xref: /openbsd/sys/kern/subr_pool.c (revision 0d280c5f)
1 /*	$OpenBSD: subr_pool.c,v 1.236 2022/08/14 01:58:28 jsg Exp $	*/
2 /*	$NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $	*/
3 
4 /*-
5  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/errno.h>
37 #include <sys/malloc.h>
38 #include <sys/pool.h>
39 #include <sys/proc.h>
40 #include <sys/sysctl.h>
41 #include <sys/task.h>
42 #include <sys/time.h>
43 #include <sys/timeout.h>
44 #include <sys/percpu.h>
45 #include <sys/tracepoint.h>
46 
47 #include <uvm/uvm_extern.h>
48 
49 /*
50  * Pool resource management utility.
51  *
52  * Memory is allocated in pages which are split into pieces according to
53  * the pool item size. Each page is kept on one of three lists in the
54  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
55  * for empty, full and partially-full pages respectively. The individual
56  * pool items are on a linked list headed by `ph_items' in each page
57  * header. The memory for building the page list is either taken from
58  * the allocated pages themselves (for small pool items) or taken from
59  * an internal pool of page headers (`phpool').
60  */
61 
62 /* List of all pools */
63 SIMPLEQ_HEAD(,pool) pool_head = SIMPLEQ_HEAD_INITIALIZER(pool_head);
64 
65 /*
66  * Every pool gets a unique serial number assigned to it. If this counter
67  * wraps, we're screwed, but we shouldn't create so many pools anyway.
68  */
69 unsigned int pool_serial;
70 unsigned int pool_count;
71 
72 /* Lock the previous variables making up the global pool state */
73 struct rwlock pool_lock = RWLOCK_INITIALIZER("pools");
74 
75 /* Private pool for page header structures */
76 struct pool phpool;
77 
78 struct pool_lock_ops {
79 	void	(*pl_init)(struct pool *, union pool_lock *,
80 		    const struct lock_type *);
81 	void	(*pl_enter)(union pool_lock *);
82 	int	(*pl_enter_try)(union pool_lock *);
83 	void	(*pl_leave)(union pool_lock *);
84 	void	(*pl_assert_locked)(union pool_lock *);
85 	void	(*pl_assert_unlocked)(union pool_lock *);
86 	int	(*pl_sleep)(void *, union pool_lock *, int, const char *);
87 };
88 
89 static const struct pool_lock_ops pool_lock_ops_mtx;
90 static const struct pool_lock_ops pool_lock_ops_rw;
91 
92 #ifdef WITNESS
93 #define pl_init(pp, pl) do {						\
94 	static const struct lock_type __lock_type = { .lt_name = #pl };	\
95 	(pp)->pr_lock_ops->pl_init(pp, pl, &__lock_type);		\
96 } while (0)
97 #else /* WITNESS */
98 #define pl_init(pp, pl)		(pp)->pr_lock_ops->pl_init(pp, pl, NULL)
99 #endif /* WITNESS */
100 
101 static inline void
pl_enter(struct pool * pp,union pool_lock * pl)102 pl_enter(struct pool *pp, union pool_lock *pl)
103 {
104 	pp->pr_lock_ops->pl_enter(pl);
105 }
106 static inline int
pl_enter_try(struct pool * pp,union pool_lock * pl)107 pl_enter_try(struct pool *pp, union pool_lock *pl)
108 {
109 	return pp->pr_lock_ops->pl_enter_try(pl);
110 }
111 static inline void
pl_leave(struct pool * pp,union pool_lock * pl)112 pl_leave(struct pool *pp, union pool_lock *pl)
113 {
114 	pp->pr_lock_ops->pl_leave(pl);
115 }
116 static inline void
pl_assert_locked(struct pool * pp,union pool_lock * pl)117 pl_assert_locked(struct pool *pp, union pool_lock *pl)
118 {
119 	pp->pr_lock_ops->pl_assert_locked(pl);
120 }
121 static inline void
pl_assert_unlocked(struct pool * pp,union pool_lock * pl)122 pl_assert_unlocked(struct pool *pp, union pool_lock *pl)
123 {
124 	pp->pr_lock_ops->pl_assert_unlocked(pl);
125 }
126 static inline int
pl_sleep(struct pool * pp,void * ident,union pool_lock * lock,int priority,const char * wmesg)127 pl_sleep(struct pool *pp, void *ident, union pool_lock *lock, int priority,
128     const char *wmesg)
129 {
130 	return pp->pr_lock_ops->pl_sleep(ident, lock, priority, wmesg);
131 }
132 
133 struct pool_item {
134 	u_long				pi_magic;
135 	XSIMPLEQ_ENTRY(pool_item)	pi_list;
136 };
137 #define POOL_IMAGIC(ph, pi) ((u_long)(pi) ^ (ph)->ph_magic)
138 
139 struct pool_page_header {
140 	/* Page headers */
141 	TAILQ_ENTRY(pool_page_header)
142 				ph_entry;	/* pool page list */
143 	XSIMPLEQ_HEAD(, pool_item)
144 				ph_items;	/* free items on the page */
145 	RBT_ENTRY(pool_page_header)
146 				ph_node;	/* off-page page headers */
147 	unsigned int		ph_nmissing;	/* # of chunks in use */
148 	caddr_t			ph_page;	/* this page's address */
149 	caddr_t			ph_colored;	/* page's colored address */
150 	unsigned long		ph_magic;
151 	uint64_t		ph_timestamp;
152 };
153 #define POOL_MAGICBIT (1 << 3) /* keep away from perturbed low bits */
154 #define POOL_PHPOISON(ph) ISSET((ph)->ph_magic, POOL_MAGICBIT)
155 
156 #ifdef MULTIPROCESSOR
157 struct pool_cache_item {
158 	struct pool_cache_item	*ci_next;	/* next item in list */
159 	unsigned long		 ci_nitems;	/* number of items in list */
160 	TAILQ_ENTRY(pool_cache_item)
161 				 ci_nextl;	/* entry in list of lists */
162 };
163 
164 /* we store whether the cached item is poisoned in the high bit of nitems */
165 #define POOL_CACHE_ITEM_NITEMS_MASK	0x7ffffffUL
166 #define POOL_CACHE_ITEM_NITEMS_POISON	0x8000000UL
167 
168 #define POOL_CACHE_ITEM_NITEMS(_ci)					\
169     ((_ci)->ci_nitems & POOL_CACHE_ITEM_NITEMS_MASK)
170 
171 #define POOL_CACHE_ITEM_POISONED(_ci)					\
172     ISSET((_ci)->ci_nitems, POOL_CACHE_ITEM_NITEMS_POISON)
173 
174 struct pool_cache {
175 	struct pool_cache_item	*pc_actv;	/* active list of items */
176 	unsigned long		 pc_nactv;	/* actv head nitems cache */
177 	struct pool_cache_item	*pc_prev;	/* previous list of items */
178 
179 	uint64_t		 pc_gen;	/* generation number */
180 	uint64_t		 pc_nget;	/* # of successful requests */
181 	uint64_t		 pc_nfail;	/* # of unsuccessful reqs */
182 	uint64_t		 pc_nput;	/* # of releases */
183 	uint64_t		 pc_nlget;	/* # of list requests */
184 	uint64_t		 pc_nlfail;	/* # of fails getting a list */
185 	uint64_t		 pc_nlput;	/* # of list releases */
186 
187 	int			 pc_nout;
188 };
189 
190 void	*pool_cache_get(struct pool *);
191 void	 pool_cache_put(struct pool *, void *);
192 void	 pool_cache_destroy(struct pool *);
193 void	 pool_cache_gc(struct pool *);
194 #endif
195 void	 pool_cache_pool_info(struct pool *, struct kinfo_pool *);
196 int	 pool_cache_info(struct pool *, void *, size_t *);
197 int	 pool_cache_cpus_info(struct pool *, void *, size_t *);
198 
199 #ifdef POOL_DEBUG
200 int	pool_debug = 1;
201 #else
202 int	pool_debug = 0;
203 #endif
204 
205 #define POOL_INPGHDR(pp) ((pp)->pr_phoffset != 0)
206 
207 struct pool_page_header *
208 	 pool_p_alloc(struct pool *, int, int *);
209 void	 pool_p_insert(struct pool *, struct pool_page_header *);
210 void	 pool_p_remove(struct pool *, struct pool_page_header *);
211 void	 pool_p_free(struct pool *, struct pool_page_header *);
212 
213 void	 pool_update_curpage(struct pool *);
214 void	*pool_do_get(struct pool *, int, int *);
215 void	 pool_do_put(struct pool *, void *);
216 int	 pool_chk_page(struct pool *, struct pool_page_header *, int);
217 int	 pool_chk(struct pool *);
218 void	 pool_get_done(struct pool *, void *, void *);
219 void	 pool_runqueue(struct pool *, int);
220 
221 void	*pool_allocator_alloc(struct pool *, int, int *);
222 void	 pool_allocator_free(struct pool *, void *);
223 
224 /*
225  * The default pool allocator.
226  */
227 void	*pool_page_alloc(struct pool *, int, int *);
228 void	pool_page_free(struct pool *, void *);
229 
230 /*
231  * safe for interrupts; this is the default allocator
232  */
233 struct pool_allocator pool_allocator_single = {
234 	pool_page_alloc,
235 	pool_page_free,
236 	POOL_ALLOC_SIZE(PAGE_SIZE, POOL_ALLOC_ALIGNED)
237 };
238 
239 void	*pool_multi_alloc(struct pool *, int, int *);
240 void	pool_multi_free(struct pool *, void *);
241 
242 struct pool_allocator pool_allocator_multi = {
243 	pool_multi_alloc,
244 	pool_multi_free,
245 	POOL_ALLOC_SIZES(PAGE_SIZE, (1UL << 31), POOL_ALLOC_ALIGNED)
246 };
247 
248 void	*pool_multi_alloc_ni(struct pool *, int, int *);
249 void	pool_multi_free_ni(struct pool *, void *);
250 
251 struct pool_allocator pool_allocator_multi_ni = {
252 	pool_multi_alloc_ni,
253 	pool_multi_free_ni,
254 	POOL_ALLOC_SIZES(PAGE_SIZE, (1UL << 31), POOL_ALLOC_ALIGNED)
255 };
256 
257 #ifdef DDB
258 void	 pool_print_pagelist(struct pool_pagelist *, int (*)(const char *, ...)
259 	     __attribute__((__format__(__kprintf__,1,2))));
260 void	 pool_print1(struct pool *, const char *, int (*)(const char *, ...)
261 	     __attribute__((__format__(__kprintf__,1,2))));
262 #endif
263 
264 /* stale page garbage collectors */
265 void	pool_gc_sched(void *);
266 struct timeout pool_gc_tick = TIMEOUT_INITIALIZER(pool_gc_sched, NULL);
267 void	pool_gc_pages(void *);
268 struct task pool_gc_task = TASK_INITIALIZER(pool_gc_pages, NULL);
269 
270 #define POOL_WAIT_FREE	SEC_TO_NSEC(1)
271 #define POOL_WAIT_GC	SEC_TO_NSEC(8)
272 
273 RBT_PROTOTYPE(phtree, pool_page_header, ph_node, phtree_compare);
274 
275 static inline int
phtree_compare(const struct pool_page_header * a,const struct pool_page_header * b)276 phtree_compare(const struct pool_page_header *a,
277     const struct pool_page_header *b)
278 {
279 	vaddr_t va = (vaddr_t)a->ph_page;
280 	vaddr_t vb = (vaddr_t)b->ph_page;
281 
282 	/* the compares in this order are important for the NFIND to work */
283 	if (vb < va)
284 		return (-1);
285 	if (vb > va)
286 		return (1);
287 
288 	return (0);
289 }
290 
291 RBT_GENERATE(phtree, pool_page_header, ph_node, phtree_compare);
292 
293 /*
294  * Return the pool page header based on page address.
295  */
296 static inline struct pool_page_header *
pr_find_pagehead(struct pool * pp,void * v)297 pr_find_pagehead(struct pool *pp, void *v)
298 {
299 	struct pool_page_header *ph, key;
300 
301 	if (POOL_INPGHDR(pp)) {
302 		caddr_t page;
303 
304 		page = (caddr_t)((vaddr_t)v & pp->pr_pgmask);
305 
306 		return ((struct pool_page_header *)(page + pp->pr_phoffset));
307 	}
308 
309 	key.ph_page = v;
310 	ph = RBT_NFIND(phtree, &pp->pr_phtree, &key);
311 	if (ph == NULL)
312 		panic("%s: %s: page header missing", __func__, pp->pr_wchan);
313 
314 	KASSERT(ph->ph_page <= (caddr_t)v);
315 	if (ph->ph_page + pp->pr_pgsize <= (caddr_t)v)
316 		panic("%s: %s: incorrect page", __func__, pp->pr_wchan);
317 
318 	return (ph);
319 }
320 
321 /*
322  * Initialize the given pool resource structure.
323  *
324  * We export this routine to allow other kernel parts to declare
325  * static pools that must be initialized before malloc() is available.
326  */
327 void
pool_init(struct pool * pp,size_t size,u_int align,int ipl,int flags,const char * wchan,struct pool_allocator * palloc)328 pool_init(struct pool *pp, size_t size, u_int align, int ipl, int flags,
329     const char *wchan, struct pool_allocator *palloc)
330 {
331 	int off = 0, space;
332 	unsigned int pgsize = PAGE_SIZE, items;
333 	size_t pa_pagesz;
334 #ifdef DIAGNOSTIC
335 	struct pool *iter;
336 #endif
337 
338 	if (align == 0)
339 		align = ALIGN(1);
340 
341 	if (size < sizeof(struct pool_item))
342 		size = sizeof(struct pool_item);
343 
344 	size = roundup(size, align);
345 
346 	while (size * 8 > pgsize)
347 		pgsize <<= 1;
348 
349 	if (palloc == NULL) {
350 		if (pgsize > PAGE_SIZE) {
351 			palloc = ISSET(flags, PR_WAITOK) ?
352 			    &pool_allocator_multi_ni : &pool_allocator_multi;
353 		} else
354 			palloc = &pool_allocator_single;
355 
356 		pa_pagesz = palloc->pa_pagesz;
357 	} else {
358 		size_t pgsizes;
359 
360 		pa_pagesz = palloc->pa_pagesz;
361 		if (pa_pagesz == 0)
362 			pa_pagesz = POOL_ALLOC_DEFAULT;
363 
364 		pgsizes = pa_pagesz & ~POOL_ALLOC_ALIGNED;
365 
366 		/* make sure the allocator can fit at least one item */
367 		if (size > pgsizes) {
368 			panic("%s: pool %s item size 0x%zx > "
369 			    "allocator %p sizes 0x%zx", __func__, wchan,
370 			    size, palloc, pgsizes);
371 		}
372 
373 		/* shrink pgsize until it fits into the range */
374 		while (!ISSET(pgsizes, pgsize))
375 			pgsize >>= 1;
376 	}
377 	KASSERT(ISSET(pa_pagesz, pgsize));
378 
379 	items = pgsize / size;
380 
381 	/*
382 	 * Decide whether to put the page header off page to avoid
383 	 * wasting too large a part of the page. Off-page page headers
384 	 * go into an RB tree, so we can match a returned item with
385 	 * its header based on the page address.
386 	 */
387 	if (ISSET(pa_pagesz, POOL_ALLOC_ALIGNED)) {
388 		if (pgsize - (size * items) >
389 		    sizeof(struct pool_page_header)) {
390 			off = pgsize - sizeof(struct pool_page_header);
391 		} else if (sizeof(struct pool_page_header) * 2 >= size) {
392 			off = pgsize - sizeof(struct pool_page_header);
393 			items = off / size;
394 		}
395 	}
396 
397 	KASSERT(items > 0);
398 
399 	/*
400 	 * Initialize the pool structure.
401 	 */
402 	memset(pp, 0, sizeof(*pp));
403 	if (ISSET(flags, PR_RWLOCK)) {
404 		KASSERT(flags & PR_WAITOK);
405 		pp->pr_lock_ops = &pool_lock_ops_rw;
406 	} else
407 		pp->pr_lock_ops = &pool_lock_ops_mtx;
408 	TAILQ_INIT(&pp->pr_emptypages);
409 	TAILQ_INIT(&pp->pr_fullpages);
410 	TAILQ_INIT(&pp->pr_partpages);
411 	pp->pr_curpage = NULL;
412 	pp->pr_npages = 0;
413 	pp->pr_minitems = 0;
414 	pp->pr_minpages = 0;
415 	pp->pr_maxpages = 8;
416 	pp->pr_size = size;
417 	pp->pr_pgsize = pgsize;
418 	pp->pr_pgmask = ~0UL ^ (pgsize - 1);
419 	pp->pr_phoffset = off;
420 	pp->pr_itemsperpage = items;
421 	pp->pr_wchan = wchan;
422 	pp->pr_alloc = palloc;
423 	pp->pr_nitems = 0;
424 	pp->pr_nout = 0;
425 	pp->pr_hardlimit = UINT_MAX;
426 	pp->pr_hardlimit_warning = NULL;
427 	pp->pr_hardlimit_ratecap.tv_sec = 0;
428 	pp->pr_hardlimit_ratecap.tv_usec = 0;
429 	pp->pr_hardlimit_warning_last.tv_sec = 0;
430 	pp->pr_hardlimit_warning_last.tv_usec = 0;
431 	RBT_INIT(phtree, &pp->pr_phtree);
432 
433 	/*
434 	 * Use the space between the chunks and the page header
435 	 * for cache coloring.
436 	 */
437 	space = POOL_INPGHDR(pp) ? pp->pr_phoffset : pp->pr_pgsize;
438 	space -= pp->pr_itemsperpage * pp->pr_size;
439 	pp->pr_align = align;
440 	pp->pr_maxcolors = (space / align) + 1;
441 
442 	pp->pr_nget = 0;
443 	pp->pr_nfail = 0;
444 	pp->pr_nput = 0;
445 	pp->pr_npagealloc = 0;
446 	pp->pr_npagefree = 0;
447 	pp->pr_hiwat = 0;
448 	pp->pr_nidle = 0;
449 
450 	pp->pr_ipl = ipl;
451 	pp->pr_flags = flags;
452 
453 	pl_init(pp, &pp->pr_lock);
454 	pl_init(pp, &pp->pr_requests_lock);
455 	TAILQ_INIT(&pp->pr_requests);
456 
457 	if (phpool.pr_size == 0) {
458 		pool_init(&phpool, sizeof(struct pool_page_header), 0,
459 		    IPL_HIGH, 0, "phpool", NULL);
460 
461 		/* make sure phpool won't "recurse" */
462 		KASSERT(POOL_INPGHDR(&phpool));
463 	}
464 
465 	/* pglistalloc/constraint parameters */
466 	pp->pr_crange = &kp_dirty;
467 
468 	/* Insert this into the list of all pools. */
469 	rw_enter_write(&pool_lock);
470 #ifdef DIAGNOSTIC
471 	SIMPLEQ_FOREACH(iter, &pool_head, pr_poollist) {
472 		if (iter == pp)
473 			panic("%s: pool %s already on list", __func__, wchan);
474 	}
475 #endif
476 
477 	pp->pr_serial = ++pool_serial;
478 	if (pool_serial == 0)
479 		panic("%s: too much uptime", __func__);
480 
481 	SIMPLEQ_INSERT_HEAD(&pool_head, pp, pr_poollist);
482 	pool_count++;
483 	rw_exit_write(&pool_lock);
484 }
485 
486 /*
487  * Decommission a pool resource.
488  */
489 void
pool_destroy(struct pool * pp)490 pool_destroy(struct pool *pp)
491 {
492 	struct pool_page_header *ph;
493 	struct pool *prev, *iter;
494 
495 #ifdef MULTIPROCESSOR
496 	if (pp->pr_cache != NULL)
497 		pool_cache_destroy(pp);
498 #endif
499 
500 #ifdef DIAGNOSTIC
501 	if (pp->pr_nout != 0)
502 		panic("%s: pool busy: still out: %u", __func__, pp->pr_nout);
503 #endif
504 
505 	/* Remove from global pool list */
506 	rw_enter_write(&pool_lock);
507 	pool_count--;
508 	if (pp == SIMPLEQ_FIRST(&pool_head))
509 		SIMPLEQ_REMOVE_HEAD(&pool_head, pr_poollist);
510 	else {
511 		prev = SIMPLEQ_FIRST(&pool_head);
512 		SIMPLEQ_FOREACH(iter, &pool_head, pr_poollist) {
513 			if (iter == pp) {
514 				SIMPLEQ_REMOVE_AFTER(&pool_head, prev,
515 				    pr_poollist);
516 				break;
517 			}
518 			prev = iter;
519 		}
520 	}
521 	rw_exit_write(&pool_lock);
522 
523 	/* Remove all pages */
524 	while ((ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL) {
525 		pl_enter(pp, &pp->pr_lock);
526 		pool_p_remove(pp, ph);
527 		pl_leave(pp, &pp->pr_lock);
528 		pool_p_free(pp, ph);
529 	}
530 	KASSERT(TAILQ_EMPTY(&pp->pr_fullpages));
531 	KASSERT(TAILQ_EMPTY(&pp->pr_partpages));
532 }
533 
534 void
pool_request_init(struct pool_request * pr,void (* handler)(struct pool *,void *,void *),void * cookie)535 pool_request_init(struct pool_request *pr,
536     void (*handler)(struct pool *, void *, void *), void *cookie)
537 {
538 	pr->pr_handler = handler;
539 	pr->pr_cookie = cookie;
540 	pr->pr_item = NULL;
541 }
542 
543 void
pool_request(struct pool * pp,struct pool_request * pr)544 pool_request(struct pool *pp, struct pool_request *pr)
545 {
546 	pl_enter(pp, &pp->pr_requests_lock);
547 	TAILQ_INSERT_TAIL(&pp->pr_requests, pr, pr_entry);
548 	pool_runqueue(pp, PR_NOWAIT);
549 	pl_leave(pp, &pp->pr_requests_lock);
550 }
551 
552 struct pool_get_memory {
553 	union pool_lock lock;
554 	void * volatile v;
555 };
556 
557 /*
558  * Grab an item from the pool.
559  */
560 void *
pool_get(struct pool * pp,int flags)561 pool_get(struct pool *pp, int flags)
562 {
563 	void *v = NULL;
564 	int slowdown = 0;
565 
566 	KASSERT(flags & (PR_WAITOK | PR_NOWAIT));
567 	if (pp->pr_flags & PR_RWLOCK)
568 		KASSERT(flags & PR_WAITOK);
569 
570 #ifdef MULTIPROCESSOR
571 	if (pp->pr_cache != NULL) {
572 		v = pool_cache_get(pp);
573 		if (v != NULL)
574 			goto good;
575 	}
576 #endif
577 
578 	pl_enter(pp, &pp->pr_lock);
579 	if (pp->pr_nout >= pp->pr_hardlimit) {
580 		if (ISSET(flags, PR_NOWAIT|PR_LIMITFAIL))
581 			goto fail;
582 	} else if ((v = pool_do_get(pp, flags, &slowdown)) == NULL) {
583 		if (ISSET(flags, PR_NOWAIT))
584 			goto fail;
585 	}
586 	pl_leave(pp, &pp->pr_lock);
587 
588 	if ((slowdown || pool_debug == 2) && ISSET(flags, PR_WAITOK))
589 		yield();
590 
591 	if (v == NULL) {
592 		struct pool_get_memory mem = { .v = NULL };
593 		struct pool_request pr;
594 
595 #ifdef DIAGNOSTIC
596 		if (ISSET(flags, PR_WAITOK) && curproc == &proc0)
597 			panic("%s: cannot sleep for memory during boot",
598 			    __func__);
599 #endif
600 		pl_init(pp, &mem.lock);
601 		pool_request_init(&pr, pool_get_done, &mem);
602 		pool_request(pp, &pr);
603 
604 		pl_enter(pp, &mem.lock);
605 		while (mem.v == NULL)
606 			pl_sleep(pp, &mem, &mem.lock, PSWP, pp->pr_wchan);
607 		pl_leave(pp, &mem.lock);
608 
609 		v = mem.v;
610 	}
611 
612 #ifdef MULTIPROCESSOR
613 good:
614 #endif
615 	if (ISSET(flags, PR_ZERO))
616 		memset(v, 0, pp->pr_size);
617 
618 	TRACEPOINT(uvm, pool_get, pp, v, flags);
619 
620 	return (v);
621 
622 fail:
623 	pp->pr_nfail++;
624 	pl_leave(pp, &pp->pr_lock);
625 	return (NULL);
626 }
627 
628 void
pool_get_done(struct pool * pp,void * xmem,void * v)629 pool_get_done(struct pool *pp, void *xmem, void *v)
630 {
631 	struct pool_get_memory *mem = xmem;
632 
633 	pl_enter(pp, &mem->lock);
634 	mem->v = v;
635 	pl_leave(pp, &mem->lock);
636 
637 	wakeup_one(mem);
638 }
639 
640 void
pool_runqueue(struct pool * pp,int flags)641 pool_runqueue(struct pool *pp, int flags)
642 {
643 	struct pool_requests prl = TAILQ_HEAD_INITIALIZER(prl);
644 	struct pool_request *pr;
645 
646 	pl_assert_unlocked(pp, &pp->pr_lock);
647 	pl_assert_locked(pp, &pp->pr_requests_lock);
648 
649 	if (pp->pr_requesting++)
650 		return;
651 
652 	do {
653 		pp->pr_requesting = 1;
654 
655 		TAILQ_CONCAT(&prl, &pp->pr_requests, pr_entry);
656 		if (TAILQ_EMPTY(&prl))
657 			continue;
658 
659 		pl_leave(pp, &pp->pr_requests_lock);
660 
661 		pl_enter(pp, &pp->pr_lock);
662 		pr = TAILQ_FIRST(&prl);
663 		while (pr != NULL) {
664 			int slowdown = 0;
665 
666 			if (pp->pr_nout >= pp->pr_hardlimit)
667 				break;
668 
669 			pr->pr_item = pool_do_get(pp, flags, &slowdown);
670 			if (pr->pr_item == NULL) /* || slowdown ? */
671 				break;
672 
673 			pr = TAILQ_NEXT(pr, pr_entry);
674 		}
675 		pl_leave(pp, &pp->pr_lock);
676 
677 		while ((pr = TAILQ_FIRST(&prl)) != NULL &&
678 		    pr->pr_item != NULL) {
679 			TAILQ_REMOVE(&prl, pr, pr_entry);
680 			(*pr->pr_handler)(pp, pr->pr_cookie, pr->pr_item);
681 		}
682 
683 		pl_enter(pp, &pp->pr_requests_lock);
684 	} while (--pp->pr_requesting);
685 
686 	TAILQ_CONCAT(&pp->pr_requests, &prl, pr_entry);
687 }
688 
689 void *
pool_do_get(struct pool * pp,int flags,int * slowdown)690 pool_do_get(struct pool *pp, int flags, int *slowdown)
691 {
692 	struct pool_item *pi;
693 	struct pool_page_header *ph;
694 
695 	pl_assert_locked(pp, &pp->pr_lock);
696 
697 	splassert(pp->pr_ipl);
698 
699 	/*
700 	 * Account for this item now to avoid races if we need to give up
701 	 * pr_lock to allocate a page.
702 	 */
703 	pp->pr_nout++;
704 
705 	if (pp->pr_curpage == NULL) {
706 		pl_leave(pp, &pp->pr_lock);
707 		ph = pool_p_alloc(pp, flags, slowdown);
708 		pl_enter(pp, &pp->pr_lock);
709 
710 		if (ph == NULL) {
711 			pp->pr_nout--;
712 			return (NULL);
713 		}
714 
715 		pool_p_insert(pp, ph);
716 	}
717 
718 	ph = pp->pr_curpage;
719 	pi = XSIMPLEQ_FIRST(&ph->ph_items);
720 	if (__predict_false(pi == NULL))
721 		panic("%s: %s: page empty", __func__, pp->pr_wchan);
722 
723 	if (__predict_false(pi->pi_magic != POOL_IMAGIC(ph, pi))) {
724 		panic("%s: %s free list modified: "
725 		    "page %p; item addr %p; offset 0x%x=0x%lx != 0x%lx",
726 		    __func__, pp->pr_wchan, ph->ph_page, pi,
727 		    0, pi->pi_magic, POOL_IMAGIC(ph, pi));
728 	}
729 
730 	XSIMPLEQ_REMOVE_HEAD(&ph->ph_items, pi_list);
731 
732 #ifdef DIAGNOSTIC
733 	if (pool_debug && POOL_PHPOISON(ph)) {
734 		size_t pidx;
735 		uint32_t pval;
736 		if (poison_check(pi + 1, pp->pr_size - sizeof(*pi),
737 		    &pidx, &pval)) {
738 			int *ip = (int *)(pi + 1);
739 			panic("%s: %s free list modified: "
740 			    "page %p; item addr %p; offset 0x%zx=0x%x",
741 			    __func__, pp->pr_wchan, ph->ph_page, pi,
742 			    (pidx * sizeof(int)) + sizeof(*pi), ip[pidx]);
743 		}
744 	}
745 #endif /* DIAGNOSTIC */
746 
747 	if (ph->ph_nmissing++ == 0) {
748 		/*
749 		 * This page was previously empty.  Move it to the list of
750 		 * partially-full pages.  This page is already curpage.
751 		 */
752 		TAILQ_REMOVE(&pp->pr_emptypages, ph, ph_entry);
753 		TAILQ_INSERT_TAIL(&pp->pr_partpages, ph, ph_entry);
754 
755 		pp->pr_nidle--;
756 	}
757 
758 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
759 		/*
760 		 * This page is now full.  Move it to the full list
761 		 * and select a new current page.
762 		 */
763 		TAILQ_REMOVE(&pp->pr_partpages, ph, ph_entry);
764 		TAILQ_INSERT_TAIL(&pp->pr_fullpages, ph, ph_entry);
765 		pool_update_curpage(pp);
766 	}
767 
768 	pp->pr_nget++;
769 
770 	return (pi);
771 }
772 
773 /*
774  * Return resource to the pool.
775  */
776 void
pool_put(struct pool * pp,void * v)777 pool_put(struct pool *pp, void *v)
778 {
779 	struct pool_page_header *ph, *freeph = NULL;
780 
781 #ifdef DIAGNOSTIC
782 	if (v == NULL)
783 		panic("%s: NULL item", __func__);
784 #endif
785 
786 	TRACEPOINT(uvm, pool_put, pp, v);
787 
788 #ifdef MULTIPROCESSOR
789 	if (pp->pr_cache != NULL && TAILQ_EMPTY(&pp->pr_requests)) {
790 		pool_cache_put(pp, v);
791 		return;
792 	}
793 #endif
794 
795 	pl_enter(pp, &pp->pr_lock);
796 
797 	pool_do_put(pp, v);
798 
799 	pp->pr_nout--;
800 	pp->pr_nput++;
801 
802 	/* is it time to free a page? */
803 	if (pp->pr_nidle > pp->pr_maxpages &&
804 	    (ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL &&
805 	    getnsecuptime() - ph->ph_timestamp > POOL_WAIT_FREE) {
806 		freeph = ph;
807 		pool_p_remove(pp, freeph);
808 	}
809 
810 	pl_leave(pp, &pp->pr_lock);
811 
812 	if (freeph != NULL)
813 		pool_p_free(pp, freeph);
814 
815 	pool_wakeup(pp);
816 }
817 
818 void
pool_wakeup(struct pool * pp)819 pool_wakeup(struct pool *pp)
820 {
821 	if (!TAILQ_EMPTY(&pp->pr_requests)) {
822 		pl_enter(pp, &pp->pr_requests_lock);
823 		pool_runqueue(pp, PR_NOWAIT);
824 		pl_leave(pp, &pp->pr_requests_lock);
825 	}
826 }
827 
828 void
pool_do_put(struct pool * pp,void * v)829 pool_do_put(struct pool *pp, void *v)
830 {
831 	struct pool_item *pi = v;
832 	struct pool_page_header *ph;
833 
834 	splassert(pp->pr_ipl);
835 
836 	ph = pr_find_pagehead(pp, v);
837 
838 #ifdef DIAGNOSTIC
839 	if (pool_debug) {
840 		struct pool_item *qi;
841 		XSIMPLEQ_FOREACH(qi, &ph->ph_items, pi_list) {
842 			if (pi == qi) {
843 				panic("%s: %s: double pool_put: %p", __func__,
844 				    pp->pr_wchan, pi);
845 			}
846 		}
847 	}
848 #endif /* DIAGNOSTIC */
849 
850 	pi->pi_magic = POOL_IMAGIC(ph, pi);
851 	XSIMPLEQ_INSERT_HEAD(&ph->ph_items, pi, pi_list);
852 #ifdef DIAGNOSTIC
853 	if (POOL_PHPOISON(ph))
854 		poison_mem(pi + 1, pp->pr_size - sizeof(*pi));
855 #endif /* DIAGNOSTIC */
856 
857 	if (ph->ph_nmissing-- == pp->pr_itemsperpage) {
858 		/*
859 		 * The page was previously completely full, move it to the
860 		 * partially-full list.
861 		 */
862 		TAILQ_REMOVE(&pp->pr_fullpages, ph, ph_entry);
863 		TAILQ_INSERT_TAIL(&pp->pr_partpages, ph, ph_entry);
864 	}
865 
866 	if (ph->ph_nmissing == 0) {
867 		/*
868 		 * The page is now empty, so move it to the empty page list.
869 		 */
870 		pp->pr_nidle++;
871 
872 		ph->ph_timestamp = getnsecuptime();
873 		TAILQ_REMOVE(&pp->pr_partpages, ph, ph_entry);
874 		TAILQ_INSERT_TAIL(&pp->pr_emptypages, ph, ph_entry);
875 		pool_update_curpage(pp);
876 	}
877 }
878 
879 /*
880  * Add N items to the pool.
881  */
882 int
pool_prime(struct pool * pp,int n)883 pool_prime(struct pool *pp, int n)
884 {
885 	struct pool_pagelist pl = TAILQ_HEAD_INITIALIZER(pl);
886 	struct pool_page_header *ph;
887 	int newpages;
888 
889 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
890 
891 	while (newpages-- > 0) {
892 		int slowdown = 0;
893 
894 		ph = pool_p_alloc(pp, PR_NOWAIT, &slowdown);
895 		if (ph == NULL) /* or slowdown? */
896 			break;
897 
898 		TAILQ_INSERT_TAIL(&pl, ph, ph_entry);
899 	}
900 
901 	pl_enter(pp, &pp->pr_lock);
902 	while ((ph = TAILQ_FIRST(&pl)) != NULL) {
903 		TAILQ_REMOVE(&pl, ph, ph_entry);
904 		pool_p_insert(pp, ph);
905 	}
906 	pl_leave(pp, &pp->pr_lock);
907 
908 	return (0);
909 }
910 
911 struct pool_page_header *
pool_p_alloc(struct pool * pp,int flags,int * slowdown)912 pool_p_alloc(struct pool *pp, int flags, int *slowdown)
913 {
914 	struct pool_page_header *ph;
915 	struct pool_item *pi;
916 	caddr_t addr;
917 	unsigned int order;
918 	int o;
919 	int n;
920 
921 	pl_assert_unlocked(pp, &pp->pr_lock);
922 	KASSERT(pp->pr_size >= sizeof(*pi));
923 
924 	addr = pool_allocator_alloc(pp, flags, slowdown);
925 	if (addr == NULL)
926 		return (NULL);
927 
928 	if (POOL_INPGHDR(pp))
929 		ph = (struct pool_page_header *)(addr + pp->pr_phoffset);
930 	else {
931 		ph = pool_get(&phpool, flags);
932 		if (ph == NULL) {
933 			pool_allocator_free(pp, addr);
934 			return (NULL);
935 		}
936 	}
937 
938 	XSIMPLEQ_INIT(&ph->ph_items);
939 	ph->ph_page = addr;
940 	addr += pp->pr_align * (pp->pr_npagealloc % pp->pr_maxcolors);
941 	ph->ph_colored = addr;
942 	ph->ph_nmissing = 0;
943 	arc4random_buf(&ph->ph_magic, sizeof(ph->ph_magic));
944 #ifdef DIAGNOSTIC
945 	/* use a bit in ph_magic to record if we poison page items */
946 	if (pool_debug)
947 		SET(ph->ph_magic, POOL_MAGICBIT);
948 	else
949 		CLR(ph->ph_magic, POOL_MAGICBIT);
950 #endif /* DIAGNOSTIC */
951 
952 	n = pp->pr_itemsperpage;
953 	o = 32;
954 	while (n--) {
955 		pi = (struct pool_item *)addr;
956 		pi->pi_magic = POOL_IMAGIC(ph, pi);
957 
958 		if (o == 32) {
959 			order = arc4random();
960 			o = 0;
961 		}
962 		if (ISSET(order, 1U << o++))
963 			XSIMPLEQ_INSERT_TAIL(&ph->ph_items, pi, pi_list);
964 		else
965 			XSIMPLEQ_INSERT_HEAD(&ph->ph_items, pi, pi_list);
966 
967 #ifdef DIAGNOSTIC
968 		if (POOL_PHPOISON(ph))
969 			poison_mem(pi + 1, pp->pr_size - sizeof(*pi));
970 #endif /* DIAGNOSTIC */
971 
972 		addr += pp->pr_size;
973 	}
974 
975 	return (ph);
976 }
977 
978 void
pool_p_free(struct pool * pp,struct pool_page_header * ph)979 pool_p_free(struct pool *pp, struct pool_page_header *ph)
980 {
981 	struct pool_item *pi;
982 
983 	pl_assert_unlocked(pp, &pp->pr_lock);
984 	KASSERT(ph->ph_nmissing == 0);
985 
986 	XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) {
987 		if (__predict_false(pi->pi_magic != POOL_IMAGIC(ph, pi))) {
988 			panic("%s: %s free list modified: "
989 			    "page %p; item addr %p; offset 0x%x=0x%lx",
990 			    __func__, pp->pr_wchan, ph->ph_page, pi,
991 			    0, pi->pi_magic);
992 		}
993 
994 #ifdef DIAGNOSTIC
995 		if (POOL_PHPOISON(ph)) {
996 			size_t pidx;
997 			uint32_t pval;
998 			if (poison_check(pi + 1, pp->pr_size - sizeof(*pi),
999 			    &pidx, &pval)) {
1000 				int *ip = (int *)(pi + 1);
1001 				panic("%s: %s free list modified: "
1002 				    "page %p; item addr %p; offset 0x%zx=0x%x",
1003 				    __func__, pp->pr_wchan, ph->ph_page, pi,
1004 				    pidx * sizeof(int), ip[pidx]);
1005 			}
1006 		}
1007 #endif
1008 	}
1009 
1010 	pool_allocator_free(pp, ph->ph_page);
1011 
1012 	if (!POOL_INPGHDR(pp))
1013 		pool_put(&phpool, ph);
1014 }
1015 
1016 void
pool_p_insert(struct pool * pp,struct pool_page_header * ph)1017 pool_p_insert(struct pool *pp, struct pool_page_header *ph)
1018 {
1019 	pl_assert_locked(pp, &pp->pr_lock);
1020 
1021 	/* If the pool was depleted, point at the new page */
1022 	if (pp->pr_curpage == NULL)
1023 		pp->pr_curpage = ph;
1024 
1025 	TAILQ_INSERT_TAIL(&pp->pr_emptypages, ph, ph_entry);
1026 	if (!POOL_INPGHDR(pp))
1027 		RBT_INSERT(phtree, &pp->pr_phtree, ph);
1028 
1029 	pp->pr_nitems += pp->pr_itemsperpage;
1030 	pp->pr_nidle++;
1031 
1032 	pp->pr_npagealloc++;
1033 	if (++pp->pr_npages > pp->pr_hiwat)
1034 		pp->pr_hiwat = pp->pr_npages;
1035 }
1036 
1037 void
pool_p_remove(struct pool * pp,struct pool_page_header * ph)1038 pool_p_remove(struct pool *pp, struct pool_page_header *ph)
1039 {
1040 	pl_assert_locked(pp, &pp->pr_lock);
1041 
1042 	pp->pr_npagefree++;
1043 	pp->pr_npages--;
1044 	pp->pr_nidle--;
1045 	pp->pr_nitems -= pp->pr_itemsperpage;
1046 
1047 	if (!POOL_INPGHDR(pp))
1048 		RBT_REMOVE(phtree, &pp->pr_phtree, ph);
1049 	TAILQ_REMOVE(&pp->pr_emptypages, ph, ph_entry);
1050 
1051 	pool_update_curpage(pp);
1052 }
1053 
1054 void
pool_update_curpage(struct pool * pp)1055 pool_update_curpage(struct pool *pp)
1056 {
1057 	pp->pr_curpage = TAILQ_LAST(&pp->pr_partpages, pool_pagelist);
1058 	if (pp->pr_curpage == NULL) {
1059 		pp->pr_curpage = TAILQ_LAST(&pp->pr_emptypages, pool_pagelist);
1060 	}
1061 }
1062 
1063 void
pool_setlowat(struct pool * pp,int n)1064 pool_setlowat(struct pool *pp, int n)
1065 {
1066 	int prime = 0;
1067 
1068 	pl_enter(pp, &pp->pr_lock);
1069 	pp->pr_minitems = n;
1070 	pp->pr_minpages = (n == 0)
1071 		? 0
1072 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1073 
1074 	if (pp->pr_nitems < n)
1075 		prime = n - pp->pr_nitems;
1076 	pl_leave(pp, &pp->pr_lock);
1077 
1078 	if (prime > 0)
1079 		pool_prime(pp, prime);
1080 }
1081 
1082 void
pool_sethiwat(struct pool * pp,int n)1083 pool_sethiwat(struct pool *pp, int n)
1084 {
1085 	pp->pr_maxpages = (n == 0)
1086 		? 0
1087 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1088 }
1089 
1090 int
pool_sethardlimit(struct pool * pp,u_int n,const char * warnmsg,int ratecap)1091 pool_sethardlimit(struct pool *pp, u_int n, const char *warnmsg, int ratecap)
1092 {
1093 	int error = 0;
1094 
1095 	if (n < pp->pr_nout) {
1096 		error = EINVAL;
1097 		goto done;
1098 	}
1099 
1100 	pp->pr_hardlimit = n;
1101 	pp->pr_hardlimit_warning = warnmsg;
1102 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1103 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1104 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1105 
1106 done:
1107 	return (error);
1108 }
1109 
1110 void
pool_set_constraints(struct pool * pp,const struct kmem_pa_mode * mode)1111 pool_set_constraints(struct pool *pp, const struct kmem_pa_mode *mode)
1112 {
1113 	pp->pr_crange = mode;
1114 }
1115 
1116 /*
1117  * Release all complete pages that have not been used recently.
1118  *
1119  * Returns non-zero if any pages have been reclaimed.
1120  */
1121 int
pool_reclaim(struct pool * pp)1122 pool_reclaim(struct pool *pp)
1123 {
1124 	struct pool_page_header *ph, *phnext;
1125 	struct pool_pagelist pl = TAILQ_HEAD_INITIALIZER(pl);
1126 
1127 	pl_enter(pp, &pp->pr_lock);
1128 	for (ph = TAILQ_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1129 		phnext = TAILQ_NEXT(ph, ph_entry);
1130 
1131 		/* Check our minimum page claim */
1132 		if (pp->pr_npages <= pp->pr_minpages)
1133 			break;
1134 
1135 		/*
1136 		 * If freeing this page would put us below
1137 		 * the low water mark, stop now.
1138 		 */
1139 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1140 		    pp->pr_minitems)
1141 			break;
1142 
1143 		pool_p_remove(pp, ph);
1144 		TAILQ_INSERT_TAIL(&pl, ph, ph_entry);
1145 	}
1146 	pl_leave(pp, &pp->pr_lock);
1147 
1148 	if (TAILQ_EMPTY(&pl))
1149 		return (0);
1150 
1151 	while ((ph = TAILQ_FIRST(&pl)) != NULL) {
1152 		TAILQ_REMOVE(&pl, ph, ph_entry);
1153 		pool_p_free(pp, ph);
1154 	}
1155 
1156 	return (1);
1157 }
1158 
1159 /*
1160  * Release all complete pages that have not been used recently
1161  * from all pools.
1162  */
1163 void
pool_reclaim_all(void)1164 pool_reclaim_all(void)
1165 {
1166 	struct pool	*pp;
1167 
1168 	rw_enter_read(&pool_lock);
1169 	SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist)
1170 		pool_reclaim(pp);
1171 	rw_exit_read(&pool_lock);
1172 }
1173 
1174 #ifdef DDB
1175 #include <machine/db_machdep.h>
1176 #include <ddb/db_output.h>
1177 
1178 /*
1179  * Diagnostic helpers.
1180  */
1181 void
pool_printit(struct pool * pp,const char * modif,int (* pr)(const char *,...))1182 pool_printit(struct pool *pp, const char *modif,
1183     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
1184 {
1185 	pool_print1(pp, modif, pr);
1186 }
1187 
1188 void
pool_print_pagelist(struct pool_pagelist * pl,int (* pr)(const char *,...))1189 pool_print_pagelist(struct pool_pagelist *pl,
1190     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
1191 {
1192 	struct pool_page_header *ph;
1193 	struct pool_item *pi;
1194 
1195 	TAILQ_FOREACH(ph, pl, ph_entry) {
1196 		(*pr)("\t\tpage %p, color %p, nmissing %d\n",
1197 		    ph->ph_page, ph->ph_colored, ph->ph_nmissing);
1198 		XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) {
1199 			if (pi->pi_magic != POOL_IMAGIC(ph, pi)) {
1200 				(*pr)("\t\t\titem %p, magic 0x%lx\n",
1201 				    pi, pi->pi_magic);
1202 			}
1203 		}
1204 	}
1205 }
1206 
1207 void
pool_print1(struct pool * pp,const char * modif,int (* pr)(const char *,...))1208 pool_print1(struct pool *pp, const char *modif,
1209     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
1210 {
1211 	struct pool_page_header *ph;
1212 	int print_pagelist = 0;
1213 	char c;
1214 
1215 	while ((c = *modif++) != '\0') {
1216 		if (c == 'p')
1217 			print_pagelist = 1;
1218 		modif++;
1219 	}
1220 
1221 	(*pr)("POOL %s: size %u maxcolors %u\n", pp->pr_wchan, pp->pr_size,
1222 	    pp->pr_maxcolors);
1223 	(*pr)("\talloc %p\n", pp->pr_alloc);
1224 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1225 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1226 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1227 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1228 
1229 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1230 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1231 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1232 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1233 
1234 	if (print_pagelist == 0)
1235 		return;
1236 
1237 	if ((ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL)
1238 		(*pr)("\n\tempty page list:\n");
1239 	pool_print_pagelist(&pp->pr_emptypages, pr);
1240 	if ((ph = TAILQ_FIRST(&pp->pr_fullpages)) != NULL)
1241 		(*pr)("\n\tfull page list:\n");
1242 	pool_print_pagelist(&pp->pr_fullpages, pr);
1243 	if ((ph = TAILQ_FIRST(&pp->pr_partpages)) != NULL)
1244 		(*pr)("\n\tpartial-page list:\n");
1245 	pool_print_pagelist(&pp->pr_partpages, pr);
1246 
1247 	if (pp->pr_curpage == NULL)
1248 		(*pr)("\tno current page\n");
1249 	else
1250 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1251 }
1252 
1253 void
db_show_all_pools(db_expr_t expr,int haddr,db_expr_t count,char * modif)1254 db_show_all_pools(db_expr_t expr, int haddr, db_expr_t count, char *modif)
1255 {
1256 	struct pool *pp;
1257 	char maxp[16];
1258 	int ovflw;
1259 	char mode;
1260 
1261 	mode = modif[0];
1262 	if (mode != '\0' && mode != 'a') {
1263 		db_printf("usage: show all pools [/a]\n");
1264 		return;
1265 	}
1266 
1267 	if (mode == '\0')
1268 		db_printf("%-10s%4s%9s%5s%9s%6s%6s%6s%6s%6s%6s%5s\n",
1269 		    "Name",
1270 		    "Size",
1271 		    "Requests",
1272 		    "Fail",
1273 		    "Releases",
1274 		    "Pgreq",
1275 		    "Pgrel",
1276 		    "Npage",
1277 		    "Hiwat",
1278 		    "Minpg",
1279 		    "Maxpg",
1280 		    "Idle");
1281 	else
1282 		db_printf("%-12s %18s %18s\n",
1283 		    "Name", "Address", "Allocator");
1284 
1285 	SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) {
1286 		if (mode == 'a') {
1287 			db_printf("%-12s %18p %18p\n", pp->pr_wchan, pp,
1288 			    pp->pr_alloc);
1289 			continue;
1290 		}
1291 
1292 		if (!pp->pr_nget)
1293 			continue;
1294 
1295 		if (pp->pr_maxpages == UINT_MAX)
1296 			snprintf(maxp, sizeof maxp, "inf");
1297 		else
1298 			snprintf(maxp, sizeof maxp, "%u", pp->pr_maxpages);
1299 
1300 #define PRWORD(ovflw, fmt, width, fixed, val) do {	\
1301 	(ovflw) += db_printf((fmt),			\
1302 	    (width) - (fixed) - (ovflw) > 0 ?		\
1303 	    (width) - (fixed) - (ovflw) : 0,		\
1304 	    (val)) - (width);				\
1305 	if ((ovflw) < 0)				\
1306 		(ovflw) = 0;				\
1307 } while (/* CONSTCOND */0)
1308 
1309 		ovflw = 0;
1310 		PRWORD(ovflw, "%-*s", 10, 0, pp->pr_wchan);
1311 		PRWORD(ovflw, " %*u", 4, 1, pp->pr_size);
1312 		PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget);
1313 		PRWORD(ovflw, " %*lu", 5, 1, pp->pr_nfail);
1314 		PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nput);
1315 		PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagealloc);
1316 		PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagefree);
1317 		PRWORD(ovflw, " %*d", 6, 1, pp->pr_npages);
1318 		PRWORD(ovflw, " %*d", 6, 1, pp->pr_hiwat);
1319 		PRWORD(ovflw, " %*d", 6, 1, pp->pr_minpages);
1320 		PRWORD(ovflw, " %*s", 6, 1, maxp);
1321 		PRWORD(ovflw, " %*lu\n", 5, 1, pp->pr_nidle);
1322 
1323 		pool_chk(pp);
1324 	}
1325 }
1326 #endif /* DDB */
1327 
1328 #if defined(POOL_DEBUG) || defined(DDB)
1329 int
pool_chk_page(struct pool * pp,struct pool_page_header * ph,int expected)1330 pool_chk_page(struct pool *pp, struct pool_page_header *ph, int expected)
1331 {
1332 	struct pool_item *pi;
1333 	caddr_t page;
1334 	int n;
1335 	const char *label = pp->pr_wchan;
1336 
1337 	page = (caddr_t)((u_long)ph & pp->pr_pgmask);
1338 	if (page != ph->ph_page && POOL_INPGHDR(pp)) {
1339 		printf("%s: ", label);
1340 		printf("pool(%p:%s): page inconsistency: page %p; "
1341 		    "at page head addr %p (p %p)\n",
1342 		    pp, pp->pr_wchan, ph->ph_page, ph, page);
1343 		return 1;
1344 	}
1345 
1346 	for (pi = XSIMPLEQ_FIRST(&ph->ph_items), n = 0;
1347 	     pi != NULL;
1348 	     pi = XSIMPLEQ_NEXT(&ph->ph_items, pi, pi_list), n++) {
1349 		if ((caddr_t)pi < ph->ph_page ||
1350 		    (caddr_t)pi >= ph->ph_page + pp->pr_pgsize) {
1351 			printf("%s: ", label);
1352 			printf("pool(%p:%s): page inconsistency: page %p;"
1353 			    " item ordinal %d; addr %p\n", pp,
1354 			    pp->pr_wchan, ph->ph_page, n, pi);
1355 			return (1);
1356 		}
1357 
1358 		if (pi->pi_magic != POOL_IMAGIC(ph, pi)) {
1359 			printf("%s: ", label);
1360 			printf("pool(%p:%s): free list modified: "
1361 			    "page %p; item ordinal %d; addr %p "
1362 			    "(p %p); offset 0x%x=0x%lx\n",
1363 			    pp, pp->pr_wchan, ph->ph_page, n, pi, page,
1364 			    0, pi->pi_magic);
1365 		}
1366 
1367 #ifdef DIAGNOSTIC
1368 		if (POOL_PHPOISON(ph)) {
1369 			size_t pidx;
1370 			uint32_t pval;
1371 			if (poison_check(pi + 1, pp->pr_size - sizeof(*pi),
1372 			    &pidx, &pval)) {
1373 				int *ip = (int *)(pi + 1);
1374 				printf("pool(%s): free list modified: "
1375 				    "page %p; item ordinal %d; addr %p "
1376 				    "(p %p); offset 0x%zx=0x%x\n",
1377 				    pp->pr_wchan, ph->ph_page, n, pi,
1378 				    page, pidx * sizeof(int), ip[pidx]);
1379 			}
1380 		}
1381 #endif /* DIAGNOSTIC */
1382 	}
1383 	if (n + ph->ph_nmissing != pp->pr_itemsperpage) {
1384 		printf("pool(%p:%s): page inconsistency: page %p;"
1385 		    " %d on list, %d missing, %d items per page\n", pp,
1386 		    pp->pr_wchan, ph->ph_page, n, ph->ph_nmissing,
1387 		    pp->pr_itemsperpage);
1388 		return 1;
1389 	}
1390 	if (expected >= 0 && n != expected) {
1391 		printf("pool(%p:%s): page inconsistency: page %p;"
1392 		    " %d on list, %d missing, %d expected\n", pp,
1393 		    pp->pr_wchan, ph->ph_page, n, ph->ph_nmissing,
1394 		    expected);
1395 		return 1;
1396 	}
1397 	return 0;
1398 }
1399 
1400 int
pool_chk(struct pool * pp)1401 pool_chk(struct pool *pp)
1402 {
1403 	struct pool_page_header *ph;
1404 	int r = 0;
1405 
1406 	TAILQ_FOREACH(ph, &pp->pr_emptypages, ph_entry)
1407 		r += pool_chk_page(pp, ph, pp->pr_itemsperpage);
1408 	TAILQ_FOREACH(ph, &pp->pr_fullpages, ph_entry)
1409 		r += pool_chk_page(pp, ph, 0);
1410 	TAILQ_FOREACH(ph, &pp->pr_partpages, ph_entry)
1411 		r += pool_chk_page(pp, ph, -1);
1412 
1413 	return (r);
1414 }
1415 #endif /* defined(POOL_DEBUG) || defined(DDB) */
1416 
1417 #ifdef DDB
1418 void
pool_walk(struct pool * pp,int full,int (* pr)(const char *,...),void (* func)(void *,int,int (*)(const char *,...)))1419 pool_walk(struct pool *pp, int full,
1420     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))),
1421     void (*func)(void *, int, int (*)(const char *, ...)
1422 	    __attribute__((__format__(__kprintf__,1,2)))))
1423 {
1424 	struct pool_page_header *ph;
1425 	struct pool_item *pi;
1426 	caddr_t cp;
1427 	int n;
1428 
1429 	TAILQ_FOREACH(ph, &pp->pr_fullpages, ph_entry) {
1430 		cp = ph->ph_colored;
1431 		n = ph->ph_nmissing;
1432 
1433 		while (n--) {
1434 			func(cp, full, pr);
1435 			cp += pp->pr_size;
1436 		}
1437 	}
1438 
1439 	TAILQ_FOREACH(ph, &pp->pr_partpages, ph_entry) {
1440 		cp = ph->ph_colored;
1441 		n = ph->ph_nmissing;
1442 
1443 		do {
1444 			XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) {
1445 				if (cp == (caddr_t)pi)
1446 					break;
1447 			}
1448 			if (cp != (caddr_t)pi) {
1449 				func(cp, full, pr);
1450 				n--;
1451 			}
1452 
1453 			cp += pp->pr_size;
1454 		} while (n > 0);
1455 	}
1456 }
1457 #endif
1458 
1459 /*
1460  * We have three different sysctls.
1461  * kern.pool.npools - the number of pools.
1462  * kern.pool.pool.<pool#> - the pool struct for the pool#.
1463  * kern.pool.name.<pool#> - the name for pool#.
1464  */
1465 int
sysctl_dopool(int * name,u_int namelen,char * oldp,size_t * oldlenp)1466 sysctl_dopool(int *name, u_int namelen, char *oldp, size_t *oldlenp)
1467 {
1468 	struct kinfo_pool pi;
1469 	struct pool *pp;
1470 	int rv = ENOENT;
1471 
1472 	switch (name[0]) {
1473 	case KERN_POOL_NPOOLS:
1474 		if (namelen != 1)
1475 			return (ENOTDIR);
1476 		return (sysctl_rdint(oldp, oldlenp, NULL, pool_count));
1477 
1478 	case KERN_POOL_NAME:
1479 	case KERN_POOL_POOL:
1480 	case KERN_POOL_CACHE:
1481 	case KERN_POOL_CACHE_CPUS:
1482 		break;
1483 	default:
1484 		return (EOPNOTSUPP);
1485 	}
1486 
1487 	if (namelen != 2)
1488 		return (ENOTDIR);
1489 
1490 	rw_enter_read(&pool_lock);
1491 
1492 	SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) {
1493 		if (name[1] == pp->pr_serial)
1494 			break;
1495 	}
1496 
1497 	if (pp == NULL)
1498 		goto done;
1499 
1500 	switch (name[0]) {
1501 	case KERN_POOL_NAME:
1502 		rv = sysctl_rdstring(oldp, oldlenp, NULL, pp->pr_wchan);
1503 		break;
1504 	case KERN_POOL_POOL:
1505 		memset(&pi, 0, sizeof(pi));
1506 
1507 		pl_enter(pp, &pp->pr_lock);
1508 		pi.pr_size = pp->pr_size;
1509 		pi.pr_pgsize = pp->pr_pgsize;
1510 		pi.pr_itemsperpage = pp->pr_itemsperpage;
1511 		pi.pr_npages = pp->pr_npages;
1512 		pi.pr_minpages = pp->pr_minpages;
1513 		pi.pr_maxpages = pp->pr_maxpages;
1514 		pi.pr_hardlimit = pp->pr_hardlimit;
1515 		pi.pr_nout = pp->pr_nout;
1516 		pi.pr_nitems = pp->pr_nitems;
1517 		pi.pr_nget = pp->pr_nget;
1518 		pi.pr_nput = pp->pr_nput;
1519 		pi.pr_nfail = pp->pr_nfail;
1520 		pi.pr_npagealloc = pp->pr_npagealloc;
1521 		pi.pr_npagefree = pp->pr_npagefree;
1522 		pi.pr_hiwat = pp->pr_hiwat;
1523 		pi.pr_nidle = pp->pr_nidle;
1524 		pl_leave(pp, &pp->pr_lock);
1525 
1526 		pool_cache_pool_info(pp, &pi);
1527 
1528 		rv = sysctl_rdstruct(oldp, oldlenp, NULL, &pi, sizeof(pi));
1529 		break;
1530 
1531 	case KERN_POOL_CACHE:
1532 		rv = pool_cache_info(pp, oldp, oldlenp);
1533 		break;
1534 
1535 	case KERN_POOL_CACHE_CPUS:
1536 		rv = pool_cache_cpus_info(pp, oldp, oldlenp);
1537 		break;
1538 	}
1539 
1540 done:
1541 	rw_exit_read(&pool_lock);
1542 
1543 	return (rv);
1544 }
1545 
1546 void
pool_gc_sched(void * null)1547 pool_gc_sched(void *null)
1548 {
1549 	task_add(systqmp, &pool_gc_task);
1550 }
1551 
1552 void
pool_gc_pages(void * null)1553 pool_gc_pages(void *null)
1554 {
1555 	struct pool *pp;
1556 	struct pool_page_header *ph, *freeph;
1557 	int s;
1558 
1559 	rw_enter_read(&pool_lock);
1560 	s = splvm(); /* XXX go to splvm until all pools _setipl properly */
1561 	SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) {
1562 #ifdef MULTIPROCESSOR
1563 		if (pp->pr_cache != NULL)
1564 			pool_cache_gc(pp);
1565 #endif
1566 
1567 		if (pp->pr_nidle <= pp->pr_minpages || /* guess */
1568 		    !pl_enter_try(pp, &pp->pr_lock)) /* try */
1569 			continue;
1570 
1571 		/* is it time to free a page? */
1572 		if (pp->pr_nidle > pp->pr_minpages &&
1573 		    (ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL &&
1574 		    getnsecuptime() - ph->ph_timestamp > POOL_WAIT_GC) {
1575 			freeph = ph;
1576 			pool_p_remove(pp, freeph);
1577 		} else
1578 			freeph = NULL;
1579 
1580 		pl_leave(pp, &pp->pr_lock);
1581 
1582 		if (freeph != NULL)
1583 			pool_p_free(pp, freeph);
1584 	}
1585 	splx(s);
1586 	rw_exit_read(&pool_lock);
1587 
1588 	timeout_add_sec(&pool_gc_tick, 1);
1589 }
1590 
1591 /*
1592  * Pool backend allocators.
1593  */
1594 
1595 void *
pool_allocator_alloc(struct pool * pp,int flags,int * slowdown)1596 pool_allocator_alloc(struct pool *pp, int flags, int *slowdown)
1597 {
1598 	void *v;
1599 
1600 	v = (*pp->pr_alloc->pa_alloc)(pp, flags, slowdown);
1601 
1602 #ifdef DIAGNOSTIC
1603 	if (v != NULL && POOL_INPGHDR(pp)) {
1604 		vaddr_t addr = (vaddr_t)v;
1605 		if ((addr & pp->pr_pgmask) != addr) {
1606 			panic("%s: %s page address %p isn't aligned to %u",
1607 			    __func__, pp->pr_wchan, v, pp->pr_pgsize);
1608 		}
1609 	}
1610 #endif
1611 
1612 	return (v);
1613 }
1614 
1615 void
pool_allocator_free(struct pool * pp,void * v)1616 pool_allocator_free(struct pool *pp, void *v)
1617 {
1618 	struct pool_allocator *pa = pp->pr_alloc;
1619 
1620 	(*pa->pa_free)(pp, v);
1621 }
1622 
1623 void *
pool_page_alloc(struct pool * pp,int flags,int * slowdown)1624 pool_page_alloc(struct pool *pp, int flags, int *slowdown)
1625 {
1626 	struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER;
1627 
1628 	kd.kd_waitok = ISSET(flags, PR_WAITOK);
1629 	kd.kd_slowdown = slowdown;
1630 
1631 	return (km_alloc(pp->pr_pgsize, &kv_page, pp->pr_crange, &kd));
1632 }
1633 
1634 void
pool_page_free(struct pool * pp,void * v)1635 pool_page_free(struct pool *pp, void *v)
1636 {
1637 	km_free(v, pp->pr_pgsize, &kv_page, pp->pr_crange);
1638 }
1639 
1640 void *
pool_multi_alloc(struct pool * pp,int flags,int * slowdown)1641 pool_multi_alloc(struct pool *pp, int flags, int *slowdown)
1642 {
1643 	struct kmem_va_mode kv = kv_intrsafe;
1644 	struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER;
1645 	void *v;
1646 	int s;
1647 
1648 	if (POOL_INPGHDR(pp))
1649 		kv.kv_align = pp->pr_pgsize;
1650 
1651 	kd.kd_waitok = ISSET(flags, PR_WAITOK);
1652 	kd.kd_slowdown = slowdown;
1653 
1654 	s = splvm();
1655 	v = km_alloc(pp->pr_pgsize, &kv, pp->pr_crange, &kd);
1656 	splx(s);
1657 
1658 	return (v);
1659 }
1660 
1661 void
pool_multi_free(struct pool * pp,void * v)1662 pool_multi_free(struct pool *pp, void *v)
1663 {
1664 	struct kmem_va_mode kv = kv_intrsafe;
1665 	int s;
1666 
1667 	if (POOL_INPGHDR(pp))
1668 		kv.kv_align = pp->pr_pgsize;
1669 
1670 	s = splvm();
1671 	km_free(v, pp->pr_pgsize, &kv, pp->pr_crange);
1672 	splx(s);
1673 }
1674 
1675 void *
pool_multi_alloc_ni(struct pool * pp,int flags,int * slowdown)1676 pool_multi_alloc_ni(struct pool *pp, int flags, int *slowdown)
1677 {
1678 	struct kmem_va_mode kv = kv_any;
1679 	struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER;
1680 	void *v;
1681 
1682 	if (POOL_INPGHDR(pp))
1683 		kv.kv_align = pp->pr_pgsize;
1684 
1685 	kd.kd_waitok = ISSET(flags, PR_WAITOK);
1686 	kd.kd_slowdown = slowdown;
1687 
1688 	KERNEL_LOCK();
1689 	v = km_alloc(pp->pr_pgsize, &kv, pp->pr_crange, &kd);
1690 	KERNEL_UNLOCK();
1691 
1692 	return (v);
1693 }
1694 
1695 void
pool_multi_free_ni(struct pool * pp,void * v)1696 pool_multi_free_ni(struct pool *pp, void *v)
1697 {
1698 	struct kmem_va_mode kv = kv_any;
1699 
1700 	if (POOL_INPGHDR(pp))
1701 		kv.kv_align = pp->pr_pgsize;
1702 
1703 	KERNEL_LOCK();
1704 	km_free(v, pp->pr_pgsize, &kv, pp->pr_crange);
1705 	KERNEL_UNLOCK();
1706 }
1707 
1708 #ifdef MULTIPROCESSOR
1709 
1710 struct pool pool_caches; /* per cpu cache entries */
1711 
1712 void
pool_cache_init(struct pool * pp)1713 pool_cache_init(struct pool *pp)
1714 {
1715 	struct cpumem *cm;
1716 	struct pool_cache *pc;
1717 	struct cpumem_iter i;
1718 
1719 	if (pool_caches.pr_size == 0) {
1720 		pool_init(&pool_caches, sizeof(struct pool_cache),
1721 		    CACHELINESIZE, IPL_NONE, PR_WAITOK | PR_RWLOCK,
1722 		    "plcache", NULL);
1723 	}
1724 
1725 	/* must be able to use the pool items as cache list items */
1726 	KASSERT(pp->pr_size >= sizeof(struct pool_cache_item));
1727 
1728 	cm = cpumem_get(&pool_caches);
1729 
1730 	pl_init(pp, &pp->pr_cache_lock);
1731 	arc4random_buf(pp->pr_cache_magic, sizeof(pp->pr_cache_magic));
1732 	TAILQ_INIT(&pp->pr_cache_lists);
1733 	pp->pr_cache_nitems = 0;
1734 	pp->pr_cache_timestamp = getnsecuptime();
1735 	pp->pr_cache_items = 8;
1736 	pp->pr_cache_contention = 0;
1737 	pp->pr_cache_ngc = 0;
1738 
1739 	CPUMEM_FOREACH(pc, &i, cm) {
1740 		pc->pc_actv = NULL;
1741 		pc->pc_nactv = 0;
1742 		pc->pc_prev = NULL;
1743 
1744 		pc->pc_nget = 0;
1745 		pc->pc_nfail = 0;
1746 		pc->pc_nput = 0;
1747 		pc->pc_nlget = 0;
1748 		pc->pc_nlfail = 0;
1749 		pc->pc_nlput = 0;
1750 		pc->pc_nout = 0;
1751 	}
1752 
1753 	membar_producer();
1754 
1755 	pp->pr_cache = cm;
1756 }
1757 
1758 static inline void
pool_cache_item_magic(struct pool * pp,struct pool_cache_item * ci)1759 pool_cache_item_magic(struct pool *pp, struct pool_cache_item *ci)
1760 {
1761 	unsigned long *entry = (unsigned long *)&ci->ci_nextl;
1762 
1763 	entry[0] = pp->pr_cache_magic[0] ^ (u_long)ci;
1764 	entry[1] = pp->pr_cache_magic[1] ^ (u_long)ci->ci_next;
1765 }
1766 
1767 static inline void
pool_cache_item_magic_check(struct pool * pp,struct pool_cache_item * ci)1768 pool_cache_item_magic_check(struct pool *pp, struct pool_cache_item *ci)
1769 {
1770 	unsigned long *entry;
1771 	unsigned long val;
1772 
1773 	entry = (unsigned long *)&ci->ci_nextl;
1774 	val = pp->pr_cache_magic[0] ^ (u_long)ci;
1775 	if (*entry != val)
1776 		goto fail;
1777 
1778 	entry++;
1779 	val = pp->pr_cache_magic[1] ^ (u_long)ci->ci_next;
1780 	if (*entry != val)
1781 		goto fail;
1782 
1783 	return;
1784 
1785 fail:
1786 	panic("%s: %s cpu free list modified: item addr %p+%zu 0x%lx!=0x%lx",
1787 	    __func__, pp->pr_wchan, ci, (caddr_t)entry - (caddr_t)ci,
1788 	    *entry, val);
1789 }
1790 
1791 static inline void
pool_list_enter(struct pool * pp)1792 pool_list_enter(struct pool *pp)
1793 {
1794 	if (pl_enter_try(pp, &pp->pr_cache_lock) == 0) {
1795 		pl_enter(pp, &pp->pr_cache_lock);
1796 		pp->pr_cache_contention++;
1797 	}
1798 }
1799 
1800 static inline void
pool_list_leave(struct pool * pp)1801 pool_list_leave(struct pool *pp)
1802 {
1803 	pl_leave(pp, &pp->pr_cache_lock);
1804 }
1805 
1806 static inline struct pool_cache_item *
pool_cache_list_alloc(struct pool * pp,struct pool_cache * pc)1807 pool_cache_list_alloc(struct pool *pp, struct pool_cache *pc)
1808 {
1809 	struct pool_cache_item *pl;
1810 
1811 	pool_list_enter(pp);
1812 	pl = TAILQ_FIRST(&pp->pr_cache_lists);
1813 	if (pl != NULL) {
1814 		TAILQ_REMOVE(&pp->pr_cache_lists, pl, ci_nextl);
1815 		pp->pr_cache_nitems -= POOL_CACHE_ITEM_NITEMS(pl);
1816 
1817 		pool_cache_item_magic(pp, pl);
1818 
1819 		pc->pc_nlget++;
1820 	} else
1821 		pc->pc_nlfail++;
1822 
1823 	/* fold this cpus nout into the global while we have the lock */
1824 	pp->pr_cache_nout += pc->pc_nout;
1825 	pc->pc_nout = 0;
1826 	pool_list_leave(pp);
1827 
1828 	return (pl);
1829 }
1830 
1831 static inline void
pool_cache_list_free(struct pool * pp,struct pool_cache * pc,struct pool_cache_item * ci)1832 pool_cache_list_free(struct pool *pp, struct pool_cache *pc,
1833     struct pool_cache_item *ci)
1834 {
1835 	pool_list_enter(pp);
1836 	if (TAILQ_EMPTY(&pp->pr_cache_lists))
1837 		pp->pr_cache_timestamp = getnsecuptime();
1838 
1839 	pp->pr_cache_nitems += POOL_CACHE_ITEM_NITEMS(ci);
1840 	TAILQ_INSERT_TAIL(&pp->pr_cache_lists, ci, ci_nextl);
1841 
1842 	pc->pc_nlput++;
1843 
1844 	/* fold this cpus nout into the global while we have the lock */
1845 	pp->pr_cache_nout += pc->pc_nout;
1846 	pc->pc_nout = 0;
1847 	pool_list_leave(pp);
1848 }
1849 
1850 static inline struct pool_cache *
pool_cache_enter(struct pool * pp,int * s)1851 pool_cache_enter(struct pool *pp, int *s)
1852 {
1853 	struct pool_cache *pc;
1854 
1855 	pc = cpumem_enter(pp->pr_cache);
1856 	*s = splraise(pp->pr_ipl);
1857 	pc->pc_gen++;
1858 
1859 	return (pc);
1860 }
1861 
1862 static inline void
pool_cache_leave(struct pool * pp,struct pool_cache * pc,int s)1863 pool_cache_leave(struct pool *pp, struct pool_cache *pc, int s)
1864 {
1865 	pc->pc_gen++;
1866 	splx(s);
1867 	cpumem_leave(pp->pr_cache, pc);
1868 }
1869 
1870 void *
pool_cache_get(struct pool * pp)1871 pool_cache_get(struct pool *pp)
1872 {
1873 	struct pool_cache *pc;
1874 	struct pool_cache_item *ci;
1875 	int s;
1876 
1877 	pc = pool_cache_enter(pp, &s);
1878 
1879 	if (pc->pc_actv != NULL) {
1880 		ci = pc->pc_actv;
1881 	} else if (pc->pc_prev != NULL) {
1882 		ci = pc->pc_prev;
1883 		pc->pc_prev = NULL;
1884 	} else if ((ci = pool_cache_list_alloc(pp, pc)) == NULL) {
1885 		pc->pc_nfail++;
1886 		goto done;
1887 	}
1888 
1889 	pool_cache_item_magic_check(pp, ci);
1890 #ifdef DIAGNOSTIC
1891 	if (pool_debug && POOL_CACHE_ITEM_POISONED(ci)) {
1892 		size_t pidx;
1893 		uint32_t pval;
1894 
1895 		if (poison_check(ci + 1, pp->pr_size - sizeof(*ci),
1896 		    &pidx, &pval)) {
1897 			int *ip = (int *)(ci + 1);
1898 			ip += pidx;
1899 
1900 			panic("%s: %s cpu free list modified: "
1901 			    "item addr %p+%zu 0x%x!=0x%x",
1902 			    __func__, pp->pr_wchan, ci,
1903 			    (caddr_t)ip - (caddr_t)ci, *ip, pval);
1904 		}
1905 	}
1906 #endif
1907 
1908 	pc->pc_actv = ci->ci_next;
1909 	pc->pc_nactv = POOL_CACHE_ITEM_NITEMS(ci) - 1;
1910 	pc->pc_nget++;
1911 	pc->pc_nout++;
1912 
1913 done:
1914 	pool_cache_leave(pp, pc, s);
1915 
1916 	return (ci);
1917 }
1918 
1919 void
pool_cache_put(struct pool * pp,void * v)1920 pool_cache_put(struct pool *pp, void *v)
1921 {
1922 	struct pool_cache *pc;
1923 	struct pool_cache_item *ci = v;
1924 	unsigned long nitems;
1925 	int s;
1926 #ifdef DIAGNOSTIC
1927 	int poison = pool_debug && pp->pr_size > sizeof(*ci);
1928 
1929 	if (poison)
1930 		poison_mem(ci + 1, pp->pr_size - sizeof(*ci));
1931 #endif
1932 
1933 	pc = pool_cache_enter(pp, &s);
1934 
1935 	nitems = pc->pc_nactv;
1936 	if (nitems >= pp->pr_cache_items) {
1937 		if (pc->pc_prev != NULL)
1938 			pool_cache_list_free(pp, pc, pc->pc_prev);
1939 
1940 		pc->pc_prev = pc->pc_actv;
1941 
1942 		pc->pc_actv = NULL;
1943 		pc->pc_nactv = 0;
1944 		nitems = 0;
1945 	}
1946 
1947 	ci->ci_next = pc->pc_actv;
1948 	ci->ci_nitems = ++nitems;
1949 #ifdef DIAGNOSTIC
1950 	ci->ci_nitems |= poison ? POOL_CACHE_ITEM_NITEMS_POISON : 0;
1951 #endif
1952 	pool_cache_item_magic(pp, ci);
1953 
1954 	pc->pc_actv = ci;
1955 	pc->pc_nactv = nitems;
1956 
1957 	pc->pc_nput++;
1958 	pc->pc_nout--;
1959 
1960 	pool_cache_leave(pp, pc, s);
1961 }
1962 
1963 struct pool_cache_item *
pool_cache_list_put(struct pool * pp,struct pool_cache_item * pl)1964 pool_cache_list_put(struct pool *pp, struct pool_cache_item *pl)
1965 {
1966 	struct pool_cache_item *rpl, *next;
1967 
1968 	if (pl == NULL)
1969 		return (NULL);
1970 
1971 	rpl = TAILQ_NEXT(pl, ci_nextl);
1972 
1973 	pl_enter(pp, &pp->pr_lock);
1974 	do {
1975 		next = pl->ci_next;
1976 		pool_do_put(pp, pl);
1977 		pl = next;
1978 	} while (pl != NULL);
1979 	pl_leave(pp, &pp->pr_lock);
1980 
1981 	return (rpl);
1982 }
1983 
1984 void
pool_cache_destroy(struct pool * pp)1985 pool_cache_destroy(struct pool *pp)
1986 {
1987 	struct pool_cache *pc;
1988 	struct pool_cache_item *pl;
1989 	struct cpumem_iter i;
1990 	struct cpumem *cm;
1991 
1992 	rw_enter_write(&pool_lock); /* serialise with the gc */
1993 	cm = pp->pr_cache;
1994 	pp->pr_cache = NULL; /* make pool_put avoid the cache */
1995 	rw_exit_write(&pool_lock);
1996 
1997 	CPUMEM_FOREACH(pc, &i, cm) {
1998 		pool_cache_list_put(pp, pc->pc_actv);
1999 		pool_cache_list_put(pp, pc->pc_prev);
2000 	}
2001 
2002 	cpumem_put(&pool_caches, cm);
2003 
2004 	pl = TAILQ_FIRST(&pp->pr_cache_lists);
2005 	while (pl != NULL)
2006 		pl = pool_cache_list_put(pp, pl);
2007 }
2008 
2009 void
pool_cache_gc(struct pool * pp)2010 pool_cache_gc(struct pool *pp)
2011 {
2012 	unsigned int contention, delta;
2013 
2014 	if (getnsecuptime() - pp->pr_cache_timestamp > POOL_WAIT_GC &&
2015 	    !TAILQ_EMPTY(&pp->pr_cache_lists) &&
2016 	    pl_enter_try(pp, &pp->pr_cache_lock)) {
2017 		struct pool_cache_item *pl = NULL;
2018 
2019 		pl = TAILQ_FIRST(&pp->pr_cache_lists);
2020 		if (pl != NULL) {
2021 			TAILQ_REMOVE(&pp->pr_cache_lists, pl, ci_nextl);
2022 			pp->pr_cache_nitems -= POOL_CACHE_ITEM_NITEMS(pl);
2023 			pp->pr_cache_timestamp = getnsecuptime();
2024 
2025 			pp->pr_cache_ngc++;
2026 		}
2027 
2028 		pl_leave(pp, &pp->pr_cache_lock);
2029 
2030 		pool_cache_list_put(pp, pl);
2031 	}
2032 
2033 	/*
2034 	 * if there's a lot of contention on the pr_cache_mtx then consider
2035 	 * growing the length of the list to reduce the need to access the
2036 	 * global pool.
2037 	 */
2038 
2039 	contention = pp->pr_cache_contention;
2040 	delta = contention - pp->pr_cache_contention_prev;
2041 	if (delta > 8 /* magic */) {
2042 		if ((ncpusfound * 8 * 2) <= pp->pr_cache_nitems)
2043 			pp->pr_cache_items += 8;
2044 	} else if (delta == 0) {
2045 		if (pp->pr_cache_items > 8)
2046 			pp->pr_cache_items--;
2047 	}
2048 	pp->pr_cache_contention_prev = contention;
2049 }
2050 
2051 void
pool_cache_pool_info(struct pool * pp,struct kinfo_pool * pi)2052 pool_cache_pool_info(struct pool *pp, struct kinfo_pool *pi)
2053 {
2054 	struct pool_cache *pc;
2055 	struct cpumem_iter i;
2056 
2057 	if (pp->pr_cache == NULL)
2058 		return;
2059 
2060 	/* loop through the caches twice to collect stats */
2061 
2062 	/* once without the lock so we can yield while reading nget/nput */
2063 	CPUMEM_FOREACH(pc, &i, pp->pr_cache) {
2064 		uint64_t gen, nget, nput;
2065 
2066 		do {
2067 			while ((gen = pc->pc_gen) & 1)
2068 				yield();
2069 
2070 			nget = pc->pc_nget;
2071 			nput = pc->pc_nput;
2072 		} while (gen != pc->pc_gen);
2073 
2074 		pi->pr_nget += nget;
2075 		pi->pr_nput += nput;
2076 	}
2077 
2078 	/* and once with the mtx so we can get consistent nout values */
2079 	pl_enter(pp, &pp->pr_cache_lock);
2080 	CPUMEM_FOREACH(pc, &i, pp->pr_cache)
2081 		pi->pr_nout += pc->pc_nout;
2082 
2083 	pi->pr_nout += pp->pr_cache_nout;
2084 	pl_leave(pp, &pp->pr_cache_lock);
2085 }
2086 
2087 int
pool_cache_info(struct pool * pp,void * oldp,size_t * oldlenp)2088 pool_cache_info(struct pool *pp, void *oldp, size_t *oldlenp)
2089 {
2090 	struct kinfo_pool_cache kpc;
2091 
2092 	if (pp->pr_cache == NULL)
2093 		return (EOPNOTSUPP);
2094 
2095 	memset(&kpc, 0, sizeof(kpc)); /* don't leak padding */
2096 
2097 	pl_enter(pp, &pp->pr_cache_lock);
2098 	kpc.pr_ngc = pp->pr_cache_ngc;
2099 	kpc.pr_len = pp->pr_cache_items;
2100 	kpc.pr_nitems = pp->pr_cache_nitems;
2101 	kpc.pr_contention = pp->pr_cache_contention;
2102 	pl_leave(pp, &pp->pr_cache_lock);
2103 
2104 	return (sysctl_rdstruct(oldp, oldlenp, NULL, &kpc, sizeof(kpc)));
2105 }
2106 
2107 int
pool_cache_cpus_info(struct pool * pp,void * oldp,size_t * oldlenp)2108 pool_cache_cpus_info(struct pool *pp, void *oldp, size_t *oldlenp)
2109 {
2110 	struct pool_cache *pc;
2111 	struct kinfo_pool_cache_cpu *kpcc, *info;
2112 	unsigned int cpu = 0;
2113 	struct cpumem_iter i;
2114 	int error = 0;
2115 	size_t len;
2116 
2117 	if (pp->pr_cache == NULL)
2118 		return (EOPNOTSUPP);
2119 	if (*oldlenp % sizeof(*kpcc))
2120 		return (EINVAL);
2121 
2122 	kpcc = mallocarray(ncpusfound, sizeof(*kpcc), M_TEMP,
2123 	    M_WAITOK|M_CANFAIL|M_ZERO);
2124 	if (kpcc == NULL)
2125 		return (EIO);
2126 
2127 	len = ncpusfound * sizeof(*kpcc);
2128 
2129 	CPUMEM_FOREACH(pc, &i, pp->pr_cache) {
2130 		uint64_t gen;
2131 
2132 		if (cpu >= ncpusfound) {
2133 			error = EIO;
2134 			goto err;
2135 		}
2136 
2137 		info = &kpcc[cpu];
2138 		info->pr_cpu = cpu;
2139 
2140 		do {
2141 			while ((gen = pc->pc_gen) & 1)
2142 				yield();
2143 
2144 			info->pr_nget = pc->pc_nget;
2145 			info->pr_nfail = pc->pc_nfail;
2146 			info->pr_nput = pc->pc_nput;
2147 			info->pr_nlget = pc->pc_nlget;
2148 			info->pr_nlfail = pc->pc_nlfail;
2149 			info->pr_nlput = pc->pc_nlput;
2150 		} while (gen != pc->pc_gen);
2151 
2152 		cpu++;
2153 	}
2154 
2155 	error = sysctl_rdstruct(oldp, oldlenp, NULL, kpcc, len);
2156 err:
2157 	free(kpcc, M_TEMP, len);
2158 
2159 	return (error);
2160 }
2161 #else /* MULTIPROCESSOR */
2162 void
pool_cache_init(struct pool * pp)2163 pool_cache_init(struct pool *pp)
2164 {
2165 	/* nop */
2166 }
2167 
2168 void
pool_cache_pool_info(struct pool * pp,struct kinfo_pool * pi)2169 pool_cache_pool_info(struct pool *pp, struct kinfo_pool *pi)
2170 {
2171 	/* nop */
2172 }
2173 
2174 int
pool_cache_info(struct pool * pp,void * oldp,size_t * oldlenp)2175 pool_cache_info(struct pool *pp, void *oldp, size_t *oldlenp)
2176 {
2177 	return (EOPNOTSUPP);
2178 }
2179 
2180 int
pool_cache_cpus_info(struct pool * pp,void * oldp,size_t * oldlenp)2181 pool_cache_cpus_info(struct pool *pp, void *oldp, size_t *oldlenp)
2182 {
2183 	return (EOPNOTSUPP);
2184 }
2185 #endif /* MULTIPROCESSOR */
2186 
2187 
2188 void
pool_lock_mtx_init(struct pool * pp,union pool_lock * lock,const struct lock_type * type)2189 pool_lock_mtx_init(struct pool *pp, union pool_lock *lock,
2190     const struct lock_type *type)
2191 {
2192 	_mtx_init_flags(&lock->prl_mtx, pp->pr_ipl, pp->pr_wchan, 0, type);
2193 }
2194 
2195 void
pool_lock_mtx_enter(union pool_lock * lock)2196 pool_lock_mtx_enter(union pool_lock *lock)
2197 {
2198 	mtx_enter(&lock->prl_mtx);
2199 }
2200 
2201 int
pool_lock_mtx_enter_try(union pool_lock * lock)2202 pool_lock_mtx_enter_try(union pool_lock *lock)
2203 {
2204 	return (mtx_enter_try(&lock->prl_mtx));
2205 }
2206 
2207 void
pool_lock_mtx_leave(union pool_lock * lock)2208 pool_lock_mtx_leave(union pool_lock *lock)
2209 {
2210 	mtx_leave(&lock->prl_mtx);
2211 }
2212 
2213 void
pool_lock_mtx_assert_locked(union pool_lock * lock)2214 pool_lock_mtx_assert_locked(union pool_lock *lock)
2215 {
2216 	MUTEX_ASSERT_LOCKED(&lock->prl_mtx);
2217 }
2218 
2219 void
pool_lock_mtx_assert_unlocked(union pool_lock * lock)2220 pool_lock_mtx_assert_unlocked(union pool_lock *lock)
2221 {
2222 	MUTEX_ASSERT_UNLOCKED(&lock->prl_mtx);
2223 }
2224 
2225 int
pool_lock_mtx_sleep(void * ident,union pool_lock * lock,int priority,const char * wmesg)2226 pool_lock_mtx_sleep(void *ident, union pool_lock *lock, int priority,
2227     const char *wmesg)
2228 {
2229 	return msleep_nsec(ident, &lock->prl_mtx, priority, wmesg, INFSLP);
2230 }
2231 
2232 static const struct pool_lock_ops pool_lock_ops_mtx = {
2233 	pool_lock_mtx_init,
2234 	pool_lock_mtx_enter,
2235 	pool_lock_mtx_enter_try,
2236 	pool_lock_mtx_leave,
2237 	pool_lock_mtx_assert_locked,
2238 	pool_lock_mtx_assert_unlocked,
2239 	pool_lock_mtx_sleep,
2240 };
2241 
2242 void
pool_lock_rw_init(struct pool * pp,union pool_lock * lock,const struct lock_type * type)2243 pool_lock_rw_init(struct pool *pp, union pool_lock *lock,
2244     const struct lock_type *type)
2245 {
2246 	_rw_init_flags(&lock->prl_rwlock, pp->pr_wchan, 0, type);
2247 }
2248 
2249 void
pool_lock_rw_enter(union pool_lock * lock)2250 pool_lock_rw_enter(union pool_lock *lock)
2251 {
2252 	rw_enter_write(&lock->prl_rwlock);
2253 }
2254 
2255 int
pool_lock_rw_enter_try(union pool_lock * lock)2256 pool_lock_rw_enter_try(union pool_lock *lock)
2257 {
2258 	return (rw_enter(&lock->prl_rwlock, RW_WRITE | RW_NOSLEEP) == 0);
2259 }
2260 
2261 void
pool_lock_rw_leave(union pool_lock * lock)2262 pool_lock_rw_leave(union pool_lock *lock)
2263 {
2264 	rw_exit_write(&lock->prl_rwlock);
2265 }
2266 
2267 void
pool_lock_rw_assert_locked(union pool_lock * lock)2268 pool_lock_rw_assert_locked(union pool_lock *lock)
2269 {
2270 	rw_assert_wrlock(&lock->prl_rwlock);
2271 }
2272 
2273 void
pool_lock_rw_assert_unlocked(union pool_lock * lock)2274 pool_lock_rw_assert_unlocked(union pool_lock *lock)
2275 {
2276 	KASSERT(rw_status(&lock->prl_rwlock) != RW_WRITE);
2277 }
2278 
2279 int
pool_lock_rw_sleep(void * ident,union pool_lock * lock,int priority,const char * wmesg)2280 pool_lock_rw_sleep(void *ident, union pool_lock *lock, int priority,
2281     const char *wmesg)
2282 {
2283 	return rwsleep_nsec(ident, &lock->prl_rwlock, priority, wmesg, INFSLP);
2284 }
2285 
2286 static const struct pool_lock_ops pool_lock_ops_rw = {
2287 	pool_lock_rw_init,
2288 	pool_lock_rw_enter,
2289 	pool_lock_rw_enter_try,
2290 	pool_lock_rw_leave,
2291 	pool_lock_rw_assert_locked,
2292 	pool_lock_rw_assert_unlocked,
2293 	pool_lock_rw_sleep,
2294 };
2295