1 /*
2  * MPEG Audio decoder
3  * Copyright (c) 2001, 2002 Fabrice Bellard.
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this library; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  *
19  * Modified heavily by Matt Campbell <mattcampbell@pobox.com> for the
20  * stand-alone mpaudec library.  Based on mpegaudiodec.c from libavcodec.
21  */
22 
23 /*#define DEBUG*/
24 #include "internal.h"
25 #include "mpegaudio.h"
26 
27 #ifdef _MSC_VER
28 #pragma warning(disable : 4244)
29 #endif
30 
31 /*
32  * TODO:
33  *  - in low precision mode, use more 16 bit multiplies in synth filter
34  *  - test lsf / mpeg25 extensively.
35  */
36 
37 /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
38    audio decoder */
39 #define USE_HIGHPRECISION
40 
41 #ifdef USE_HIGHPRECISION
42 #define FRAC_BITS   23   /* fractional bits for sb_samples and dct */
43 #define WFRAC_BITS  16   /* fractional bits for window */
44 #else
45 #define FRAC_BITS   15   /* fractional bits for sb_samples and dct */
46 #define WFRAC_BITS  14   /* fractional bits for window */
47 #endif
48 
49 #define FRAC_ONE    (1 << FRAC_BITS)
50 
51 #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
52 #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
53 #define FIX(a)   ((int)((a) * FRAC_ONE))
54 /* WARNING: only correct for posititive numbers */
55 #define FIXR(a)   ((int)((a) * FRAC_ONE + 0.5))
56 #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
57 
58 #if FRAC_BITS <= 15
59 typedef int16_t MPA_INT;
60 #else
61 typedef int32_t MPA_INT;
62 #endif
63 
64 /****************/
65 
66 #define HEADER_SIZE 4
67 #define BACKSTEP_SIZE 512
68 
69 typedef struct MPADecodeContext {
70     uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE];        /* input buffer */
71     int inbuf_index;
72     uint8_t *inbuf_ptr, *inbuf;
73     int frame_size;
74     int free_format_frame_size; /* frame size in case of free format
75                                    (zero if currently unknown) */
76     /* next header (used in free format parsing) */
77     int error_protection;
78     int layer;
79     int sample_rate;
80     int sample_rate_index; /* between 0 and 8 */
81     int bit_rate;
82     int old_frame_size;
83     GetBitContext gb;
84     int nb_channels;
85     int mode;
86     int mode_ext;
87     int lsf;
88     MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2];
89     int synth_buf_offset[MPA_MAX_CHANNELS];
90     int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT];
91     int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
92 #ifdef DEBUG
93     int frame_count;
94 #endif
95 } MPADecodeContext;
96 
97 /* layer 3 "granule" */
98 typedef struct GranuleDef {
99     uint8_t scfsi;
100     int part2_3_length;
101     int big_values;
102     int global_gain;
103     int scalefac_compress;
104     uint8_t block_type;
105     uint8_t switch_point;
106     int table_select[3];
107     int subblock_gain[3];
108     uint8_t scalefac_scale;
109     uint8_t count1table_select;
110     int region_size[3]; /* number of huffman codes in each region */
111     int preflag;
112     int short_start, long_end; /* long/short band indexes */
113     uint8_t scale_factors[40];
114     int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
115 } GranuleDef;
116 
117 #define MODE_EXT_MS_STEREO 2
118 #define MODE_EXT_I_STEREO  1
119 
120 /* layer 3 huffman tables */
121 typedef struct HuffTable {
122     int xsize;
123     const uint8_t *bits;
124     const uint16_t *codes;
125 } HuffTable;
126 
127 #include "mpaudectab.h"
128 
129 /* vlc structure for decoding layer 3 huffman tables */
130 static VLC huff_vlc[16];
131 static uint8_t *huff_code_table[16];
132 static VLC huff_quad_vlc[2];
133 /* computed from band_size_long */
134 static uint16_t band_index_long[9][23];
135 /* XXX: free when all decoders are closed */
136 #define TABLE_4_3_SIZE (8191 + 16)
137 static int8_t  table_4_3_exp[TABLE_4_3_SIZE];
138 #if FRAC_BITS <= 15
139 static uint16_t table_4_3_value[TABLE_4_3_SIZE];
140 #else
141 static uint32_t table_4_3_value[TABLE_4_3_SIZE];
142 #endif
143 /* intensity stereo coef table */
144 static int32_t is_table[2][16];
145 static int32_t is_table_lsf[2][2][16];
146 static int32_t csa_table[8][2];
147 static int32_t mdct_win[8][36];
148 
149 /* lower 2 bits: modulo 3, higher bits: shift */
150 static uint16_t scale_factor_modshift[64];
151 /* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
152 static int32_t scale_factor_mult[15][3];
153 /* mult table for layer 2 group quantization */
154 
155 #define SCALE_GEN(v) \
156 { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
157 
158 static int32_t scale_factor_mult2[3][3] = {
159     SCALE_GEN(4.0 / 3.0), /* 3 steps */
160     SCALE_GEN(4.0 / 5.0), /* 5 steps */
161     SCALE_GEN(4.0 / 9.0), /* 9 steps */
162 };
163 
164 /* 2^(n/4) */
165 static uint32_t scale_factor_mult3[4] = {
166     FIXR(1.0),
167     FIXR(1.18920711500272106671),
168     FIXR(1.41421356237309504880),
169     FIXR(1.68179283050742908605),
170 };
171 
172 static MPA_INT window[512];
173 
174 /* layer 1 unscaling */
175 /* n = number of bits of the mantissa minus 1 */
l1_unscale(int n,int mant,int scale_factor)176 static int l1_unscale(int n, int mant, int scale_factor)
177 {
178     int shift, mod;
179     int64_t val;
180 
181     shift = scale_factor_modshift[scale_factor];
182     mod = shift & 3;
183     shift >>= 2;
184     val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
185     shift += n;
186     /* NOTE: at this point, 1 <= shift >= 21 + 15 */
187     return (int)((val + ((int64_t)(1) << (shift - 1))) >> shift);
188 }
189 
l2_unscale_group(int steps,int mant,int scale_factor)190 static int l2_unscale_group(int steps, int mant, int scale_factor)
191 {
192     int shift, mod, val;
193 
194     shift = scale_factor_modshift[scale_factor];
195     mod = shift & 3;
196     shift >>= 2;
197 
198     val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
199     /* NOTE: at this point, 0 <= shift <= 21 */
200     if (shift > 0)
201         val = (val + (1 << (shift - 1))) >> shift;
202     return val;
203 }
204 
205 /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
l3_unscale(int value,int exponent)206 static int l3_unscale(int value, int exponent)
207 {
208 #if FRAC_BITS <= 15
209     unsigned int m;
210 #else
211     uint64_t m;
212 #endif
213     int e;
214 
215     e = table_4_3_exp[value];
216     e += (exponent >> 2);
217     e = FRAC_BITS - e;
218 #if FRAC_BITS <= 15
219     if (e > 31)
220         e = 31;
221 #endif
222     m = table_4_3_value[value];
223 #if FRAC_BITS <= 15
224     m = (m * scale_factor_mult3[exponent & 3]);
225     m = (m + (1 << (e-1))) >> e;
226     return m;
227 #else
228     m = MUL64(m, scale_factor_mult3[exponent & 3]);
229     m = (m + ((uint64_t)(1) << (e-1))) >> e;
230     return (int)m;
231 #endif
232 }
233 
234 /* all integer n^(4/3) computation code */
235 #define DEV_ORDER 13
236 
237 #define POW_FRAC_BITS 24
238 #define POW_FRAC_ONE    (1 << POW_FRAC_BITS)
239 #define POW_FIX(a)   ((int)((a) * POW_FRAC_ONE))
240 #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
241 
242 static int dev_4_3_coefs[DEV_ORDER];
243 
244 static int pow_mult3[3] = {
245     POW_FIX(1.0),
246     POW_FIX(1.25992104989487316476),
247     POW_FIX(1.58740105196819947474),
248 };
249 
int_pow_init(void)250 static void int_pow_init(void)
251 {
252     int i, a;
253 
254     a = POW_FIX(1.0);
255     for(i=0;i<DEV_ORDER;i++) {
256         a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
257         dev_4_3_coefs[i] = a;
258     }
259 }
260 
261 /* return the mantissa and the binary exponent */
int_pow(int i,int * exp_ptr)262 static int int_pow(int i, int *exp_ptr)
263 {
264     int e, er, eq, j;
265     int a, a1;
266 
267     /* renormalize */
268     a = i;
269     e = POW_FRAC_BITS;
270     while (a < (1 << (POW_FRAC_BITS - 1))) {
271         a = a << 1;
272         e--;
273     }
274     a -= (1 << POW_FRAC_BITS);
275     a1 = 0;
276     for(j = DEV_ORDER - 1; j >= 0; j--)
277         a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
278     a = (1 << POW_FRAC_BITS) + a1;
279     /* exponent compute (exact) */
280     e = e * 4;
281     er = e % 3;
282     eq = e / 3;
283     a = POW_MULL(a, pow_mult3[er]);
284     while (a >= 2 * POW_FRAC_ONE) {
285         a = a >> 1;
286         eq++;
287     }
288     /* convert to float */
289     while (a < POW_FRAC_ONE) {
290         a = a << 1;
291         eq--;
292     }
293     /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
294 #if POW_FRAC_BITS > FRAC_BITS
295     a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
296     /* correct overflow */
297     if (a >= 2 * (1 << FRAC_BITS)) {
298         a = a >> 1;
299         eq++;
300     }
301 #endif
302     *exp_ptr = eq;
303     return a;
304 }
305 
mpaudec_init(MPAuDecContext * mpctx)306 int mpaudec_init(MPAuDecContext * mpctx)
307 {
308     MPADecodeContext *s;
309     static int init=0;
310     int i, j, k;
311     assert(mpctx != NULL);
312     memset(mpctx, 0, sizeof(MPAuDecContext));
313     mpctx->priv_data = calloc(1, sizeof(MPADecodeContext));
314     if (mpctx->priv_data == NULL)
315         return -1;
316     s = mpctx->priv_data;
317 
318     if (!init && !mpctx->parse_only) {
319         /* scale factors table for layer 1/2 */
320         for(i=0;i<64;i++) {
321             int shift, mod;
322             /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
323             shift = (i / 3);
324             mod = i % 3;
325             scale_factor_modshift[i] = mod | (shift << 2);
326         }
327 
328         /* scale factor multiply for layer 1 */
329         for(i=0;i<15;i++) {
330             int n, norm;
331             n = i + 2;
332             norm = (((int64_t)(1) << n) * FRAC_ONE) / ((1 << n) - 1);
333             scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
334             scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
335             scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
336 #ifdef DEBUG
337             printf("%d: norm=%x s=%x %x %x\n",
338                    i, norm,
339                    scale_factor_mult[i][0],
340                    scale_factor_mult[i][1],
341                    scale_factor_mult[i][2]);
342 #endif
343         }
344 
345         /* window */
346         /* max = 18760, max sum over all 16 coefs : 44736 */
347         for(i=0;i<257;i++) {
348             int v;
349             v = mpa_enwindow[i];
350 #if WFRAC_BITS < 16
351             v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
352 #endif
353             window[i] = v;
354             if ((i & 63) != 0)
355                 v = -v;
356             if (i != 0)
357                 window[512 - i] = v;
358         }
359 
360         /* huffman decode tables */
361         huff_code_table[0] = NULL;
362         for(i=1;i<16;i++) {
363             const HuffTable *h = &mpa_huff_tables[i];
364             int xsize, x, y;
365             unsigned int n;
366             uint8_t *code_table;
367 
368             xsize = h->xsize;
369             n = xsize * xsize;
370             /* XXX: fail test */
371             init_vlc(&huff_vlc[i], 8, n,
372                      h->bits, 1, 1, h->codes, 2, 2);
373 
374             code_table = calloc(n, 1);
375             j = 0;
376             for(x=0;x<xsize;x++) {
377                 for(y=0;y<xsize;y++)
378                     code_table[j++] = (x << 4) | y;
379             }
380             huff_code_table[i] = code_table;
381         }
382         for(i=0;i<2;i++) {
383             init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
384                      mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
385         }
386 
387         for(i=0;i<9;i++) {
388             k = 0;
389             for(j=0;j<22;j++) {
390                 band_index_long[i][j] = k;
391                 k += band_size_long[i][j];
392             }
393             band_index_long[i][22] = k;
394         }
395 
396         /* compute n ^ (4/3) and store it in mantissa/exp format */
397         int_pow_init();
398         for(i=1;i<TABLE_4_3_SIZE;i++) {
399             int e, m;
400             m = int_pow(i, &e);
401             /* normalized to FRAC_BITS */
402             table_4_3_value[i] = m;
403             table_4_3_exp[i] = e;
404         }
405 
406         for(i=0;i<7;i++) {
407             float f;
408             int v;
409             if (i != 6) {
410                 f = tan((double)i * M_PI / 12.0);
411                 v = FIXR(f / (1.0 + f));
412             } else {
413                 v = FIXR(1.0);
414             }
415             is_table[0][i] = v;
416             is_table[1][6 - i] = v;
417         }
418         /* invalid values */
419         for(i=7;i<16;i++)
420             is_table[0][i] = is_table[1][i] = 0.0;
421 
422         for(i=0;i<16;i++) {
423             double f;
424             int e, k;
425 
426             for(j=0;j<2;j++) {
427                 e = -(j + 1) * ((i + 1) >> 1);
428                 f = pow(2.0, e / 4.0);
429                 k = i & 1;
430                 is_table_lsf[j][k ^ 1][i] = FIXR(f);
431                 is_table_lsf[j][k][i] = FIXR(1.0);
432 #ifdef DEBUG
433                 printf("is_table_lsf %d %d: %x %x\n",
434                        i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
435 #endif
436             }
437         }
438 
439         for(i=0;i<8;i++) {
440             float ci, cs, ca;
441             ci = ci_table[i];
442             cs = 1.0 / sqrt(1.0 + ci * ci);
443             ca = cs * ci;
444             csa_table[i][0] = FIX(cs);
445             csa_table[i][1] = FIX(ca);
446         }
447 
448         /* compute mdct windows */
449         for(i=0;i<36;i++) {
450             int v;
451             v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
452             mdct_win[0][i] = v;
453             mdct_win[1][i] = v;
454             mdct_win[3][i] = v;
455         }
456         for(i=0;i<6;i++) {
457             mdct_win[1][18 + i] = FIXR(1.0);
458             mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
459             mdct_win[1][30 + i] = FIXR(0.0);
460 
461             mdct_win[3][i] = FIXR(0.0);
462             mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
463             mdct_win[3][12 + i] = FIXR(1.0);
464         }
465 
466         for(i=0;i<12;i++)
467             mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
468 
469         /* NOTE: we do frequency inversion adter the MDCT by changing
470            the sign of the right window coefs */
471         for(j=0;j<4;j++) {
472             for(i=0;i<36;i+=2) {
473                 mdct_win[j + 4][i] = mdct_win[j][i];
474                 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
475             }
476         }
477 
478 #if defined(DEBUG)
479         for(j=0;j<8;j++) {
480             printf("win%d=\n", j);
481             for(i=0;i<36;i++)
482                 printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
483             printf("\n");
484         }
485 #endif
486         init = 1;
487     }
488 
489     s->inbuf_index = 0;
490     s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
491     s->inbuf_ptr = s->inbuf;
492 #ifdef DEBUG
493     s->frame_count = 0;
494 #endif
495     return 0;
496 }
497 
498 /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
499 
500 /* cos(i*pi/64) */
501 
502 #define COS0_0  FIXR(0.50060299823519630134)
503 #define COS0_1  FIXR(0.50547095989754365998)
504 #define COS0_2  FIXR(0.51544730992262454697)
505 #define COS0_3  FIXR(0.53104259108978417447)
506 #define COS0_4  FIXR(0.55310389603444452782)
507 #define COS0_5  FIXR(0.58293496820613387367)
508 #define COS0_6  FIXR(0.62250412303566481615)
509 #define COS0_7  FIXR(0.67480834145500574602)
510 #define COS0_8  FIXR(0.74453627100229844977)
511 #define COS0_9  FIXR(0.83934964541552703873)
512 #define COS0_10 FIXR(0.97256823786196069369)
513 #define COS0_11 FIXR(1.16943993343288495515)
514 #define COS0_12 FIXR(1.48416461631416627724)
515 #define COS0_13 FIXR(2.05778100995341155085)
516 #define COS0_14 FIXR(3.40760841846871878570)
517 #define COS0_15 FIXR(10.19000812354805681150)
518 
519 #define COS1_0 FIXR(0.50241928618815570551)
520 #define COS1_1 FIXR(0.52249861493968888062)
521 #define COS1_2 FIXR(0.56694403481635770368)
522 #define COS1_3 FIXR(0.64682178335999012954)
523 #define COS1_4 FIXR(0.78815462345125022473)
524 #define COS1_5 FIXR(1.06067768599034747134)
525 #define COS1_6 FIXR(1.72244709823833392782)
526 #define COS1_7 FIXR(5.10114861868916385802)
527 
528 #define COS2_0 FIXR(0.50979557910415916894)
529 #define COS2_1 FIXR(0.60134488693504528054)
530 #define COS2_2 FIXR(0.89997622313641570463)
531 #define COS2_3 FIXR(2.56291544774150617881)
532 
533 #define COS3_0 FIXR(0.54119610014619698439)
534 #define COS3_1 FIXR(1.30656296487637652785)
535 
536 #define COS4_0 FIXR(0.70710678118654752439)
537 
538 /* butterfly operator */
539 #define BF(a, b, c)\
540 {\
541     tmp0 = tab[a] + tab[b];\
542     tmp1 = tab[a] - tab[b];\
543     tab[a] = tmp0;\
544     tab[b] = MULL(tmp1, c);\
545 }
546 
547 #define BF1(a, b, c, d)\
548 {\
549     BF(a, b, COS4_0);\
550     BF(c, d, -COS4_0);\
551     tab[c] += tab[d];\
552 }
553 
554 #define BF2(a, b, c, d)\
555 {\
556     BF(a, b, COS4_0);\
557     BF(c, d, -COS4_0);\
558     tab[c] += tab[d];\
559     tab[a] += tab[c];\
560     tab[c] += tab[b];\
561     tab[b] += tab[d];\
562 }
563 
564 #define ADD(a, b) tab[a] += tab[b]
565 
566 /* DCT32 without 1/sqrt(2) coef zero scaling. */
dct32(int32_t * out,int32_t * tab)567 static void dct32(int32_t *out, int32_t *tab)
568 {
569     int tmp0, tmp1;
570 
571     /* pass 1 */
572     BF(0, 31, COS0_0);
573     BF(1, 30, COS0_1);
574     BF(2, 29, COS0_2);
575     BF(3, 28, COS0_3);
576     BF(4, 27, COS0_4);
577     BF(5, 26, COS0_5);
578     BF(6, 25, COS0_6);
579     BF(7, 24, COS0_7);
580     BF(8, 23, COS0_8);
581     BF(9, 22, COS0_9);
582     BF(10, 21, COS0_10);
583     BF(11, 20, COS0_11);
584     BF(12, 19, COS0_12);
585     BF(13, 18, COS0_13);
586     BF(14, 17, COS0_14);
587     BF(15, 16, COS0_15);
588 
589     /* pass 2 */
590     BF(0, 15, COS1_0);
591     BF(1, 14, COS1_1);
592     BF(2, 13, COS1_2);
593     BF(3, 12, COS1_3);
594     BF(4, 11, COS1_4);
595     BF(5, 10, COS1_5);
596     BF(6,  9, COS1_6);
597     BF(7,  8, COS1_7);
598 
599     BF(16, 31, -COS1_0);
600     BF(17, 30, -COS1_1);
601     BF(18, 29, -COS1_2);
602     BF(19, 28, -COS1_3);
603     BF(20, 27, -COS1_4);
604     BF(21, 26, -COS1_5);
605     BF(22, 25, -COS1_6);
606     BF(23, 24, -COS1_7);
607 
608     /* pass 3 */
609     BF(0, 7, COS2_0);
610     BF(1, 6, COS2_1);
611     BF(2, 5, COS2_2);
612     BF(3, 4, COS2_3);
613 
614     BF(8, 15, -COS2_0);
615     BF(9, 14, -COS2_1);
616     BF(10, 13, -COS2_2);
617     BF(11, 12, -COS2_3);
618 
619     BF(16, 23, COS2_0);
620     BF(17, 22, COS2_1);
621     BF(18, 21, COS2_2);
622     BF(19, 20, COS2_3);
623 
624     BF(24, 31, -COS2_0);
625     BF(25, 30, -COS2_1);
626     BF(26, 29, -COS2_2);
627     BF(27, 28, -COS2_3);
628 
629     /* pass 4 */
630     BF(0, 3, COS3_0);
631     BF(1, 2, COS3_1);
632 
633     BF(4, 7, -COS3_0);
634     BF(5, 6, -COS3_1);
635 
636     BF(8, 11, COS3_0);
637     BF(9, 10, COS3_1);
638 
639     BF(12, 15, -COS3_0);
640     BF(13, 14, -COS3_1);
641 
642     BF(16, 19, COS3_0);
643     BF(17, 18, COS3_1);
644 
645     BF(20, 23, -COS3_0);
646     BF(21, 22, -COS3_1);
647 
648     BF(24, 27, COS3_0);
649     BF(25, 26, COS3_1);
650 
651     BF(28, 31, -COS3_0);
652     BF(29, 30, -COS3_1);
653 
654     /* pass 5 */
655     BF1(0, 1, 2, 3);
656     BF2(4, 5, 6, 7);
657     BF1(8, 9, 10, 11);
658     BF2(12, 13, 14, 15);
659     BF1(16, 17, 18, 19);
660     BF2(20, 21, 22, 23);
661     BF1(24, 25, 26, 27);
662     BF2(28, 29, 30, 31);
663 
664     /* pass 6 */
665 
666     ADD( 8, 12);
667     ADD(12, 10);
668     ADD(10, 14);
669     ADD(14,  9);
670     ADD( 9, 13);
671     ADD(13, 11);
672     ADD(11, 15);
673 
674     out[ 0] = tab[0];
675     out[16] = tab[1];
676     out[ 8] = tab[2];
677     out[24] = tab[3];
678     out[ 4] = tab[4];
679     out[20] = tab[5];
680     out[12] = tab[6];
681     out[28] = tab[7];
682     out[ 2] = tab[8];
683     out[18] = tab[9];
684     out[10] = tab[10];
685     out[26] = tab[11];
686     out[ 6] = tab[12];
687     out[22] = tab[13];
688     out[14] = tab[14];
689     out[30] = tab[15];
690 
691     ADD(24, 28);
692     ADD(28, 26);
693     ADD(26, 30);
694     ADD(30, 25);
695     ADD(25, 29);
696     ADD(29, 27);
697     ADD(27, 31);
698 
699     out[ 1] = tab[16] + tab[24];
700     out[17] = tab[17] + tab[25];
701     out[ 9] = tab[18] + tab[26];
702     out[25] = tab[19] + tab[27];
703     out[ 5] = tab[20] + tab[28];
704     out[21] = tab[21] + tab[29];
705     out[13] = tab[22] + tab[30];
706     out[29] = tab[23] + tab[31];
707     out[ 3] = tab[24] + tab[20];
708     out[19] = tab[25] + tab[21];
709     out[11] = tab[26] + tab[22];
710     out[27] = tab[27] + tab[23];
711     out[ 7] = tab[28] + tab[18];
712     out[23] = tab[29] + tab[19];
713     out[15] = tab[30] + tab[17];
714     out[31] = tab[31];
715 }
716 
717 #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
718 
719 #if FRAC_BITS <= 15
720 
round_sample(int sum)721 static int round_sample(int sum)
722 {
723     int sum1;
724     sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;
725     if (sum1 < -32768)
726         sum1 = -32768;
727     else if (sum1 > 32767)
728         sum1 = 32767;
729     return sum1;
730 }
731 
732 /* signed 16x16 -> 32 multiply add accumulate */
733 #define MACS(rt, ra, rb) rt += (ra) * (rb)
734 
735 /* signed 16x16 -> 32 multiply */
736 #define MULS(ra, rb) ((ra) * (rb))
737 
738 #else
739 
round_sample(int64_t sum)740 static int round_sample(int64_t sum)
741 {
742     int sum1;
743     sum1 = (int)((sum + ((int64_t)(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);
744     if (sum1 < -32768)
745         sum1 = -32768;
746     else if (sum1 > 32767)
747         sum1 = 32767;
748     return sum1;
749 }
750 
751 #define MULS(ra, rb) MUL64(ra, rb)
752 
753 #endif
754 
755 #define SUM8(sum, op, w, p) \
756 {                                               \
757     sum op MULS((w)[0 * 64], p[0 * 64]);\
758     sum op MULS((w)[1 * 64], p[1 * 64]);\
759     sum op MULS((w)[2 * 64], p[2 * 64]);\
760     sum op MULS((w)[3 * 64], p[3 * 64]);\
761     sum op MULS((w)[4 * 64], p[4 * 64]);\
762     sum op MULS((w)[5 * 64], p[5 * 64]);\
763     sum op MULS((w)[6 * 64], p[6 * 64]);\
764     sum op MULS((w)[7 * 64], p[7 * 64]);\
765 }
766 
767 #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
768 {                                               \
769     int tmp;\
770     tmp = p[0 * 64];\
771     sum1 op1 MULS((w1)[0 * 64], tmp);\
772     sum2 op2 MULS((w2)[0 * 64], tmp);\
773     tmp = p[1 * 64];\
774     sum1 op1 MULS((w1)[1 * 64], tmp);\
775     sum2 op2 MULS((w2)[1 * 64], tmp);\
776     tmp = p[2 * 64];\
777     sum1 op1 MULS((w1)[2 * 64], tmp);\
778     sum2 op2 MULS((w2)[2 * 64], tmp);\
779     tmp = p[3 * 64];\
780     sum1 op1 MULS((w1)[3 * 64], tmp);\
781     sum2 op2 MULS((w2)[3 * 64], tmp);\
782     tmp = p[4 * 64];\
783     sum1 op1 MULS((w1)[4 * 64], tmp);\
784     sum2 op2 MULS((w2)[4 * 64], tmp);\
785     tmp = p[5 * 64];\
786     sum1 op1 MULS((w1)[5 * 64], tmp);\
787     sum2 op2 MULS((w2)[5 * 64], tmp);\
788     tmp = p[6 * 64];\
789     sum1 op1 MULS((w1)[6 * 64], tmp);\
790     sum2 op2 MULS((w2)[6 * 64], tmp);\
791     tmp = p[7 * 64];\
792     sum1 op1 MULS((w1)[7 * 64], tmp);\
793     sum2 op2 MULS((w2)[7 * 64], tmp);\
794 }
795 
796 
797 /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
798    32 samples. */
799 /* XXX: optimize by avoiding ring buffer usage */
synth_filter(MPADecodeContext * s1,int ch,int16_t * samples,int incr,int32_t sb_samples[SBLIMIT])800 static void synth_filter(MPADecodeContext *s1,
801                          int ch, int16_t *samples, int incr,
802                          int32_t sb_samples[SBLIMIT])
803 {
804     int32_t tmp[32];
805     MPA_INT *synth_buf;
806     const MPA_INT *w, *w2, *p;
807     int j, offset, v;
808     int16_t *samples2;
809 #if FRAC_BITS <= 15
810     int32_t sum, sum2;
811 #else
812     int64_t sum, sum2;
813 #endif
814 
815     dct32(tmp, sb_samples);
816 
817     offset = s1->synth_buf_offset[ch];
818     synth_buf = s1->synth_buf[ch] + offset;
819 
820     for(j=0;j<32;j++) {
821         v = tmp[j];
822 #if FRAC_BITS <= 15
823         /* NOTE: can cause a loss in precision if very high amplitude
824            sound */
825         if (v > 32767)
826             v = 32767;
827         else if (v < -32768)
828             v = -32768;
829 #endif
830         synth_buf[j] = v;
831     }
832     /* copy to avoid wrap */
833     memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
834 
835     samples2 = samples + 31 * incr;
836     w = window;
837     w2 = window + 31;
838 
839     sum = 0;
840     p = synth_buf + 16;
841     SUM8(sum, +=, w, p);
842     p = synth_buf + 48;
843     SUM8(sum, -=, w + 32, p);
844     *samples = round_sample(sum);
845     samples += incr;
846     w++;
847 
848     /* we calculate two samples at the same time to avoid one memory
849        access per two sample */
850     for(j=1;j<16;j++) {
851         sum = 0;
852         sum2 = 0;
853         p = synth_buf + 16 + j;
854         SUM8P2(sum, +=, sum2, -=, w, w2, p);
855         p = synth_buf + 48 - j;
856         SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
857 
858         *samples = round_sample(sum);
859         samples += incr;
860         *samples2 = round_sample(sum2);
861         samples2 -= incr;
862         w++;
863         w2--;
864     }
865 
866     p = synth_buf + 32;
867     sum = 0;
868     SUM8(sum, -=, w + 32, p);
869     *samples = round_sample(sum);
870 
871     offset = (offset - 32) & 511;
872     s1->synth_buf_offset[ch] = offset;
873 }
874 
875 /* cos(pi*i/24) */
876 #define C1  FIXR(0.99144486137381041114)
877 #define C3  FIXR(0.92387953251128675612)
878 #define C5  FIXR(0.79335334029123516458)
879 #define C7  FIXR(0.60876142900872063941)
880 #define C9  FIXR(0.38268343236508977173)
881 #define C11 FIXR(0.13052619222005159154)
882 
883 /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
884    cases. */
imdct12(int * out,int * in)885 static void imdct12(int *out, int *in)
886 {
887     int tmp;
888     int64_t in1_3, in1_9, in4_3, in4_9;
889 
890     in1_3 = MUL64(in[1], C3);
891     in1_9 = MUL64(in[1], C9);
892     in4_3 = MUL64(in[4], C3);
893     in4_9 = MUL64(in[4], C9);
894 
895     tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
896                    MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
897     out[0] = tmp;
898     out[5] = -tmp;
899     tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
900                    MUL64(in[2] + in[5], C3) - in4_9);
901     out[1] = tmp;
902     out[4] = -tmp;
903     tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
904                    MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
905     out[2] = tmp;
906     out[3] = -tmp;
907     tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
908                    MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
909     out[6] = tmp;
910     out[11] = tmp;
911     tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
912                    MUL64(in[2] + in[5], C9) + in4_3);
913     out[7] = tmp;
914     out[10] = tmp;
915     tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
916                    MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
917     out[8] = tmp;
918     out[9] = tmp;
919 }
920 
921 #undef C1
922 #undef C3
923 #undef C5
924 #undef C7
925 #undef C9
926 #undef C11
927 
928 /* cos(pi*i/18) */
929 #define C1 FIXR(0.98480775301220805936)
930 #define C2 FIXR(0.93969262078590838405)
931 #define C3 FIXR(0.86602540378443864676)
932 #define C4 FIXR(0.76604444311897803520)
933 #define C5 FIXR(0.64278760968653932632)
934 #define C6 FIXR(0.5)
935 #define C7 FIXR(0.34202014332566873304)
936 #define C8 FIXR(0.17364817766693034885)
937 
938 /* 0.5 / cos(pi*(2*i+1)/36) */
939 static const int icos36[9] = {
940     FIXR(0.50190991877167369479),
941     FIXR(0.51763809020504152469),
942     FIXR(0.55168895948124587824),
943     FIXR(0.61038729438072803416),
944     FIXR(0.70710678118654752439),
945     FIXR(0.87172339781054900991),
946     FIXR(1.18310079157624925896),
947     FIXR(1.93185165257813657349),
948     FIXR(5.73685662283492756461),
949 };
950 
951 static const int icos72[18] = {
952     /* 0.5 / cos(pi*(2*i+19)/72) */
953     FIXR(0.74009361646113053152),
954     FIXR(0.82133981585229078570),
955     FIXR(0.93057949835178895673),
956     FIXR(1.08284028510010010928),
957     FIXR(1.30656296487637652785),
958     FIXR(1.66275476171152078719),
959     FIXR(2.31011315767264929558),
960     FIXR(3.83064878777019433457),
961     FIXR(11.46279281302667383546),
962 
963     /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
964     FIXR(-0.67817085245462840086),
965     FIXR(-0.63023620700513223342),
966     FIXR(-0.59284452371708034528),
967     FIXR(-0.56369097343317117734),
968     FIXR(-0.54119610014619698439),
969     FIXR(-0.52426456257040533932),
970     FIXR(-0.51213975715725461845),
971     FIXR(-0.50431448029007636036),
972     FIXR(-0.50047634258165998492),
973 };
974 
975 /* using Lee like decomposition followed by hand coded 9 points DCT */
imdct36(int * out,int * in)976 static void imdct36(int *out, int *in)
977 {
978     int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
979     int tmp[18], *tmp1, *in1;
980     int64_t in3_3, in6_6;
981 
982     for(i=17;i>=1;i--)
983         in[i] += in[i-1];
984     for(i=17;i>=3;i-=2)
985         in[i] += in[i-2];
986 
987     for(j=0;j<2;j++) {
988         tmp1 = tmp + j;
989         in1 = in + j;
990 
991         in3_3 = MUL64(in1[2*3], C3);
992         in6_6 = MUL64(in1[2*6], C6);
993 
994         tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
995                            MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
996         tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
997                                       MUL64(in1[2*4], C4) + in6_6 +
998                                       MUL64(in1[2*8], C8));
999         tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
1000         tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
1001             in1[2*6] + in1[2*0];
1002         tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
1003                            MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
1004         tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
1005                                        MUL64(in1[2*4], C2) + in6_6 +
1006                                        MUL64(in1[2*8], C4));
1007         tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
1008                             MUL64(in1[2*5], C1) -
1009                             MUL64(in1[2*7], C5));
1010         tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
1011                                        MUL64(in1[2*4], C8) + in6_6 -
1012                                        MUL64(in1[2*8], C2));
1013         tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
1014     }
1015 
1016     i = 0;
1017     for(j=0;j<4;j++) {
1018         t0 = tmp[i];
1019         t1 = tmp[i + 2];
1020         s0 = t1 + t0;
1021         s2 = t1 - t0;
1022 
1023         t2 = tmp[i + 1];
1024         t3 = tmp[i + 3];
1025         s1 = MULL(t3 + t2, icos36[j]);
1026         s3 = MULL(t3 - t2, icos36[8 - j]);
1027 
1028         t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
1029         t1 = MULL(s0 - s1, icos72[8 - j]);
1030         out[18 + 9 + j] = t0;
1031         out[18 + 8 - j] = t0;
1032         out[9 + j] = -t1;
1033         out[8 - j] = t1;
1034 
1035         t0 = MULL(s2 + s3, icos72[9+j]);
1036         t1 = MULL(s2 - s3, icos72[j]);
1037         out[18 + 9 + (8 - j)] = t0;
1038         out[18 + j] = t0;
1039         out[9 + (8 - j)] = -t1;
1040         out[j] = t1;
1041         i += 4;
1042     }
1043 
1044     s0 = tmp[16];
1045     s1 = MULL(tmp[17], icos36[4]);
1046     t0 = MULL(s0 + s1, icos72[9 + 4]);
1047     t1 = MULL(s0 - s1, icos72[4]);
1048     out[18 + 9 + 4] = t0;
1049     out[18 + 8 - 4] = t0;
1050     out[9 + 4] = -t1;
1051     out[8 - 4] = t1;
1052 }
1053 
1054 /* fast header check for resync */
check_header(uint32_t header)1055 static int check_header(uint32_t header)
1056 {
1057     /* header */
1058     if ((header & 0xffe00000) != 0xffe00000)
1059         return -1;
1060     /* layer check */
1061     if (((header >> 17) & 3) == 0)
1062         return -1;
1063     /* bit rate */
1064     if (((header >> 12) & 0xf) == 0xf)
1065         return -1;
1066     /* frequency */
1067     if (((header >> 10) & 3) == 3)
1068         return -1;
1069     return 0;
1070 }
1071 
1072 /* header + layer + bitrate + freq + lsf/mpeg25 */
1073 #define SAME_HEADER_MASK \
1074    (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
1075 
1076 /* header decoding. MUST check the header before because no
1077    consistency check is done there. Return 1 if free format found and
1078    that the frame size must be computed externally */
decode_header(MPADecodeContext * s,uint32_t header)1079 static int decode_header(MPADecodeContext *s, uint32_t header)
1080 {
1081     int sample_rate, frame_size, mpeg25, padding;
1082     int sample_rate_index, bitrate_index;
1083     if (header & (1<<20)) {
1084         s->lsf = (header & (1<<19)) ? 0 : 1;
1085         mpeg25 = 0;
1086     } else {
1087         s->lsf = 1;
1088         mpeg25 = 1;
1089     }
1090 
1091     s->layer = 4 - ((header >> 17) & 3);
1092     /* extract frequency */
1093     sample_rate_index = (header >> 10) & 3;
1094     sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
1095     sample_rate_index += 3 * (s->lsf + mpeg25);
1096     s->sample_rate_index = sample_rate_index;
1097     s->error_protection = ((header >> 16) & 1) ^ 1;
1098     s->sample_rate = sample_rate;
1099 
1100     bitrate_index = (header >> 12) & 0xf;
1101     padding = (header >> 9) & 1;
1102     s->mode = (header >> 6) & 3;
1103     s->mode_ext = (header >> 4) & 3;
1104 
1105     if (s->mode == MPA_MONO)
1106         s->nb_channels = 1;
1107     else
1108         s->nb_channels = 2;
1109 
1110     if (bitrate_index != 0) {
1111         frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
1112         s->bit_rate = frame_size * 1000;
1113         switch(s->layer) {
1114         case 1:
1115             frame_size = (frame_size * 12000) / sample_rate;
1116             frame_size = (frame_size + padding) * 4;
1117             break;
1118         case 2:
1119             frame_size = (frame_size * 144000) / sample_rate;
1120             frame_size += padding;
1121             break;
1122         default:
1123         case 3:
1124             frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
1125             frame_size += padding;
1126             break;
1127         }
1128         s->frame_size = frame_size;
1129     } else {
1130         /* if no frame size computed, signal it */
1131         if (!s->free_format_frame_size)
1132             return 1;
1133         /* free format: compute bitrate and real frame size from the
1134            frame size we extracted by reading the bitstream */
1135         s->frame_size = s->free_format_frame_size;
1136         switch(s->layer) {
1137         case 1:
1138             s->frame_size += padding  * 4;
1139             s->bit_rate = (s->frame_size * sample_rate) / 48000;
1140             break;
1141         case 2:
1142             s->frame_size += padding;
1143             s->bit_rate = (s->frame_size * sample_rate) / 144000;
1144             break;
1145         default:
1146         case 3:
1147             s->frame_size += padding;
1148             s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
1149             break;
1150         }
1151     }
1152 
1153 #if defined(DEBUG)
1154     printf("layer%d, %d Hz, %d kbits/s, ",
1155            s->layer, s->sample_rate, s->bit_rate);
1156     if (s->nb_channels == 2) {
1157         if (s->layer == 3) {
1158             if (s->mode_ext & MODE_EXT_MS_STEREO)
1159                 printf("ms-");
1160             if (s->mode_ext & MODE_EXT_I_STEREO)
1161                 printf("i-");
1162         }
1163         printf("stereo");
1164     } else {
1165         printf("mono");
1166     }
1167     printf("\n");
1168 #endif
1169     return 0;
1170 }
1171 
1172 /* return the number of decoded frames */
mp_decode_layer1(MPADecodeContext * s)1173 static int mp_decode_layer1(MPADecodeContext *s)
1174 {
1175     int bound, i, v, n, ch, j, mant;
1176     uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
1177     uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
1178 
1179     if (s->mode == MPA_JSTEREO)
1180         bound = (s->mode_ext + 1) * 4;
1181     else
1182         bound = SBLIMIT;
1183 
1184     /* allocation bits */
1185     for(i=0;i<bound;i++) {
1186         for(ch=0;ch<s->nb_channels;ch++) {
1187             allocation[ch][i] = get_bits(&s->gb, 4);
1188         }
1189     }
1190     for(i=bound;i<SBLIMIT;i++) {
1191         allocation[0][i] = get_bits(&s->gb, 4);
1192     }
1193 
1194     /* scale factors */
1195     for(i=0;i<bound;i++) {
1196         for(ch=0;ch<s->nb_channels;ch++) {
1197             if (allocation[ch][i])
1198                 scale_factors[ch][i] = get_bits(&s->gb, 6);
1199         }
1200     }
1201     for(i=bound;i<SBLIMIT;i++) {
1202         if (allocation[0][i]) {
1203             scale_factors[0][i] = get_bits(&s->gb, 6);
1204             scale_factors[1][i] = get_bits(&s->gb, 6);
1205         }
1206     }
1207 
1208     /* compute samples */
1209     for(j=0;j<12;j++) {
1210         for(i=0;i<bound;i++) {
1211             for(ch=0;ch<s->nb_channels;ch++) {
1212                 n = allocation[ch][i];
1213                 if (n) {
1214                     mant = get_bits(&s->gb, n + 1);
1215                     v = l1_unscale(n, mant, scale_factors[ch][i]);
1216                 } else {
1217                     v = 0;
1218                 }
1219                 s->sb_samples[ch][j][i] = v;
1220             }
1221         }
1222         for(i=bound;i<SBLIMIT;i++) {
1223             n = allocation[0][i];
1224             if (n) {
1225                 mant = get_bits(&s->gb, n + 1);
1226                 v = l1_unscale(n, mant, scale_factors[0][i]);
1227                 s->sb_samples[0][j][i] = v;
1228                 v = l1_unscale(n, mant, scale_factors[1][i]);
1229                 s->sb_samples[1][j][i] = v;
1230             } else {
1231                 s->sb_samples[0][j][i] = 0;
1232                 s->sb_samples[1][j][i] = 0;
1233             }
1234         }
1235     }
1236     return 12;
1237 }
1238 
1239 /* bitrate is in kb/s */
l2_select_table(int bitrate,int nb_channels,int freq,int lsf)1240 static int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
1241 {
1242     int ch_bitrate, table;
1243 
1244     ch_bitrate = bitrate / nb_channels;
1245     if (!lsf) {
1246         if ((freq == 48000 && ch_bitrate >= 56) ||
1247             (ch_bitrate >= 56 && ch_bitrate <= 80))
1248             table = 0;
1249         else if (freq != 48000 && ch_bitrate >= 96)
1250             table = 1;
1251         else if (freq != 32000 && ch_bitrate <= 48)
1252             table = 2;
1253         else
1254             table = 3;
1255     } else {
1256         table = 4;
1257     }
1258     return table;
1259 }
1260 
mp_decode_layer2(MPADecodeContext * s)1261 static int mp_decode_layer2(MPADecodeContext *s)
1262 {
1263     int sblimit; /* number of used subbands */
1264     const unsigned char *alloc_table;
1265     int table, bit_alloc_bits, i, j, ch, bound, v;
1266     unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
1267     unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
1268     unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
1269     int scale, qindex, bits, steps, k, l, m, b;
1270 
1271     /* select decoding table */
1272     table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
1273                             s->sample_rate, s->lsf);
1274     sblimit = sblimit_table[table];
1275     alloc_table = alloc_tables[table];
1276 
1277     if (s->mode == MPA_JSTEREO)
1278         bound = (s->mode_ext + 1) * 4;
1279     else
1280         bound = sblimit;
1281 
1282 #ifdef DEBUG
1283     printf("bound=%d sblimit=%d\n", bound, sblimit);
1284 #endif
1285     /* parse bit allocation */
1286     j = 0;
1287     for(i=0;i<bound;i++) {
1288         bit_alloc_bits = alloc_table[j];
1289         for(ch=0;ch<s->nb_channels;ch++) {
1290             bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
1291         }
1292         j += 1 << bit_alloc_bits;
1293     }
1294     for(i=bound;i<sblimit;i++) {
1295         bit_alloc_bits = alloc_table[j];
1296         v = get_bits(&s->gb, bit_alloc_bits);
1297         bit_alloc[0][i] = v;
1298         bit_alloc[1][i] = v;
1299         j += 1 << bit_alloc_bits;
1300     }
1301 
1302 #ifdef DEBUG
1303     {
1304         for(ch=0;ch<s->nb_channels;ch++) {
1305             for(i=0;i<sblimit;i++)
1306                 printf(" %d", bit_alloc[ch][i]);
1307             printf("\n");
1308         }
1309     }
1310 #endif
1311 
1312     /* scale codes */
1313     for(i=0;i<sblimit;i++) {
1314         for(ch=0;ch<s->nb_channels;ch++) {
1315             if (bit_alloc[ch][i])
1316                 scale_code[ch][i] = get_bits(&s->gb, 2);
1317         }
1318     }
1319 
1320     /* scale factors */
1321     for(i=0;i<sblimit;i++) {
1322         for(ch=0;ch<s->nb_channels;ch++) {
1323             if (bit_alloc[ch][i]) {
1324                 sf = scale_factors[ch][i];
1325                 switch(scale_code[ch][i]) {
1326                 default:
1327                 case 0:
1328                     sf[0] = get_bits(&s->gb, 6);
1329                     sf[1] = get_bits(&s->gb, 6);
1330                     sf[2] = get_bits(&s->gb, 6);
1331                     break;
1332                 case 2:
1333                     sf[0] = get_bits(&s->gb, 6);
1334                     sf[1] = sf[0];
1335                     sf[2] = sf[0];
1336                     break;
1337                 case 1:
1338                     sf[0] = get_bits(&s->gb, 6);
1339                     sf[2] = get_bits(&s->gb, 6);
1340                     sf[1] = sf[0];
1341                     break;
1342                 case 3:
1343                     sf[0] = get_bits(&s->gb, 6);
1344                     sf[2] = get_bits(&s->gb, 6);
1345                     sf[1] = sf[2];
1346                     break;
1347                 }
1348             }
1349         }
1350     }
1351 
1352 #ifdef DEBUG
1353     for(ch=0;ch<s->nb_channels;ch++) {
1354         for(i=0;i<sblimit;i++) {
1355             if (bit_alloc[ch][i]) {
1356                 sf = scale_factors[ch][i];
1357                 printf(" %d %d %d", sf[0], sf[1], sf[2]);
1358             } else {
1359                 printf(" -");
1360             }
1361         }
1362         printf("\n");
1363     }
1364 #endif
1365 
1366     /* samples */
1367     for(k=0;k<3;k++) {
1368         for(l=0;l<12;l+=3) {
1369             j = 0;
1370             for(i=0;i<bound;i++) {
1371                 bit_alloc_bits = alloc_table[j];
1372                 for(ch=0;ch<s->nb_channels;ch++) {
1373                     b = bit_alloc[ch][i];
1374                     if (b) {
1375                         scale = scale_factors[ch][i][k];
1376                         qindex = alloc_table[j+b];
1377                         bits = quant_bits[qindex];
1378                         if (bits < 0) {
1379                             /* 3 values at the same time */
1380                             v = get_bits(&s->gb, -bits);
1381                             steps = quant_steps[qindex];
1382                             s->sb_samples[ch][k * 12 + l + 0][i] =
1383                                 l2_unscale_group(steps, v % steps, scale);
1384                             v = v / steps;
1385                             s->sb_samples[ch][k * 12 + l + 1][i] =
1386                                 l2_unscale_group(steps, v % steps, scale);
1387                             v = v / steps;
1388                             s->sb_samples[ch][k * 12 + l + 2][i] =
1389                                 l2_unscale_group(steps, v, scale);
1390                         } else {
1391                             for(m=0;m<3;m++) {
1392                                 v = get_bits(&s->gb, bits);
1393                                 v = l1_unscale(bits - 1, v, scale);
1394                                 s->sb_samples[ch][k * 12 + l + m][i] = v;
1395                             }
1396                         }
1397                     } else {
1398                         s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1399                         s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1400                         s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1401                     }
1402                 }
1403                 /* next subband in alloc table */
1404                 j += 1 << bit_alloc_bits;
1405             }
1406             /* XXX: find a way to avoid this duplication of code */
1407             for(i=bound;i<sblimit;i++) {
1408                 bit_alloc_bits = alloc_table[j];
1409                 b = bit_alloc[0][i];
1410                 if (b) {
1411                     int mant, scale0, scale1;
1412                     scale0 = scale_factors[0][i][k];
1413                     scale1 = scale_factors[1][i][k];
1414                     qindex = alloc_table[j+b];
1415                     bits = quant_bits[qindex];
1416                     if (bits < 0) {
1417                         /* 3 values at the same time */
1418                         v = get_bits(&s->gb, -bits);
1419                         steps = quant_steps[qindex];
1420                         mant = v % steps;
1421                         v = v / steps;
1422                         s->sb_samples[0][k * 12 + l + 0][i] =
1423                             l2_unscale_group(steps, mant, scale0);
1424                         s->sb_samples[1][k * 12 + l + 0][i] =
1425                             l2_unscale_group(steps, mant, scale1);
1426                         mant = v % steps;
1427                         v = v / steps;
1428                         s->sb_samples[0][k * 12 + l + 1][i] =
1429                             l2_unscale_group(steps, mant, scale0);
1430                         s->sb_samples[1][k * 12 + l + 1][i] =
1431                             l2_unscale_group(steps, mant, scale1);
1432                         s->sb_samples[0][k * 12 + l + 2][i] =
1433                             l2_unscale_group(steps, v, scale0);
1434                         s->sb_samples[1][k * 12 + l + 2][i] =
1435                             l2_unscale_group(steps, v, scale1);
1436                     } else {
1437                         for(m=0;m<3;m++) {
1438                             mant = get_bits(&s->gb, bits);
1439                             s->sb_samples[0][k * 12 + l + m][i] =
1440                                 l1_unscale(bits - 1, mant, scale0);
1441                             s->sb_samples[1][k * 12 + l + m][i] =
1442                                 l1_unscale(bits - 1, mant, scale1);
1443                         }
1444                     }
1445                 } else {
1446                     s->sb_samples[0][k * 12 + l + 0][i] = 0;
1447                     s->sb_samples[0][k * 12 + l + 1][i] = 0;
1448                     s->sb_samples[0][k * 12 + l + 2][i] = 0;
1449                     s->sb_samples[1][k * 12 + l + 0][i] = 0;
1450                     s->sb_samples[1][k * 12 + l + 1][i] = 0;
1451                     s->sb_samples[1][k * 12 + l + 2][i] = 0;
1452                 }
1453                 /* next subband in alloc table */
1454                 j += 1 << bit_alloc_bits;
1455             }
1456             /* fill remaining samples to zero */
1457             for(i=sblimit;i<SBLIMIT;i++) {
1458                 for(ch=0;ch<s->nb_channels;ch++) {
1459                     s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1460                     s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1461                     s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1462                 }
1463             }
1464         }
1465     }
1466     return 3 * 12;
1467 }
1468 
1469 /*
1470  * Seek back in the stream for backstep bytes (at most 511 bytes)
1471  */
seek_to_maindata(MPADecodeContext * s,unsigned int backstep)1472 static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
1473 {
1474     uint8_t *ptr;
1475 
1476     /* compute current position in stream */
1477     ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
1478 
1479     /* copy old data before current one */
1480     ptr -= backstep;
1481     memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
1482            BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
1483     /* init get bits again */
1484     init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
1485 
1486     /* prepare next buffer */
1487     s->inbuf_index ^= 1;
1488     s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
1489     s->old_frame_size = s->frame_size;
1490 }
1491 
lsf_sf_expand(int * slen,int sf,int n1,int n2,int n3)1492 static void lsf_sf_expand(int *slen,
1493                           int sf, int n1, int n2, int n3)
1494 {
1495     if (n3) {
1496         slen[3] = sf % n3;
1497         sf /= n3;
1498     } else {
1499         slen[3] = 0;
1500     }
1501     if (n2) {
1502         slen[2] = sf % n2;
1503         sf /= n2;
1504     } else {
1505         slen[2] = 0;
1506     }
1507     slen[1] = sf % n1;
1508     sf /= n1;
1509     slen[0] = sf;
1510 }
1511 
exponents_from_scale_factors(MPADecodeContext * s,GranuleDef * g,int16_t * exponents)1512 static void exponents_from_scale_factors(MPADecodeContext *s,
1513                                          GranuleDef *g,
1514                                          int16_t *exponents)
1515 {
1516     const uint8_t *bstab, *pretab;
1517     int len, i, j, k, l, v0, shift, gain, gains[3];
1518     int16_t *exp_ptr;
1519 
1520     exp_ptr = exponents;
1521     gain = g->global_gain - 210;
1522     shift = g->scalefac_scale + 1;
1523 
1524     bstab = band_size_long[s->sample_rate_index];
1525     pretab = mpa_pretab[g->preflag];
1526     for(i=0;i<g->long_end;i++) {
1527         v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
1528         len = bstab[i];
1529         for(j=len;j>0;j--)
1530             *exp_ptr++ = v0;
1531     }
1532 
1533     if (g->short_start < 13) {
1534         bstab = band_size_short[s->sample_rate_index];
1535         gains[0] = gain - (g->subblock_gain[0] << 3);
1536         gains[1] = gain - (g->subblock_gain[1] << 3);
1537         gains[2] = gain - (g->subblock_gain[2] << 3);
1538         k = g->long_end;
1539         for(i=g->short_start;i<13;i++) {
1540             len = bstab[i];
1541             for(l=0;l<3;l++) {
1542                 v0 = gains[l] - (g->scale_factors[k++] << shift);
1543                 for(j=len;j>0;j--)
1544                 *exp_ptr++ = v0;
1545             }
1546         }
1547     }
1548 }
1549 
1550 /* handle n = 0 too */
get_bitsz(GetBitContext * s,int n)1551 static int get_bitsz(GetBitContext *s, int n)
1552 {
1553     if (n == 0)
1554         return 0;
1555     else
1556         return get_bits(s, n);
1557 }
1558 
huffman_decode(MPADecodeContext * s,GranuleDef * g,int16_t * exponents,int end_pos)1559 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1560                           int16_t *exponents, int end_pos)
1561 {
1562     int s_index;
1563     int linbits, code, x, y, l, v, i, j, k, pos;
1564     GetBitContext last_gb;
1565     VLC *vlc;
1566     uint8_t *code_table;
1567 
1568     /* low frequencies (called big values) */
1569     s_index = 0;
1570     for(i=0;i<3;i++) {
1571         j = g->region_size[i];
1572         if (j == 0)
1573             continue;
1574         /* select vlc table */
1575         k = g->table_select[i];
1576         l = mpa_huff_data[k][0];
1577         linbits = mpa_huff_data[k][1];
1578         vlc = &huff_vlc[l];
1579         code_table = huff_code_table[l];
1580 
1581         /* read huffcode and compute each couple */
1582         for(;j>0;j--) {
1583             if (get_bits_count(&s->gb) >= end_pos)
1584                 break;
1585             if (code_table) {
1586                 code = get_vlc(&s->gb, vlc);
1587                 if (code < 0)
1588                     return -1;
1589                 y = code_table[code];
1590                 x = y >> 4;
1591                 y = y & 0x0f;
1592             } else {
1593                 x = 0;
1594                 y = 0;
1595             }
1596 #ifdef DEBUG
1597             printf("region=%d n=%d x=%d y=%d exp=%d\n",
1598                    i, g->region_size[i] - j, x, y, exponents[s_index]);
1599 #endif
1600             if (x) {
1601                 if (x == 15)
1602                     x += get_bitsz(&s->gb, linbits);
1603                 v = l3_unscale(x, exponents[s_index]);
1604                 if (get_bits(&s->gb, 1))
1605                     v = -v;
1606             } else {
1607                 v = 0;
1608             }
1609             g->sb_hybrid[s_index++] = v;
1610             if (y) {
1611                 if (y == 15)
1612                     y += get_bitsz(&s->gb, linbits);
1613                 v = l3_unscale(y, exponents[s_index]);
1614                 if (get_bits(&s->gb, 1))
1615                     v = -v;
1616             } else {
1617                 v = 0;
1618             }
1619             g->sb_hybrid[s_index++] = v;
1620         }
1621     }
1622 
1623     /* high frequencies */
1624     vlc = &huff_quad_vlc[g->count1table_select];
1625     last_gb.buffer = NULL;
1626     while (s_index <= 572) {
1627         pos = get_bits_count(&s->gb);
1628         if (pos >= end_pos) {
1629             if (pos > end_pos && last_gb.buffer != NULL) {
1630                 /* some encoders generate an incorrect size for this
1631                    part. We must go back into the data */
1632                 s_index -= 4;
1633                 s->gb = last_gb;
1634             }
1635             break;
1636         }
1637         last_gb= s->gb;
1638 
1639         code = get_vlc(&s->gb, vlc);
1640 #ifdef DEBUG
1641         printf("t=%d code=%d\n", g->count1table_select, code);
1642 #endif
1643         if (code < 0)
1644             return -1;
1645         for(i=0;i<4;i++) {
1646             if (code & (8 >> i)) {
1647                 /* non zero value. Could use a hand coded function for
1648                    'one' value */
1649                 v = l3_unscale(1, exponents[s_index]);
1650                 if(get_bits(&s->gb, 1))
1651                     v = -v;
1652             } else {
1653                 v = 0;
1654             }
1655             g->sb_hybrid[s_index++] = v;
1656         }
1657     }
1658     while (s_index < 576)
1659         g->sb_hybrid[s_index++] = 0;
1660     return 0;
1661 }
1662 
1663 /* Reorder short blocks from bitstream order to interleaved order. It
1664    would be faster to do it in parsing, but the code would be far more
1665    complicated */
reorder_block(MPADecodeContext * s,GranuleDef * g)1666 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1667 {
1668     int i, j, k, len;
1669     int32_t *ptr, *dst, *ptr1;
1670     int32_t tmp[576];
1671 
1672     if (g->block_type != 2)
1673         return;
1674 
1675     if (g->switch_point) {
1676         if (s->sample_rate_index != 8) {
1677             ptr = g->sb_hybrid + 36;
1678         } else {
1679             ptr = g->sb_hybrid + 48;
1680         }
1681     } else {
1682         ptr = g->sb_hybrid;
1683     }
1684 
1685     for(i=g->short_start;i<13;i++) {
1686         len = band_size_short[s->sample_rate_index][i];
1687         ptr1 = ptr;
1688         for(k=0;k<3;k++) {
1689             dst = tmp + k;
1690             for(j=len;j>0;j--) {
1691                 *dst = *ptr++;
1692                 dst += 3;
1693             }
1694         }
1695         memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
1696     }
1697 }
1698 
1699 #define ISQRT2 FIXR(0.70710678118654752440)
1700 
compute_stereo(MPADecodeContext * s,GranuleDef * g0,GranuleDef * g1)1701 static void compute_stereo(MPADecodeContext *s,
1702                            GranuleDef *g0, GranuleDef *g1)
1703 {
1704     int i, j, k, l;
1705     int32_t v1, v2;
1706     int sf_max, tmp0, tmp1, sf, len, non_zero_found;
1707     int32_t (*is_tab)[16];
1708     int32_t *tab0, *tab1;
1709     int non_zero_found_short[3];
1710 
1711     /* intensity stereo */
1712     if (s->mode_ext & MODE_EXT_I_STEREO) {
1713         if (!s->lsf) {
1714             is_tab = is_table;
1715             sf_max = 7;
1716         } else {
1717             is_tab = is_table_lsf[g1->scalefac_compress & 1];
1718             sf_max = 16;
1719         }
1720 
1721         tab0 = g0->sb_hybrid + 576;
1722         tab1 = g1->sb_hybrid + 576;
1723 
1724         non_zero_found_short[0] = 0;
1725         non_zero_found_short[1] = 0;
1726         non_zero_found_short[2] = 0;
1727         k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1728         for(i = 12;i >= g1->short_start;i--) {
1729             /* for last band, use previous scale factor */
1730             if (i != 11)
1731                 k -= 3;
1732             len = band_size_short[s->sample_rate_index][i];
1733             for(l=2;l>=0;l--) {
1734                 tab0 -= len;
1735                 tab1 -= len;
1736                 if (!non_zero_found_short[l]) {
1737                     /* test if non zero band. if so, stop doing i-stereo */
1738                     for(j=0;j<len;j++) {
1739                         if (tab1[j] != 0) {
1740                             non_zero_found_short[l] = 1;
1741                             goto found1;
1742                         }
1743                     }
1744                     sf = g1->scale_factors[k + l];
1745                     if (sf >= sf_max)
1746                         goto found1;
1747 
1748                     v1 = is_tab[0][sf];
1749                     v2 = is_tab[1][sf];
1750                     for(j=0;j<len;j++) {
1751                         tmp0 = tab0[j];
1752                         tab0[j] = MULL(tmp0, v1);
1753                         tab1[j] = MULL(tmp0, v2);
1754                     }
1755                 } else {
1756                 found1:
1757                     if (s->mode_ext & MODE_EXT_MS_STEREO) {
1758                         /* lower part of the spectrum : do ms stereo
1759                            if enabled */
1760                         for(j=0;j<len;j++) {
1761                             tmp0 = tab0[j];
1762                             tmp1 = tab1[j];
1763                             tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
1764                             tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
1765                         }
1766                     }
1767                 }
1768             }
1769         }
1770 
1771         non_zero_found = non_zero_found_short[0] |
1772             non_zero_found_short[1] |
1773             non_zero_found_short[2];
1774 
1775         for(i = g1->long_end - 1;i >= 0;i--) {
1776             len = band_size_long[s->sample_rate_index][i];
1777             tab0 -= len;
1778             tab1 -= len;
1779             /* test if non zero band. if so, stop doing i-stereo */
1780             if (!non_zero_found) {
1781                 for(j=0;j<len;j++) {
1782                     if (tab1[j] != 0) {
1783                         non_zero_found = 1;
1784                         goto found2;
1785                     }
1786                 }
1787                 /* for last band, use previous scale factor */
1788                 k = (i == 21) ? 20 : i;
1789                 sf = g1->scale_factors[k];
1790                 if (sf >= sf_max)
1791                     goto found2;
1792                 v1 = is_tab[0][sf];
1793                 v2 = is_tab[1][sf];
1794                 for(j=0;j<len;j++) {
1795                     tmp0 = tab0[j];
1796                     tab0[j] = MULL(tmp0, v1);
1797                     tab1[j] = MULL(tmp0, v2);
1798                 }
1799             } else {
1800             found2:
1801                 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1802                     /* lower part of the spectrum : do ms stereo
1803                        if enabled */
1804                     for(j=0;j<len;j++) {
1805                         tmp0 = tab0[j];
1806                         tmp1 = tab1[j];
1807                         tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
1808                         tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
1809                     }
1810                 }
1811             }
1812         }
1813     } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1814         /* ms stereo ONLY */
1815         /* NOTE: the 1/sqrt(2) normalization factor is included in the
1816            global gain */
1817         tab0 = g0->sb_hybrid;
1818         tab1 = g1->sb_hybrid;
1819         for(i=0;i<576;i++) {
1820             tmp0 = tab0[i];
1821             tmp1 = tab1[i];
1822             tab0[i] = tmp0 + tmp1;
1823             tab1[i] = tmp0 - tmp1;
1824         }
1825     }
1826 }
1827 
compute_antialias(MPADecodeContext * s,GranuleDef * g)1828 static void compute_antialias(MPADecodeContext *s,
1829                               GranuleDef *g)
1830 {
1831     int32_t *ptr, *p0, *p1, *csa;
1832     int n, tmp0, tmp1, i, j;
1833 
1834     /* we antialias only "long" bands */
1835     if (g->block_type == 2) {
1836         if (!g->switch_point)
1837             return;
1838         /* XXX: check this for 8000Hz case */
1839         n = 1;
1840     } else {
1841         n = SBLIMIT - 1;
1842     }
1843 
1844     ptr = g->sb_hybrid + 18;
1845     for(i = n;i > 0;i--) {
1846         p0 = ptr - 1;
1847         p1 = ptr;
1848         csa = &csa_table[0][0];
1849         for(j=0;j<8;j++) {
1850             tmp0 = *p0;
1851             tmp1 = *p1;
1852             *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
1853             *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
1854             p0--;
1855             p1++;
1856             csa += 2;
1857         }
1858         ptr += 18;
1859     }
1860 }
1861 
compute_imdct(MPADecodeContext * s,GranuleDef * g,int32_t * sb_samples,int32_t * mdct_buf)1862 static void compute_imdct(MPADecodeContext *s,
1863                           GranuleDef *g,
1864                           int32_t *sb_samples,
1865                           int32_t *mdct_buf)
1866 {
1867     int32_t *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
1868     int32_t in[6];
1869     int32_t out[36];
1870     int32_t out2[12];
1871     int i, j, k, mdct_long_end, v, sblimit;
1872 
1873     /* find last non zero block */
1874     ptr = g->sb_hybrid + 576;
1875     ptr1 = g->sb_hybrid + 2 * 18;
1876     while (ptr >= ptr1) {
1877         ptr -= 6;
1878         v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
1879         if (v != 0)
1880             break;
1881     }
1882     sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1883 
1884     if (g->block_type == 2) {
1885         /* XXX: check for 8000 Hz */
1886         if (g->switch_point)
1887             mdct_long_end = 2;
1888         else
1889             mdct_long_end = 0;
1890     } else {
1891         mdct_long_end = sblimit;
1892     }
1893 
1894     buf = mdct_buf;
1895     ptr = g->sb_hybrid;
1896     for(j=0;j<mdct_long_end;j++) {
1897         imdct36(out, ptr);
1898         /* apply window & overlap with previous buffer */
1899         out_ptr = sb_samples + j;
1900         /* select window */
1901         if (g->switch_point && j < 2)
1902             win1 = mdct_win[0];
1903         else
1904             win1 = mdct_win[g->block_type];
1905         /* select frequency inversion */
1906         win = win1 + ((4 * 36) & -(j & 1));
1907         for(i=0;i<18;i++) {
1908             *out_ptr = MULL(out[i], win[i]) + buf[i];
1909             buf[i] = MULL(out[i + 18], win[i + 18]);
1910             out_ptr += SBLIMIT;
1911         }
1912         ptr += 18;
1913         buf += 18;
1914     }
1915     for(j=mdct_long_end;j<sblimit;j++) {
1916         for(i=0;i<6;i++) {
1917             out[i] = 0;
1918             out[6 + i] = 0;
1919             out[30+i] = 0;
1920         }
1921         /* select frequency inversion */
1922         win = mdct_win[2] + ((4 * 36) & -(j & 1));
1923         buf2 = out + 6;
1924         for(k=0;k<3;k++) {
1925             /* reorder input for short mdct */
1926             ptr1 = ptr + k;
1927             for(i=0;i<6;i++) {
1928                 in[i] = *ptr1;
1929                 ptr1 += 3;
1930             }
1931             imdct12(out2, in);
1932             /* apply 12 point window and do small overlap */
1933             for(i=0;i<6;i++) {
1934                 buf2[i] = MULL(out2[i], win[i]) + buf2[i];
1935                 buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
1936             }
1937             buf2 += 6;
1938         }
1939         /* overlap */
1940         out_ptr = sb_samples + j;
1941         for(i=0;i<18;i++) {
1942             *out_ptr = out[i] + buf[i];
1943             buf[i] = out[i + 18];
1944             out_ptr += SBLIMIT;
1945         }
1946         ptr += 18;
1947         buf += 18;
1948     }
1949     /* zero bands */
1950     for(j=sblimit;j<SBLIMIT;j++) {
1951         /* overlap */
1952         out_ptr = sb_samples + j;
1953         for(i=0;i<18;i++) {
1954             *out_ptr = buf[i];
1955             buf[i] = 0;
1956             out_ptr += SBLIMIT;
1957         }
1958         buf += 18;
1959     }
1960 }
1961 
1962 /* main layer3 decoding function */
mp_decode_layer3(MPADecodeContext * s)1963 static int mp_decode_layer3(MPADecodeContext *s)
1964 {
1965     int nb_granules, main_data_begin, private_bits;
1966     int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
1967     GranuleDef granules[2][2], *g;
1968     int16_t exponents[576];
1969 
1970     /* read side info */
1971     if (s->lsf) {
1972         main_data_begin = get_bits(&s->gb, 8);
1973         if (s->nb_channels == 2)
1974             private_bits = get_bits(&s->gb, 2);
1975         else
1976             private_bits = get_bits(&s->gb, 1);
1977         nb_granules = 1;
1978     } else {
1979         main_data_begin = get_bits(&s->gb, 9);
1980         if (s->nb_channels == 2)
1981             private_bits = get_bits(&s->gb, 3);
1982         else
1983             private_bits = get_bits(&s->gb, 5);
1984         nb_granules = 2;
1985         for(ch=0;ch<s->nb_channels;ch++) {
1986             granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
1987             granules[ch][1].scfsi = get_bits(&s->gb, 4);
1988         }
1989     }
1990 
1991     for(gr=0;gr<nb_granules;gr++) {
1992         for(ch=0;ch<s->nb_channels;ch++) {
1993 #ifdef DEBUG
1994             printf("gr=%d ch=%d: side_info\n", gr, ch);
1995 #endif
1996             g = &granules[ch][gr];
1997             g->part2_3_length = get_bits(&s->gb, 12);
1998             g->big_values = get_bits(&s->gb, 9);
1999             g->global_gain = get_bits(&s->gb, 8);
2000             /* if MS stereo only is selected, we precompute the
2001                1/sqrt(2) renormalization factor */
2002             if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
2003                 MODE_EXT_MS_STEREO)
2004                 g->global_gain -= 2;
2005             if (s->lsf)
2006                 g->scalefac_compress = get_bits(&s->gb, 9);
2007             else
2008                 g->scalefac_compress = get_bits(&s->gb, 4);
2009             blocksplit_flag = get_bits(&s->gb, 1);
2010             if (blocksplit_flag) {
2011                 g->block_type = get_bits(&s->gb, 2);
2012                 if (g->block_type == 0)
2013                     return -1;
2014                 g->switch_point = get_bits(&s->gb, 1);
2015                 for(i=0;i<2;i++)
2016                     g->table_select[i] = get_bits(&s->gb, 5);
2017                 for(i=0;i<3;i++)
2018                     g->subblock_gain[i] = get_bits(&s->gb, 3);
2019                 /* compute huffman coded region sizes */
2020                 if (g->block_type == 2)
2021                     g->region_size[0] = (36 / 2);
2022                 else {
2023                     if (s->sample_rate_index <= 2)
2024                         g->region_size[0] = (36 / 2);
2025                     else if (s->sample_rate_index != 8)
2026                         g->region_size[0] = (54 / 2);
2027                     else
2028                         g->region_size[0] = (108 / 2);
2029                 }
2030                 g->region_size[1] = (576 / 2);
2031             } else {
2032                 int region_address1, region_address2, l;
2033                 g->block_type = 0;
2034                 g->switch_point = 0;
2035                 for(i=0;i<3;i++)
2036                     g->table_select[i] = get_bits(&s->gb, 5);
2037                 /* compute huffman coded region sizes */
2038                 region_address1 = get_bits(&s->gb, 4);
2039                 region_address2 = get_bits(&s->gb, 3);
2040 #ifdef DEBUG
2041                 printf("region1=%d region2=%d\n",
2042                        region_address1, region_address2);
2043 #endif
2044                 g->region_size[0] =
2045                     band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
2046                 l = region_address1 + region_address2 + 2;
2047                 /* should not overflow */
2048                 if (l > 22)
2049                     l = 22;
2050                 g->region_size[1] =
2051                     band_index_long[s->sample_rate_index][l] >> 1;
2052             }
2053             /* convert region offsets to region sizes and truncate
2054                size to big_values */
2055             g->region_size[2] = (576 / 2);
2056             j = 0;
2057             for(i=0;i<3;i++) {
2058                 k = g->region_size[i];
2059                 if (k > g->big_values)
2060                     k = g->big_values;
2061                 g->region_size[i] = k - j;
2062                 j = k;
2063             }
2064 
2065             /* compute band indexes */
2066             if (g->block_type == 2) {
2067                 if (g->switch_point) {
2068                     /* if switched mode, we handle the 36 first samples as
2069                        long blocks.  For 8000Hz, we handle the 48 first
2070                        exponents as long blocks (XXX: check this!) */
2071                     if (s->sample_rate_index <= 2)
2072                         g->long_end = 8;
2073                     else if (s->sample_rate_index != 8)
2074                         g->long_end = 6;
2075                     else
2076                         g->long_end = 4; /* 8000 Hz */
2077 
2078                     if (s->sample_rate_index != 8)
2079                         g->short_start = 3;
2080                     else
2081                         g->short_start = 2;
2082                 } else {
2083                     g->long_end = 0;
2084                     g->short_start = 0;
2085                 }
2086             } else {
2087                 g->short_start = 13;
2088                 g->long_end = 22;
2089             }
2090 
2091             g->preflag = 0;
2092             if (!s->lsf)
2093                 g->preflag = get_bits(&s->gb, 1);
2094             g->scalefac_scale = get_bits(&s->gb, 1);
2095             g->count1table_select = get_bits(&s->gb, 1);
2096 #ifdef DEBUG
2097             printf("block_type=%d switch_point=%d\n",
2098                    g->block_type, g->switch_point);
2099 #endif
2100         }
2101     }
2102 
2103     /* now we get bits from the main_data_begin offset */
2104 #ifdef DEBUG
2105     printf("seekback: %d\n", main_data_begin);
2106 #endif
2107     seek_to_maindata(s, main_data_begin);
2108 
2109     for(gr=0;gr<nb_granules;gr++) {
2110         for(ch=0;ch<s->nb_channels;ch++) {
2111             g = &granules[ch][gr];
2112 
2113             bits_pos = get_bits_count(&s->gb);
2114 
2115             if (!s->lsf) {
2116                 uint8_t *sc;
2117                 int slen, slen1, slen2;
2118 
2119                 /* MPEG1 scale factors */
2120                 slen1 = slen_table[0][g->scalefac_compress];
2121                 slen2 = slen_table[1][g->scalefac_compress];
2122 #ifdef DEBUG
2123                 printf("slen1=%d slen2=%d\n", slen1, slen2);
2124 #endif
2125                 if (g->block_type == 2) {
2126                     n = g->switch_point ? 17 : 18;
2127                     j = 0;
2128                     for(i=0;i<n;i++)
2129                         g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
2130                     for(i=0;i<18;i++)
2131                         g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
2132                     for(i=0;i<3;i++)
2133                         g->scale_factors[j++] = 0;
2134                 } else {
2135                     sc = granules[ch][0].scale_factors;
2136                     j = 0;
2137                     for(k=0;k<4;k++) {
2138                         n = (k == 0 ? 6 : 5);
2139                         if ((g->scfsi & (0x8 >> k)) == 0) {
2140                             slen = (k < 2) ? slen1 : slen2;
2141                             for(i=0;i<n;i++)
2142                                 g->scale_factors[j++] = get_bitsz(&s->gb, slen);
2143                         } else {
2144                             /* simply copy from last granule */
2145                             for(i=0;i<n;i++) {
2146                                 g->scale_factors[j] = sc[j];
2147                                 j++;
2148                             }
2149                         }
2150                     }
2151                     g->scale_factors[j++] = 0;
2152                 }
2153 #if defined(DEBUG)
2154                 {
2155                     printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
2156                            g->scfsi, gr, ch);
2157                     for(i=0;i<j;i++)
2158                         printf(" %d", g->scale_factors[i]);
2159                     printf("\n");
2160                 }
2161 #endif
2162             } else {
2163                 int tindex, tindex2, slen[4], sl, sf;
2164 
2165                 /* LSF scale factors */
2166                 if (g->block_type == 2) {
2167                     tindex = g->switch_point ? 2 : 1;
2168                 } else {
2169                     tindex = 0;
2170                 }
2171                 sf = g->scalefac_compress;
2172                 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
2173                     /* intensity stereo case */
2174                     sf >>= 1;
2175                     if (sf < 180) {
2176                         lsf_sf_expand(slen, sf, 6, 6, 0);
2177                         tindex2 = 3;
2178                     } else if (sf < 244) {
2179                         lsf_sf_expand(slen, sf - 180, 4, 4, 0);
2180                         tindex2 = 4;
2181                     } else {
2182                         lsf_sf_expand(slen, sf - 244, 3, 0, 0);
2183                         tindex2 = 5;
2184                     }
2185                 } else {
2186                     /* normal case */
2187                     if (sf < 400) {
2188                         lsf_sf_expand(slen, sf, 5, 4, 4);
2189                         tindex2 = 0;
2190                     } else if (sf < 500) {
2191                         lsf_sf_expand(slen, sf - 400, 5, 4, 0);
2192                         tindex2 = 1;
2193                     } else {
2194                         lsf_sf_expand(slen, sf - 500, 3, 0, 0);
2195                         tindex2 = 2;
2196                         g->preflag = 1;
2197                     }
2198                 }
2199 
2200                 j = 0;
2201                 for(k=0;k<4;k++) {
2202                     n = lsf_nsf_table[tindex2][tindex][k];
2203                     sl = slen[k];
2204                     for(i=0;i<n;i++)
2205                         g->scale_factors[j++] = get_bitsz(&s->gb, sl);
2206                 }
2207                 /* XXX: should compute exact size */
2208                 for(;j<40;j++)
2209                     g->scale_factors[j] = 0;
2210 #if defined(DEBUG)
2211                 {
2212                     printf("gr=%d ch=%d scale_factors:\n",
2213                            gr, ch);
2214                     for(i=0;i<40;i++)
2215                         printf(" %d", g->scale_factors[i]);
2216                     printf("\n");
2217                 }
2218 #endif
2219             }
2220 
2221             exponents_from_scale_factors(s, g, exponents);
2222 
2223             /* read Huffman coded residue */
2224             if (huffman_decode(s, g, exponents,
2225                                bits_pos + g->part2_3_length) < 0)
2226                 return -1;
2227 
2228             /* skip extension bits */
2229             bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
2230             if (bits_left < 0) {
2231 #ifdef DEBUG
2232                 printf("bits_left=%d\n", bits_left);
2233 #endif
2234                 return -1;
2235             }
2236             while (bits_left >= 16) {
2237                 skip_bits(&s->gb, 16);
2238                 bits_left -= 16;
2239             }
2240             if (bits_left > 0)
2241                 skip_bits(&s->gb, bits_left);
2242         } /* ch */
2243 
2244         if (s->nb_channels == 2)
2245             compute_stereo(s, &granules[0][gr], &granules[1][gr]);
2246 
2247         for(ch=0;ch<s->nb_channels;ch++) {
2248             g = &granules[ch][gr];
2249 
2250             reorder_block(s, g);
2251             compute_antialias(s, g);
2252             compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
2253         }
2254     } /* gr */
2255     return nb_granules * 18;
2256 }
2257 
mp_decode_frame(MPADecodeContext * s,int16_t * samples)2258 static int mp_decode_frame(MPADecodeContext *s,
2259                            int16_t *samples)
2260 {
2261     int i, nb_frames, ch;
2262     int16_t *samples_ptr;
2263 
2264     init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
2265                   (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
2266 
2267     /* skip error protection field */
2268     if (s->error_protection)
2269         get_bits(&s->gb, 16);
2270 
2271 #ifdef DEBUG
2272     printf("frame %d:\n", s->frame_count);
2273 #endif
2274     switch(s->layer) {
2275     case 1:
2276         nb_frames = mp_decode_layer1(s);
2277         break;
2278     case 2:
2279         nb_frames = mp_decode_layer2(s);
2280         break;
2281     case 3:
2282     default:
2283         nb_frames = mp_decode_layer3(s);
2284         break;
2285     }
2286 #if defined(DEBUG)
2287     for(i=0;i<nb_frames;i++) {
2288         for(ch=0;ch<s->nb_channels;ch++) {
2289             int j;
2290             printf("%d-%d:", i, ch);
2291             for(j=0;j<SBLIMIT;j++)
2292                 printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
2293             printf("\n");
2294         }
2295     }
2296 #endif
2297     /* apply the synthesis filter */
2298     for(ch=0;ch<s->nb_channels;ch++) {
2299         samples_ptr = samples + ch;
2300         for(i=0;i<nb_frames;i++) {
2301             synth_filter(s, ch, samples_ptr, s->nb_channels,
2302                          s->sb_samples[ch][i]);
2303             samples_ptr += 32 * s->nb_channels;
2304         }
2305     }
2306 #ifdef DEBUG
2307     s->frame_count++;
2308 #endif
2309     return nb_frames * 32 * sizeof(short) * s->nb_channels;
2310 }
2311 
mpaudec_decode_frame(MPAuDecContext * mpctx,void * data,int * data_size,const uint8_t * buf,int buf_size)2312 int mpaudec_decode_frame(MPAuDecContext * mpctx,
2313                          void *data, int *data_size,
2314                          const uint8_t * buf, int buf_size)
2315 {
2316     MPADecodeContext *s;
2317     const uint8_t *buf_ptr = buf;
2318     int out_size = 0;
2319     int16_t *out_samples = data;
2320     assert(mpctx != NULL);
2321     assert(mpctx->priv_data != NULL);
2322     s = mpctx->priv_data;
2323 
2324     while (buf_size > 0 && out_size == 0) {
2325         uint32_t header;
2326         uint32_t free_format_next_header = 0;
2327         int len = s->inbuf_ptr - s->inbuf;
2328         if (s->frame_size == 0) {
2329             /* no header seen : find one. We need at least HEADER_SIZE
2330                bytes to parse it */
2331             len = HEADER_SIZE - len;
2332             if (len > buf_size)
2333                 len = buf_size;
2334             if (len > 0) {
2335                 memcpy(s->inbuf_ptr, buf_ptr, len);
2336                 buf_ptr += len;
2337                 buf_size -= len;
2338                 s->inbuf_ptr += len;
2339             }
2340             if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
2341                 header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
2342                     (s->inbuf[2] << 8) | s->inbuf[3];
2343 
2344                 if (check_header(header) < 0) {
2345                     /* no sync found : move by one byte (inefficient, but simple!) */
2346                     memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
2347                     s->inbuf_ptr--;
2348 #ifdef DEBUG
2349                     printf("skip %x\n", header);
2350 #endif
2351                     /* reset free format frame size to give a chance
2352                        to get a new bitrate */
2353                     s->free_format_frame_size = 0;
2354                 } else {
2355                     if (decode_header(s, header) == 1) {
2356                         /* free format: prepare to compute frame size */
2357                         s->frame_size = -1;
2358                     }
2359                     /* update codec info */
2360                     mpctx->sample_rate = s->sample_rate;
2361                     mpctx->channels = s->nb_channels;
2362                     mpctx->bit_rate = s->bit_rate;
2363                     mpctx->layer = s->layer;
2364                     switch(s->layer) {
2365                     case 1:
2366                         mpctx->frame_size = 384;
2367                         break;
2368                     case 2:
2369                         mpctx->frame_size = 1152;
2370                         break;
2371                     case 3:
2372                         if (s->lsf)
2373                             mpctx->frame_size = 576;
2374                         else
2375                             mpctx->frame_size = 1152;
2376                         break;
2377                     }
2378                 }
2379             }
2380         } else if (s->frame_size == -1) {
2381             /* free format : find next sync to compute frame size */
2382             len = MPA_MAX_CODED_FRAME_SIZE - len;
2383             if (len > buf_size)
2384                 len = buf_size;
2385             if (len == 0) {
2386                 /* frame too long: resync */
2387                 s->frame_size = 0;
2388                 memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
2389                 s->inbuf_ptr--;
2390             } else {
2391                 uint8_t *p, *pend;
2392                 uint32_t header1;
2393                 int padding;
2394 
2395                 memcpy(s->inbuf_ptr, buf_ptr, len);
2396                 /* check for header */
2397                 p = s->inbuf_ptr - 3;
2398                 pend = s->inbuf_ptr + len - 4;
2399                 while (p <= pend && free_format_next_header == 0) {
2400                     header = (p[0] << 24) | (p[1] << 16) |
2401                         (p[2] << 8) | p[3];
2402                     header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
2403                         (s->inbuf[2] << 8) | s->inbuf[3];
2404                     /* check with high probability that we have a
2405                        valid header */
2406                     if ((header & SAME_HEADER_MASK) ==
2407                         (header1 & SAME_HEADER_MASK)) {
2408                         /* header found: update pointers */
2409                         len = (p + 4) - s->inbuf_ptr;
2410                         buf_ptr += len;
2411                         buf_size -= len;
2412                         s->inbuf_ptr = p;
2413                         free_format_next_header = header;
2414                         /* compute frame size */
2415                         s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
2416                         padding = (header1 >> 9) & 1;
2417                         if (s->layer == 1)
2418                             s->free_format_frame_size -= padding * 4;
2419                         else
2420                             s->free_format_frame_size -= padding;
2421 #ifdef DEBUG
2422                         printf("free frame size=%d padding=%d\n",
2423                                s->free_format_frame_size, padding);
2424 #endif
2425                         decode_header(s, header1);
2426                     } else
2427                         p++;
2428                 }
2429                 if (free_format_next_header == 0) {
2430                     /* not found: simply increase pointers */
2431                     buf_ptr += len;
2432                     s->inbuf_ptr += len;
2433                     buf_size -= len;
2434                 }
2435             }
2436         } else if (len < s->frame_size) {
2437             if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
2438                 s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
2439             len = s->frame_size - len;
2440             if (len > buf_size)
2441                 len = buf_size;
2442             memcpy(s->inbuf_ptr, buf_ptr, len);
2443             buf_ptr += len;
2444             s->inbuf_ptr += len;
2445             buf_size -= len;
2446         }
2447         if (s->frame_size > 0 &&
2448             (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
2449             mpctx->coded_frame_size = s->frame_size;
2450             if (mpctx->parse_only) {
2451                 /* simply return the frame data */
2452                 *(uint8_t **)data = s->inbuf;
2453                 out_size = s->inbuf_ptr - s->inbuf;
2454             } else {
2455                 out_size = mp_decode_frame(s, out_samples);
2456             }
2457             if (free_format_next_header != 0) {
2458                 s->inbuf[0] = free_format_next_header >> 24;
2459                 s->inbuf[1] = free_format_next_header >> 16;
2460                 s->inbuf[2] = free_format_next_header >> 8;
2461                 s->inbuf[3] = free_format_next_header;
2462                 s->inbuf_ptr = s->inbuf + 4;
2463             } else
2464                 s->inbuf_ptr = s->inbuf;
2465             s->frame_size = 0;
2466         }
2467     }
2468     *data_size = out_size;
2469     return buf_ptr - buf;
2470 }
2471 
mpaudec_clear(MPAuDecContext * mpctx)2472 void mpaudec_clear(MPAuDecContext *mpctx)
2473 {
2474     assert(mpctx != NULL);
2475     free(mpctx->priv_data);
2476     memset(mpctx, 0, sizeof(MPAuDecContext));
2477 }
2478