/dports/math/R-cran-survey/survey/ |
H A D | NAMESPACE | 21 S3method(svyloglin,survey.design) 100 S3method(svyvar, survey.design) 124 S3method(svyglm,survey.design) 262 S3method(summary,survey.design) 263 S3method(summary,survey.design2) 266 S3method(summary,svyrep.design) 274 S3method(print,summary.survey.design) 275 S3method(print,summary.survey.design2) 278 S3method(print,summary.svyrep.design) 313 S3method(dim,survey.design) [all …]
|
/dports/math/R-cran-survey/survey/man/ |
H A D | subset.survey.design.Rd | 1 \name{subset.survey.design} 2 \alias{subset.survey.design} 4 \alias{[.survey.design} 6 \title{Subset of survey} 8 Restrict a survey design to a subpopulation, keeping the original design 14 \method{subset}{survey.design}(x, subset, ...) 19 \item{x}{A survey design object} 24 A new survey design object 33 summary(dsub) 38 summary(svyglm(x~I(x>4)+0,design=dfpc)) [all …]
|
H A D | svychisq.Rd | 5 \alias{svytable.survey.design} 7 \alias{svychisq.survey.design} 9 \alias{summary.svytable} 10 \alias{print.summary.svytable} 11 \alias{summary.svreptable} 22 \method{svytable}{survey.design}(formula, design, Ntotal = NULL, round = FALSE,...) 24 \method{svychisq}{survey.design}(formula, design, 28 \method{summary}{svytable}(object, 31 \method{degf}{survey.design2}(design, ...) 37 \item{design}{survey object} [all …]
|
H A D | trimWeights.Rd | 4 \alias{trimWeights.svyrep.design} 5 \alias{trimWeights.survey.design2} 15 \method{trimWeights}{survey.design2}(design, upper = Inf, lower = -Inf, strict=FALSE,...) 16 \method{trimWeights}{svyrep.design}(design, upper = Inf, lower = -Inf,compress=FALSE,...) 20 \item{design}{ 21 A survey design object 43 A new survey design object with trimmed weights. 61 summary(weights(dclus1g)) 63 summary(weights(dclus1t)) 65 summary(weights(dclus1tt)) [all …]
|
H A D | postStratify.Rd | 4 \alias{postStratify.svyrep.design} 5 \alias{postStratify.survey.design} 7 \title{Post-stratify a survey } 16 \method{postStratify}{svyrep.design}(design, strata, population, partial = FALSE, compress=NULL,...) 17 \method{postStratify}{survey.design}(design, strata, population, partial = FALSE, ...) 21 \item{design}{A survey design with replicate weights} 63 A new survey design object. 70 analysis of survey data using poststratification information. Sankhya 93 summary(rclus1p) 100 summary(dclus1p) [all …]
|
H A D | withPV.survey.design.Rd | 1 \name{withPV.survey.design} 2 \alias{withPV.survey.design} 11 \S3method{withPV}{survey.design}(mapping, data, action, rewrite=TRUE, ...) 19 A survey design object, as created by \code{svydesign} or \code{svrepdesign} 22 With \code{rewrite=TRUE}, a function taking a survey design object as 24 a function taking a survey design object as its only argument, or a 25 quoted expression with \code{.DESIGN} referring to the survey design object to be used. 49 oo<-options(survey.lonely.psu="remove") 53 action=quote(svyglm(maths~ST04Q01*(PCGIRLS+SMRATIO)+MATHEFF+OPENPS, design=des)), 56 summary(MIcombine(results)) [all …]
|
H A D | svyglm.Rd | 3 \alias{svyglm.survey.design} 5 \alias{summary.svyglm} 6 \alias{summary.svrepglm} 16 Fit a generalised linear model to data from a complex survey design, 20 \method{svyglm}{survey.design}(formula, design, subset=NULL, 51 \code{summary.glm} } 164 summary(svyglm(api00~ell+meals+mobility, design=dstrat)) 165 summary(svyglm(api00~ell+meals+mobility, design=dclus2)) 166 summary(svyglm(api00~ell+meals+mobility, design=rstrat)) 167 summary(svyglm(api00~ell+meals+mobility, design=rclus2)) [all …]
|
H A D | svrepdesign.Rd | 6 \alias{[.svyrep.design} 7 \alias{image.svyrep.design} 10 \alias{summary.svyrep.design} 11 \alias{print.summary.svyrep.design} 13 \title{Specify survey design with replicate weights} 17 data structure for such a survey. 57 \item{x}{survey design with replicate weights} 121 \code{RSQLite} for SQLite). The survey design 133 \code{\link{as.svrepdesign}} on a \code{survey.design} object, or see 142 \code{summary}, \code{weights}, \code{image}. [all …]
|
H A D | estweights.Rd | 8 Creates or adjusts a two-phase survey design object using a logistic 19 \item{data}{twophase design object or data frame} 29 two-phase design object. The \code{strata} argument is used only to 33 With a two-phase design object, \code{estWeights} estimates the sampling 44 The effect on a two-phase design object is very similar to 49 A two-phase survey design object. 62 Lumley T, Shaw PA, Dai JY (2011) "Connections between survey calibration estimators and semiparamet… 72 summary(lm(log(Ozone)~Temp+Wind, data=airquality)) 77 summary(svyglm(log(Ozone)~Temp+Wind,design=daq)) 82 summary(svyglm(log(Ozone)~Temp+Wind,design=d2aq)) [all …]
|
H A D | svysurvreg.Rd | 3 \alias{svysurvreg.survey.design} 6 Fit accelerated failure models to survey data 9 …survey data, and then computes correct standard errors by linearisation. It has the same argument… 12 \method{svysurvreg}{survey.design}(formula, design, weights=NULL, subset=NULL, ...) 19 \item{design}{ 20 Survey design object, including two-phase designs 51 model <- svysurvreg(Surv(time, status>0)~bili+protime+albumin, design=dpbc, dist="weibull") 52 summary(model) 57 \keyword{survey}% use one of RShowDoc("KEYWORDS")
|
H A D | svymle.Rd | 5 \alias{summary.svymle} 11 predictors to data from a complex sample survey and computes the 24 \item{design}{ a \code{survey.design} object } 46 The \code{design} object contains all the data and design information 47 from the survey, so all the formulas refer to variables in this object. 68 The usual variance estimator for MLEs in a survey sample is a `sandwich' 110 summary(m0) 111 summary(m1,stderr="model") 112 summary(m2) 165 summary(m) [all …]
|
H A D | svyratio.Rd | 5 \alias{svyratio.svyrep.design} 6 \alias{svyratio.survey.design} 7 \alias{svyratio.survey.design2} 18 survey samples. Estimating domain (subpopulation) means can be done 22 \method{svyratio}{survey.design2}(numerator=formula, denominator, 25 \method{svyratio}{svyrep.design}(numerator=formula, denominator, design, 40 \item{design}{survey design object} 68 as shown in the output of \code{summary(design)}. 70 When \code{design} is a two-phase design, stratification will be on 91 ## survey design objects [all …]
|
H A D | with.svyimputationList.Rd | 7 Performs a survey analysis on each of the designs in a 13 \method{with}{svyimputationList}(data, expr, fun, ...,multicore=getOption("survey.multicore")) 19 \item{expr}{An expression giving a survey analysis} 20 \item{fun}{A function taking a survey design object as its argument } 28 A list of the results from applying the analysis to each design object. 52 summary(MIcombine(results)) 60 \keyword{survey }% __ONLY ONE__ keyword per line
|
/dports/math/R-cran-survey/survey/tests/ |
H A D | lonely.psu.Rout.save | 19 > ## lonely PSUs by design 20 > library(survey) 31 > summary(ds) 32 Stratified Independent Sampling design (with replacement) 56 Error in jknweights(design$strata[, 1], design$cluster[, 1], fpc = fpc, : 90 > summary(ds) 91 Stratified Independent Sampling design 160 > summary(ds1) 161 Stratified Independent Sampling design (with replacement) 206 > summary(ds1) [all …]
|
H A D | nwts.R | 4 library(survey) 30 summary(svyglm(rel~factor(stage)*factor(histol),family=quasibinomial,design=dccs2)) 31 summary(svyglm(rel~factor(stage)*factor(histol),family=quasibinomial,design=dccs8)) 32 summary(svyglm(rel~factor(stage)*factor(histol),family=quasibinomial,design=gccs8)) 35 summary(svyglm(rel~factor(stage), 36 family=quasibinomial,design=subset(dccs8,histol==1))) 37 summary(svyglm(rel~factor(stage), 38 family=quasibinomial,design=subset(gccs8,histol==1)))
|
H A D | nwts.Rout.save | 23 > library(survey) 28 Attaching package: ‘survey’ 59 > summary(svyglm(rel~factor(stage)*factor(histol),family=quasibinomial,design=dccs2)) 86 > summary(svyglm(rel~factor(stage)*factor(histol),family=quasibinomial,design=dccs8)) 113 > summary(svyglm(rel~factor(stage)*factor(histol),family=quasibinomial,design=gccs8)) 142 > summary(svyglm(rel~factor(stage), 167 2: In summary.glm(g) : 169 3: In summary.glm(glm.object) : 175 > summary(svyglm(rel~factor(stage), 199 1: In summary.glm(g) : [all …]
|
/dports/math/R-cran-survey/survey/vignettes/ |
H A D | survey.Rnw | 3 %\VignetteIndexEntry{A survey analysis example} 6 \title{A survey analysis example} 27 library(survey) 34 summary(dclus1) 37 We can compute summary statistics to estimate the mean, median, and 42 design object containing the data. 56 svyratio(~api.stu, ~enroll, design=subset(dclus1, stype=="H")) 74 svyby(~ell+meals, ~stype, design=dclus1, svymean) 80 regmodel <- svyglm(api00~ell+meals,design=dclus1) 82 summary(regmodel) [all …]
|
H A D | domain.Rnw | 20 survey design objects automatically do the necessary adjustments, but 24 \texttt{survey/tests/domain.R}. 30 library(survey) 34 svymean(~x,design=dsub) 37 The \texttt{subset} function constructs a survey design object with 42 svyby(~x,~I(x>4),design=dfpc, svymean) 50 summary(svyglm(x~I(x>4)+0,design=dfpc)) 62 for observations not in the domain. For most survey design objects 84 summary(svyglm(api00~comp.imp-1, gclus1)) 94 summary(svyglm(y1~I(y1>40)+0,dmu284)) [all …]
|
/dports/math/R-cran-survey/survey/inst/doc/ |
H A D | survey.Rnw | 3 %\VignetteIndexEntry{A survey analysis example} 6 \title{A survey analysis example} 27 library(survey) 34 summary(dclus1) 37 We can compute summary statistics to estimate the mean, median, and 42 design object containing the data. 56 svyratio(~api.stu, ~enroll, design=subset(dclus1, stype=="H")) 74 svyby(~ell+meals, ~stype, design=dclus1, svymean) 80 regmodel <- svyglm(api00~ell+meals,design=dclus1) 82 summary(regmodel) [all …]
|
H A D | domain.Rnw | 20 survey design objects automatically do the necessary adjustments, but 24 \texttt{survey/tests/domain.R}. 30 library(survey) 34 svymean(~x,design=dsub) 37 The \texttt{subset} function constructs a survey design object with 42 svyby(~x,~I(x>4),design=dfpc, svymean) 50 summary(svyglm(x~I(x>4)+0,design=dfpc)) 62 for observations not in the domain. For most survey design objects 84 summary(svyglm(api00~comp.imp-1, gclus1)) 94 summary(svyglm(y1~I(y1>40)+0,dmu284)) [all …]
|
H A D | survey.R | 6 library(survey) 14 summary(dclus1) 30 svyratio(~api.stu, ~enroll, design=subset(dclus1, stype=="H")) 43 svyby(~ell+meals, ~stype, design=dclus1, svymean) 49 regmodel <- svyglm(api00~ell+meals,design=dclus1) 50 logitmodel <- svyglm(I(sch.wide=="Yes")~ell+meals, design=dclus1, family=quasibinomial()) 51 summary(regmodel) 52 summary(logitmodel)
|
H A D | epi.R | 6 library(survey) 36 summary(svyglm(rel~factor(stage)*factor(histol),family=binomial,design=dccs2)) 46 summary(svyglm(rel~factor(stage)*factor(histol),family=binomial,design=dccs8)) 47 summary(svyglm(rel~factor(stage)*factor(histol),family=binomial,design=gccs8)) 53 library(survey) 71 design=dcch) 104 design=dBarlow) 112 design=dWacholder) 125 design=d_BorganII)) 133 design=d_BorganIIps)
|
H A D | domain.R | 6 library(survey) 10 svymean(~x,design=dsub) 16 svyby(~x,~I(x>4),design=dfpc, svymean) 22 summary(svyglm(x~I(x>4)+0,design=dfpc)) 41 summary(svyglm(api00~comp.imp-1, gclus1)) 52 summary(svyglm(y1~I(y1>40)+0,dmu284)) 65 summary(svyglm(rel~I(age>36)+0, dccs8))
|
/dports/devel/R-cran-broom/broom/man/ |
H A D | glance.svyglm.Rd | 2 % Please edit documentation in R/survey-tidiers.R 10 \item{x}{A \code{svyglm} object returned from \code{\link[survey:svyglm]{survey::svyglm()}}.} 37 Glance does not calculate summary measures. Rather, it farms out these 48 if (requireNamespace("survey", quietly = TRUE)) { 50 library(survey) 55 # survey design 66 m <- survey::svyglm( 68 design = dstrat, 82 \code{\link[survey:svyglm]{survey::svyglm()}}, \code{\link[stats:glm]{stats::glm()}}, \link[survey:… 89 \code{\link{glance.summary.lm}()}, [all …]
|
/dports/math/R-cran-survey/survey/tests/testoutput/ |
H A D | api.Rout.saved | 18 > library(survey) 20 Attaching package: 'survey' 26 > options(survey.replicates.mse=TRUE) 29 api> library(survey) 42 api> summary(dstrat) 52 design.PSU 100 50 50 77 api> summary(dclus1) 105 api> summary(dclus2) 232 > options(survey.replicates.mse=FALSE) 235 api> library(survey) [all …]
|