xref: /reactos/sdk/lib/crt/math/libm_sse2/remainderf.c (revision 0b366ea1)
1 
2 /*******************************************************************************
3 MIT License
4 -----------
5 
6 Copyright (c) 2002-2019 Advanced Micro Devices, Inc.
7 
8 Permission is hereby granted, free of charge, to any person obtaining a copy
9 of this Software and associated documentaon files (the "Software"), to deal
10 in the Software without restriction, including without limitation the rights
11 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 copies of the Software, and to permit persons to whom the Software is
13 furnished to do so, subject to the following conditions:
14 
15 The above copyright notice and this permission notice shall be included in
16 all copies or substantial portions of the Software.
17 
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 THE SOFTWARE.
25 *******************************************************************************/
26 
27 #include "libm.h"
28 #include "libm_util.h"
29 
30 #define USE_NANF_WITH_FLAGS
31 #define USE_SCALEDOUBLE_1
32 #define USE_GET_FPSW_INLINE
33 #define USE_SET_FPSW_INLINE
34 #define USE_HANDLE_ERRORF
35 #include "libm_inlines.h"
36 #undef USE_NANF_WITH_FLAGS
37 #undef USE_SCALEDOUBLE_1
38 #undef USE_GET_FPSW_INLINE
39 #undef USE_SET_FPSW_INLINE
40 #undef USE_HANDLE_ERRORF
41 
42 #if !defined(_CRTBLD_C9X)
43 #define _CRTBLD_C9X
44 #endif
45 
46 #include "libm_errno.h"
47 
48 // Disable "C4163: not available as intrinsic function" warning that older
49 // compilers may issue here.
50 #pragma warning(disable:4163)
51 #pragma function(remainderf,fmodf)
52 
53 
54 #undef _FUNCNAME
55 #if defined(COMPILING_FMOD)
56 float fmodf(float x, float y)
57 #define _FUNCNAME "fmodf"
58 #define _OPERATION OP_FMOD
59 #else
60 float remainderf(float x, float y)
61 #define _FUNCNAME "remainderf"
62 #define _OPERATION OP_REM
63 #endif
64 {
65   double dx, dy, scale, w, t;
66   int i, ntimes, xexp, yexp;
67   unsigned long long ux, uy, ax, ay;
68 
69   unsigned int sw;
70 
71   dx = x;
72   dy = y;
73 
74 
75   GET_BITS_DP64(dx, ux);
76   GET_BITS_DP64(dy, uy);
77   ax = ux & ~SIGNBIT_DP64;
78   ay = uy & ~SIGNBIT_DP64;
79   xexp = (int)((ux & EXPBITS_DP64) >> EXPSHIFTBITS_DP64);
80   yexp = (int)((uy & EXPBITS_DP64) >> EXPSHIFTBITS_DP64);
81 
82   if (xexp < 1 || xexp > BIASEDEMAX_DP64 ||
83       yexp < 1 || yexp > BIASEDEMAX_DP64)
84     {
85       /* x or y is zero, NaN or infinity (neither x nor y can be
86          denormalized because we promoted from float to double) */
87       if (xexp > BIASEDEMAX_DP64)
88         {
89           /* x is NaN or infinity */
90           if (ux & MANTBITS_DP64)
91             {
92               /* x is NaN */
93               unsigned int ufx;
94               GET_BITS_SP32(x, ufx);
95               return _handle_errorf(_FUNCNAME, _OPERATION, ufx|0x00400000, _DOMAIN, 0,
96                                    EDOM, x, y, 2);
97             }
98           else
99             {
100               /* x is infinity; result is NaN */
101               return _handle_errorf(_FUNCNAME, _OPERATION, INDEFBITPATT_SP32, _DOMAIN,
102                                    AMD_F_INVALID, EDOM, x, y, 2);
103             }
104         }
105       else if (yexp > BIASEDEMAX_DP64)
106         {
107           /* y is NaN or infinity */
108           if (uy & MANTBITS_DP64)
109             {
110               /* y is NaN */
111               unsigned int ufy;
112               GET_BITS_SP32(y, ufy);
113               return _handle_errorf(_FUNCNAME, _OPERATION, ufy|0x00400000, _DOMAIN, 0,
114                                    EDOM, x, y, 2);
115             }
116           else
117             {
118 #ifdef _CRTBLD_C9X
119               /* C99 return for y = +-inf is x */
120               return x;
121 #else
122               /* y is infinity; result is indefinite */
123               return _handle_errorf(_FUNCNAME, _OPERATION, INDEFBITPATT_SP32, _DOMAIN,
124                                    AMD_F_INVALID, EDOM, x, y, 2);
125 #endif
126             }
127         }
128       else if (xexp < 1)
129         {
130           /* x must be zero (cannot be denormalized) */
131           if (yexp < 1)
132             {
133               /* y must be zero (cannot be denormalized) */
134               return _handle_errorf(_FUNCNAME, _OPERATION, INDEFBITPATT_SP32, _DOMAIN,
135                                    AMD_F_INVALID, EDOM, x, y, 2);
136             }
137           else
138               /* C99 return for x = 0 must preserve sign */
139               return x;
140         }
141       else
142         {
143           /* y must be zero */
144           return _handle_errorf(_FUNCNAME, _OPERATION, INDEFBITPATT_SP32, _DOMAIN,
145                                AMD_F_INVALID, EDOM, x, y, 2);
146         }
147     }
148   else if (ax == ay)
149     {
150       /* abs(x) == abs(y); return zero with the sign of x */
151       PUT_BITS_DP64(ux & SIGNBIT_DP64, dx);
152       return (float)dx;
153     }
154 
155   /* Set dx = abs(x), dy = abs(y) */
156   PUT_BITS_DP64(ax, dx);
157   PUT_BITS_DP64(ay, dy);
158 
159   if (ax < ay)
160     {
161       /* abs(x) < abs(y) */
162 #if !defined(COMPILING_FMOD)
163       if (dx > 0.5*dy)
164         dx -= dy;
165 #endif
166       return (float)(x < 0.0? -dx : dx);
167     }
168 
169   /* Save the current floating-point status word. We need
170      to do this because the remainder function is always
171      exact for finite arguments, but our algorithm causes
172      the inexact flag to be raised. We therefore need to
173      restore the entry status before exiting. */
174   sw = get_fpsw_inline();
175 
176   /* Set ntimes to the number of times we need to do a
177      partial remainder. If the exponent of x is an exact multiple
178      of 24 larger than the exponent of y, and the mantissa of x is
179      less than the mantissa of y, ntimes will be one too large
180      but it doesn't matter - it just means that we'll go round
181      the loop below one extra time. */
182   if (xexp <= yexp)
183     {
184       ntimes = 0;
185       w = dy;
186       scale = 1.0;
187     }
188   else
189     {
190       ntimes = (xexp - yexp) / 24;
191 
192       /* Set w = y * 2^(24*ntimes) */
193       PUT_BITS_DP64((unsigned long long)(ntimes * 24 + EXPBIAS_DP64) << EXPSHIFTBITS_DP64,
194                     scale);
195       w = scale * dy;
196       /* Set scale = 2^(-24) */
197       PUT_BITS_DP64((unsigned long long)(-24 + EXPBIAS_DP64) << EXPSHIFTBITS_DP64,
198                     scale);
199     }
200 
201 
202   /* Each time round the loop we compute a partial remainder.
203      This is done by subtracting a large multiple of w
204      from x each time, where w is a scaled up version of y.
205      The subtraction can be performed exactly when performed
206      in double precision, and the result at each stage can
207      fit exactly in a single precision number. */
208   for (i = 0; i < ntimes; i++)
209     {
210       /* t is the integer multiple of w that we will subtract.
211          We use a truncated value for t. */
212       t = (double)((int)(dx / w));
213       dx -= w * t;
214       /* Scale w down by 2^(-24) for the next iteration */
215       w *= scale;
216     }
217 
218   /* One more time */
219 #if defined(COMPILING_FMOD)
220   t = (double)((int)(dx / w));
221   dx -= w * t;
222 #else
223  {
224   unsigned int todd;
225   /* Variable todd says whether the integer t is odd or not */
226   t = (double)((int)(dx / w));
227   todd = ((int)(dx / w)) & 1;
228   dx -= w * t;
229 
230   /* At this point, dx lies in the range [0,dy) */
231   /* For the remainder function, we need to adjust dx
232      so that it lies in the range (-y/2, y/2] by carefully
233      subtracting w (== dy == y) if necessary. */
234   if (dx > 0.5 * w || ((dx == 0.5 * w) && todd))
235     dx -= w;
236  }
237 #endif
238 
239   /* **** N.B. for some reason this breaks the 32 bit version
240      of remainder when compiling with optimization. */
241   /* Restore the entry status flags */
242   set_fpsw_inline(sw);
243 
244   /* Set the result sign according to input argument x */
245   return (float)(x < 0.0? -dx : dx);
246 
247 }
248