- NAME
- interp - Create and manipulate Tcl interpreters
- SYNOPSIS
- DESCRIPTION
- THE INTERP COMMAND
- interp alias srcPath srcToken
- interp alias srcPath srcToken {}
- interp alias srcPath srcCmd targetPath targetCmd ?arg arg ...?
- interp aliases ?path?
- interp bgerror path ?cmdPrefix?
- interp create ?-safe? ?--? ?path?
- interp debug path ?-frame ?bool??
- interp delete ?path ...?
- interp eval path arg ?arg ...?
- interp exists path
- interp expose path hiddenName ?exposedCmdName?
- interp hide path exposedCmdName ?hiddenCmdName?
- interp hidden path
- interp invokehidden path ?-option ...? hiddenCmdName ?arg ...?
- interp limit path limitType ?-option? ?value ...?
- interp issafe ?path?
- interp marktrusted path
- interp recursionlimit path ?newlimit?
- interp share srcPath channelId destPath
- interp slaves ?path?
- interp target path alias
- interp transfer srcPath channelId destPath
- SLAVE COMMAND
- slave aliases
- slave alias srcToken
- slave alias srcToken {}
- slave alias srcCmd targetCmd ?arg ..?
- slave bgerror ?cmdPrefix?
- slave eval arg ?arg ..?
- slave expose hiddenName ?exposedCmdName?
- slave hide exposedCmdName ?hiddenCmdName?
- slave hidden
- slave invokehidden ?-option ...? hiddenName ?arg ..?
- slave issafe
- slave limit limitType ?-option? ?value ...?
- slave marktrusted
- slave recursionlimit ?newlimit?
- SAFE INTERPRETERS
- ALIAS INVOCATION
- HIDDEN COMMANDS
- RESOURCE LIMITS
- LIMIT OPTIONS
- -command
- -granularity
- -milliseconds
- -seconds
- -value
- BACKGROUND ERROR HANDLING
- CREDITS
- EXAMPLES
- SEE ALSO
- KEYWORDS
interp - Create and manipulate Tcl interpreters
interp subcommand ?arg arg ...?
This command makes it possible to create one or more new Tcl
interpreters that co-exist with the creating interpreter in the
same application. The creating interpreter is called the master
and the new interpreter is called a slave.
A master can create any number of slaves, and each slave can
itself create additional slaves for which it is master, resulting
in a hierarchy of interpreters.
Each interpreter is independent from the others: it has its own name
space for commands, procedures, and global variables.
A master interpreter may create connections between its slaves and
itself using a mechanism called an alias. An alias is
a command in a slave interpreter which, when invoked, causes a
command to be invoked in its master interpreter or in another slave
interpreter. The only other connections between interpreters are
through environment variables (the env variable), which are
normally shared among all interpreters in the application,
and by resource limit exceeded callbacks.
Note that the
name space for files (such as the names returned by the open command)
is no longer shared between interpreters. Explicit commands are provided to
share files and to transfer references to open files from one interpreter
to another.
The interp command also provides support for safe
interpreters. A safe interpreter is a slave whose functions have
been greatly restricted, so that it is safe to execute untrusted
scripts without fear of them damaging other interpreters or the
application's environment. For example, all IO channel creation
commands and subprocess creation commands are made inaccessible to safe
interpreters.
See SAFE INTERPRETERS below for more information on
what features are present in a safe interpreter.
The dangerous functionality is not removed from the safe interpreter;
instead, it is hidden, so that only trusted interpreters can obtain
access to it. For a detailed explanation of hidden commands, see
HIDDEN COMMANDS, below.
The alias mechanism can be used for protected communication (analogous to a
kernel call) between a slave interpreter and its master.
See ALIAS INVOCATION, below, for more details
on how the alias mechanism works.
A qualified interpreter name is a proper Tcl lists containing a subset of its
ancestors in the interpreter hierarchy, terminated by the string naming the
interpreter in its immediate master. Interpreter names are relative to the
interpreter in which they are used. For example, if a is a slave of
the current interpreter and it has a slave a1, which in turn has a
slave a11, the qualified name of a11 in a is the list
a1 a11.
The interp command, described below, accepts qualified interpreter
names as arguments; the interpreter in which the command is being evaluated
can always be referred to as {} (the empty list or string). Note that
it is impossible to refer to a master (ancestor) interpreter by name in a
slave interpreter except through aliases. Also, there is no global name by
which one can refer to the first interpreter created in an application.
Both restrictions are motivated by safety concerns.
The interp command is used to create, delete, and manipulate
slave interpreters, and to share or transfer
channels between interpreters. It can have any of several forms, depending
on the subcommand argument:
- interp alias srcPath srcToken
-
Returns a Tcl list whose elements are the targetCmd and
args associated with the alias represented by srcToken
(this is the value returned when the alias was
created; it is possible that the name of the source command in the
slave is different from srcToken).
- interp alias srcPath srcToken {}
-
Deletes the alias for srcToken in the slave interpreter identified by
srcPath.
srcToken refers to the value returned when the alias
was created; if the source command has been renamed, the renamed
command will be deleted.
- interp alias srcPath srcCmd targetPath targetCmd ?arg arg ...?
-
This command creates an alias between one slave and another (see the
alias slave command below for creating aliases between a slave
and its master). In this command, either of the slave interpreters
may be anywhere in the hierarchy of interpreters under the interpreter
invoking the command.
SrcPath and srcCmd identify the source of the alias.
SrcPath is a Tcl list whose elements select a particular
interpreter. For example,
“a b”
identifies an interpreter
b, which is a slave of interpreter a, which is a slave
of the invoking interpreter. An empty list specifies the interpreter
invoking the command. srcCmd gives the name of a new
command, which will be created in the source interpreter.
TargetPath and targetCmd specify a target interpreter
and command, and the arg arguments, if any, specify additional
arguments to targetCmd which are prepended to any arguments specified
in the invocation of srcCmd.
TargetCmd may be undefined at the time of this call, or it may
already exist; it is not created by this command.
The alias arranges for the given target command to be invoked
in the target interpreter whenever the given source command is
invoked in the source interpreter. See ALIAS INVOCATION below for
more details.
The command returns a token that uniquely identifies the command created
srcCmd, even if the command is renamed afterwards. The token may but
does not have to be equal to srcCmd.
- interp aliases ?path?
-
This command returns a Tcl list of the tokens of all the source commands for
aliases defined in the interpreter identified by path. The tokens
correspond to the values returned when
the aliases were created (which may not be the same
as the current names of the commands).
- interp bgerror path ?cmdPrefix?
-
This command either gets or sets the current background error handler
for the interpreter identified by path. If cmdPrefix is
absent, the current background error handler is returned, and if it is
present, it is a list of words (of minimum length one) that describes
what to set the interpreter's background error to. See the
BACKGROUND ERROR HANDLING section for more details.
- interp create ?-safe? ?--? ?path?
-
Creates a slave interpreter identified by path and a new command,
called a slave command. The name of the slave command is the last
component of path. The new slave interpreter and the slave command
are created in the interpreter identified by the path obtained by removing
the last component from path. For example, if path is a b
c then a new slave interpreter and slave command named c are
created in the interpreter identified by the path a b.
The slave command may be used to manipulate the new interpreter as
described below. If path is omitted, Tcl creates a unique name of the
form interpx, where x is an integer, and uses it for the
interpreter and the slave command. If the -safe switch is specified
(or if the master interpreter is a safe interpreter), the new slave
interpreter will be created as a safe interpreter with limited
functionality; otherwise the slave will include the full set of Tcl
built-in commands and variables. The -- switch can be used to
mark the end of switches; it may be needed if path is an unusual
value such as -safe. The result of the command is the name of the
new interpreter. The name of a slave interpreter must be unique among all
the slaves for its master; an error occurs if a slave interpreter by the
given name already exists in this master.
The initial recursion limit of the slave interpreter is set to the
current recursion limit of its parent interpreter.
- interp debug path ?-frame ?bool??
-
Controls whether frame-level stack information is captured in the
slave interpreter identified by path. If no arguments are
given, option and current setting are returned. If -frame
is given, the debug setting is set to the given boolean if provided
and the current setting is returned.
This only effects the output of info frame, in that exact
frame-level information for command invocation at the bytecode level
is only captured with this setting on.
-
For example, with code like
proc mycontrol {... script} {
...
uplevel 1 $script
...
}
proc dosomething {...} {
...
mycontrol {
somecode
}
}
the standard setting will provide a relative line number for the
command somecode and the relevant frame will be of type
eval. With frame-debug active on the other hand the tracking
extends so far that the system will be able to determine the file and
absolute line number of this command, and return a frame of type
source. This more exact information is paid for with slower
execution of all commands.
- interp delete ?path ...?
-
Deletes zero or more interpreters given by the optional path
arguments, and for each interpreter, it also deletes its slaves. The
command also deletes the slave command for each interpreter deleted.
For each path argument, if no interpreter by that name
exists, the command raises an error.
- interp eval path arg ?arg ...?
-
This command concatenates all of the arg arguments in the same
fashion as the concat command, then evaluates the resulting string as
a Tcl script in the slave interpreter identified by path. The result
of this evaluation (including all return options,
such as -errorinfo and -errorcode information, if an
error occurs) is returned to the invoking interpreter.
Note that the script will be executed in the current context stack frame of the
path interpreter; this is so that the implementations (in a master
interpreter) of aliases in a slave interpreter can execute scripts in
the slave that find out information about the slave's current state
and stack frame.
- interp exists path
-
Returns 1 if a slave interpreter by the specified path
exists in this master, 0 otherwise. If path is omitted, the
invoking interpreter is used.
- interp expose path hiddenName ?exposedCmdName?
-
Makes the hidden command hiddenName exposed, eventually bringing
it back under a new exposedCmdName name (this name is currently
accepted only if it is a valid global name space name without any ::),
in the interpreter
denoted by path.
If an exposed command with the targeted name already exists, this command
fails.
Hidden commands are explained in more detail in HIDDEN COMMANDS, below.
- interp hide path exposedCmdName ?hiddenCmdName?
-
Makes the exposed command exposedCmdName hidden, renaming
it to the hidden command hiddenCmdName, or keeping the same name if
hiddenCmdName is not given, in the interpreter denoted
by path.
If a hidden command with the targeted name already exists, this command
fails.
Currently both exposedCmdName and hiddenCmdName can
not contain namespace qualifiers, or an error is raised.
Commands to be hidden by interp hide are looked up in the global
namespace even if the current namespace is not the global one. This
prevents slaves from fooling a master interpreter into hiding the wrong
command, by making the current namespace be different from the global one.
Hidden commands are explained in more detail in HIDDEN COMMANDS, below.
- interp hidden path
-
Returns a list of the names of all hidden commands in the interpreter
identified by path.
- interp invokehidden path ?-option ...? hiddenCmdName ?arg ...?
-
Invokes the hidden command hiddenCmdName with the arguments supplied
in the interpreter denoted by path. No substitutions or evaluation
are applied to the arguments. Three -options are supported, all
of which start with -: -namespace (which takes a single
argument afterwards, nsName), -global, and --.
If the -namespace flag is present, the hidden command is invoked in
the namespace called nsName in the target interpreter.
If the -global flag is present, the hidden command is invoked at the
global level in the target interpreter; otherwise it is invoked at the
current call frame and can access local variables in that and outer call
frames.
The -- flag allows the hiddenCmdName argument to start with a
“-”
character, and is otherwise unnecessary.
If both the -namespace and -global flags are present, the
-namespace flag is ignored.
Note that the hidden command will be executed (by default) in the
current context stack frame of the path interpreter.
Hidden commands are explained in more detail in HIDDEN COMMANDS, below.
- interp limit path limitType ?-option? ?value ...?
-
Sets up, manipulates and queries the configuration of the resource
limit limitType for the interpreter denoted by path. If
no -option is specified, return the current configuration of the
limit. If -option is the sole argument, return the value of that
option. Otherwise, a list of -option/value argument pairs
must supplied. See RESOURCE LIMITS below for a more detailed
explanation of what limits and options are supported.
- interp issafe ?path?
-
Returns 1 if the interpreter identified by the specified path
is safe, 0 otherwise.
- interp marktrusted path
-
Marks the interpreter identified by path as trusted. Does
not expose the hidden commands. This command can only be invoked from a
trusted interpreter.
The command has no effect if the interpreter identified by path is
already trusted.
- interp recursionlimit path ?newlimit?
-
Returns the maximum allowable nesting depth for the interpreter
specified by path. If newlimit is specified,
the interpreter recursion limit will be set so that nesting
of more than newlimit calls to Tcl_Eval()
and related procedures in that interpreter will return an error.
The newlimit value is also returned.
The newlimit value must be a positive integer between 1 and the
maximum value of a non-long integer on the platform.
The command sets the maximum size of the Tcl call stack only. It cannot
by itself prevent stack overflows on the C stack being used by the
application. If your machine has a limit on the size of the C stack, you
may get stack overflows before reaching the limit set by the command. If
this happens, see if there is a mechanism in your system for increasing
the maximum size of the C stack.
- interp share srcPath channelId destPath
-
Causes the IO channel identified by channelId to become shared
between the interpreter identified by srcPath and the interpreter
identified by destPath. Both interpreters have the same permissions
on the IO channel.
Both interpreters must close it to close the underlying IO channel; IO
channels accessible in an interpreter are automatically closed when an
interpreter is destroyed.
- interp slaves ?path?
-
Returns a Tcl list of the names of all the slave interpreters associated
with the interpreter identified by path. If path is omitted,
the invoking interpreter is used.
- interp target path alias
-
Returns a Tcl list describing the target interpreter for an alias. The
alias is specified with an interpreter path and source command name, just
as in interp alias above. The name of the target interpreter is
returned as an interpreter path, relative to the invoking interpreter.
If the target interpreter for the alias is the invoking interpreter then an
empty list is returned. If the target interpreter for the alias is not the
invoking interpreter or one of its descendants then an error is generated.
The target command does not have to be defined at the time of this invocation.
- interp transfer srcPath channelId destPath
-
Causes the IO channel identified by channelId to become available in
the interpreter identified by destPath and unavailable in the
interpreter identified by srcPath.
For each slave interpreter created with the interp command, a
new Tcl command is created in the master interpreter with the same
name as the new interpreter. This command may be used to invoke
various operations on the interpreter. It has the following
general form:
slave command ?arg arg ...?
Slave is the name of the interpreter, and command
and the args determine the exact behavior of the command.
The valid forms of this command are:
- slave aliases
-
Returns a Tcl list whose elements are the tokens of all the
aliases in slave. The tokens correspond to the values returned when
the aliases were created (which may not be the same
as the current names of the commands).
- slave alias srcToken
-
Returns a Tcl list whose elements are the targetCmd and
args associated with the alias represented by srcToken
(this is the value returned when the alias was
created; it is possible that the actual source command in the
slave is different from srcToken).
- slave alias srcToken {}
-
Deletes the alias for srcToken in the slave interpreter.
srcToken refers to the value returned when the alias
was created; if the source command has been renamed, the renamed
command will be deleted.
- slave alias srcCmd targetCmd ?arg ..?
-
Creates an alias such that whenever srcCmd is invoked
in slave, targetCmd is invoked in the master.
The arg arguments will be passed to targetCmd as additional
arguments, prepended before any arguments passed in the invocation of
srcCmd.
See ALIAS INVOCATION below for details.
The command returns a token that uniquely identifies the command created
srcCmd, even if the command is renamed afterwards. The token may but
does not have to be equal to srcCmd.
- slave bgerror ?cmdPrefix?
-
This command either gets or sets the current background error handler
for the slave interpreter. If cmdPrefix is
absent, the current background error handler is returned, and if it is
present, it is a list of words (of minimum length one) that describes
what to set the interpreter's background error to. See the
BACKGROUND ERROR HANDLING section for more details.
- slave eval arg ?arg ..?
-
This command concatenates all of the arg arguments in
the same fashion as the concat command, then evaluates
the resulting string as a Tcl script in slave.
The result of this evaluation (including all return options,
such as -errorinfo and -errorcode information, if an
error occurs) is returned to the invoking interpreter.
Note that the script will be executed in the current context stack frame
of slave; this is so that the implementations (in a master
interpreter) of aliases in a slave interpreter can execute scripts in
the slave that find out information about the slave's current state
and stack frame.
- slave expose hiddenName ?exposedCmdName?
-
This command exposes the hidden command hiddenName, eventually bringing
it back under a new exposedCmdName name (this name is currently
accepted only if it is a valid global name space name without any ::),
in slave.
If an exposed command with the targeted name already exists, this command
fails.
For more details on hidden commands, see HIDDEN COMMANDS, below.
- slave hide exposedCmdName ?hiddenCmdName?
-
This command hides the exposed command exposedCmdName, renaming it to
the hidden command hiddenCmdName, or keeping the same name if the
argument is not given, in the slave interpreter.
If a hidden command with the targeted name already exists, this command
fails.
Currently both exposedCmdName and hiddenCmdName can
not contain namespace qualifiers, or an error is raised.
Commands to be hidden are looked up in the global
namespace even if the current namespace is not the global one. This
prevents slaves from fooling a master interpreter into hiding the wrong
command, by making the current namespace be different from the global one.
For more details on hidden commands, see HIDDEN COMMANDS, below.
- slave hidden
-
Returns a list of the names of all hidden commands in slave.
- slave invokehidden ?-option ...? hiddenName ?arg ..?
-
This command invokes the hidden command hiddenName with the
supplied arguments, in slave. No substitutions or evaluations are
applied to the arguments. Three -options are supported, all
of which start with -: -namespace (which takes a single
argument afterwards, nsName), -global, and --.
If the -namespace flag is given, the hidden command is invoked in
the specified namespace in the slave.
If the -global flag is given, the command is invoked at the global
level in the slave; otherwise it is invoked at the current call frame and
can access local variables in that or outer call frames.
The -- flag allows the hiddenCmdName argument to start with a
“-”
character, and is otherwise unnecessary.
If both the -namespace and -global flags are given, the
-namespace flag is ignored.
Note that the hidden command will be executed (by default) in the
current context stack frame of slave.
For more details on hidden commands,
see HIDDEN COMMANDS, below.
- slave issafe
-
Returns 1 if the slave interpreter is safe, 0 otherwise.
- slave limit limitType ?-option? ?value ...?
-
Sets up, manipulates and queries the configuration of the resource
limit limitType for the slave interpreter. If no -option
is specified, return the current configuration of the limit. If
-option is the sole argument, return the value of that option.
Otherwise, a list of -option/value argument pairs must
supplied. See RESOURCE LIMITS below for a more detailed explanation of
what limits and options are supported.
- slave marktrusted
-
Marks the slave interpreter as trusted. Can only be invoked by a
trusted interpreter. This command does not expose any hidden
commands in the slave interpreter. The command has no effect if the slave
is already trusted.
- slave recursionlimit ?newlimit?
-
Returns the maximum allowable nesting depth for the slave interpreter.
If newlimit is specified, the recursion limit in slave will be
set so that nesting of more than newlimit calls to Tcl_Eval()
and related procedures in slave will return an error.
The newlimit value is also returned.
The newlimit value must be a positive integer between 1 and the
maximum value of a non-long integer on the platform.
The command sets the maximum size of the Tcl call stack only. It cannot
by itself prevent stack overflows on the C stack being used by the
application. If your machine has a limit on the size of the C stack, you
may get stack overflows before reaching the limit set by the command. If
this happens, see if there is a mechanism in your system for increasing
the maximum size of the C stack.
A safe interpreter is one with restricted functionality, so that
is safe to execute an arbitrary script from your worst enemy without
fear of that script damaging the enclosing application or the rest
of your computing environment. In order to make an interpreter
safe, certain commands and variables are removed from the interpreter.
For example, commands to create files on disk are removed, and the
exec command is removed, since it could be used to cause damage
through subprocesses.
Limited access to these facilities can be provided, by creating
aliases to the master interpreter which check their arguments carefully
and provide restricted access to a safe subset of facilities.
For example, file creation might be allowed in a particular subdirectory
and subprocess invocation might be allowed for a carefully selected and
fixed set of programs.
A safe interpreter is created by specifying the -safe switch
to the interp create command. Furthermore, any slave created
by a safe interpreter will also be safe.
A safe interpreter is created with exactly the following set of
built-in commands:
The following commands are hidden by interp create when it
creates a safe interpreter:
These commands can be recreated later as Tcl procedures or aliases, or
re-exposed by interp expose.
The following commands from Tcl's library of support procedures are
not present in a safe interpreter:
Note in particular that safe interpreters have no default unknown
command, so Tcl's default autoloading facilities are not available.
Autoload access to Tcl's commands that are normally autoloaded:
auto_mkindex | auto_mkindex_old |
auto_reset | history |
parray | pkg_mkIndex |
::pkg::create | ::safe::interpAddToAccessPath |
::safe::interpCreate | ::safe::interpConfigure |
::safe::interpDelete | ::safe::interpFindInAccessPath |
::safe::interpInit | ::safe::setLogCmd |
tcl_endOfWord | tcl_findLibrary |
tcl_startOfNextWord | tcl_startOfPreviousWord |
tcl_wordBreakAfter | tcl_wordBreakBefore |
can only be provided by explicit definition of an unknown command
in the safe interpreter. This will involve exposing the source
command. This is most easily accomplished by creating the safe interpreter
with Tcl's Safe-Tcl mechanism. Safe-Tcl provides safe
versions of source, load, and other Tcl commands needed
to support autoloading of commands and the loading of packages.
In addition, the env variable is not present in a safe interpreter,
so it cannot share environment variables with other interpreters. The
env variable poses a security risk, because users can store
sensitive information in an environment variable. For example, the PGP
manual recommends storing the PGP private key protection password in
the environment variable PGPPASS. Making this variable available
to untrusted code executing in a safe interpreter would incur a
security risk.
If extensions are loaded into a safe interpreter, they may also restrict
their own functionality to eliminate unsafe commands. For a discussion of
management of extensions for safety see the manual entries for
Safe-Tcl and the load Tcl command.
A safe interpreter may not alter the recursion limit of any interpreter,
including itself.
The alias mechanism has been carefully designed so that it can
be used safely when an untrusted script is executing
in a safe slave and the target of the alias is a trusted
master. The most important thing in guaranteeing safety is to
ensure that information passed from the slave to the master is
never evaluated or substituted in the master; if this were to
occur, it would enable an evil script in the slave to invoke
arbitrary functions in the master, which would compromise security.
When the source for an alias is invoked in the slave interpreter, the
usual Tcl substitutions are performed when parsing that command.
These substitutions are carried out in the source interpreter just
as they would be for any other command invoked in that interpreter.
The command procedure for the source command takes its arguments
and merges them with the targetCmd and args for the
alias to create a new array of arguments. If the words
of srcCmd were
“srcCmd arg1 arg2 ... argN”,
the new set of words will be
“targetCmd arg arg ... arg arg1 arg2 ... argN”,
where targetCmd and args are the values supplied when the
alias was created. TargetCmd is then used to locate a command
procedure in the target interpreter, and that command procedure
is invoked with the new set of arguments. An error occurs if
there is no command named targetCmd in the target interpreter.
No additional substitutions are performed on the words: the
target command procedure is invoked directly, without
going through the normal Tcl evaluation mechanism.
Substitutions are thus performed on each word exactly once:
targetCmd and args were substituted when parsing the command
that created the alias, and arg1 - argN are substituted when
the alias's source command is parsed in the source interpreter.
When writing the targetCmds for aliases in safe interpreters,
it is very important that the arguments to that command never be
evaluated or substituted, since this would provide an escape
mechanism whereby the slave interpreter could execute arbitrary
code in the master. This in turn would compromise the security
of the system.
Safe interpreters greatly restrict the functionality available to Tcl
programs executing within them.
Allowing the untrusted Tcl program to have direct access to this
functionality is unsafe, because it can be used for a variety of
attacks on the environment.
However, there are times when there is a legitimate need to use the
dangerous functionality in the context of the safe interpreter. For
example, sometimes a program must be sourced into the interpreter.
Another example is Tk, where windows are bound to the hierarchy of windows
for a specific interpreter; some potentially dangerous functions, e.g.
window management, must be performed on these windows within the
interpreter context.
The interp command provides a solution to this problem in the form of
hidden commands. Instead of removing the dangerous commands entirely
from a safe interpreter, these commands are hidden so they become
unavailable to Tcl scripts executing in the interpreter. However, such
hidden commands can be invoked by any trusted ancestor of the safe
interpreter, in the context of the safe interpreter, using interp
invoke. Hidden commands and exposed commands reside in separate name
spaces. It is possible to define a hidden command and an exposed command by
the same name within one interpreter.
Hidden commands in a slave interpreter can be invoked in the body of
procedures called in the master during alias invocation. For example, an
alias for source could be created in a slave interpreter. When it is
invoked in the slave interpreter, a procedure is called in the master
interpreter to check that the operation is allowable (e.g. it asks to
source a file that the slave interpreter is allowed to access). The
procedure then it invokes the hidden source command in the slave
interpreter to actually source in the contents of the file. Note that two
commands named source exist in the slave interpreter: the alias, and
the hidden command.
Because a master interpreter may invoke a hidden command as part of
handling an alias invocation, great care must be taken to avoid evaluating
any arguments passed in through the alias invocation.
Otherwise, malicious slave interpreters could cause a trusted master
interpreter to execute dangerous commands on their behalf. See the section
on ALIAS INVOCATION for a more complete discussion of this topic.
To help avoid this problem, no substitutions or evaluations are
applied to arguments of interp invokehidden.
Safe interpreters are not allowed to invoke hidden commands in themselves
or in their descendants. This prevents safe slaves from gaining access to
hidden functionality in themselves or their descendants.
The set of hidden commands in an interpreter can be manipulated by a trusted
interpreter using interp expose and interp hide. The interp
expose command moves a hidden command to the
set of exposed commands in the interpreter identified by path,
potentially renaming the command in the process. If an exposed command by
the targeted name already exists, the operation fails. Similarly,
interp hide moves an exposed command to the set of hidden commands in
that interpreter. Safe interpreters are not allowed to move commands
between the set of hidden and exposed commands, in either themselves or
their descendants.
Currently, the names of hidden commands cannot contain namespace
qualifiers, and you must first rename a command in a namespace to the
global namespace before you can hide it.
Commands to be hidden by interp hide are looked up in the global
namespace even if the current namespace is not the global one. This
prevents slaves from fooling a master interpreter into hiding the wrong
command, by making the current namespace be different from the global one.
Every interpreter has two kinds of resource limits that may be imposed by any
master interpreter upon its slaves. Command limits (of type command)
restrict the total number of Tcl commands that may be executed by an
interpreter (as can be inspected via the info cmdcount command), and
time limits (of type time) place a limit by which execution within the
interpreter must complete. Note that time limits are expressed as
absolute times (as in clock seconds) and not relative times (as in
after) because they may be modified after creation.
When a limit is exceeded for an interpreter, first any handler callbacks
defined by master interpreters are called. If those callbacks increase or
remove the limit, execution within the (previously) limited interpreter
continues. If the limit is still in force, an error is generated at that point
and normal processing of errors within the interpreter (by the catch
command) is disabled, so the error propagates outwards (building a stack-trace
as it goes) to the point where the limited interpreter was invoked (e.g. by
interp eval) where it becomes the responsibility of the calling code to
catch and handle.
Every limit has a number of options associated with it, some of which are
common across all kinds of limits, and others of which are particular to the
kind of limit.
- -command
-
This option (common for all limit types) specifies (if non-empty) a Tcl script
to be executed in the global namespace of the interpreter reading and writing
the option when the particular limit in the limited interpreter is exceeded.
The callback may modify the limit on the interpreter if it wishes the limited
interpreter to continue executing. If the callback generates an error, it is
reported through the background error mechanism (see BACKGROUND ERROR
HANDLING). Note that the callbacks defined by one interpreter are
completely isolated from the callbacks defined by another, and that the order
in which those callbacks are called is undefined.
- -granularity
-
This option (common for all limit types) specifies how frequently (out of the
points when the Tcl interpreter is in a consistent state where limit checking
is possible) that the limit is actually checked. This allows the tuning of how
frequently a limit is checked, and hence how often the limit-checking overhead
(which may be substantial in the case of time limits) is incurred.
- -milliseconds
-
This option specifies the number of milliseconds after the moment defined in
the -seconds option that the time limit will fire. It should only ever
be specified in conjunction with the -seconds option (whether it was
set previously or is being set this invocation.)
- -seconds
-
This option specifies the number of seconds after the epoch (see clock
seconds) that the time limit for the interpreter will be triggered. The
limit will be triggered at the start of the second unless specified at a
sub-second level using the -milliseconds option. This option may be the
empty string, which indicates that a time limit is not set for the
interpreter.
- -value
-
This option specifies the number of commands that the interpreter may execute
before triggering the command limit. This option may be the empty string,
which indicates that a command limit is not set for the interpreter.
Where an interpreter with a resource limit set on it creates a slave
interpreter, that slave interpreter will have resource limits imposed on it
that are at least as restrictive as the limits on the creating master
interpreter. If the master interpreter of the limited master wishes to relax
these conditions, it should hide the interp command in the child and
then use aliases and the interp invokehidden subcommand to provide such
access as it chooses to the interp command to the limited master as
necessary.
When an error happens in a situation where it cannot be reported directly up
the stack (e.g. when processing events in an update or vwait call)
the error is instead reported through the background error handling mechanism.
Every interpreter has a background error handler registered; the default error
handler arranges for the bgerror command in the interpreter's global
namespace to be called, but other error handlers may be installed and process
background errors in substantially different ways.
A background error handler consists of a non-empty list of words to which will
be appended two further words at invocation time. The first word will be the
error message string, and the second will a dictionary of return options (this
is also the sort of information that can be obtained by trapping a normal
error using catch of course.) The resulting list will then be executed
in the interpreter's global namespace without further substitutions being
performed.
The safe interpreter mechanism is based on the Safe-Tcl prototype implemented
by Nathaniel Borenstein and Marshall Rose.
Creating and using an alias for a command in the current interpreter:
interp alias {} getIndex {} lsearch {alpha beta gamma delta}
set idx [getIndex delta]
Executing an arbitrary command in a safe interpreter where every
invocation of lappend is logged:
set i [interp create -safe]
interp hide $i lappend
interp alias $i lappend {} loggedLappend $i
proc loggedLappend {i args} {
puts "logged invocation of lappend $args"
interp invokehidden $i lappend {*}$args
}
interp eval $i $someUntrustedScript
Setting a resource limit on an interpreter so that an infinite loop
terminates.
set i [interp create]
interp limit $i command -value 1000
interp eval $i {
set x 0
while {1} {
puts "Counting up... [incr x]"
}
}
bgerror, load, safe, Tcl_CreateSlave
alias, master interpreter, safe interpreter, slave interpreter
Copyright © 1995-1997 Roger E. Critchlow Jr.
Copyright © 1995-1996 Sun Microsystems, Inc.
Copyright © 2004 Donal K. Fellows