1 /***************************************************/
2 /*! \class BiQuad
3     \brief STK biquad (two-pole, two-zero) filter class.
4 
5     This protected Filter subclass implements a
6     two-pole, two-zero digital filter.  A method
7     is provided for creating a resonance in the
8     frequency response while maintaining a constant
9     filter gain.
10 
11     by Perry R. Cook and Gary P. Scavone, 1995 - 2005.
12 */
13 /***************************************************/
14 
15 #ifndef STK_BIQUAD_H
16 #define STK_BIQUAD_H
17 
18 #include "Filter.h"
19 
20 namespace Nyq
21 {
22 
23 class BiQuad : protected Filter
24 {
25 public:
26 
27   //! Default constructor creates a second-order pass-through filter.
28   BiQuad();
29 
30   //! Class destructor.
31   virtual ~BiQuad();
32 
33   //! Clears all internal states of the filter.
34   void clear(void);
35 
36   //! Set the b[0] coefficient value.
37   void setB0(StkFloat b0);
38 
39   //! Set the b[1] coefficient value.
40   void setB1(StkFloat b1);
41 
42   //! Set the b[2] coefficient value.
43   void setB2(StkFloat b2);
44 
45   //! Set the a[1] coefficient value.
46   void setA1(StkFloat a1);
47 
48   //! Set the a[2] coefficient value.
49   void setA2(StkFloat a2);
50 
51   //! Sets the filter coefficients for a resonance at \e frequency (in Hz).
52   /*!
53     This method determines the filter coefficients corresponding to
54     two complex-conjugate poles with the given \e frequency (in Hz)
55     and \e radius from the z-plane origin.  If \e normalize is true,
56     the filter zeros are placed at z = 1, z = -1, and the coefficients
57     are then normalized to produce a constant unity peak gain
58     (independent of the filter \e gain parameter).  The resulting
59     filter frequency response has a resonance at the given \e
60     frequency.  The closer the poles are to the unit-circle (\e radius
61     close to one), the narrower the resulting resonance width.
62   */
63   void setResonance(StkFloat frequency, StkFloat radius, bool normalize = false);
64 
65   //! Set the filter coefficients for a notch at \e frequency (in Hz).
66   /*!
67     This method determines the filter coefficients corresponding to
68     two complex-conjugate zeros with the given \e frequency (in Hz)
69     and \e radius from the z-plane origin.  No filter normalization
70     is attempted.
71   */
72   void setNotch(StkFloat frequency, StkFloat radius);
73 
74   //! Sets the filter zeroes for equal resonance gain.
75   /*!
76     When using the filter as a resonator, zeroes places at z = 1, z
77     = -1 will result in a constant gain at resonance of 1 / (1 - R),
78     where R is the pole radius setting.
79 
80   */
81   void setEqualGainZeroes();
82 
83   //! Set the filter gain.
84   /*!
85     The gain is applied at the filter input and does not affect the
86     coefficient values.  The default gain value is 1.0.
87    */
88   void setGain(StkFloat gain);
89 
90   //! Return the current filter gain.
91   StkFloat getGain(void) const;
92 
93   //! Return the last computed output value.
94   StkFloat lastOut(void) const;
95 
96   //! Input one sample to the filter and return one output.
97   virtual StkFloat tick(StkFloat sample);
98 
99   //! Take a channel of the StkFrames object as inputs to the filter and replace with corresponding outputs.
100   /*!
101     The \c channel argument should be zero or greater (the first
102     channel is specified by 0).  An StkError will be thrown if the \c
103     channel argument is equal to or greater than the number of
104     channels in the StkFrames object.
105   */
106   virtual StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
107 
108  protected:
109 
110   // This function must be implemented in all subclasses. It is used
111   // to get around a C++ problem with overloaded virtual functions.
112   virtual StkFloat computeSample( StkFloat input );
113 };
114 
115 } // namespace Nyq
116 
117 #endif
118