History log of /linux/kernel/kexec.c (Results 1 – 25 of 156)
Revision Date Author Comments
# 02aff848 24-Jan-2024 Baoquan He <bhe@redhat.com>

crash: split crash dumping code out from kexec_core.c

Currently, KEXEC_CORE select CRASH_CORE automatically because crash codes
need be built in to avoid compiling error when building kexec code eve

crash: split crash dumping code out from kexec_core.c

Currently, KEXEC_CORE select CRASH_CORE automatically because crash codes
need be built in to avoid compiling error when building kexec code even
though the crash dumping functionality is not enabled. E.g
--------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC=y
CONFIG_KEXEC_FILE=y
---------------------

After splitting out crashkernel reservation code and vmcoreinfo exporting
code, there's only crash related code left in kernel/crash_core.c. Now
move crash related codes from kexec_core.c to crash_core.c and only build it
in when CONFIG_CRASH_DUMP=y.

And also wrap up crash codes inside CONFIG_CRASH_DUMP ifdeffery scope,
or replace inappropriate CONFIG_KEXEC_CORE ifdef with CONFIG_CRASH_DUMP
ifdef in generic kernel files.

With these changes, crash_core codes are abstracted from kexec codes and
can be disabled at all if only kexec reboot feature is wanted.

Link: https://lkml.kernel.org/r/20240124051254.67105-5-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

show more ...


# 569c8d82 20-Sep-2023 Philipp Stanner <pstanner@redhat.com>

kernel: kexec: copy user-array safely

Currently, there is no overflow-check with memdup_user().

Use the new function memdup_array_user() instead of memdup_user() for
duplicating the user-space arra

kernel: kexec: copy user-array safely

Currently, there is no overflow-check with memdup_user().

Use the new function memdup_array_user() instead of memdup_user() for
duplicating the user-space array safely.

Suggested-by: David Airlie <airlied@redhat.com>
Signed-off-by: Philipp Stanner <pstanner@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Zack Rusin <zackr@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20230920123612.16914-4-pstanner@redhat.com

show more ...


# a72bbec7 14-Aug-2023 Eric DeVolder <eric.devolder@oracle.com>

crash: hotplug support for kexec_load()

The hotplug support for kexec_load() requires changes to the userspace
kexec-tools and a little extra help from the kernel.

Given a kdump capture kernel load

crash: hotplug support for kexec_load()

The hotplug support for kexec_load() requires changes to the userspace
kexec-tools and a little extra help from the kernel.

Given a kdump capture kernel loaded via kexec_load(), and a subsequent
hotplug event, the crash hotplug handler finds the elfcorehdr and rewrites
it to reflect the hotplug change. That is the desired outcome, however,
at kernel panic time, the purgatory integrity check fails (because the
elfcorehdr changed), and the capture kernel does not boot and no vmcore is
generated.

Therefore, the userspace kexec-tools/kexec must indicate to the kernel
that the elfcorehdr can be modified (because the kexec excluded the
elfcorehdr from the digest, and sized the elfcorehdr memory buffer
appropriately).

To facilitate hotplug support with kexec_load():
- a new kexec flag KEXEC_UPATE_ELFCOREHDR indicates that it is
safe for the kernel to modify the kexec_load()'d elfcorehdr
- the /sys/kernel/crash_elfcorehdr_size node communicates the
preferred size of the elfcorehdr memory buffer
- The sysfs crash_hotplug nodes (ie.
/sys/devices/system/[cpu|memory]/crash_hotplug) dynamically
take into account kexec_file_load() vs kexec_load() and
KEXEC_UPDATE_ELFCOREHDR.
This is critical so that the udev rule processing of crash_hotplug
is all that is needed to determine if the userspace unload-then-load
of the kdump image is to be skipped, or not. The proposed udev
rule change looks like:
# The kernel updates the crash elfcorehdr for CPU and memory changes
SUBSYSTEM=="cpu", ATTRS{crash_hotplug}=="1", GOTO="kdump_reload_end"
SUBSYSTEM=="memory", ATTRS{crash_hotplug}=="1", GOTO="kdump_reload_end"

The table below indicates the behavior of kexec_load()'d kdump image
updates (with the new udev crash_hotplug rule in place):

Kernel |Kexec
-------+-----+----
Old |Old |New
| a | a
-------+-----+----
New | a | b
-------+-----+----

where kexec 'old' and 'new' delineate kexec-tools has the needed
modifications for the crash hotplug feature, and kernel 'old' and 'new'
delineate the kernel supports this crash hotplug feature.

Behavior 'a' indicates the unload-then-reload of the entire kdump image.
For the kexec 'old' column, the unload-then-reload occurs due to the
missing flag KEXEC_UPDATE_ELFCOREHDR. An 'old' kernel (with 'new' kexec)
does not present the crash_hotplug sysfs node, which leads to the
unload-then-reload of the kdump image.

Behavior 'b' indicates the desired optimized behavior of the kernel
directly modifying the elfcorehdr and avoiding the unload-then-reload of
the kdump image.

If the udev rule is not updated with crash_hotplug node check, then no
matter any combination of kernel or kexec is new or old, the kdump image
continues to be unload-then-reload on hotplug changes.

To fully support crash hotplug feature, there needs to be a rollout of
kernel, kexec-tools and udev rule changes. However, the order of the
rollout of these pieces does not matter; kexec_load()'d kdump images still
function for hotplug as-is.

Link: https://lkml.kernel.org/r/20230814214446.6659-7-eric.devolder@oracle.com
Signed-off-by: Eric DeVolder <eric.devolder@oracle.com>
Suggested-by: Hari Bathini <hbathini@linux.ibm.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Akhil Raj <lf32.dev@gmail.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Sourabh Jain <sourabhjain@linux.ibm.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Weißschuh <linux@weissschuh.net>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

show more ...


# a42aaad2 04-Jan-2023 Ricardo Ribalda <ribalda@chromium.org>

kexec: introduce sysctl parameters kexec_load_limit_*

kexec allows replacing the current kernel with a different one. This is
usually a source of concerns for sysadmins that want to harden a system

kexec: introduce sysctl parameters kexec_load_limit_*

kexec allows replacing the current kernel with a different one. This is
usually a source of concerns for sysadmins that want to harden a system.

Linux already provides a way to disable loading new kexec kernel via
kexec_load_disabled, but that control is very coard, it is all or nothing
and does not make distinction between a panic kexec and a normal kexec.

This patch introduces new sysctl parameters, with finer tuning to specify
how many times a kexec kernel can be loaded. The sysadmin can set
different limits for kexec panic and kexec reboot kernels. The value can
be modified at runtime via sysctl, but only with a stricter value.

With these new parameters on place, a system with loadpin and verity
enabled, using the following kernel parameters:
sysctl.kexec_load_limit_reboot=0 sysct.kexec_load_limit_panic=1 can have a
good warranty that if initrd tries to load a panic kernel, a malitious
user will have small chances to replace that kernel with a different one,
even if they can trigger timeouts on the disk where the panic kernel
lives.

Link: https://lkml.kernel.org/r/20221114-disable-kexec-reset-v6-3-6a8531a09b9a@chromium.org
Signed-off-by: Ricardo Ribalda <ribalda@chromium.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Philipp Rudo <prudo@redhat.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

show more ...


# 7e99f8b6 04-Jan-2023 Ricardo Ribalda <ribalda@chromium.org>

kexec: factor out kexec_load_permitted

Both syscalls (kexec and kexec_file) do the same check, let's factor it
out.

Link: https://lkml.kernel.org/r/20221114-disable-kexec-reset-v6-2-6a8531a09b9a@ch

kexec: factor out kexec_load_permitted

Both syscalls (kexec and kexec_file) do the same check, let's factor it
out.

Link: https://lkml.kernel.org/r/20221114-disable-kexec-reset-v6-2-6a8531a09b9a@chromium.org
Signed-off-by: Ricardo Ribalda <ribalda@chromium.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Guilherme G. Piccoli <gpiccoli@igalia.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Philipp Rudo <prudo@redhat.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

show more ...


# 05c62574 30-Jun-2022 Valentin Schneider <vschneid@redhat.com>

panic, kexec: make __crash_kexec() NMI safe

Attempting to get a crash dump out of a debug PREEMPT_RT kernel via an NMI
panic() doesn't work. The cause of that lies in the PREEMPT_RT definition
of m

panic, kexec: make __crash_kexec() NMI safe

Attempting to get a crash dump out of a debug PREEMPT_RT kernel via an NMI
panic() doesn't work. The cause of that lies in the PREEMPT_RT definition
of mutex_trylock():

if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
return 0;

This prevents an nmi_panic() from executing the main body of
__crash_kexec() which does the actual kexec into the kdump kernel. The
warning and return are explained by:

6ce47fd961fa ("rtmutex: Warn if trylock is called from hard/softirq context")
[...]
The reasons for this are:

1) There is a potential deadlock in the slowpath

2) Another cpu which blocks on the rtmutex will boost the task
which allegedly locked the rtmutex, but that cannot work
because the hard/softirq context borrows the task context.

Furthermore, grabbing the lock isn't NMI safe, so do away with kexec_mutex
and replace it with an atomic variable. This is somewhat overzealous as
*some* callsites could keep using a mutex (e.g. the sysfs-facing ones
like crash_shrink_memory()), but this has the benefit of involving a
single unified lock and preventing any future NMI-related surprises.

Tested by triggering NMI panics via:

$ echo 1 > /proc/sys/kernel/panic_on_unrecovered_nmi
$ echo 1 > /proc/sys/kernel/unknown_nmi_panic
$ echo 1 > /proc/sys/kernel/panic

$ ipmitool power diag

Link: https://lkml.kernel.org/r/20220630223258.4144112-3-vschneid@redhat.com
Fixes: 6ce47fd961fa ("rtmutex: Warn if trylock is called from hard/softirq context")
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Juri Lelli <jlelli@redhat.com>
Cc: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

show more ...


# 5d700a0f 08-Sep-2021 Arnd Bergmann <arnd@arndb.de>

kexec: avoid compat_alloc_user_space

kimage_alloc_init() expects a __user pointer, so compat_sys_kexec_load()
uses compat_alloc_user_space() to convert the layout and put it back onto
the user space

kexec: avoid compat_alloc_user_space

kimage_alloc_init() expects a __user pointer, so compat_sys_kexec_load()
uses compat_alloc_user_space() to convert the layout and put it back onto
the user space caller stack.

Moving the user space access into the syscall handler directly actually
makes the code simpler, as the conversion for compat mode can now be done
on kernel memory.

Link: https://lkml.kernel.org/r/20210727144859.4150043-3-arnd@kernel.org
Link: https://lore.kernel.org/lkml/YPbtsU4GX6PL7%2F42@infradead.org/
Link: https://lore.kernel.org/lkml/m1y2cbzmnw.fsf@fess.ebiederm.org/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Co-developed-by: Eric Biederman <ebiederm@xmission.com>
Co-developed-by: Christoph Hellwig <hch@infradead.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# 4b692e86 08-Sep-2021 Arnd Bergmann <arnd@arndb.de>

kexec: move locking into do_kexec_load

Patch series "compat: remove compat_alloc_user_space", v5.

Going through compat_alloc_user_space() to convert indirect system call
arguments tends to add comp

kexec: move locking into do_kexec_load

Patch series "compat: remove compat_alloc_user_space", v5.

Going through compat_alloc_user_space() to convert indirect system call
arguments tends to add complexity compared to handling the native and
compat logic in the same code.

This patch (of 6):

The locking is the same between the native and compat version of
sys_kexec_load(), so it can be done in the common implementation to reduce
duplication.

Link: https://lkml.kernel.org/r/20210727144859.4150043-1-arnd@kernel.org
Link: https://lkml.kernel.org/r/20210727144859.4150043-2-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Co-developed-by: Eric Biederman <ebiederm@xmission.com>
Co-developed-by: Christoph Hellwig <hch@infradead.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# b64fcae7 02-Oct-2020 Kees Cook <keescook@chromium.org>

LSM: Introduce kernel_post_load_data() hook

There are a few places in the kernel where LSMs would like to have
visibility into the contents of a kernel buffer that has been loaded or
read. While sec

LSM: Introduce kernel_post_load_data() hook

There are a few places in the kernel where LSMs would like to have
visibility into the contents of a kernel buffer that has been loaded or
read. While security_kernel_post_read_file() (which includes the
buffer) exists as a pairing for security_kernel_read_file(), no such
hook exists to pair with security_kernel_load_data().

Earlier proposals for just using security_kernel_post_read_file() with a
NULL file argument were rejected (i.e. "file" should always be valid for
the security_..._file hooks, but it appears at least one case was
left in the kernel during earlier refactoring. (This will be fixed in
a subsequent patch.)

Since not all cases of security_kernel_load_data() can have a single
contiguous buffer made available to the LSM hook (e.g. kexec image
segments are separately loaded), there needs to be a way for the LSM to
reason about its expectations of the hook coverage. In order to handle
this, add a "contents" argument to the "kernel_load_data" hook that
indicates if the newly added "kernel_post_load_data" hook will be called
with the full contents once loaded. That way, LSMs requiring full contents
can choose to unilaterally reject "kernel_load_data" with contents=false
(which is effectively the existing hook coverage), but when contents=true
they can allow it and later evaluate the "kernel_post_load_data" hook
once the buffer is loaded.

With this change, LSMs can gain coverage over non-file-backed data loads
(e.g. init_module(2) and firmware userspace helper), which will happen
in subsequent patches.

Additionally prepare IMA to start processing these cases.

Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/r/20201002173828.2099543-9-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# de68e4da 04-Dec-2019 Pavel Tatashin <pasha.tatashin@soleen.com>

kexec: add machine_kexec_post_load()

It is the same as machine_kexec_prepare(), but is called after segments are
loaded. This way, can do processing work with already loaded relocation
segments. One

kexec: add machine_kexec_post_load()

It is the same as machine_kexec_prepare(), but is called after segments are
loaded. This way, can do processing work with already loaded relocation
segments. One such example is arm64: it has to have segments loaded in
order to create a page table, but it cannot do it during kexec time,
because at that time allocations won't be possible anymore.

Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Will Deacon <will@kernel.org>

show more ...


# 7d31f460 20-Aug-2019 Matthew Garrett <mjg59@srcf.ucam.org>

kexec_load: Disable at runtime if the kernel is locked down

The kexec_load() syscall permits the loading and execution of arbitrary
code in ring 0, which is something that lock-down is meant to prev

kexec_load: Disable at runtime if the kernel is locked down

The kexec_load() syscall permits the loading and execution of arbitrary
code in ring 0, which is something that lock-down is meant to prevent. It
makes sense to disable kexec_load() in this situation.

This does not affect kexec_file_load() syscall which can check for a
signature on the image to be booted.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Dave Young <dyoung@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>

show more ...


# 40b0b3f8 03-Jun-2019 Thomas Gleixner <tglx@linutronix.de>

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 230

Based on 2 normalized pattern(s):

this source code is licensed under the gnu general public license
version 2 see the file cop

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 230

Based on 2 normalized pattern(s):

this source code is licensed under the gnu general public license
version 2 see the file copying for more details

this source code is licensed under general public license version 2
see

extracted by the scancode license scanner the SPDX license identifier

GPL-2.0-only

has been chosen to replace the boilerplate/reference in 52 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.449021192@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# a210fd32 13-Jul-2018 Mimi Zohar <zohar@linux.vnet.ibm.com>

kexec: add call to LSM hook in original kexec_load syscall

In order for LSMs and IMA-appraisal to differentiate between kexec_load
and kexec_file_load syscalls, both the original and new syscalls mu

kexec: add call to LSM hook in original kexec_load syscall

In order for LSMs and IMA-appraisal to differentiate between kexec_load
and kexec_file_load syscalls, both the original and new syscalls must
call an LSM hook. This patch adds a call to security_kernel_load_data()
in the original kexec_load syscall.

Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: James Morris <james.morris@microsoft.com>

show more ...


# 6b27aef0 17-Mar-2018 Dominik Brodowski <linux@dominikbrodowski.net>

kexec: call do_kexec_load() in compat syscall directly

do_kexec_load() can be called directly by compat_sys_kexec() as long as
the same parameters checks are completed which are currently handled
(a

kexec: call do_kexec_load() in compat syscall directly

do_kexec_load() can be called directly by compat_sys_kexec() as long as
the same parameters checks are completed which are currently handled
(also) by sys_kexec(). Therefore, move those to kexec_load_check(),
call that newly introduced helper function from both sys_kexec() and
compat_sys_kexec(), and duplicate the remaining code from sys_kexec()
in compat_sys_kexec().

This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net

Cc: Eric Biederman <ebiederm@xmission.com>
Cc: kexec@lists.infradead.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>

show more ...


# 1229384f 12-Jul-2017 Xunlei Pang <xlpang@redhat.com>

kdump: protect vmcoreinfo data under the crash memory

Currently vmcoreinfo data is updated at boot time subsys_initcall(), it
has the risk of being modified by some wrong code during system is
runni

kdump: protect vmcoreinfo data under the crash memory

Currently vmcoreinfo data is updated at boot time subsys_initcall(), it
has the risk of being modified by some wrong code during system is
running.

As a result, vmcore dumped may contain the wrong vmcoreinfo. Later on,
when using "crash", "makedumpfile", etc utility to parse this vmcore, we
probably will get "Segmentation fault" or other unexpected errors.

E.g. 1) wrong code overwrites vmcoreinfo_data; 2) further crashes the
system; 3) trigger kdump, then we obviously will fail to recognize the
crash context correctly due to the corrupted vmcoreinfo.

Now except for vmcoreinfo, all the crash data is well
protected(including the cpu note which is fully updated in the crash
path, thus its correctness is guaranteed). Given that vmcoreinfo data
is a large chunk prepared for kdump, we better protect it as well.

To solve this, we relocate and copy vmcoreinfo_data to the crash memory
when kdump is loading via kexec syscalls. Because the whole crash
memory will be protected by existing arch_kexec_protect_crashkres()
mechanism, we naturally protect vmcoreinfo_data from write(even read)
access under kernel direct mapping after kdump is loaded.

Since kdump is usually loaded at the very early stage after boot, we can
trust the correctness of the vmcoreinfo data copied.

On the other hand, we still need to operate the vmcoreinfo safe copy
when crash happens to generate vmcoreinfo_note again, we rely on vmap()
to map out a new kernel virtual address and update to use this new one
instead in the following crash_save_vmcoreinfo().

BTW, we do not touch vmcoreinfo_note, because it will be fully updated
using the protected vmcoreinfo_data after crash which is surely correct
just like the cpu crash note.

Link: http://lkml.kernel.org/r/1493281021-20737-3-git-send-email-xlpang@redhat.com
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Tested-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Young <dyoung@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# 43546d86 02-Aug-2016 Russell King <rmk+kernel@arm.linux.org.uk>

kexec: allow architectures to override boot mapping

kexec physical addresses are the boot-time view of the system. For
certain ARM systems (such as Keystone 2), the boot view of the system
does not

kexec: allow architectures to override boot mapping

kexec physical addresses are the boot-time view of the system. For
certain ARM systems (such as Keystone 2), the boot view of the system
does not match the kernel's view of the system: the boot view uses a
special alias in the lower 4GB of the physical address space.

To cater for these kinds of setups, we need to translate between the
boot view physical addresses and the normal kernel view physical
addresses. This patch extracts the current transation points into
linux/kexec.h, and allows an architecture to override the functions.

Due to the translations required, we unfortunately end up with six
translation functions, which are reduced down to four that the
architecture can override.

[akpm@linux-foundation.org: kexec.h needs asm/io.h for phys_to_virt()]
Link: http://lkml.kernel.org/r/E1b8koP-0004HZ-Vf@rmk-PC.armlinux.org.uk
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Keerthy <j-keerthy@ti.com>
Cc: Pratyush Anand <panand@redhat.com>
Cc: Vitaly Andrianov <vitalya@ti.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Simon Horman <horms@verge.net.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# 7a0058ec 23-May-2016 Xunlei Pang <xlpang@redhat.com>

s390/kexec: consolidate crash_map/unmap_reserved_pages() and arch_kexec_protect(unprotect)_crashkres()

Commit 3f625002581b ("kexec: introduce a protection mechanism for the
crashkernel reserved memo

s390/kexec: consolidate crash_map/unmap_reserved_pages() and arch_kexec_protect(unprotect)_crashkres()

Commit 3f625002581b ("kexec: introduce a protection mechanism for the
crashkernel reserved memory") is a similar mechanism for protecting the
crash kernel reserved memory to previous crash_map/unmap_reserved_pages()
implementation, the new one is more generic in name and cleaner in code
(besides, some arch may not be allowed to unmap the pgtable).

Therefore, this patch consolidates them, and uses the new
arch_kexec_protect(unprotect)_crashkres() to replace former
crash_map/unmap_reserved_pages() which by now has been only used by
S390.

The consolidation work needs the crash memory to be mapped initially,
this is done in machine_kdump_pm_init() which is after
reserve_crashkernel(). Once kdump kernel is loaded, the new
arch_kexec_protect_crashkres() implemented for S390 will actually
unmap the pgtable like before.

Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Acked-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Minfei Huang <mhuang@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# 0eea0867 23-May-2016 Minfei Huang <mnfhuang@gmail.com>

kexec: do a cleanup for function kexec_load

There are a lof of work to be done in function kexec_load, not only for
allocating structs and loading initram, but also for some misc.

To make it more c

kexec: do a cleanup for function kexec_load

There are a lof of work to be done in function kexec_load, not only for
allocating structs and loading initram, but also for some misc.

To make it more clear, wrap a new function do_kexec_load which is used
to allocate structs and load initram. And the pre-work will be done in
kexec_load.

Signed-off-by: Minfei Huang <mnfhuang@gmail.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Xunlei Pang <xlpang@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# 917a3560 23-May-2016 Minfei Huang <mnfhuang@gmail.com>

kexec: make a pair of map/unmap reserved pages in error path

For some arch, kexec shall map the reserved pages, then use them, when
we try to start the kdump service.

kexec may return directly, wit

kexec: make a pair of map/unmap reserved pages in error path

For some arch, kexec shall map the reserved pages, then use them, when
we try to start the kdump service.

kexec may return directly, without unmaping the reserved pages, if it
fails during starting service. To fix it, we make a pair of map/unmap
reserved pages both in generic path and error path.

This patch only affects s390. Other architecturess don't implement the
interface of crash_unmap_reserved_pages and crash_map_reserved_pages.

It isn't a urgent patch. Kernel can work well without any risk,
although the reserved pages are not unmapped before returning in error
path.

Signed-off-by: Minfei Huang <mnfhuang@gmail.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Xunlei Pang <xlpang@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# 9b492cf5 23-May-2016 Xunlei Pang <xlpang@redhat.com>

kexec: introduce a protection mechanism for the crashkernel reserved memory

For the cases that some kernel (module) path stamps the crash reserved
memory(already mapped by the kernel) where has been

kexec: introduce a protection mechanism for the crashkernel reserved memory

For the cases that some kernel (module) path stamps the crash reserved
memory(already mapped by the kernel) where has been loaded the second
kernel data, the kdump kernel will probably fail to boot when panic
happens (or even not happens) leaving the culprit at large, this is
unacceptable.

The patch introduces a mechanism for detecting such cases:

1) After each crash kexec loading, it simply marks the reserved memory
regions readonly since we no longer access it after that. When someone
stamps the region, the first kernel will panic and trigger the kdump.
The weak arch_kexec_protect_crashkres() is introduced to do the actual
protection.

2) To allow multiple loading, once 1) was done we also need to remark
the reserved memory to readwrite each time a system call related to
kdump is made. The weak arch_kexec_unprotect_crashkres() is introduced
to do the actual protection.

The architecture can make its specific implementation by overriding
arch_kexec_protect_crashkres() and arch_kexec_unprotect_crashkres().

Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Minfei Huang <mhuang@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# cdf4b3fa 20-Jan-2016 Xunlei Pang <xlpang@redhat.com>

kexec: set KEXEC_TYPE_CRASH before sanity_check_segment_list()

sanity_check_segment_list() checks KEXEC_TYPE_CRASH flag to ensure all the
segments of the loaded crash kernel are within the kernel cr

kexec: set KEXEC_TYPE_CRASH before sanity_check_segment_list()

sanity_check_segment_list() checks KEXEC_TYPE_CRASH flag to ensure all the
segments of the loaded crash kernel are within the kernel crash resource
limits, so set the flag beforehand.

Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# de90a6bc 07-Nov-2015 Minfei Huang <mnfhuang@gmail.com>

kexec: use file name as the output message prefix

kexec output message misses the prefix "kexec", when Dave Young split the
kexec code. Now, we use file name as the output message prefix.

Currentl

kexec: use file name as the output message prefix

kexec output message misses the prefix "kexec", when Dave Young split the
kexec code. Now, we use file name as the output message prefix.

Currently, the format of output message:
[ 140.290795] SYSC_kexec_load: hello, world
[ 140.291534] kexec: sanity_check_segment_list: hello, world

Ideally, the format of output message:
[ 30.791503] kexec: SYSC_kexec_load, Hello, world
[ 79.182752] kexec_core: sanity_check_segment_list, Hello, world

Remove the custom prefix "kexec" in output message.

Signed-off-by: Minfei Huang <mnfhuang@gmail.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# 2965faa5 09-Sep-2015 Dave Young <dyoung@redhat.com>

kexec: split kexec_load syscall from kexec core code

There are two kexec load syscalls, kexec_load another and kexec_file_load.
kexec_file_load has been splited as kernel/kexec_file.c. In this pat

kexec: split kexec_load syscall from kexec core code

There are two kexec load syscalls, kexec_load another and kexec_file_load.
kexec_file_load has been splited as kernel/kexec_file.c. In this patch I
split kexec_load syscall code to kernel/kexec.c.

And add a new kconfig option KEXEC_CORE, so we can disable kexec_load and
use kexec_file_load only, or vice verse.

The original requirement is from Ted Ts'o, he want kexec kernel signature
being checked with CONFIG_KEXEC_VERIFY_SIG enabled. But kexec-tools use
kexec_load syscall can bypass the checking.

Vivek Goyal proposed to create a common kconfig option so user can compile
in only one syscall for loading kexec kernel. KEXEC/KEXEC_FILE selects
KEXEC_CORE so that old config files still work.

Because there's general code need CONFIG_KEXEC_CORE, so I updated all the
architecture Kconfig with a new option KEXEC_CORE, and let KEXEC selects
KEXEC_CORE in arch Kconfig. Also updated general kernel code with to
kexec_load syscall.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# a43cac0d 09-Sep-2015 Dave Young <dyoung@redhat.com>

kexec: split kexec_file syscall code to kexec_file.c

Split kexec_file syscall related code to another file kernel/kexec_file.c
so that the #ifdef CONFIG_KEXEC_FILE in kexec.c can be dropped.

Sharin

kexec: split kexec_file syscall code to kexec_file.c

Split kexec_file syscall related code to another file kernel/kexec_file.c
so that the #ifdef CONFIG_KEXEC_FILE in kexec.c can be dropped.

Sharing variables and functions are moved to kernel/kexec_internal.h per
suggestion from Vivek and Petr.

[akpm@linux-foundation.org: fix bisectability]
[akpm@linux-foundation.org: declare the various arch_kexec functions]
[akpm@linux-foundation.org: fix build]
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# 5375b708 30-Jun-2015 HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>

kernel/panic/kexec: fix "crash_kexec_post_notifiers" option issue in oops path

Commit f06e5153f4ae2e ("kernel/panic.c: add "crash_kexec_post_notifiers"
option for kdump after panic_notifers") introd

kernel/panic/kexec: fix "crash_kexec_post_notifiers" option issue in oops path

Commit f06e5153f4ae2e ("kernel/panic.c: add "crash_kexec_post_notifiers"
option for kdump after panic_notifers") introduced
"crash_kexec_post_notifiers" kernel boot option, which toggles wheather
panic() calls crash_kexec() before panic_notifiers and dump kmsg or after.

The problem is that the commit overlooks panic_on_oops kernel boot option.
If it is enabled, crash_kexec() is called directly without going through
panic() in oops path.

To fix this issue, this patch adds a check to "crash_kexec_post_notifiers"
in the condition of kexec_should_crash().

Also, put a comment in kexec_should_crash() to explain not obvious things
on this patch.

Signed-off-by: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Acked-by: Baoquan He <bhe@redhat.com>
Tested-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


1234567