1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */
2 
3 /*
4     QM DSP Library
5 
6     Centre for Digital Music, Queen Mary, University of London.
7     This file copyright 2008-2009 Matthew Davies and QMUL.
8 
9     This program is free software; you can redistribute it and/or
10     modify it under the terms of the GNU General Public License as
11     published by the Free Software Foundation; either version 2 of the
12     License, or (at your option) any later version.  See the file
13     COPYING included with this distribution for more information.
14 */
15 
16 #include "DownBeat.h"
17 
18 #include "maths/MathAliases.h"
19 #include "maths/MathUtilities.h"
20 #include "maths/KLDivergence.h"
21 #include "dsp/transforms/FFT.h"
22 
23 #include <iostream>
24 #include <cstdlib>
25 
DownBeat(float originalSampleRate,size_t decimationFactor,size_t dfIncrement)26 DownBeat::DownBeat(float originalSampleRate,
27                    size_t decimationFactor,
28                    size_t dfIncrement) :
29     m_bpb(0),
30     m_rate(originalSampleRate),
31     m_factor(decimationFactor),
32     m_increment(dfIncrement),
33     m_decimator1(0),
34     m_decimator2(0),
35     m_buffer(0),
36     m_decbuf(0),
37     m_bufsiz(0),
38     m_buffill(0),
39     m_beatframesize(0),
40     m_beatframe(0)
41 {
42     // beat frame size is next power of two up from 1.3 seconds at the
43     // downsampled rate (happens to produce 4096 for 44100 or 48000 at
44     // 16x decimation, which is our expected normal situation)
45     m_beatframesize = MathUtilities::nextPowerOfTwo
46         (int((m_rate / decimationFactor) * 1.3));
47     if (m_beatframesize < 2) {
48         m_beatframesize = 2;
49     }
50 //    std::cerr << "rate = " << m_rate << ", dec = " << decimationFactor << ", bfs = " << m_beatframesize << std::endl;
51     m_beatframe = new double[m_beatframesize];
52     m_fftRealOut = new double[m_beatframesize];
53     m_fftImagOut = new double[m_beatframesize];
54     m_fft = new FFTReal(m_beatframesize);
55 }
56 
~DownBeat()57 DownBeat::~DownBeat()
58 {
59     delete m_decimator1;
60     delete m_decimator2;
61     if (m_buffer) free(m_buffer);
62     delete[] m_decbuf;
63     delete[] m_beatframe;
64     delete[] m_fftRealOut;
65     delete[] m_fftImagOut;
66     delete m_fft;
67 }
68 
69 void
setBeatsPerBar(int bpb)70 DownBeat::setBeatsPerBar(int bpb)
71 {
72     m_bpb = bpb;
73 }
74 
75 void
makeDecimators()76 DownBeat::makeDecimators()
77 {
78 //    std::cerr << "m_factor = " << m_factor << std::endl;
79     if (m_factor < 2) return;
80     size_t highest = Decimator::getHighestSupportedFactor();
81     if (m_factor <= highest) {
82         m_decimator1 = new Decimator(m_increment, m_factor);
83 //        std::cerr << "DownBeat: decimator 1 factor " << m_factor << ", size " << m_increment << std::endl;
84         return;
85     }
86     m_decimator1 = new Decimator(m_increment, highest);
87 //    std::cerr << "DownBeat: decimator 1 factor " << highest << ", size " << m_increment << std::endl;
88     m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
89 //    std::cerr << "DownBeat: decimator 2 factor " << m_factor / highest << ", size " << m_increment / highest << std::endl;
90     m_decbuf = new float[m_increment / highest];
91 }
92 
93 void
pushAudioBlock(const float * audio)94 DownBeat::pushAudioBlock(const float *audio)
95 {
96     if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
97         if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
98         else m_bufsiz = m_bufsiz * 2;
99         if (!m_buffer) {
100             m_buffer = (float *)malloc(m_bufsiz * sizeof(float));
101         } else {
102 //            std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl;
103             m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float));
104         }
105     }
106     if (!m_decimator1 && m_factor > 1) makeDecimators();
107 //    float rmsin = 0, rmsout = 0;
108 //    for (int i = 0; i < m_increment; ++i) {
109 //        rmsin += audio[i] * audio[i];
110 //    }
111     if (m_decimator2) {
112         m_decimator1->process(audio, m_decbuf);
113         m_decimator2->process(m_decbuf, m_buffer + m_buffill);
114     } else if (m_decimator1) {
115         m_decimator1->process(audio, m_buffer + m_buffill);
116     } else {
117         // just copy across (m_factor is presumably 1)
118         for (size_t i = 0; i < m_increment; ++i) {
119             (m_buffer + m_buffill)[i] = audio[i];
120         }
121     }
122 //    for (int i = 0; i < m_increment / m_factor; ++i) {
123 //        rmsout += m_buffer[m_buffill + i] * m_buffer[m_buffill + i];
124 //    }
125 //    std::cerr << "pushAudioBlock: rms in " << sqrt(rmsin) << ", out " << sqrt(rmsout) << std::endl;
126     m_buffill += m_increment / m_factor;
127 }
128 
129 const float *
getBufferedAudio(size_t & length) const130 DownBeat::getBufferedAudio(size_t &length) const
131 {
132     length = m_buffill;
133     return m_buffer;
134 }
135 
136 void
resetAudioBuffer()137 DownBeat::resetAudioBuffer()
138 {
139     if (m_buffer) free(m_buffer);
140     m_buffer = 0;
141     m_buffill = 0;
142     m_bufsiz = 0;
143 }
144 
145 void
findDownBeats(const float * audio,size_t audioLength,const d_vec_t & beats,i_vec_t & downbeats)146 DownBeat::findDownBeats(const float *audio,
147                         size_t audioLength,
148                         const d_vec_t &beats,
149                         i_vec_t &downbeats)
150 {
151     // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
152     // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED  BY A FACTOR OF 16 (fs ~= 2700Hz)
153     // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
154 
155     // IMPLEMENTATION (MOSTLY) FOLLOWS:
156     //  DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
157     //  EUSIPCO 2006, FLORENCE, ITALY
158 
159     d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
160     d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
161 
162     m_beatsd.clear();
163 
164     if (audioLength == 0) return;
165 
166     for (size_t i = 0; i + 1 < beats.size(); ++i) {
167 
168         // Copy the extents of the current beat from downsampled array
169         // into beat frame buffer
170 
171         size_t beatstart = (beats[i] * m_increment) / m_factor;
172         size_t beatend = (beats[i+1] * m_increment) / m_factor;
173         if (beatend >= audioLength) beatend = audioLength - 1;
174         if (beatend < beatstart) beatend = beatstart;
175         size_t beatlen = beatend - beatstart;
176 
177         // Also apply a Hanning window to the beat frame buffer, sized
178         // to the beat extents rather than the frame size.  (Because
179         // the size varies, it's easier to do this by hand than use
180         // our Window abstraction.)
181 
182 //        std::cerr << "beatlen = " << beatlen << std::endl;
183 
184 //        float rms = 0;
185         for (size_t j = 0; j < beatlen && j < m_beatframesize; ++j) {
186             double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
187             m_beatframe[j] = audio[beatstart + j] * mul;
188 //            rms += m_beatframe[j] * m_beatframe[j];
189         }
190 //        rms = sqrt(rms);
191 //        std::cerr << "beat " << i << ": audio rms " << rms << std::endl;
192 
193         for (size_t j = beatlen; j < m_beatframesize; ++j) {
194             m_beatframe[j] = 0.0;
195         }
196 
197         // Now FFT beat frame
198 
199         m_fft->forward(m_beatframe, m_fftRealOut, m_fftImagOut);
200 
201         // Calculate magnitudes
202 
203         for (size_t j = 0; j < m_beatframesize/2; ++j) {
204             newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
205                               m_fftImagOut[j] * m_fftImagOut[j]);
206         }
207 
208         // Preserve peaks by applying adaptive threshold
209 
210         MathUtilities::adaptiveThreshold(newspec);
211 
212         // Calculate JS divergence between new and old spectral frames
213 
214         if (i > 0) { // otherwise we have no previous frame
215             m_beatsd.push_back(measureSpecDiff(oldspec, newspec));
216 //            std::cerr << "specdiff: " << m_beatsd[m_beatsd.size()-1] << std::endl;
217         }
218 
219         // Copy newspec across to old
220 
221         for (size_t j = 0; j < m_beatframesize/2; ++j) {
222             oldspec[j] = newspec[j];
223         }
224     }
225 
226     // We now have all spectral difference measures in specdiff
227 
228     int timesig = m_bpb;
229     if (timesig == 0) timesig = 4;
230 
231     d_vec_t dbcand(timesig); // downbeat candidates
232 
233     for (int beat = 0; beat < timesig; ++beat) {
234         dbcand[beat] = 0;
235     }
236 
237    // look for beat transition which leads to greatest spectral change
238    for (int beat = 0; beat < timesig; ++beat) {
239        int count = 0;
240        for (int example = beat-1; example < (int)m_beatsd.size(); example += timesig) {
241            if (example < 0) continue;
242            dbcand[beat] += (m_beatsd[example]) / timesig;
243            ++count;
244        }
245        if (count > 0) dbcand[beat] /= count;
246 //        std::cerr << "dbcand[" << beat << "] = " << dbcand[beat] << std::endl;
247    }
248 
249     // first downbeat is beat at index of maximum value of dbcand
250     int dbind = MathUtilities::getMax(dbcand);
251 
252     // remaining downbeats are at timesig intervals from the first
253     for (int i = dbind; i < (int)beats.size(); i += timesig) {
254         downbeats.push_back(i);
255     }
256 }
257 
258 double
measureSpecDiff(d_vec_t oldspec,d_vec_t newspec)259 DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
260 {
261     // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
262 
263     unsigned int SPECSIZE = 512;   // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
264     if (SPECSIZE > oldspec.size()/4) {
265         SPECSIZE = oldspec.size()/4;
266     }
267     double SD = 0.;
268     double sd1 = 0.;
269 
270     double sumnew = 0.;
271     double sumold = 0.;
272 
273     for (unsigned int i = 0;i < SPECSIZE;i++)
274     {
275         newspec[i] +=EPS;
276         oldspec[i] +=EPS;
277 
278         sumnew+=newspec[i];
279         sumold+=oldspec[i];
280     }
281 
282     for (unsigned int i = 0;i < SPECSIZE;i++)
283     {
284         newspec[i] /= (sumnew);
285         oldspec[i] /= (sumold);
286 
287         // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
288         if (newspec[i] == 0)
289         {
290             newspec[i] = 1.;
291         }
292 
293         if (oldspec[i] == 0)
294         {
295             oldspec[i] = 1.;
296         }
297 
298         // JENSEN-SHANNON CALCULATION
299         sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
300         SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i])));
301     }
302 
303     return SD;
304 }
305 
306 void
getBeatSD(vector<double> & beatsd) const307 DownBeat::getBeatSD(vector<double> &beatsd) const
308 {
309     for (int i = 0; i < (int)m_beatsd.size(); ++i) beatsd.push_back(m_beatsd[i]);
310 }
311 
312