1 //! Generic data structure deserialization framework.
2 //!
3 //! The two most important traits in this module are [`Deserialize`] and
4 //! [`Deserializer`].
5 //!
6 //!  - **A type that implements `Deserialize` is a data structure** that can be
7 //!    deserialized from any data format supported by Serde, and conversely
8 //!  - **A type that implements `Deserializer` is a data format** that can
9 //!    deserialize any data structure supported by Serde.
10 //!
11 //! # The Deserialize trait
12 //!
13 //! Serde provides [`Deserialize`] implementations for many Rust primitive and
14 //! standard library types. The complete list is below. All of these can be
15 //! deserialized using Serde out of the box.
16 //!
17 //! Additionally, Serde provides a procedural macro called [`serde_derive`] to
18 //! automatically generate [`Deserialize`] implementations for structs and enums
19 //! in your program. See the [derive section of the manual] for how to use this.
20 //!
21 //! In rare cases it may be necessary to implement [`Deserialize`] manually for
22 //! some type in your program. See the [Implementing `Deserialize`] section of
23 //! the manual for more about this.
24 //!
25 //! Third-party crates may provide [`Deserialize`] implementations for types
26 //! that they expose. For example the [`linked-hash-map`] crate provides a
27 //! [`LinkedHashMap<K, V>`] type that is deserializable by Serde because the
28 //! crate provides an implementation of [`Deserialize`] for it.
29 //!
30 //! # The Deserializer trait
31 //!
32 //! [`Deserializer`] implementations are provided by third-party crates, for
33 //! example [`serde_json`], [`serde_yaml`] and [`bincode`].
34 //!
35 //! A partial list of well-maintained formats is given on the [Serde
36 //! website][data formats].
37 //!
38 //! # Implementations of Deserialize provided by Serde
39 //!
40 //! This is a slightly different set of types than what is supported for
41 //! serialization. Some types can be serialized by Serde but not deserialized.
42 //! One example is `OsStr`.
43 //!
44 //!  - **Primitive types**:
45 //!    - bool
46 //!    - i8, i16, i32, i64, i128, isize
47 //!    - u8, u16, u32, u64, u128, usize
48 //!    - f32, f64
49 //!    - char
50 //!  - **Compound types**:
51 //!    - \[T; 0\] through \[T; 32\]
52 //!    - tuples up to size 16
53 //!  - **Common standard library types**:
54 //!    - String
55 //!    - Option\<T\>
56 //!    - Result\<T, E\>
57 //!    - PhantomData\<T\>
58 //!  - **Wrapper types**:
59 //!    - Box\<T\>
60 //!    - Box\<\[T\]\>
61 //!    - Box\<str\>
62 //!    - Cow\<'a, T\>
63 //!    - Cell\<T\>
64 //!    - RefCell\<T\>
65 //!    - Mutex\<T\>
66 //!    - RwLock\<T\>
67 //!    - Rc\<T\>&emsp;*(if* features = ["rc"] *is enabled)*
68 //!    - Arc\<T\>&emsp;*(if* features = ["rc"] *is enabled)*
69 //!  - **Collection types**:
70 //!    - BTreeMap\<K, V\>
71 //!    - BTreeSet\<T\>
72 //!    - BinaryHeap\<T\>
73 //!    - HashMap\<K, V, H\>
74 //!    - HashSet\<T, H\>
75 //!    - LinkedList\<T\>
76 //!    - VecDeque\<T\>
77 //!    - Vec\<T\>
78 //!  - **Zero-copy types**:
79 //!    - &str
80 //!    - &\[u8\]
81 //!  - **FFI types**:
82 //!    - CString
83 //!    - Box\<CStr\>
84 //!    - OsString
85 //!  - **Miscellaneous standard library types**:
86 //!    - Duration
87 //!    - SystemTime
88 //!    - Path
89 //!    - PathBuf
90 //!    - Range\<T\>
91 //!    - RangeInclusive\<T\>
92 //!    - Bound\<T\>
93 //!    - num::NonZero*
94 //!    - `!` *(unstable)*
95 //!  - **Net types**:
96 //!    - IpAddr
97 //!    - Ipv4Addr
98 //!    - Ipv6Addr
99 //!    - SocketAddr
100 //!    - SocketAddrV4
101 //!    - SocketAddrV6
102 //!
103 //! [Implementing `Deserialize`]: https://serde.rs/impl-deserialize.html
104 //! [`Deserialize`]: ../trait.Deserialize.html
105 //! [`Deserializer`]: ../trait.Deserializer.html
106 //! [`LinkedHashMap<K, V>`]: https://docs.rs/linked-hash-map/*/linked_hash_map/struct.LinkedHashMap.html
107 //! [`bincode`]: https://github.com/servo/bincode
108 //! [`linked-hash-map`]: https://crates.io/crates/linked-hash-map
109 //! [`serde_derive`]: https://crates.io/crates/serde_derive
110 //! [`serde_json`]: https://github.com/serde-rs/json
111 //! [`serde_yaml`]: https://github.com/dtolnay/serde-yaml
112 //! [derive section of the manual]: https://serde.rs/derive.html
113 //! [data formats]: https://serde.rs/#data-formats
114 
115 use lib::*;
116 
117 ////////////////////////////////////////////////////////////////////////////////
118 
119 pub mod value;
120 
121 #[cfg(not(no_integer128))]
122 mod format;
123 mod ignored_any;
124 mod impls;
125 mod utf8;
126 
127 pub use self::ignored_any::IgnoredAny;
128 
129 #[cfg(feature = "std")]
130 #[doc(no_inline)]
131 pub use std::error::Error as StdError;
132 #[cfg(not(feature = "std"))]
133 #[doc(no_inline)]
134 pub use std_error::Error as StdError;
135 
136 ////////////////////////////////////////////////////////////////////////////////
137 
138 macro_rules! declare_error_trait {
139     (Error: Sized $(+ $($supertrait:ident)::+)*) => {
140         /// The `Error` trait allows `Deserialize` implementations to create descriptive
141         /// error messages belonging to the `Deserializer` against which they are
142         /// currently running.
143         ///
144         /// Every `Deserializer` declares an `Error` type that encompasses both
145         /// general-purpose deserialization errors as well as errors specific to the
146         /// particular deserialization format. For example the `Error` type of
147         /// `serde_json` can represent errors like an invalid JSON escape sequence or an
148         /// unterminated string literal, in addition to the error cases that are part of
149         /// this trait.
150         ///
151         /// Most deserializers should only need to provide the `Error::custom` method
152         /// and inherit the default behavior for the other methods.
153         ///
154         /// # Example implementation
155         ///
156         /// The [example data format] presented on the website shows an error
157         /// type appropriate for a basic JSON data format.
158         ///
159         /// [example data format]: https://serde.rs/data-format.html
160         pub trait Error: Sized $(+ $($supertrait)::+)* {
161             /// Raised when there is general error when deserializing a type.
162             ///
163             /// The message should not be capitalized and should not end with a period.
164             ///
165             /// ```edition2018
166             /// # use std::str::FromStr;
167             /// #
168             /// # struct IpAddr;
169             /// #
170             /// # impl FromStr for IpAddr {
171             /// #     type Err = String;
172             /// #
173             /// #     fn from_str(_: &str) -> Result<Self, String> {
174             /// #         unimplemented!()
175             /// #     }
176             /// # }
177             /// #
178             /// use serde::de::{self, Deserialize, Deserializer};
179             ///
180             /// impl<'de> Deserialize<'de> for IpAddr {
181             ///     fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
182             ///     where
183             ///         D: Deserializer<'de>,
184             ///     {
185             ///         let s = String::deserialize(deserializer)?;
186             ///         s.parse().map_err(de::Error::custom)
187             ///     }
188             /// }
189             /// ```
190             fn custom<T>(msg: T) -> Self
191             where
192                 T: Display;
193 
194             /// Raised when a `Deserialize` receives a type different from what it was
195             /// expecting.
196             ///
197             /// The `unexp` argument provides information about what type was received.
198             /// This is the type that was present in the input file or other source data
199             /// of the Deserializer.
200             ///
201             /// The `exp` argument provides information about what type was being
202             /// expected. This is the type that is written in the program.
203             ///
204             /// For example if we try to deserialize a String out of a JSON file
205             /// containing an integer, the unexpected type is the integer and the
206             /// expected type is the string.
207             #[cold]
208             fn invalid_type(unexp: Unexpected, exp: &Expected) -> Self {
209                 Error::custom(format_args!("invalid type: {}, expected {}", unexp, exp))
210             }
211 
212             /// Raised when a `Deserialize` receives a value of the right type but that
213             /// is wrong for some other reason.
214             ///
215             /// The `unexp` argument provides information about what value was received.
216             /// This is the value that was present in the input file or other source
217             /// data of the Deserializer.
218             ///
219             /// The `exp` argument provides information about what value was being
220             /// expected. This is the type that is written in the program.
221             ///
222             /// For example if we try to deserialize a String out of some binary data
223             /// that is not valid UTF-8, the unexpected value is the bytes and the
224             /// expected value is a string.
225             #[cold]
226             fn invalid_value(unexp: Unexpected, exp: &Expected) -> Self {
227                 Error::custom(format_args!("invalid value: {}, expected {}", unexp, exp))
228             }
229 
230             /// Raised when deserializing a sequence or map and the input data contains
231             /// too many or too few elements.
232             ///
233             /// The `len` argument is the number of elements encountered. The sequence
234             /// or map may have expected more arguments or fewer arguments.
235             ///
236             /// The `exp` argument provides information about what data was being
237             /// expected. For example `exp` might say that a tuple of size 6 was
238             /// expected.
239             #[cold]
240             fn invalid_length(len: usize, exp: &Expected) -> Self {
241                 Error::custom(format_args!("invalid length {}, expected {}", len, exp))
242             }
243 
244             /// Raised when a `Deserialize` enum type received a variant with an
245             /// unrecognized name.
246             #[cold]
247             fn unknown_variant(variant: &str, expected: &'static [&'static str]) -> Self {
248                 if expected.is_empty() {
249                     Error::custom(format_args!(
250                         "unknown variant `{}`, there are no variants",
251                         variant
252                     ))
253                 } else {
254                     Error::custom(format_args!(
255                         "unknown variant `{}`, expected {}",
256                         variant,
257                         OneOf { names: expected }
258                     ))
259                 }
260             }
261 
262             /// Raised when a `Deserialize` struct type received a field with an
263             /// unrecognized name.
264             #[cold]
265             fn unknown_field(field: &str, expected: &'static [&'static str]) -> Self {
266                 if expected.is_empty() {
267                     Error::custom(format_args!(
268                         "unknown field `{}`, there are no fields",
269                         field
270                     ))
271                 } else {
272                     Error::custom(format_args!(
273                         "unknown field `{}`, expected {}",
274                         field,
275                         OneOf { names: expected }
276                     ))
277                 }
278             }
279 
280             /// Raised when a `Deserialize` struct type expected to receive a required
281             /// field with a particular name but that field was not present in the
282             /// input.
283             #[cold]
284             fn missing_field(field: &'static str) -> Self {
285                 Error::custom(format_args!("missing field `{}`", field))
286             }
287 
288             /// Raised when a `Deserialize` struct type received more than one of the
289             /// same field.
290             #[cold]
291             fn duplicate_field(field: &'static str) -> Self {
292                 Error::custom(format_args!("duplicate field `{}`", field))
293             }
294         }
295     }
296 }
297 
298 #[cfg(feature = "std")]
299 declare_error_trait!(Error: Sized + StdError);
300 
301 #[cfg(not(feature = "std"))]
302 declare_error_trait!(Error: Sized + Debug + Display);
303 
304 /// `Unexpected` represents an unexpected invocation of any one of the `Visitor`
305 /// trait methods.
306 ///
307 /// This is used as an argument to the `invalid_type`, `invalid_value`, and
308 /// `invalid_length` methods of the `Error` trait to build error messages.
309 ///
310 /// ```edition2018
311 /// # use std::fmt;
312 /// #
313 /// # use serde::de::{self, Unexpected, Visitor};
314 /// #
315 /// # struct Example;
316 /// #
317 /// # impl<'de> Visitor<'de> for Example {
318 /// #     type Value = ();
319 /// #
320 /// #     fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
321 /// #         write!(formatter, "definitely not a boolean")
322 /// #     }
323 /// #
324 /// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
325 /// where
326 ///     E: de::Error,
327 /// {
328 ///     Err(de::Error::invalid_type(Unexpected::Bool(v), &self))
329 /// }
330 /// # }
331 /// ```
332 #[derive(Copy, Clone, PartialEq, Debug)]
333 pub enum Unexpected<'a> {
334     /// The input contained a boolean value that was not expected.
335     Bool(bool),
336 
337     /// The input contained an unsigned integer `u8`, `u16`, `u32` or `u64` that
338     /// was not expected.
339     Unsigned(u64),
340 
341     /// The input contained a signed integer `i8`, `i16`, `i32` or `i64` that
342     /// was not expected.
343     Signed(i64),
344 
345     /// The input contained a floating point `f32` or `f64` that was not
346     /// expected.
347     Float(f64),
348 
349     /// The input contained a `char` that was not expected.
350     Char(char),
351 
352     /// The input contained a `&str` or `String` that was not expected.
353     Str(&'a str),
354 
355     /// The input contained a `&[u8]` or `Vec<u8>` that was not expected.
356     Bytes(&'a [u8]),
357 
358     /// The input contained a unit `()` that was not expected.
359     Unit,
360 
361     /// The input contained an `Option<T>` that was not expected.
362     Option,
363 
364     /// The input contained a newtype struct that was not expected.
365     NewtypeStruct,
366 
367     /// The input contained a sequence that was not expected.
368     Seq,
369 
370     /// The input contained a map that was not expected.
371     Map,
372 
373     /// The input contained an enum that was not expected.
374     Enum,
375 
376     /// The input contained a unit variant that was not expected.
377     UnitVariant,
378 
379     /// The input contained a newtype variant that was not expected.
380     NewtypeVariant,
381 
382     /// The input contained a tuple variant that was not expected.
383     TupleVariant,
384 
385     /// The input contained a struct variant that was not expected.
386     StructVariant,
387 
388     /// A message stating what uncategorized thing the input contained that was
389     /// not expected.
390     ///
391     /// The message should be a noun or noun phrase, not capitalized and without
392     /// a period. An example message is "unoriginal superhero".
393     Other(&'a str),
394 }
395 
396 impl<'a> fmt::Display for Unexpected<'a> {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result397     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
398         use self::Unexpected::*;
399         match *self {
400             Bool(b) => write!(formatter, "boolean `{}`", b),
401             Unsigned(i) => write!(formatter, "integer `{}`", i),
402             Signed(i) => write!(formatter, "integer `{}`", i),
403             Float(f) => write!(formatter, "floating point `{}`", f),
404             Char(c) => write!(formatter, "character `{}`", c),
405             Str(s) => write!(formatter, "string {:?}", s),
406             Bytes(_) => write!(formatter, "byte array"),
407             Unit => write!(formatter, "unit value"),
408             Option => write!(formatter, "Option value"),
409             NewtypeStruct => write!(formatter, "newtype struct"),
410             Seq => write!(formatter, "sequence"),
411             Map => write!(formatter, "map"),
412             Enum => write!(formatter, "enum"),
413             UnitVariant => write!(formatter, "unit variant"),
414             NewtypeVariant => write!(formatter, "newtype variant"),
415             TupleVariant => write!(formatter, "tuple variant"),
416             StructVariant => write!(formatter, "struct variant"),
417             Other(other) => formatter.write_str(other),
418         }
419     }
420 }
421 
422 /// `Expected` represents an explanation of what data a `Visitor` was expecting
423 /// to receive.
424 ///
425 /// This is used as an argument to the `invalid_type`, `invalid_value`, and
426 /// `invalid_length` methods of the `Error` trait to build error messages. The
427 /// message should be a noun or noun phrase that completes the sentence "This
428 /// Visitor expects to receive ...", for example the message could be "an
429 /// integer between 0 and 64". The message should not be capitalized and should
430 /// not end with a period.
431 ///
432 /// Within the context of a `Visitor` implementation, the `Visitor` itself
433 /// (`&self`) is an implementation of this trait.
434 ///
435 /// ```edition2018
436 /// # use std::fmt;
437 /// #
438 /// # use serde::de::{self, Unexpected, Visitor};
439 /// #
440 /// # struct Example;
441 /// #
442 /// # impl<'de> Visitor<'de> for Example {
443 /// #     type Value = ();
444 /// #
445 /// #     fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
446 /// #         write!(formatter, "definitely not a boolean")
447 /// #     }
448 /// #
449 /// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
450 /// where
451 ///     E: de::Error,
452 /// {
453 ///     Err(de::Error::invalid_type(Unexpected::Bool(v), &self))
454 /// }
455 /// # }
456 /// ```
457 ///
458 /// Outside of a `Visitor`, `&"..."` can be used.
459 ///
460 /// ```edition2018
461 /// # use serde::de::{self, Unexpected};
462 /// #
463 /// # fn example<E>() -> Result<(), E>
464 /// # where
465 /// #     E: de::Error,
466 /// # {
467 /// #     let v = true;
468 /// return Err(de::Error::invalid_type(Unexpected::Bool(v), &"a negative integer"));
469 /// # }
470 /// ```
471 pub trait Expected {
472     /// Format an explanation of what data was being expected. Same signature as
473     /// the `Display` and `Debug` traits.
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result474     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
475 }
476 
477 impl<'de, T> Expected for T
478 where
479     T: Visitor<'de>,
480 {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result481     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
482         self.expecting(formatter)
483     }
484 }
485 
486 impl<'a> Expected for &'a str {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result487     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
488         formatter.write_str(self)
489     }
490 }
491 
492 impl<'a> Display for Expected + 'a {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result493     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
494         Expected::fmt(self, formatter)
495     }
496 }
497 
498 ////////////////////////////////////////////////////////////////////////////////
499 
500 /// A **data structure** that can be deserialized from any data format supported
501 /// by Serde.
502 ///
503 /// Serde provides `Deserialize` implementations for many Rust primitive and
504 /// standard library types. The complete list is [here][de]. All of these can
505 /// be deserialized using Serde out of the box.
506 ///
507 /// Additionally, Serde provides a procedural macro called `serde_derive` to
508 /// automatically generate `Deserialize` implementations for structs and enums
509 /// in your program. See the [derive section of the manual][derive] for how to
510 /// use this.
511 ///
512 /// In rare cases it may be necessary to implement `Deserialize` manually for
513 /// some type in your program. See the [Implementing
514 /// `Deserialize`][impl-deserialize] section of the manual for more about this.
515 ///
516 /// Third-party crates may provide `Deserialize` implementations for types that
517 /// they expose. For example the `linked-hash-map` crate provides a
518 /// `LinkedHashMap<K, V>` type that is deserializable by Serde because the crate
519 /// provides an implementation of `Deserialize` for it.
520 ///
521 /// [de]: https://docs.serde.rs/serde/de/index.html
522 /// [derive]: https://serde.rs/derive.html
523 /// [impl-deserialize]: https://serde.rs/impl-deserialize.html
524 ///
525 /// # Lifetime
526 ///
527 /// The `'de` lifetime of this trait is the lifetime of data that may be
528 /// borrowed by `Self` when deserialized. See the page [Understanding
529 /// deserializer lifetimes] for a more detailed explanation of these lifetimes.
530 ///
531 /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
532 pub trait Deserialize<'de>: Sized {
533     /// Deserialize this value from the given Serde deserializer.
534     ///
535     /// See the [Implementing `Deserialize`][impl-deserialize] section of the
536     /// manual for more information about how to implement this method.
537     ///
538     /// [impl-deserialize]: https://serde.rs/impl-deserialize.html
deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de>539     fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
540     where
541         D: Deserializer<'de>;
542 
543     /// Deserializes a value into `self` from the given Deserializer.
544     ///
545     /// The purpose of this method is to allow the deserializer to reuse
546     /// resources and avoid copies. As such, if this method returns an error,
547     /// `self` will be in an indeterminate state where some parts of the struct
548     /// have been overwritten. Although whatever state that is will be
549     /// memory-safe.
550     ///
551     /// This is generally useful when repeatedly deserializing values that
552     /// are processed one at a time, where the value of `self` doesn't matter
553     /// when the next deserialization occurs.
554     ///
555     /// If you manually implement this, your recursive deserializations should
556     /// use `deserialize_in_place`.
557     ///
558     /// This method is stable and an official public API, but hidden from the
559     /// documentation because it is almost never what newbies are looking for.
560     /// Showing it in rustdoc would cause it to be featured more prominently
561     /// than it deserves.
562     #[doc(hidden)]
deserialize_in_place<D>(deserializer: D, place: &mut Self) -> Result<(), D::Error> where D: Deserializer<'de>,563     fn deserialize_in_place<D>(deserializer: D, place: &mut Self) -> Result<(), D::Error>
564     where
565         D: Deserializer<'de>,
566     {
567         // Default implementation just delegates to `deserialize` impl.
568         *place = Deserialize::deserialize(deserializer)?;
569         Ok(())
570     }
571 }
572 
573 /// A data structure that can be deserialized without borrowing any data from
574 /// the deserializer.
575 ///
576 /// This is primarily useful for trait bounds on functions. For example a
577 /// `from_str` function may be able to deserialize a data structure that borrows
578 /// from the input string, but a `from_reader` function may only deserialize
579 /// owned data.
580 ///
581 /// ```edition2018
582 /// # use serde::de::{Deserialize, DeserializeOwned};
583 /// # use std::io::{Read, Result};
584 /// #
585 /// # trait Ignore {
586 /// fn from_str<'a, T>(s: &'a str) -> Result<T>
587 /// where
588 ///     T: Deserialize<'a>;
589 ///
590 /// fn from_reader<R, T>(rdr: R) -> Result<T>
591 /// where
592 ///     R: Read,
593 ///     T: DeserializeOwned;
594 /// # }
595 /// ```
596 ///
597 /// # Lifetime
598 ///
599 /// The relationship between `Deserialize` and `DeserializeOwned` in trait
600 /// bounds is explained in more detail on the page [Understanding deserializer
601 /// lifetimes].
602 ///
603 /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
604 pub trait DeserializeOwned: for<'de> Deserialize<'de> {}
605 impl<T> DeserializeOwned for T where T: for<'de> Deserialize<'de> {}
606 
607 /// `DeserializeSeed` is the stateful form of the `Deserialize` trait. If you
608 /// ever find yourself looking for a way to pass data into a `Deserialize` impl,
609 /// this trait is the way to do it.
610 ///
611 /// As one example of stateful deserialization consider deserializing a JSON
612 /// array into an existing buffer. Using the `Deserialize` trait we could
613 /// deserialize a JSON array into a `Vec<T>` but it would be a freshly allocated
614 /// `Vec<T>`; there is no way for `Deserialize` to reuse a previously allocated
615 /// buffer. Using `DeserializeSeed` instead makes this possible as in the
616 /// example code below.
617 ///
618 /// The canonical API for stateless deserialization looks like this:
619 ///
620 /// ```edition2018
621 /// # use serde::Deserialize;
622 /// #
623 /// # enum Error {}
624 /// #
625 /// fn func<'de, T: Deserialize<'de>>() -> Result<T, Error>
626 /// # {
627 /// #     unimplemented!()
628 /// # }
629 /// ```
630 ///
631 /// Adjusting an API like this to support stateful deserialization is a matter
632 /// of accepting a seed as input:
633 ///
634 /// ```edition2018
635 /// # use serde::de::DeserializeSeed;
636 /// #
637 /// # enum Error {}
638 /// #
639 /// fn func_seed<'de, T: DeserializeSeed<'de>>(seed: T) -> Result<T::Value, Error>
640 /// # {
641 /// #     let _ = seed;
642 /// #     unimplemented!()
643 /// # }
644 /// ```
645 ///
646 /// In practice the majority of deserialization is stateless. An API expecting a
647 /// seed can be appeased by passing `std::marker::PhantomData` as a seed in the
648 /// case of stateless deserialization.
649 ///
650 /// # Lifetime
651 ///
652 /// The `'de` lifetime of this trait is the lifetime of data that may be
653 /// borrowed by `Self::Value` when deserialized. See the page [Understanding
654 /// deserializer lifetimes] for a more detailed explanation of these lifetimes.
655 ///
656 /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
657 ///
658 /// # Example
659 ///
660 /// Suppose we have JSON that looks like `[[1, 2], [3, 4, 5], [6]]` and we need
661 /// to deserialize it into a flat representation like `vec![1, 2, 3, 4, 5, 6]`.
662 /// Allocating a brand new `Vec<T>` for each subarray would be slow. Instead we
663 /// would like to allocate a single `Vec<T>` and then deserialize each subarray
664 /// into it. This requires stateful deserialization using the `DeserializeSeed`
665 /// trait.
666 ///
667 /// ```edition2018
668 /// use std::fmt;
669 /// use std::marker::PhantomData;
670 ///
671 /// use serde::de::{Deserialize, DeserializeSeed, Deserializer, SeqAccess, Visitor};
672 ///
673 /// // A DeserializeSeed implementation that uses stateful deserialization to
674 /// // append array elements onto the end of an existing vector. The preexisting
675 /// // state ("seed") in this case is the Vec<T>. The `deserialize` method of
676 /// // `ExtendVec` will be traversing the inner arrays of the JSON input and
677 /// // appending each integer into the existing Vec.
678 /// struct ExtendVec<'a, T: 'a>(&'a mut Vec<T>);
679 ///
680 /// impl<'de, 'a, T> DeserializeSeed<'de> for ExtendVec<'a, T>
681 /// where
682 ///     T: Deserialize<'de>,
683 /// {
684 ///     // The return type of the `deserialize` method. This implementation
685 ///     // appends onto an existing vector but does not create any new data
686 ///     // structure, so the return type is ().
687 ///     type Value = ();
688 ///
689 ///     fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
690 ///     where
691 ///         D: Deserializer<'de>,
692 ///     {
693 ///         // Visitor implementation that will walk an inner array of the JSON
694 ///         // input.
695 ///         struct ExtendVecVisitor<'a, T: 'a>(&'a mut Vec<T>);
696 ///
697 ///         impl<'de, 'a, T> Visitor<'de> for ExtendVecVisitor<'a, T>
698 ///         where
699 ///             T: Deserialize<'de>,
700 ///         {
701 ///             type Value = ();
702 ///
703 ///             fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
704 ///                 write!(formatter, "an array of integers")
705 ///             }
706 ///
707 ///             fn visit_seq<A>(self, mut seq: A) -> Result<(), A::Error>
708 ///             where
709 ///                 A: SeqAccess<'de>,
710 ///             {
711 ///                 // Visit each element in the inner array and push it onto
712 ///                 // the existing vector.
713 ///                 while let Some(elem) = seq.next_element()? {
714 ///                     self.0.push(elem);
715 ///                 }
716 ///                 Ok(())
717 ///             }
718 ///         }
719 ///
720 ///         deserializer.deserialize_seq(ExtendVecVisitor(self.0))
721 ///     }
722 /// }
723 ///
724 /// // Visitor implementation that will walk the outer array of the JSON input.
725 /// struct FlattenedVecVisitor<T>(PhantomData<T>);
726 ///
727 /// impl<'de, T> Visitor<'de> for FlattenedVecVisitor<T>
728 /// where
729 ///     T: Deserialize<'de>,
730 /// {
731 ///     // This Visitor constructs a single Vec<T> to hold the flattened
732 ///     // contents of the inner arrays.
733 ///     type Value = Vec<T>;
734 ///
735 ///     fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
736 ///         write!(formatter, "an array of arrays")
737 ///     }
738 ///
739 ///     fn visit_seq<A>(self, mut seq: A) -> Result<Vec<T>, A::Error>
740 ///     where
741 ///         A: SeqAccess<'de>,
742 ///     {
743 ///         // Create a single Vec to hold the flattened contents.
744 ///         let mut vec = Vec::new();
745 ///
746 ///         // Each iteration through this loop is one inner array.
747 ///         while let Some(()) = seq.next_element_seed(ExtendVec(&mut vec))? {
748 ///             // Nothing to do; inner array has been appended into `vec`.
749 ///         }
750 ///
751 ///         // Return the finished vec.
752 ///         Ok(vec)
753 ///     }
754 /// }
755 ///
756 /// # fn example<'de, D>(deserializer: D) -> Result<(), D::Error>
757 /// # where
758 /// #     D: Deserializer<'de>,
759 /// # {
760 /// let visitor = FlattenedVecVisitor(PhantomData);
761 /// let flattened: Vec<u64> = deserializer.deserialize_seq(visitor)?;
762 /// #     Ok(())
763 /// # }
764 /// ```
765 pub trait DeserializeSeed<'de>: Sized {
766     /// The type produced by using this seed.
767     type Value;
768 
769     /// Equivalent to the more common `Deserialize::deserialize` method, except
770     /// with some initial piece of data (the seed) passed in.
deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error> where D: Deserializer<'de>771     fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
772     where
773         D: Deserializer<'de>;
774 }
775 
776 impl<'de, T> DeserializeSeed<'de> for PhantomData<T>
777 where
778     T: Deserialize<'de>,
779 {
780     type Value = T;
781 
782     #[inline]
deserialize<D>(self, deserializer: D) -> Result<T, D::Error> where D: Deserializer<'de>,783     fn deserialize<D>(self, deserializer: D) -> Result<T, D::Error>
784     where
785         D: Deserializer<'de>,
786     {
787         T::deserialize(deserializer)
788     }
789 }
790 
791 ////////////////////////////////////////////////////////////////////////////////
792 
793 /// A **data format** that can deserialize any data structure supported by
794 /// Serde.
795 ///
796 /// The role of this trait is to define the deserialization half of the [Serde
797 /// data model], which is a way to categorize every Rust data type into one of
798 /// 29 possible types. Each method of the `Deserializer` trait corresponds to one
799 /// of the types of the data model.
800 ///
801 /// Implementations of `Deserialize` map themselves into this data model by
802 /// passing to the `Deserializer` a `Visitor` implementation that can receive
803 /// these various types.
804 ///
805 /// The types that make up the Serde data model are:
806 ///
807 ///  - **14 primitive types**
808 ///    - bool
809 ///    - i8, i16, i32, i64, i128
810 ///    - u8, u16, u32, u64, u128
811 ///    - f32, f64
812 ///    - char
813 ///  - **string**
814 ///    - UTF-8 bytes with a length and no null terminator.
815 ///    - When serializing, all strings are handled equally. When deserializing,
816 ///      there are three flavors of strings: transient, owned, and borrowed.
817 ///  - **byte array** - \[u8\]
818 ///    - Similar to strings, during deserialization byte arrays can be
819 ///      transient, owned, or borrowed.
820 ///  - **option**
821 ///    - Either none or some value.
822 ///  - **unit**
823 ///    - The type of `()` in Rust. It represents an anonymous value containing
824 ///      no data.
825 ///  - **unit_struct**
826 ///    - For example `struct Unit` or `PhantomData<T>`. It represents a named
827 ///      value containing no data.
828 ///  - **unit_variant**
829 ///    - For example the `E::A` and `E::B` in `enum E { A, B }`.
830 ///  - **newtype_struct**
831 ///    - For example `struct Millimeters(u8)`.
832 ///  - **newtype_variant**
833 ///    - For example the `E::N` in `enum E { N(u8) }`.
834 ///  - **seq**
835 ///    - A variably sized heterogeneous sequence of values, for example `Vec<T>`
836 ///      or `HashSet<T>`. When serializing, the length may or may not be known
837 ///      before iterating through all the data. When deserializing, the length
838 ///      is determined by looking at the serialized data.
839 ///  - **tuple**
840 ///    - A statically sized heterogeneous sequence of values for which the
841 ///      length will be known at deserialization time without looking at the
842 ///      serialized data, for example `(u8,)` or `(String, u64, Vec<T>)` or
843 ///      `[u64; 10]`.
844 ///  - **tuple_struct**
845 ///    - A named tuple, for example `struct Rgb(u8, u8, u8)`.
846 ///  - **tuple_variant**
847 ///    - For example the `E::T` in `enum E { T(u8, u8) }`.
848 ///  - **map**
849 ///    - A heterogeneous key-value pairing, for example `BTreeMap<K, V>`.
850 ///  - **struct**
851 ///    - A heterogeneous key-value pairing in which the keys are strings and
852 ///      will be known at deserialization time without looking at the serialized
853 ///      data, for example `struct S { r: u8, g: u8, b: u8 }`.
854 ///  - **struct_variant**
855 ///    - For example the `E::S` in `enum E { S { r: u8, g: u8, b: u8 } }`.
856 ///
857 /// The `Deserializer` trait supports two entry point styles which enables
858 /// different kinds of deserialization.
859 ///
860 /// 1. The `deserialize` method. Self-describing data formats like JSON are able
861 ///    to look at the serialized data and tell what it represents. For example
862 ///    the JSON deserializer may see an opening curly brace (`{`) and know that
863 ///    it is seeing a map. If the data format supports
864 ///    `Deserializer::deserialize_any`, it will drive the Visitor using whatever
865 ///    type it sees in the input. JSON uses this approach when deserializing
866 ///    `serde_json::Value` which is an enum that can represent any JSON
867 ///    document. Without knowing what is in a JSON document, we can deserialize
868 ///    it to `serde_json::Value` by going through
869 ///    `Deserializer::deserialize_any`.
870 ///
871 /// 2. The various `deserialize_*` methods. Non-self-describing formats like
872 ///    Bincode need to be told what is in the input in order to deserialize it.
873 ///    The `deserialize_*` methods are hints to the deserializer for how to
874 ///    interpret the next piece of input. Non-self-describing formats are not
875 ///    able to deserialize something like `serde_json::Value` which relies on
876 ///    `Deserializer::deserialize_any`.
877 ///
878 /// When implementing `Deserialize`, you should avoid relying on
879 /// `Deserializer::deserialize_any` unless you need to be told by the
880 /// Deserializer what type is in the input. Know that relying on
881 /// `Deserializer::deserialize_any` means your data type will be able to
882 /// deserialize from self-describing formats only, ruling out Bincode and many
883 /// others.
884 ///
885 /// [Serde data model]: https://serde.rs/data-model.html
886 ///
887 /// # Lifetime
888 ///
889 /// The `'de` lifetime of this trait is the lifetime of data that may be
890 /// borrowed from the input when deserializing. See the page [Understanding
891 /// deserializer lifetimes] for a more detailed explanation of these lifetimes.
892 ///
893 /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
894 ///
895 /// # Example implementation
896 ///
897 /// The [example data format] presented on the website contains example code for
898 /// a basic JSON `Deserializer`.
899 ///
900 /// [example data format]: https://serde.rs/data-format.html
901 pub trait Deserializer<'de>: Sized {
902     /// The error type that can be returned if some error occurs during
903     /// deserialization.
904     type Error: Error;
905 
906     /// Require the `Deserializer` to figure out how to drive the visitor based
907     /// on what data type is in the input.
908     ///
909     /// When implementing `Deserialize`, you should avoid relying on
910     /// `Deserializer::deserialize_any` unless you need to be told by the
911     /// Deserializer what type is in the input. Know that relying on
912     /// `Deserializer::deserialize_any` means your data type will be able to
913     /// deserialize from self-describing formats only, ruling out Bincode and
914     /// many others.
deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>915     fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
916     where
917         V: Visitor<'de>;
918 
919     /// Hint that the `Deserialize` type is expecting a `bool` value.
deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>920     fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error>
921     where
922         V: Visitor<'de>;
923 
924     /// Hint that the `Deserialize` type is expecting an `i8` value.
deserialize_i8<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>925     fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value, Self::Error>
926     where
927         V: Visitor<'de>;
928 
929     /// Hint that the `Deserialize` type is expecting an `i16` value.
deserialize_i16<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>930     fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value, Self::Error>
931     where
932         V: Visitor<'de>;
933 
934     /// Hint that the `Deserialize` type is expecting an `i32` value.
deserialize_i32<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>935     fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
936     where
937         V: Visitor<'de>;
938 
939     /// Hint that the `Deserialize` type is expecting an `i64` value.
deserialize_i64<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>940     fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
941     where
942         V: Visitor<'de>;
943 
944     serde_if_integer128! {
945         /// Hint that the `Deserialize` type is expecting an `i128` value.
946         ///
947         /// This method is available only on Rust compiler versions >=1.26. The
948         /// default behavior unconditionally returns an error.
949         fn deserialize_i128<V>(self, visitor: V) -> Result<V::Value, Self::Error>
950         where
951             V: Visitor<'de>
952         {
953             let _ = visitor;
954             Err(Error::custom("i128 is not supported"))
955         }
956     }
957 
958     /// Hint that the `Deserialize` type is expecting a `u8` value.
deserialize_u8<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>959     fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value, Self::Error>
960     where
961         V: Visitor<'de>;
962 
963     /// Hint that the `Deserialize` type is expecting a `u16` value.
deserialize_u16<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>964     fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value, Self::Error>
965     where
966         V: Visitor<'de>;
967 
968     /// Hint that the `Deserialize` type is expecting a `u32` value.
deserialize_u32<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>969     fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
970     where
971         V: Visitor<'de>;
972 
973     /// Hint that the `Deserialize` type is expecting a `u64` value.
deserialize_u64<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>974     fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
975     where
976         V: Visitor<'de>;
977 
978     serde_if_integer128! {
979         /// Hint that the `Deserialize` type is expecting an `u128` value.
980         ///
981         /// This method is available only on Rust compiler versions >=1.26. The
982         /// default behavior unconditionally returns an error.
983         fn deserialize_u128<V>(self, visitor: V) -> Result<V::Value, Self::Error>
984         where
985             V: Visitor<'de>
986         {
987             let _ = visitor;
988             Err(Error::custom("u128 is not supported"))
989         }
990     }
991 
992     /// Hint that the `Deserialize` type is expecting a `f32` value.
deserialize_f32<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>993     fn deserialize_f32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
994     where
995         V: Visitor<'de>;
996 
997     /// Hint that the `Deserialize` type is expecting a `f64` value.
deserialize_f64<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>998     fn deserialize_f64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
999     where
1000         V: Visitor<'de>;
1001 
1002     /// Hint that the `Deserialize` type is expecting a `char` value.
deserialize_char<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1003     fn deserialize_char<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1004     where
1005         V: Visitor<'de>;
1006 
1007     /// Hint that the `Deserialize` type is expecting a string value and does
1008     /// not benefit from taking ownership of buffered data owned by the
1009     /// `Deserializer`.
1010     ///
1011     /// If the `Visitor` would benefit from taking ownership of `String` data,
1012     /// indicate this to the `Deserializer` by using `deserialize_string`
1013     /// instead.
deserialize_str<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1014     fn deserialize_str<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1015     where
1016         V: Visitor<'de>;
1017 
1018     /// Hint that the `Deserialize` type is expecting a string value and would
1019     /// benefit from taking ownership of buffered data owned by the
1020     /// `Deserializer`.
1021     ///
1022     /// If the `Visitor` would not benefit from taking ownership of `String`
1023     /// data, indicate that to the `Deserializer` by using `deserialize_str`
1024     /// instead.
deserialize_string<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1025     fn deserialize_string<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1026     where
1027         V: Visitor<'de>;
1028 
1029     /// Hint that the `Deserialize` type is expecting a byte array and does not
1030     /// benefit from taking ownership of buffered data owned by the
1031     /// `Deserializer`.
1032     ///
1033     /// If the `Visitor` would benefit from taking ownership of `Vec<u8>` data,
1034     /// indicate this to the `Deserializer` by using `deserialize_byte_buf`
1035     /// instead.
deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1036     fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1037     where
1038         V: Visitor<'de>;
1039 
1040     /// Hint that the `Deserialize` type is expecting a byte array and would
1041     /// benefit from taking ownership of buffered data owned by the
1042     /// `Deserializer`.
1043     ///
1044     /// If the `Visitor` would not benefit from taking ownership of `Vec<u8>`
1045     /// data, indicate that to the `Deserializer` by using `deserialize_bytes`
1046     /// instead.
deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1047     fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1048     where
1049         V: Visitor<'de>;
1050 
1051     /// Hint that the `Deserialize` type is expecting an optional value.
1052     ///
1053     /// This allows deserializers that encode an optional value as a nullable
1054     /// value to convert the null value into `None` and a regular value into
1055     /// `Some(value)`.
deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1056     fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1057     where
1058         V: Visitor<'de>;
1059 
1060     /// Hint that the `Deserialize` type is expecting a unit value.
deserialize_unit<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1061     fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1062     where
1063         V: Visitor<'de>;
1064 
1065     /// Hint that the `Deserialize` type is expecting a unit struct with a
1066     /// particular name.
deserialize_unit_struct<V>( self, name: &'static str, visitor: V, ) -> Result<V::Value, Self::Error> where V: Visitor<'de>1067     fn deserialize_unit_struct<V>(
1068         self,
1069         name: &'static str,
1070         visitor: V,
1071     ) -> Result<V::Value, Self::Error>
1072     where
1073         V: Visitor<'de>;
1074 
1075     /// Hint that the `Deserialize` type is expecting a newtype struct with a
1076     /// particular name.
deserialize_newtype_struct<V>( self, name: &'static str, visitor: V, ) -> Result<V::Value, Self::Error> where V: Visitor<'de>1077     fn deserialize_newtype_struct<V>(
1078         self,
1079         name: &'static str,
1080         visitor: V,
1081     ) -> Result<V::Value, Self::Error>
1082     where
1083         V: Visitor<'de>;
1084 
1085     /// Hint that the `Deserialize` type is expecting a sequence of values.
deserialize_seq<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1086     fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1087     where
1088         V: Visitor<'de>;
1089 
1090     /// Hint that the `Deserialize` type is expecting a sequence of values and
1091     /// knows how many values there are without looking at the serialized data.
deserialize_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1092     fn deserialize_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
1093     where
1094         V: Visitor<'de>;
1095 
1096     /// Hint that the `Deserialize` type is expecting a tuple struct with a
1097     /// particular name and number of fields.
deserialize_tuple_struct<V>( self, name: &'static str, len: usize, visitor: V, ) -> Result<V::Value, Self::Error> where V: Visitor<'de>1098     fn deserialize_tuple_struct<V>(
1099         self,
1100         name: &'static str,
1101         len: usize,
1102         visitor: V,
1103     ) -> Result<V::Value, Self::Error>
1104     where
1105         V: Visitor<'de>;
1106 
1107     /// Hint that the `Deserialize` type is expecting a map of key-value pairs.
deserialize_map<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1108     fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1109     where
1110         V: Visitor<'de>;
1111 
1112     /// Hint that the `Deserialize` type is expecting a struct with a particular
1113     /// name and fields.
deserialize_struct<V>( self, name: &'static str, fields: &'static [&'static str], visitor: V, ) -> Result<V::Value, Self::Error> where V: Visitor<'de>1114     fn deserialize_struct<V>(
1115         self,
1116         name: &'static str,
1117         fields: &'static [&'static str],
1118         visitor: V,
1119     ) -> Result<V::Value, Self::Error>
1120     where
1121         V: Visitor<'de>;
1122 
1123     /// Hint that the `Deserialize` type is expecting an enum value with a
1124     /// particular name and possible variants.
deserialize_enum<V>( self, name: &'static str, variants: &'static [&'static str], visitor: V, ) -> Result<V::Value, Self::Error> where V: Visitor<'de>1125     fn deserialize_enum<V>(
1126         self,
1127         name: &'static str,
1128         variants: &'static [&'static str],
1129         visitor: V,
1130     ) -> Result<V::Value, Self::Error>
1131     where
1132         V: Visitor<'de>;
1133 
1134     /// Hint that the `Deserialize` type is expecting the name of a struct
1135     /// field or the discriminant of an enum variant.
deserialize_identifier<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1136     fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1137     where
1138         V: Visitor<'de>;
1139 
1140     /// Hint that the `Deserialize` type needs to deserialize a value whose type
1141     /// doesn't matter because it is ignored.
1142     ///
1143     /// Deserializers for non-self-describing formats may not support this mode.
deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>1144     fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1145     where
1146         V: Visitor<'de>;
1147 
1148     /// Determine whether `Deserialize` implementations should expect to
1149     /// deserialize their human-readable form.
1150     ///
1151     /// Some types have a human-readable form that may be somewhat expensive to
1152     /// construct, as well as a binary form that is compact and efficient.
1153     /// Generally text-based formats like JSON and YAML will prefer to use the
1154     /// human-readable one and binary formats like Bincode will prefer the
1155     /// compact one.
1156     ///
1157     /// ```edition2018
1158     /// # use std::ops::Add;
1159     /// # use std::str::FromStr;
1160     /// #
1161     /// # struct Timestamp;
1162     /// #
1163     /// # impl Timestamp {
1164     /// #     const EPOCH: Timestamp = Timestamp;
1165     /// # }
1166     /// #
1167     /// # impl FromStr for Timestamp {
1168     /// #     type Err = String;
1169     /// #     fn from_str(_: &str) -> Result<Self, Self::Err> {
1170     /// #         unimplemented!()
1171     /// #     }
1172     /// # }
1173     /// #
1174     /// # struct Duration;
1175     /// #
1176     /// # impl Duration {
1177     /// #     fn seconds(_: u64) -> Self { unimplemented!() }
1178     /// # }
1179     /// #
1180     /// # impl Add<Duration> for Timestamp {
1181     /// #     type Output = Timestamp;
1182     /// #     fn add(self, _: Duration) -> Self::Output {
1183     /// #         unimplemented!()
1184     /// #     }
1185     /// # }
1186     /// #
1187     /// use serde::de::{self, Deserialize, Deserializer};
1188     ///
1189     /// impl<'de> Deserialize<'de> for Timestamp {
1190     ///     fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1191     ///     where
1192     ///         D: Deserializer<'de>,
1193     ///     {
1194     ///         if deserializer.is_human_readable() {
1195     ///             // Deserialize from a human-readable string like "2015-05-15T17:01:00Z".
1196     ///             let s = String::deserialize(deserializer)?;
1197     ///             Timestamp::from_str(&s).map_err(de::Error::custom)
1198     ///         } else {
1199     ///             // Deserialize from a compact binary representation, seconds since
1200     ///             // the Unix epoch.
1201     ///             let n = u64::deserialize(deserializer)?;
1202     ///             Ok(Timestamp::EPOCH + Duration::seconds(n))
1203     ///         }
1204     ///     }
1205     /// }
1206     /// ```
1207     ///
1208     /// The default implementation of this method returns `true`. Data formats
1209     /// may override this to `false` to request a compact form for types that
1210     /// support one. Note that modifying this method to change a format from
1211     /// human-readable to compact or vice versa should be regarded as a breaking
1212     /// change, as a value serialized in human-readable mode is not required to
1213     /// deserialize from the same data in compact mode.
1214     #[inline]
is_human_readable(&self) -> bool1215     fn is_human_readable(&self) -> bool {
1216         true
1217     }
1218 
1219     // Not public API.
1220     #[cfg(all(not(no_serde_derive), any(feature = "std", feature = "alloc")))]
1221     #[doc(hidden)]
__deserialize_content<V>( self, _: ::actually_private::T, visitor: V, ) -> Result<::private::de::Content<'de>, Self::Error> where V: Visitor<'de, Value = ::private::de::Content<'de>>,1222     fn __deserialize_content<V>(
1223         self,
1224         _: ::actually_private::T,
1225         visitor: V,
1226     ) -> Result<::private::de::Content<'de>, Self::Error>
1227     where
1228         V: Visitor<'de, Value = ::private::de::Content<'de>>,
1229     {
1230         self.deserialize_any(visitor)
1231     }
1232 }
1233 
1234 ////////////////////////////////////////////////////////////////////////////////
1235 
1236 /// This trait represents a visitor that walks through a deserializer.
1237 ///
1238 /// # Lifetime
1239 ///
1240 /// The `'de` lifetime of this trait is the requirement for lifetime of data
1241 /// that may be borrowed by `Self::Value`. See the page [Understanding
1242 /// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1243 ///
1244 /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1245 ///
1246 /// # Example
1247 ///
1248 /// ```edition2018
1249 /// # use std::fmt;
1250 /// #
1251 /// # use serde::de::{self, Unexpected, Visitor};
1252 /// #
1253 /// /// A visitor that deserializes a long string - a string containing at least
1254 /// /// some minimum number of bytes.
1255 /// struct LongString {
1256 ///     min: usize,
1257 /// }
1258 ///
1259 /// impl<'de> Visitor<'de> for LongString {
1260 ///     type Value = String;
1261 ///
1262 ///     fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1263 ///         write!(formatter, "a string containing at least {} bytes", self.min)
1264 ///     }
1265 ///
1266 ///     fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
1267 ///     where
1268 ///         E: de::Error,
1269 ///     {
1270 ///         if s.len() >= self.min {
1271 ///             Ok(s.to_owned())
1272 ///         } else {
1273 ///             Err(de::Error::invalid_value(Unexpected::Str(s), &self))
1274 ///         }
1275 ///     }
1276 /// }
1277 /// ```
1278 pub trait Visitor<'de>: Sized {
1279     /// The value produced by this visitor.
1280     type Value;
1281 
1282     /// Format a message stating what data this Visitor expects to receive.
1283     ///
1284     /// This is used in error messages. The message should complete the sentence
1285     /// "This Visitor expects to receive ...", for example the message could be
1286     /// "an integer between 0 and 64". The message should not be capitalized and
1287     /// should not end with a period.
1288     ///
1289     /// ```edition2018
1290     /// # use std::fmt;
1291     /// #
1292     /// # struct S {
1293     /// #     max: usize,
1294     /// # }
1295     /// #
1296     /// # impl<'de> serde::de::Visitor<'de> for S {
1297     /// #     type Value = ();
1298     /// #
1299     /// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1300     ///     write!(formatter, "an integer between 0 and {}", self.max)
1301     /// }
1302     /// # }
1303     /// ```
expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result1304     fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
1305 
1306     /// The input contains a boolean.
1307     ///
1308     /// The default implementation fails with a type error.
visit_bool<E>(self, v: bool) -> Result<Self::Value, E> where E: Error,1309     fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
1310     where
1311         E: Error,
1312     {
1313         Err(Error::invalid_type(Unexpected::Bool(v), &self))
1314     }
1315 
1316     /// The input contains an `i8`.
1317     ///
1318     /// The default implementation forwards to [`visit_i64`].
1319     ///
1320     /// [`visit_i64`]: #method.visit_i64
visit_i8<E>(self, v: i8) -> Result<Self::Value, E> where E: Error,1321     fn visit_i8<E>(self, v: i8) -> Result<Self::Value, E>
1322     where
1323         E: Error,
1324     {
1325         self.visit_i64(v as i64)
1326     }
1327 
1328     /// The input contains an `i16`.
1329     ///
1330     /// The default implementation forwards to [`visit_i64`].
1331     ///
1332     /// [`visit_i64`]: #method.visit_i64
visit_i16<E>(self, v: i16) -> Result<Self::Value, E> where E: Error,1333     fn visit_i16<E>(self, v: i16) -> Result<Self::Value, E>
1334     where
1335         E: Error,
1336     {
1337         self.visit_i64(v as i64)
1338     }
1339 
1340     /// The input contains an `i32`.
1341     ///
1342     /// The default implementation forwards to [`visit_i64`].
1343     ///
1344     /// [`visit_i64`]: #method.visit_i64
visit_i32<E>(self, v: i32) -> Result<Self::Value, E> where E: Error,1345     fn visit_i32<E>(self, v: i32) -> Result<Self::Value, E>
1346     where
1347         E: Error,
1348     {
1349         self.visit_i64(v as i64)
1350     }
1351 
1352     /// The input contains an `i64`.
1353     ///
1354     /// The default implementation fails with a type error.
visit_i64<E>(self, v: i64) -> Result<Self::Value, E> where E: Error,1355     fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E>
1356     where
1357         E: Error,
1358     {
1359         Err(Error::invalid_type(Unexpected::Signed(v), &self))
1360     }
1361 
1362     serde_if_integer128! {
1363         /// The input contains a `i128`.
1364         ///
1365         /// This method is available only on Rust compiler versions >=1.26. The
1366         /// default implementation fails with a type error.
1367         fn visit_i128<E>(self, v: i128) -> Result<Self::Value, E>
1368         where
1369             E: Error,
1370         {
1371             let mut buf = [0u8; 58];
1372             let mut writer = format::Buf::new(&mut buf);
1373             fmt::Write::write_fmt(&mut writer, format_args!("integer `{}` as i128", v)).unwrap();
1374             Err(Error::invalid_type(Unexpected::Other(writer.as_str()), &self))
1375         }
1376     }
1377 
1378     /// The input contains a `u8`.
1379     ///
1380     /// The default implementation forwards to [`visit_u64`].
1381     ///
1382     /// [`visit_u64`]: #method.visit_u64
visit_u8<E>(self, v: u8) -> Result<Self::Value, E> where E: Error,1383     fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E>
1384     where
1385         E: Error,
1386     {
1387         self.visit_u64(v as u64)
1388     }
1389 
1390     /// The input contains a `u16`.
1391     ///
1392     /// The default implementation forwards to [`visit_u64`].
1393     ///
1394     /// [`visit_u64`]: #method.visit_u64
visit_u16<E>(self, v: u16) -> Result<Self::Value, E> where E: Error,1395     fn visit_u16<E>(self, v: u16) -> Result<Self::Value, E>
1396     where
1397         E: Error,
1398     {
1399         self.visit_u64(v as u64)
1400     }
1401 
1402     /// The input contains a `u32`.
1403     ///
1404     /// The default implementation forwards to [`visit_u64`].
1405     ///
1406     /// [`visit_u64`]: #method.visit_u64
visit_u32<E>(self, v: u32) -> Result<Self::Value, E> where E: Error,1407     fn visit_u32<E>(self, v: u32) -> Result<Self::Value, E>
1408     where
1409         E: Error,
1410     {
1411         self.visit_u64(v as u64)
1412     }
1413 
1414     /// The input contains a `u64`.
1415     ///
1416     /// The default implementation fails with a type error.
visit_u64<E>(self, v: u64) -> Result<Self::Value, E> where E: Error,1417     fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>
1418     where
1419         E: Error,
1420     {
1421         Err(Error::invalid_type(Unexpected::Unsigned(v), &self))
1422     }
1423 
1424     serde_if_integer128! {
1425         /// The input contains a `u128`.
1426         ///
1427         /// This method is available only on Rust compiler versions >=1.26. The
1428         /// default implementation fails with a type error.
1429         fn visit_u128<E>(self, v: u128) -> Result<Self::Value, E>
1430         where
1431             E: Error,
1432         {
1433             let mut buf = [0u8; 57];
1434             let mut writer = format::Buf::new(&mut buf);
1435             fmt::Write::write_fmt(&mut writer, format_args!("integer `{}` as u128", v)).unwrap();
1436             Err(Error::invalid_type(Unexpected::Other(writer.as_str()), &self))
1437         }
1438     }
1439 
1440     /// The input contains an `f32`.
1441     ///
1442     /// The default implementation forwards to [`visit_f64`].
1443     ///
1444     /// [`visit_f64`]: #method.visit_f64
visit_f32<E>(self, v: f32) -> Result<Self::Value, E> where E: Error,1445     fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
1446     where
1447         E: Error,
1448     {
1449         self.visit_f64(v as f64)
1450     }
1451 
1452     /// The input contains an `f64`.
1453     ///
1454     /// The default implementation fails with a type error.
visit_f64<E>(self, v: f64) -> Result<Self::Value, E> where E: Error,1455     fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
1456     where
1457         E: Error,
1458     {
1459         Err(Error::invalid_type(Unexpected::Float(v), &self))
1460     }
1461 
1462     /// The input contains a `char`.
1463     ///
1464     /// The default implementation forwards to [`visit_str`] as a one-character
1465     /// string.
1466     ///
1467     /// [`visit_str`]: #method.visit_str
1468     #[inline]
visit_char<E>(self, v: char) -> Result<Self::Value, E> where E: Error,1469     fn visit_char<E>(self, v: char) -> Result<Self::Value, E>
1470     where
1471         E: Error,
1472     {
1473         self.visit_str(utf8::encode(v).as_str())
1474     }
1475 
1476     /// The input contains a string. The lifetime of the string is ephemeral and
1477     /// it may be destroyed after this method returns.
1478     ///
1479     /// This method allows the `Deserializer` to avoid a copy by retaining
1480     /// ownership of any buffered data. `Deserialize` implementations that do
1481     /// not benefit from taking ownership of `String` data should indicate that
1482     /// to the deserializer by using `Deserializer::deserialize_str` rather than
1483     /// `Deserializer::deserialize_string`.
1484     ///
1485     /// It is never correct to implement `visit_string` without implementing
1486     /// `visit_str`. Implement neither, both, or just `visit_str`.
visit_str<E>(self, v: &str) -> Result<Self::Value, E> where E: Error,1487     fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
1488     where
1489         E: Error,
1490     {
1491         Err(Error::invalid_type(Unexpected::Str(v), &self))
1492     }
1493 
1494     /// The input contains a string that lives at least as long as the
1495     /// `Deserializer`.
1496     ///
1497     /// This enables zero-copy deserialization of strings in some formats. For
1498     /// example JSON input containing the JSON string `"borrowed"` can be
1499     /// deserialized with zero copying into a `&'a str` as long as the input
1500     /// data outlives `'a`.
1501     ///
1502     /// The default implementation forwards to `visit_str`.
1503     #[inline]
visit_borrowed_str<E>(self, v: &'de str) -> Result<Self::Value, E> where E: Error,1504     fn visit_borrowed_str<E>(self, v: &'de str) -> Result<Self::Value, E>
1505     where
1506         E: Error,
1507     {
1508         self.visit_str(v)
1509     }
1510 
1511     /// The input contains a string and ownership of the string is being given
1512     /// to the `Visitor`.
1513     ///
1514     /// This method allows the `Visitor` to avoid a copy by taking ownership of
1515     /// a string created by the `Deserializer`. `Deserialize` implementations
1516     /// that benefit from taking ownership of `String` data should indicate that
1517     /// to the deserializer by using `Deserializer::deserialize_string` rather
1518     /// than `Deserializer::deserialize_str`, although not every deserializer
1519     /// will honor such a request.
1520     ///
1521     /// It is never correct to implement `visit_string` without implementing
1522     /// `visit_str`. Implement neither, both, or just `visit_str`.
1523     ///
1524     /// The default implementation forwards to `visit_str` and then drops the
1525     /// `String`.
1526     #[inline]
1527     #[cfg(any(feature = "std", feature = "alloc"))]
visit_string<E>(self, v: String) -> Result<Self::Value, E> where E: Error,1528     fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
1529     where
1530         E: Error,
1531     {
1532         self.visit_str(&v)
1533     }
1534 
1535     /// The input contains a byte array. The lifetime of the byte array is
1536     /// ephemeral and it may be destroyed after this method returns.
1537     ///
1538     /// This method allows the `Deserializer` to avoid a copy by retaining
1539     /// ownership of any buffered data. `Deserialize` implementations that do
1540     /// not benefit from taking ownership of `Vec<u8>` data should indicate that
1541     /// to the deserializer by using `Deserializer::deserialize_bytes` rather
1542     /// than `Deserializer::deserialize_byte_buf`.
1543     ///
1544     /// It is never correct to implement `visit_byte_buf` without implementing
1545     /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E> where E: Error,1546     fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
1547     where
1548         E: Error,
1549     {
1550         let _ = v;
1551         Err(Error::invalid_type(Unexpected::Bytes(v), &self))
1552     }
1553 
1554     /// The input contains a byte array that lives at least as long as the
1555     /// `Deserializer`.
1556     ///
1557     /// This enables zero-copy deserialization of bytes in some formats. For
1558     /// example Bincode data containing bytes can be deserialized with zero
1559     /// copying into a `&'a [u8]` as long as the input data outlives `'a`.
1560     ///
1561     /// The default implementation forwards to `visit_bytes`.
1562     #[inline]
visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E> where E: Error,1563     fn visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E>
1564     where
1565         E: Error,
1566     {
1567         self.visit_bytes(v)
1568     }
1569 
1570     /// The input contains a byte array and ownership of the byte array is being
1571     /// given to the `Visitor`.
1572     ///
1573     /// This method allows the `Visitor` to avoid a copy by taking ownership of
1574     /// a byte buffer created by the `Deserializer`. `Deserialize`
1575     /// implementations that benefit from taking ownership of `Vec<u8>` data
1576     /// should indicate that to the deserializer by using
1577     /// `Deserializer::deserialize_byte_buf` rather than
1578     /// `Deserializer::deserialize_bytes`, although not every deserializer will
1579     /// honor such a request.
1580     ///
1581     /// It is never correct to implement `visit_byte_buf` without implementing
1582     /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
1583     ///
1584     /// The default implementation forwards to `visit_bytes` and then drops the
1585     /// `Vec<u8>`.
1586     #[cfg(any(feature = "std", feature = "alloc"))]
visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E> where E: Error,1587     fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
1588     where
1589         E: Error,
1590     {
1591         self.visit_bytes(&v)
1592     }
1593 
1594     /// The input contains an optional that is absent.
1595     ///
1596     /// The default implementation fails with a type error.
visit_none<E>(self) -> Result<Self::Value, E> where E: Error,1597     fn visit_none<E>(self) -> Result<Self::Value, E>
1598     where
1599         E: Error,
1600     {
1601         Err(Error::invalid_type(Unexpected::Option, &self))
1602     }
1603 
1604     /// The input contains an optional that is present.
1605     ///
1606     /// The default implementation fails with a type error.
visit_some<D>(self, deserializer: D) -> Result<Self::Value, D::Error> where D: Deserializer<'de>,1607     fn visit_some<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1608     where
1609         D: Deserializer<'de>,
1610     {
1611         let _ = deserializer;
1612         Err(Error::invalid_type(Unexpected::Option, &self))
1613     }
1614 
1615     /// The input contains a unit `()`.
1616     ///
1617     /// The default implementation fails with a type error.
visit_unit<E>(self) -> Result<Self::Value, E> where E: Error,1618     fn visit_unit<E>(self) -> Result<Self::Value, E>
1619     where
1620         E: Error,
1621     {
1622         Err(Error::invalid_type(Unexpected::Unit, &self))
1623     }
1624 
1625     /// The input contains a newtype struct.
1626     ///
1627     /// The content of the newtype struct may be read from the given
1628     /// `Deserializer`.
1629     ///
1630     /// The default implementation fails with a type error.
visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error> where D: Deserializer<'de>,1631     fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1632     where
1633         D: Deserializer<'de>,
1634     {
1635         let _ = deserializer;
1636         Err(Error::invalid_type(Unexpected::NewtypeStruct, &self))
1637     }
1638 
1639     /// The input contains a sequence of elements.
1640     ///
1641     /// The default implementation fails with a type error.
visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error> where A: SeqAccess<'de>,1642     fn visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error>
1643     where
1644         A: SeqAccess<'de>,
1645     {
1646         let _ = seq;
1647         Err(Error::invalid_type(Unexpected::Seq, &self))
1648     }
1649 
1650     /// The input contains a key-value map.
1651     ///
1652     /// The default implementation fails with a type error.
visit_map<A>(self, map: A) -> Result<Self::Value, A::Error> where A: MapAccess<'de>,1653     fn visit_map<A>(self, map: A) -> Result<Self::Value, A::Error>
1654     where
1655         A: MapAccess<'de>,
1656     {
1657         let _ = map;
1658         Err(Error::invalid_type(Unexpected::Map, &self))
1659     }
1660 
1661     /// The input contains an enum.
1662     ///
1663     /// The default implementation fails with a type error.
visit_enum<A>(self, data: A) -> Result<Self::Value, A::Error> where A: EnumAccess<'de>,1664     fn visit_enum<A>(self, data: A) -> Result<Self::Value, A::Error>
1665     where
1666         A: EnumAccess<'de>,
1667     {
1668         let _ = data;
1669         Err(Error::invalid_type(Unexpected::Enum, &self))
1670     }
1671 
1672     // Used when deserializing a flattened Option field. Not public API.
1673     #[doc(hidden)]
__private_visit_untagged_option<D>(self, _: D) -> Result<Self::Value, ()> where D: Deserializer<'de>,1674     fn __private_visit_untagged_option<D>(self, _: D) -> Result<Self::Value, ()>
1675     where
1676         D: Deserializer<'de>,
1677     {
1678         Err(())
1679     }
1680 }
1681 
1682 ////////////////////////////////////////////////////////////////////////////////
1683 
1684 /// Provides a `Visitor` access to each element of a sequence in the input.
1685 ///
1686 /// This is a trait that a `Deserializer` passes to a `Visitor` implementation,
1687 /// which deserializes each item in a sequence.
1688 ///
1689 /// # Lifetime
1690 ///
1691 /// The `'de` lifetime of this trait is the lifetime of data that may be
1692 /// borrowed by deserialized sequence elements. See the page [Understanding
1693 /// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1694 ///
1695 /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1696 ///
1697 /// # Example implementation
1698 ///
1699 /// The [example data format] presented on the website demonstrates an
1700 /// implementation of `SeqAccess` for a basic JSON data format.
1701 ///
1702 /// [example data format]: https://serde.rs/data-format.html
1703 pub trait SeqAccess<'de> {
1704     /// The error type that can be returned if some error occurs during
1705     /// deserialization.
1706     type Error: Error;
1707 
1708     /// This returns `Ok(Some(value))` for the next value in the sequence, or
1709     /// `Ok(None)` if there are no more remaining items.
1710     ///
1711     /// `Deserialize` implementations should typically use
1712     /// `SeqAccess::next_element` instead.
next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error> where T: DeserializeSeed<'de>1713     fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
1714     where
1715         T: DeserializeSeed<'de>;
1716 
1717     /// This returns `Ok(Some(value))` for the next value in the sequence, or
1718     /// `Ok(None)` if there are no more remaining items.
1719     ///
1720     /// This method exists as a convenience for `Deserialize` implementations.
1721     /// `SeqAccess` implementations should not override the default behavior.
1722     #[inline]
next_element<T>(&mut self) -> Result<Option<T>, Self::Error> where T: Deserialize<'de>,1723     fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error>
1724     where
1725         T: Deserialize<'de>,
1726     {
1727         self.next_element_seed(PhantomData)
1728     }
1729 
1730     /// Returns the number of elements remaining in the sequence, if known.
1731     #[inline]
size_hint(&self) -> Option<usize>1732     fn size_hint(&self) -> Option<usize> {
1733         None
1734     }
1735 }
1736 
1737 impl<'de, 'a, A: ?Sized> SeqAccess<'de> for &'a mut A
1738 where
1739     A: SeqAccess<'de>,
1740 {
1741     type Error = A::Error;
1742 
1743     #[inline]
next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error> where T: DeserializeSeed<'de>,1744     fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
1745     where
1746         T: DeserializeSeed<'de>,
1747     {
1748         (**self).next_element_seed(seed)
1749     }
1750 
1751     #[inline]
next_element<T>(&mut self) -> Result<Option<T>, Self::Error> where T: Deserialize<'de>,1752     fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error>
1753     where
1754         T: Deserialize<'de>,
1755     {
1756         (**self).next_element()
1757     }
1758 
1759     #[inline]
size_hint(&self) -> Option<usize>1760     fn size_hint(&self) -> Option<usize> {
1761         (**self).size_hint()
1762     }
1763 }
1764 
1765 ////////////////////////////////////////////////////////////////////////////////
1766 
1767 /// Provides a `Visitor` access to each entry of a map in the input.
1768 ///
1769 /// This is a trait that a `Deserializer` passes to a `Visitor` implementation.
1770 ///
1771 /// # Lifetime
1772 ///
1773 /// The `'de` lifetime of this trait is the lifetime of data that may be
1774 /// borrowed by deserialized map entries. See the page [Understanding
1775 /// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1776 ///
1777 /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1778 ///
1779 /// # Example implementation
1780 ///
1781 /// The [example data format] presented on the website demonstrates an
1782 /// implementation of `MapAccess` for a basic JSON data format.
1783 ///
1784 /// [example data format]: https://serde.rs/data-format.html
1785 pub trait MapAccess<'de> {
1786     /// The error type that can be returned if some error occurs during
1787     /// deserialization.
1788     type Error: Error;
1789 
1790     /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
1791     /// if there are no more remaining entries.
1792     ///
1793     /// `Deserialize` implementations should typically use
1794     /// `MapAccess::next_key` or `MapAccess::next_entry` instead.
next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error> where K: DeserializeSeed<'de>1795     fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
1796     where
1797         K: DeserializeSeed<'de>;
1798 
1799     /// This returns a `Ok(value)` for the next value in the map.
1800     ///
1801     /// `Deserialize` implementations should typically use
1802     /// `MapAccess::next_value` instead.
1803     ///
1804     /// # Panics
1805     ///
1806     /// Calling `next_value_seed` before `next_key_seed` is incorrect and is
1807     /// allowed to panic or return bogus results.
next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error> where V: DeserializeSeed<'de>1808     fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
1809     where
1810         V: DeserializeSeed<'de>;
1811 
1812     /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
1813     /// the map, or `Ok(None)` if there are no more remaining items.
1814     ///
1815     /// `MapAccess` implementations should override the default behavior if a
1816     /// more efficient implementation is possible.
1817     ///
1818     /// `Deserialize` implementations should typically use
1819     /// `MapAccess::next_entry` instead.
1820     #[inline]
next_entry_seed<K, V>( &mut self, kseed: K, vseed: V, ) -> Result<Option<(K::Value, V::Value)>, Self::Error> where K: DeserializeSeed<'de>, V: DeserializeSeed<'de>,1821     fn next_entry_seed<K, V>(
1822         &mut self,
1823         kseed: K,
1824         vseed: V,
1825     ) -> Result<Option<(K::Value, V::Value)>, Self::Error>
1826     where
1827         K: DeserializeSeed<'de>,
1828         V: DeserializeSeed<'de>,
1829     {
1830         match try!(self.next_key_seed(kseed)) {
1831             Some(key) => {
1832                 let value = try!(self.next_value_seed(vseed));
1833                 Ok(Some((key, value)))
1834             }
1835             None => Ok(None),
1836         }
1837     }
1838 
1839     /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
1840     /// if there are no more remaining entries.
1841     ///
1842     /// This method exists as a convenience for `Deserialize` implementations.
1843     /// `MapAccess` implementations should not override the default behavior.
1844     #[inline]
next_key<K>(&mut self) -> Result<Option<K>, Self::Error> where K: Deserialize<'de>,1845     fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error>
1846     where
1847         K: Deserialize<'de>,
1848     {
1849         self.next_key_seed(PhantomData)
1850     }
1851 
1852     /// This returns a `Ok(value)` for the next value in the map.
1853     ///
1854     /// This method exists as a convenience for `Deserialize` implementations.
1855     /// `MapAccess` implementations should not override the default behavior.
1856     ///
1857     /// # Panics
1858     ///
1859     /// Calling `next_value` before `next_key` is incorrect and is allowed to
1860     /// panic or return bogus results.
1861     #[inline]
next_value<V>(&mut self) -> Result<V, Self::Error> where V: Deserialize<'de>,1862     fn next_value<V>(&mut self) -> Result<V, Self::Error>
1863     where
1864         V: Deserialize<'de>,
1865     {
1866         self.next_value_seed(PhantomData)
1867     }
1868 
1869     /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
1870     /// the map, or `Ok(None)` if there are no more remaining items.
1871     ///
1872     /// This method exists as a convenience for `Deserialize` implementations.
1873     /// `MapAccess` implementations should not override the default behavior.
1874     #[inline]
next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error> where K: Deserialize<'de>, V: Deserialize<'de>,1875     fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
1876     where
1877         K: Deserialize<'de>,
1878         V: Deserialize<'de>,
1879     {
1880         self.next_entry_seed(PhantomData, PhantomData)
1881     }
1882 
1883     /// Returns the number of entries remaining in the map, if known.
1884     #[inline]
size_hint(&self) -> Option<usize>1885     fn size_hint(&self) -> Option<usize> {
1886         None
1887     }
1888 }
1889 
1890 impl<'de, 'a, A: ?Sized> MapAccess<'de> for &'a mut A
1891 where
1892     A: MapAccess<'de>,
1893 {
1894     type Error = A::Error;
1895 
1896     #[inline]
next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error> where K: DeserializeSeed<'de>,1897     fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
1898     where
1899         K: DeserializeSeed<'de>,
1900     {
1901         (**self).next_key_seed(seed)
1902     }
1903 
1904     #[inline]
next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error> where V: DeserializeSeed<'de>,1905     fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
1906     where
1907         V: DeserializeSeed<'de>,
1908     {
1909         (**self).next_value_seed(seed)
1910     }
1911 
1912     #[inline]
next_entry_seed<K, V>( &mut self, kseed: K, vseed: V, ) -> Result<Option<(K::Value, V::Value)>, Self::Error> where K: DeserializeSeed<'de>, V: DeserializeSeed<'de>,1913     fn next_entry_seed<K, V>(
1914         &mut self,
1915         kseed: K,
1916         vseed: V,
1917     ) -> Result<Option<(K::Value, V::Value)>, Self::Error>
1918     where
1919         K: DeserializeSeed<'de>,
1920         V: DeserializeSeed<'de>,
1921     {
1922         (**self).next_entry_seed(kseed, vseed)
1923     }
1924 
1925     #[inline]
next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error> where K: Deserialize<'de>, V: Deserialize<'de>,1926     fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
1927     where
1928         K: Deserialize<'de>,
1929         V: Deserialize<'de>,
1930     {
1931         (**self).next_entry()
1932     }
1933 
1934     #[inline]
next_key<K>(&mut self) -> Result<Option<K>, Self::Error> where K: Deserialize<'de>,1935     fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error>
1936     where
1937         K: Deserialize<'de>,
1938     {
1939         (**self).next_key()
1940     }
1941 
1942     #[inline]
next_value<V>(&mut self) -> Result<V, Self::Error> where V: Deserialize<'de>,1943     fn next_value<V>(&mut self) -> Result<V, Self::Error>
1944     where
1945         V: Deserialize<'de>,
1946     {
1947         (**self).next_value()
1948     }
1949 
1950     #[inline]
size_hint(&self) -> Option<usize>1951     fn size_hint(&self) -> Option<usize> {
1952         (**self).size_hint()
1953     }
1954 }
1955 
1956 ////////////////////////////////////////////////////////////////////////////////
1957 
1958 /// Provides a `Visitor` access to the data of an enum in the input.
1959 ///
1960 /// `EnumAccess` is created by the `Deserializer` and passed to the
1961 /// `Visitor` in order to identify which variant of an enum to deserialize.
1962 ///
1963 /// # Lifetime
1964 ///
1965 /// The `'de` lifetime of this trait is the lifetime of data that may be
1966 /// borrowed by the deserialized enum variant. See the page [Understanding
1967 /// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1968 ///
1969 /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1970 ///
1971 /// # Example implementation
1972 ///
1973 /// The [example data format] presented on the website demonstrates an
1974 /// implementation of `EnumAccess` for a basic JSON data format.
1975 ///
1976 /// [example data format]: https://serde.rs/data-format.html
1977 pub trait EnumAccess<'de>: Sized {
1978     /// The error type that can be returned if some error occurs during
1979     /// deserialization.
1980     type Error: Error;
1981     /// The `Visitor` that will be used to deserialize the content of the enum
1982     /// variant.
1983     type Variant: VariantAccess<'de, Error = Self::Error>;
1984 
1985     /// `variant` is called to identify which variant to deserialize.
1986     ///
1987     /// `Deserialize` implementations should typically use `EnumAccess::variant`
1988     /// instead.
variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant), Self::Error> where V: DeserializeSeed<'de>1989     fn variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant), Self::Error>
1990     where
1991         V: DeserializeSeed<'de>;
1992 
1993     /// `variant` is called to identify which variant to deserialize.
1994     ///
1995     /// This method exists as a convenience for `Deserialize` implementations.
1996     /// `EnumAccess` implementations should not override the default behavior.
1997     #[inline]
variant<V>(self) -> Result<(V, Self::Variant), Self::Error> where V: Deserialize<'de>,1998     fn variant<V>(self) -> Result<(V, Self::Variant), Self::Error>
1999     where
2000         V: Deserialize<'de>,
2001     {
2002         self.variant_seed(PhantomData)
2003     }
2004 }
2005 
2006 /// `VariantAccess` is a visitor that is created by the `Deserializer` and
2007 /// passed to the `Deserialize` to deserialize the content of a particular enum
2008 /// variant.
2009 ///
2010 /// # Lifetime
2011 ///
2012 /// The `'de` lifetime of this trait is the lifetime of data that may be
2013 /// borrowed by the deserialized enum variant. See the page [Understanding
2014 /// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2015 ///
2016 /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2017 ///
2018 /// # Example implementation
2019 ///
2020 /// The [example data format] presented on the website demonstrates an
2021 /// implementation of `VariantAccess` for a basic JSON data format.
2022 ///
2023 /// [example data format]: https://serde.rs/data-format.html
2024 pub trait VariantAccess<'de>: Sized {
2025     /// The error type that can be returned if some error occurs during
2026     /// deserialization. Must match the error type of our `EnumAccess`.
2027     type Error: Error;
2028 
2029     /// Called when deserializing a variant with no values.
2030     ///
2031     /// If the data contains a different type of variant, the following
2032     /// `invalid_type` error should be constructed:
2033     ///
2034     /// ```edition2018
2035     /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2036     /// #
2037     /// # struct X;
2038     /// #
2039     /// # impl<'de> VariantAccess<'de> for X {
2040     /// #     type Error = value::Error;
2041     /// #
2042     /// fn unit_variant(self) -> Result<(), Self::Error> {
2043     ///     // What the data actually contained; suppose it is a tuple variant.
2044     ///     let unexp = Unexpected::TupleVariant;
2045     ///     Err(de::Error::invalid_type(unexp, &"unit variant"))
2046     /// }
2047     /// #
2048     /// #     fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2049     /// #     where
2050     /// #         T: DeserializeSeed<'de>,
2051     /// #     { unimplemented!() }
2052     /// #
2053     /// #     fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2054     /// #     where
2055     /// #         V: Visitor<'de>,
2056     /// #     { unimplemented!() }
2057     /// #
2058     /// #     fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2059     /// #     where
2060     /// #         V: Visitor<'de>,
2061     /// #     { unimplemented!() }
2062     /// # }
2063     /// ```
unit_variant(self) -> Result<(), Self::Error>2064     fn unit_variant(self) -> Result<(), Self::Error>;
2065 
2066     /// Called when deserializing a variant with a single value.
2067     ///
2068     /// `Deserialize` implementations should typically use
2069     /// `VariantAccess::newtype_variant` instead.
2070     ///
2071     /// If the data contains a different type of variant, the following
2072     /// `invalid_type` error should be constructed:
2073     ///
2074     /// ```edition2018
2075     /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2076     /// #
2077     /// # struct X;
2078     /// #
2079     /// # impl<'de> VariantAccess<'de> for X {
2080     /// #     type Error = value::Error;
2081     /// #
2082     /// #     fn unit_variant(self) -> Result<(), Self::Error> {
2083     /// #         unimplemented!()
2084     /// #     }
2085     /// #
2086     /// fn newtype_variant_seed<T>(self, _seed: T) -> Result<T::Value, Self::Error>
2087     /// where
2088     ///     T: DeserializeSeed<'de>,
2089     /// {
2090     ///     // What the data actually contained; suppose it is a unit variant.
2091     ///     let unexp = Unexpected::UnitVariant;
2092     ///     Err(de::Error::invalid_type(unexp, &"newtype variant"))
2093     /// }
2094     /// #
2095     /// #     fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2096     /// #     where
2097     /// #         V: Visitor<'de>,
2098     /// #     { unimplemented!() }
2099     /// #
2100     /// #     fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2101     /// #     where
2102     /// #         V: Visitor<'de>,
2103     /// #     { unimplemented!() }
2104     /// # }
2105     /// ```
newtype_variant_seed<T>(self, seed: T) -> Result<T::Value, Self::Error> where T: DeserializeSeed<'de>2106     fn newtype_variant_seed<T>(self, seed: T) -> Result<T::Value, Self::Error>
2107     where
2108         T: DeserializeSeed<'de>;
2109 
2110     /// Called when deserializing a variant with a single value.
2111     ///
2112     /// This method exists as a convenience for `Deserialize` implementations.
2113     /// `VariantAccess` implementations should not override the default
2114     /// behavior.
2115     #[inline]
newtype_variant<T>(self) -> Result<T, Self::Error> where T: Deserialize<'de>,2116     fn newtype_variant<T>(self) -> Result<T, Self::Error>
2117     where
2118         T: Deserialize<'de>,
2119     {
2120         self.newtype_variant_seed(PhantomData)
2121     }
2122 
2123     /// Called when deserializing a tuple-like variant.
2124     ///
2125     /// The `len` is the number of fields expected in the tuple variant.
2126     ///
2127     /// If the data contains a different type of variant, the following
2128     /// `invalid_type` error should be constructed:
2129     ///
2130     /// ```edition2018
2131     /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2132     /// #
2133     /// # struct X;
2134     /// #
2135     /// # impl<'de> VariantAccess<'de> for X {
2136     /// #     type Error = value::Error;
2137     /// #
2138     /// #     fn unit_variant(self) -> Result<(), Self::Error> {
2139     /// #         unimplemented!()
2140     /// #     }
2141     /// #
2142     /// #     fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2143     /// #     where
2144     /// #         T: DeserializeSeed<'de>,
2145     /// #     { unimplemented!() }
2146     /// #
2147     /// fn tuple_variant<V>(
2148     ///     self,
2149     ///     _len: usize,
2150     ///     _visitor: V,
2151     /// ) -> Result<V::Value, Self::Error>
2152     /// where
2153     ///     V: Visitor<'de>,
2154     /// {
2155     ///     // What the data actually contained; suppose it is a unit variant.
2156     ///     let unexp = Unexpected::UnitVariant;
2157     ///     Err(de::Error::invalid_type(unexp, &"tuple variant"))
2158     /// }
2159     /// #
2160     /// #     fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2161     /// #     where
2162     /// #         V: Visitor<'de>,
2163     /// #     { unimplemented!() }
2164     /// # }
2165     /// ```
tuple_variant<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor<'de>2166     fn tuple_variant<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
2167     where
2168         V: Visitor<'de>;
2169 
2170     /// Called when deserializing a struct-like variant.
2171     ///
2172     /// The `fields` are the names of the fields of the struct variant.
2173     ///
2174     /// If the data contains a different type of variant, the following
2175     /// `invalid_type` error should be constructed:
2176     ///
2177     /// ```edition2018
2178     /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2179     /// #
2180     /// # struct X;
2181     /// #
2182     /// # impl<'de> VariantAccess<'de> for X {
2183     /// #     type Error = value::Error;
2184     /// #
2185     /// #     fn unit_variant(self) -> Result<(), Self::Error> {
2186     /// #         unimplemented!()
2187     /// #     }
2188     /// #
2189     /// #     fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2190     /// #     where
2191     /// #         T: DeserializeSeed<'de>,
2192     /// #     { unimplemented!() }
2193     /// #
2194     /// #     fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2195     /// #     where
2196     /// #         V: Visitor<'de>,
2197     /// #     { unimplemented!() }
2198     /// #
2199     /// fn struct_variant<V>(
2200     ///     self,
2201     ///     _fields: &'static [&'static str],
2202     ///     _visitor: V,
2203     /// ) -> Result<V::Value, Self::Error>
2204     /// where
2205     ///     V: Visitor<'de>,
2206     /// {
2207     ///     // What the data actually contained; suppose it is a unit variant.
2208     ///     let unexp = Unexpected::UnitVariant;
2209     ///     Err(de::Error::invalid_type(unexp, &"struct variant"))
2210     /// }
2211     /// # }
2212     /// ```
struct_variant<V>( self, fields: &'static [&'static str], visitor: V, ) -> Result<V::Value, Self::Error> where V: Visitor<'de>2213     fn struct_variant<V>(
2214         self,
2215         fields: &'static [&'static str],
2216         visitor: V,
2217     ) -> Result<V::Value, Self::Error>
2218     where
2219         V: Visitor<'de>;
2220 }
2221 
2222 ////////////////////////////////////////////////////////////////////////////////
2223 
2224 /// Converts an existing value into a `Deserializer` from which other values can
2225 /// be deserialized.
2226 ///
2227 /// # Lifetime
2228 ///
2229 /// The `'de` lifetime of this trait is the lifetime of data that may be
2230 /// borrowed from the resulting `Deserializer`. See the page [Understanding
2231 /// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2232 ///
2233 /// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2234 ///
2235 /// # Example
2236 ///
2237 /// ```edition2018
2238 /// use std::str::FromStr;
2239 /// use serde::Deserialize;
2240 /// use serde::de::{value, IntoDeserializer};
2241 ///
2242 /// #[derive(Deserialize)]
2243 /// enum Setting {
2244 ///     On,
2245 ///     Off,
2246 /// }
2247 ///
2248 /// impl FromStr for Setting {
2249 ///     type Err = value::Error;
2250 ///
2251 ///     fn from_str(s: &str) -> Result<Self, Self::Err> {
2252 ///         Self::deserialize(s.into_deserializer())
2253 ///     }
2254 /// }
2255 /// ```
2256 pub trait IntoDeserializer<'de, E: Error = value::Error> {
2257     /// The type of the deserializer being converted into.
2258     type Deserializer: Deserializer<'de, Error = E>;
2259 
2260     /// Convert this value into a deserializer.
into_deserializer(self) -> Self::Deserializer2261     fn into_deserializer(self) -> Self::Deserializer;
2262 }
2263 
2264 ////////////////////////////////////////////////////////////////////////////////
2265 
2266 /// Used in error messages.
2267 ///
2268 /// - expected `a`
2269 /// - expected `a` or `b`
2270 /// - expected one of `a`, `b`, `c`
2271 ///
2272 /// The slice of names must not be empty.
2273 struct OneOf {
2274     names: &'static [&'static str],
2275 }
2276 
2277 impl Display for OneOf {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result2278     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
2279         match self.names.len() {
2280             0 => panic!(), // special case elsewhere
2281             1 => write!(formatter, "`{}`", self.names[0]),
2282             2 => write!(formatter, "`{}` or `{}`", self.names[0], self.names[1]),
2283             _ => {
2284                 try!(write!(formatter, "one of "));
2285                 for (i, alt) in self.names.iter().enumerate() {
2286                     if i > 0 {
2287                         try!(write!(formatter, ", "));
2288                     }
2289                     try!(write!(formatter, "`{}`", alt));
2290                 }
2291                 Ok(())
2292             }
2293         }
2294     }
2295 }
2296