Home
last modified time | relevance | path

Searched hist:fdfbb3f5 (Results 1 – 5 of 5) sorted by relevance

/freebsd/sys/dev/uart/
H A Duart_ppstypes.hfdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
H A Duart_bus.hfdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
H A Duart_core.cfdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
H A Duart_dev_ns8250.cfdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
/freebsd/share/man/man4/
H A Duart.4fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477
fdfbb3f5 Tue Jan 12 18:42:00 GMT 2016 Ian Lepore <ian@FreeBSD.org> Restore uart PPS signal capture polarity to its historical norm, and add an
option to invert the polarity in software. Also add an option to capture
very narrow pulses by using the hardware's MSR delta-bit capability of
latching line state changes.

This effectively reverts the mistake I made in r286595 which was based on
empirical measurements made on hardware using TTL-level signaling, in which
the logic levels are inverted from RS-232. Thus, this re-syncs the polarity
with the requirements of RFC 2783, which is writen in terms of RS-232
signaling.

Narrow-pulse mode uses the ability of most ns8250 and similar chips to
provide a delta indication in the modem status register. The hardware is
able to notice and latch the change when the pulse width is shorter than
interrupt latency, which results in the signal no longer being asserted by
time the interrupt service code runs. When running in this mode we get
notified only that "a pulse happened" so the driver synthesizes both an
ASSERT and a CLEAR event (with the same timestamp for each). When the pulse
width is about equal to the interrupt latency the driver may intermittantly
see both edges of the pulse. To prevent generating spurious events, the
driver implements a half-second lockout period after generating an event
before it will generate another.

Differential Revision: https://reviews.freebsd.org/D4477