and return.
212//
213
214L8:
215        pop     ebx
216        pop     esi
217        pop     edi
218
219        ret     16
220
221END
222