1 #include "erfa.h"
2 
eraStarpv(double ra,double dec,double pmr,double pmd,double px,double rv,double pv[2][3])3 int eraStarpv(double ra, double dec,
4               double pmr, double pmd, double px, double rv,
5               double pv[2][3])
6 /*
7 **  - - - - - - - - - -
8 **   e r a S t a r p v
9 **  - - - - - - - - - -
10 **
11 **  Convert star catalog coordinates to position+velocity vector.
12 **
13 **  Given (Note 1):
14 **     ra     double        right ascension (radians)
15 **     dec    double        declination (radians)
16 **     pmr    double        RA proper motion (radians/year)
17 **     pmd    double        Dec proper motion (radians/year)
18 **     px     double        parallax (arcseconds)
19 **     rv     double        radial velocity (km/s, positive = receding)
20 **
21 **  Returned (Note 2):
22 **     pv     double[2][3]  pv-vector (au, au/day)
23 **
24 **  Returned (function value):
25 **            int           status:
26 **                              0 = no warnings
27 **                              1 = distance overridden (Note 6)
28 **                              2 = excessive speed (Note 7)
29 **                              4 = solution didn't converge (Note 8)
30 **                           else = binary logical OR of the above
31 **
32 **  Notes:
33 **
34 **  1) The star data accepted by this function are "observables" for an
35 **     imaginary observer at the solar-system barycenter.  Proper motion
36 **     and radial velocity are, strictly, in terms of barycentric
37 **     coordinate time, TCB.  For most practical applications, it is
38 **     permissible to neglect the distinction between TCB and ordinary
39 **     "proper" time on Earth (TT/TAI).  The result will, as a rule, be
40 **     limited by the intrinsic accuracy of the proper-motion and
41 **     radial-velocity data;  moreover, the pv-vector is likely to be
42 **     merely an intermediate result, so that a change of time unit
43 **     would cancel out overall.
44 **
45 **     In accordance with normal star-catalog conventions, the object's
46 **     right ascension and declination are freed from the effects of
47 **     secular aberration.  The frame, which is aligned to the catalog
48 **     equator and equinox, is Lorentzian and centered on the SSB.
49 **
50 **  2) The resulting position and velocity pv-vector is with respect to
51 **     the same frame and, like the catalog coordinates, is freed from
52 **     the effects of secular aberration.  Should the "coordinate
53 **     direction", where the object was located at the catalog epoch, be
54 **     required, it may be obtained by calculating the magnitude of the
55 **     position vector pv[0][0-2] dividing by the speed of light in
56 **     au/day to give the light-time, and then multiplying the space
57 **     velocity pv[1][0-2] by this light-time and adding the result to
58 **     pv[0][0-2].
59 **
60 **     Summarizing, the pv-vector returned is for most stars almost
61 **     identical to the result of applying the standard geometrical
62 **     "space motion" transformation.  The differences, which are the
63 **     subject of the Stumpff paper referenced below, are:
64 **
65 **     (i) In stars with significant radial velocity and proper motion,
66 **     the constantly changing light-time distorts the apparent proper
67 **     motion.  Note that this is a classical, not a relativistic,
68 **     effect.
69 **
70 **     (ii) The transformation complies with special relativity.
71 **
72 **  3) Care is needed with units.  The star coordinates are in radians
73 **     and the proper motions in radians per Julian year, but the
74 **     parallax is in arcseconds; the radial velocity is in km/s, but
75 **     the pv-vector result is in au and au/day.
76 **
77 **  4) The RA proper motion is in terms of coordinate angle, not true
78 **     angle.  If the catalog uses arcseconds for both RA and Dec proper
79 **     motions, the RA proper motion will need to be divided by cos(Dec)
80 **     before use.
81 **
82 **  5) Straight-line motion at constant speed, in the inertial frame,
83 **     is assumed.
84 **
85 **  6) An extremely small (or zero or negative) parallax is interpreted
86 **     to mean that the object is on the "celestial sphere", the radius
87 **     of which is an arbitrary (large) value (see the constant PXMIN).
88 **     When the distance is overridden in this way, the status,
89 **     initially zero, has 1 added to it.
90 **
91 **  7) If the space velocity is a significant fraction of c (see the
92 **     constant VMAX), it is arbitrarily set to zero.  When this action
93 **     occurs, 2 is added to the status.
94 **
95 **  8) The relativistic adjustment involves an iterative calculation.
96 **     If the process fails to converge within a set number (IMAX) of
97 **     iterations, 4 is added to the status.
98 **
99 **  9) The inverse transformation is performed by the function
100 **     eraPvstar.
101 **
102 **  Called:
103 **     eraS2pv      spherical coordinates to pv-vector
104 **     eraPm        modulus of p-vector
105 **     eraZp        zero p-vector
106 **     eraPn        decompose p-vector into modulus and direction
107 **     eraPdp       scalar product of two p-vectors
108 **     eraSxp       multiply p-vector by scalar
109 **     eraPmp       p-vector minus p-vector
110 **     eraPpp       p-vector plus p-vector
111 **
112 **  Reference:
113 **
114 **     Stumpff, P., 1985, Astron.Astrophys. 144, 232-240.
115 **
116 **  Copyright (C) 2013-2020, NumFOCUS Foundation.
117 **  Derived, with permission, from the SOFA library.  See notes at end of file.
118 */
119 {
120 /* Smallest allowed parallax */
121    static const double PXMIN = 1e-7;
122 
123 /* Largest allowed speed (fraction of c) */
124    static const double VMAX = 0.5;
125 
126 /* Maximum number of iterations for relativistic solution */
127    static const int IMAX = 100;
128 
129    int i, iwarn;
130    double w, r, rd, rad, decd, v, x[3], usr[3], ust[3],
131           vsr, vst, betst, betsr, bett, betr,
132           dd, ddel, ur[3], ut[3],
133           d = 0.0, del = 0.0,       /* to prevent */
134           odd = 0.0, oddel = 0.0,   /* compiler   */
135           od = 0.0, odel = 0.0;     /* warnings   */
136 
137 
138 /* Distance (au). */
139    if (px >= PXMIN) {
140       w = px;
141       iwarn = 0;
142    } else {
143       w = PXMIN;
144       iwarn = 1;
145    }
146    r = ERFA_DR2AS / w;
147 
148 /* Radial velocity (au/day). */
149    rd = ERFA_DAYSEC * rv * 1e3 / ERFA_DAU;
150 
151 /* Proper motion (radian/day). */
152    rad = pmr / ERFA_DJY;
153    decd = pmd / ERFA_DJY;
154 
155 /* To pv-vector (au,au/day). */
156    eraS2pv(ra, dec, r, rad, decd, rd, pv);
157 
158 /* If excessive velocity, arbitrarily set it to zero. */
159    v = eraPm(pv[1]);
160    if (v / ERFA_DC > VMAX) {
161       eraZp(pv[1]);
162       iwarn += 2;
163    }
164 
165 /* Isolate the radial component of the velocity (au/day). */
166    eraPn(pv[0], &w, x);
167    vsr = eraPdp(x, pv[1]);
168    eraSxp(vsr, x, usr);
169 
170 /* Isolate the transverse component of the velocity (au/day). */
171    eraPmp(pv[1], usr, ust);
172    vst = eraPm(ust);
173 
174 /* Special-relativity dimensionless parameters. */
175    betsr = vsr / ERFA_DC;
176    betst = vst / ERFA_DC;
177 
178 /* Determine the inertial-to-observed relativistic correction terms. */
179    bett = betst;
180    betr = betsr;
181    for (i = 0; i < IMAX; i++) {
182       d = 1.0 + betr;
183       w = betr*betr + bett*bett;
184       del = - w / (sqrt(1.0 - w) + 1.0);
185       betr = d * betsr + del;
186       bett = d * betst;
187       if (i > 0) {
188          dd = fabs(d - od);
189          ddel = fabs(del - odel);
190          if ((i > 1) && (dd >= odd) && (ddel >= oddel)) break;
191          odd = dd;
192          oddel = ddel;
193       }
194       od = d;
195       odel = del;
196    }
197    if (i >= IMAX) iwarn += 4;
198 
199 /* Replace observed radial velocity with inertial value. */
200    w = (betsr != 0.0) ? d + del / betsr : 1.0;
201    eraSxp(w, usr, ur);
202 
203 /* Replace observed tangential velocity with inertial value. */
204    eraSxp(d, ust, ut);
205 
206 /* Combine the two to obtain the inertial space velocity. */
207    eraPpp(ur, ut, pv[1]);
208 
209 /* Return the status. */
210    return iwarn;
211 
212 }
213 /*----------------------------------------------------------------------
214 **
215 **
216 **  Copyright (C) 2013-2020, NumFOCUS Foundation.
217 **  All rights reserved.
218 **
219 **  This library is derived, with permission, from the International
220 **  Astronomical Union's "Standards of Fundamental Astronomy" library,
221 **  available from http://www.iausofa.org.
222 **
223 **  The ERFA version is intended to retain identical functionality to
224 **  the SOFA library, but made distinct through different function and
225 **  file names, as set out in the SOFA license conditions.  The SOFA
226 **  original has a role as a reference standard for the IAU and IERS,
227 **  and consequently redistribution is permitted only in its unaltered
228 **  state.  The ERFA version is not subject to this restriction and
229 **  therefore can be included in distributions which do not support the
230 **  concept of "read only" software.
231 **
232 **  Although the intent is to replicate the SOFA API (other than
233 **  replacement of prefix names) and results (with the exception of
234 **  bugs;  any that are discovered will be fixed), SOFA is not
235 **  responsible for any errors found in this version of the library.
236 **
237 **  If you wish to acknowledge the SOFA heritage, please acknowledge
238 **  that you are using a library derived from SOFA, rather than SOFA
239 **  itself.
240 **
241 **
242 **  TERMS AND CONDITIONS
243 **
244 **  Redistribution and use in source and binary forms, with or without
245 **  modification, are permitted provided that the following conditions
246 **  are met:
247 **
248 **  1 Redistributions of source code must retain the above copyright
249 **    notice, this list of conditions and the following disclaimer.
250 **
251 **  2 Redistributions in binary form must reproduce the above copyright
252 **    notice, this list of conditions and the following disclaimer in
253 **    the documentation and/or other materials provided with the
254 **    distribution.
255 **
256 **  3 Neither the name of the Standards Of Fundamental Astronomy Board,
257 **    the International Astronomical Union nor the names of its
258 **    contributors may be used to endorse or promote products derived
259 **    from this software without specific prior written permission.
260 **
261 **  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
262 **  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
263 **  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
264 **  FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
265 **  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
266 **  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
267 **  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
268 **  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
269 **  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
270 **  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
271 **  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
272 **  POSSIBILITY OF SUCH DAMAGE.
273 **
274 */
275