xref: /xv6-public/vm.c (revision 171c2cc6)
1 #include "param.h"
2 #include "types.h"
3 #include "defs.h"
4 #include "x86.h"
5 #include "memlayout.h"
6 #include "mmu.h"
7 #include "proc.h"
8 #include "elf.h"
9 
10 extern char data[];  // defined by kernel.ld
11 pde_t *kpgdir;  // for use in scheduler()
12 
13 // Set up CPU's kernel segment descriptors.
14 // Run once on entry on each CPU.
15 void
seginit(void)16 seginit(void)
17 {
18   struct cpu *c;
19 
20   // Map "logical" addresses to virtual addresses using identity map.
21   // Cannot share a CODE descriptor for both kernel and user
22   // because it would have to have DPL_USR, but the CPU forbids
23   // an interrupt from CPL=0 to DPL=3.
24   c = &cpus[cpuid()];
25   c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
26   c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
27   c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
28   c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
29   lgdt(c->gdt, sizeof(c->gdt));
30 }
31 
32 // Return the address of the PTE in page table pgdir
33 // that corresponds to virtual address va.  If alloc!=0,
34 // create any required page table pages.
35 static pte_t *
walkpgdir(pde_t * pgdir,const void * va,int alloc)36 walkpgdir(pde_t *pgdir, const void *va, int alloc)
37 {
38   pde_t *pde;
39   pte_t *pgtab;
40 
41   pde = &pgdir[PDX(va)];
42   if(*pde & PTE_P){
43     pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
44   } else {
45     if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
46       return 0;
47     // Make sure all those PTE_P bits are zero.
48     memset(pgtab, 0, PGSIZE);
49     // The permissions here are overly generous, but they can
50     // be further restricted by the permissions in the page table
51     // entries, if necessary.
52     *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
53   }
54   return &pgtab[PTX(va)];
55 }
56 
57 // Create PTEs for virtual addresses starting at va that refer to
58 // physical addresses starting at pa. va and size might not
59 // be page-aligned.
60 static int
mappages(pde_t * pgdir,void * va,uint size,uint pa,int perm)61 mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
62 {
63   char *a, *last;
64   pte_t *pte;
65 
66   a = (char*)PGROUNDDOWN((uint)va);
67   last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
68   for(;;){
69     if((pte = walkpgdir(pgdir, a, 1)) == 0)
70       return -1;
71     if(*pte & PTE_P)
72       panic("remap");
73     *pte = pa | perm | PTE_P;
74     if(a == last)
75       break;
76     a += PGSIZE;
77     pa += PGSIZE;
78   }
79   return 0;
80 }
81 
82 // There is one page table per process, plus one that's used when
83 // a CPU is not running any process (kpgdir). The kernel uses the
84 // current process's page table during system calls and interrupts;
85 // page protection bits prevent user code from using the kernel's
86 // mappings.
87 //
88 // setupkvm() and exec() set up every page table like this:
89 //
90 //   0..KERNBASE: user memory (text+data+stack+heap), mapped to
91 //                phys memory allocated by the kernel
92 //   KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
93 //   KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
94 //                for the kernel's instructions and r/o data
95 //   data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
96 //                                  rw data + free physical memory
97 //   0xfe000000..0: mapped direct (devices such as ioapic)
98 //
99 // The kernel allocates physical memory for its heap and for user memory
100 // between V2P(end) and the end of physical memory (PHYSTOP)
101 // (directly addressable from end..P2V(PHYSTOP)).
102 
103 // This table defines the kernel's mappings, which are present in
104 // every process's page table.
105 static struct kmap {
106   void *virt;
107   uint phys_start;
108   uint phys_end;
109   int perm;
110 } kmap[] = {
111  { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space
112  { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata
113  { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory
114  { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices
115 };
116 
117 // Set up kernel part of a page table.
118 pde_t*
setupkvm(void)119 setupkvm(void)
120 {
121   pde_t *pgdir;
122   struct kmap *k;
123 
124   if((pgdir = (pde_t*)kalloc()) == 0)
125     return 0;
126   memset(pgdir, 0, PGSIZE);
127   if (P2V(PHYSTOP) > (void*)DEVSPACE)
128     panic("PHYSTOP too high");
129   for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
130     if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
131                 (uint)k->phys_start, k->perm) < 0) {
132       freevm(pgdir);
133       return 0;
134     }
135   return pgdir;
136 }
137 
138 // Allocate one page table for the machine for the kernel address
139 // space for scheduler processes.
140 void
kvmalloc(void)141 kvmalloc(void)
142 {
143   kpgdir = setupkvm();
144   switchkvm();
145 }
146 
147 // Switch h/w page table register to the kernel-only page table,
148 // for when no process is running.
149 void
switchkvm(void)150 switchkvm(void)
151 {
152   lcr3(V2P(kpgdir));   // switch to the kernel page table
153 }
154 
155 // Switch TSS and h/w page table to correspond to process p.
156 void
switchuvm(struct proc * p)157 switchuvm(struct proc *p)
158 {
159   if(p == 0)
160     panic("switchuvm: no process");
161   if(p->kstack == 0)
162     panic("switchuvm: no kstack");
163   if(p->pgdir == 0)
164     panic("switchuvm: no pgdir");
165 
166   pushcli();
167   mycpu()->gdt[SEG_TSS] = SEG16(STS_T32A, &mycpu()->ts,
168                                 sizeof(mycpu()->ts)-1, 0);
169   mycpu()->gdt[SEG_TSS].s = 0;
170   mycpu()->ts.ss0 = SEG_KDATA << 3;
171   mycpu()->ts.esp0 = (uint)p->kstack + KSTACKSIZE;
172   // setting IOPL=0 in eflags *and* iomb beyond the tss segment limit
173   // forbids I/O instructions (e.g., inb and outb) from user space
174   mycpu()->ts.iomb = (ushort) 0xFFFF;
175   ltr(SEG_TSS << 3);
176   lcr3(V2P(p->pgdir));  // switch to process's address space
177   popcli();
178 }
179 
180 // Load the initcode into address 0 of pgdir.
181 // sz must be less than a page.
182 void
inituvm(pde_t * pgdir,char * init,uint sz)183 inituvm(pde_t *pgdir, char *init, uint sz)
184 {
185   char *mem;
186 
187   if(sz >= PGSIZE)
188     panic("inituvm: more than a page");
189   mem = kalloc();
190   memset(mem, 0, PGSIZE);
191   mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U);
192   memmove(mem, init, sz);
193 }
194 
195 // Load a program segment into pgdir.  addr must be page-aligned
196 // and the pages from addr to addr+sz must already be mapped.
197 int
loaduvm(pde_t * pgdir,char * addr,struct inode * ip,uint offset,uint sz)198 loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
199 {
200   uint i, pa, n;
201   pte_t *pte;
202 
203   if((uint) addr % PGSIZE != 0)
204     panic("loaduvm: addr must be page aligned");
205   for(i = 0; i < sz; i += PGSIZE){
206     if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
207       panic("loaduvm: address should exist");
208     pa = PTE_ADDR(*pte);
209     if(sz - i < PGSIZE)
210       n = sz - i;
211     else
212       n = PGSIZE;
213     if(readi(ip, P2V(pa), offset+i, n) != n)
214       return -1;
215   }
216   return 0;
217 }
218 
219 // Allocate page tables and physical memory to grow process from oldsz to
220 // newsz, which need not be page aligned.  Returns new size or 0 on error.
221 int
allocuvm(pde_t * pgdir,uint oldsz,uint newsz)222 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
223 {
224   char *mem;
225   uint a;
226 
227   if(newsz >= KERNBASE)
228     return 0;
229   if(newsz < oldsz)
230     return oldsz;
231 
232   a = PGROUNDUP(oldsz);
233   for(; a < newsz; a += PGSIZE){
234     mem = kalloc();
235     if(mem == 0){
236       cprintf("allocuvm out of memory\n");
237       deallocuvm(pgdir, newsz, oldsz);
238       return 0;
239     }
240     memset(mem, 0, PGSIZE);
241     if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
242       cprintf("allocuvm out of memory (2)\n");
243       deallocuvm(pgdir, newsz, oldsz);
244       kfree(mem);
245       return 0;
246     }
247   }
248   return newsz;
249 }
250 
251 // Deallocate user pages to bring the process size from oldsz to
252 // newsz.  oldsz and newsz need not be page-aligned, nor does newsz
253 // need to be less than oldsz.  oldsz can be larger than the actual
254 // process size.  Returns the new process size.
255 int
deallocuvm(pde_t * pgdir,uint oldsz,uint newsz)256 deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
257 {
258   pte_t *pte;
259   uint a, pa;
260 
261   if(newsz >= oldsz)
262     return oldsz;
263 
264   a = PGROUNDUP(newsz);
265   for(; a  < oldsz; a += PGSIZE){
266     pte = walkpgdir(pgdir, (char*)a, 0);
267     if(!pte)
268       a = PGADDR(PDX(a) + 1, 0, 0) - PGSIZE;
269     else if((*pte & PTE_P) != 0){
270       pa = PTE_ADDR(*pte);
271       if(pa == 0)
272         panic("kfree");
273       char *v = P2V(pa);
274       kfree(v);
275       *pte = 0;
276     }
277   }
278   return newsz;
279 }
280 
281 // Free a page table and all the physical memory pages
282 // in the user part.
283 void
freevm(pde_t * pgdir)284 freevm(pde_t *pgdir)
285 {
286   uint i;
287 
288   if(pgdir == 0)
289     panic("freevm: no pgdir");
290   deallocuvm(pgdir, KERNBASE, 0);
291   for(i = 0; i < NPDENTRIES; i++){
292     if(pgdir[i] & PTE_P){
293       char * v = P2V(PTE_ADDR(pgdir[i]));
294       kfree(v);
295     }
296   }
297   kfree((char*)pgdir);
298 }
299 
300 // Clear PTE_U on a page. Used to create an inaccessible
301 // page beneath the user stack.
302 void
clearpteu(pde_t * pgdir,char * uva)303 clearpteu(pde_t *pgdir, char *uva)
304 {
305   pte_t *pte;
306 
307   pte = walkpgdir(pgdir, uva, 0);
308   if(pte == 0)
309     panic("clearpteu");
310   *pte &= ~PTE_U;
311 }
312 
313 // Given a parent process's page table, create a copy
314 // of it for a child.
315 pde_t*
copyuvm(pde_t * pgdir,uint sz)316 copyuvm(pde_t *pgdir, uint sz)
317 {
318   pde_t *d;
319   pte_t *pte;
320   uint pa, i, flags;
321   char *mem;
322 
323   if((d = setupkvm()) == 0)
324     return 0;
325   for(i = 0; i < sz; i += PGSIZE){
326     if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
327       panic("copyuvm: pte should exist");
328     if(!(*pte & PTE_P))
329       panic("copyuvm: page not present");
330     pa = PTE_ADDR(*pte);
331     flags = PTE_FLAGS(*pte);
332     if((mem = kalloc()) == 0)
333       goto bad;
334     memmove(mem, (char*)P2V(pa), PGSIZE);
335     if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0) {
336       kfree(mem);
337       goto bad;
338     }
339   }
340   return d;
341 
342 bad:
343   freevm(d);
344   return 0;
345 }
346 
347 //PAGEBREAK!
348 // Map user virtual address to kernel address.
349 char*
uva2ka(pde_t * pgdir,char * uva)350 uva2ka(pde_t *pgdir, char *uva)
351 {
352   pte_t *pte;
353 
354   pte = walkpgdir(pgdir, uva, 0);
355   if((*pte & PTE_P) == 0)
356     return 0;
357   if((*pte & PTE_U) == 0)
358     return 0;
359   return (char*)P2V(PTE_ADDR(*pte));
360 }
361 
362 // Copy len bytes from p to user address va in page table pgdir.
363 // Most useful when pgdir is not the current page table.
364 // uva2ka ensures this only works for PTE_U pages.
365 int
copyout(pde_t * pgdir,uint va,void * p,uint len)366 copyout(pde_t *pgdir, uint va, void *p, uint len)
367 {
368   char *buf, *pa0;
369   uint n, va0;
370 
371   buf = (char*)p;
372   while(len > 0){
373     va0 = (uint)PGROUNDDOWN(va);
374     pa0 = uva2ka(pgdir, (char*)va0);
375     if(pa0 == 0)
376       return -1;
377     n = PGSIZE - (va - va0);
378     if(n > len)
379       n = len;
380     memmove(pa0 + (va - va0), buf, n);
381     len -= n;
382     buf += n;
383     va = va0 + PGSIZE;
384   }
385   return 0;
386 }
387 
388 //PAGEBREAK!
389 // Blank page.
390 //PAGEBREAK!
391 // Blank page.
392 //PAGEBREAK!
393 // Blank page.
394 
395