1 /*
2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3 ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4 **
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU General Public License as published by
7 ** the Free Software Foundation; either version 2 of the License, or
8 ** (at your option) any later version.
9 **
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 ** GNU General Public License for more details.
14 **
15 ** You should have received a copy of the GNU General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 **
19 ** Any non-GPL usage of this software or parts of this software is strictly
20 ** forbidden.
21 **
22 ** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23 ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24 **
25 ** Commercial non-GPL licensing of this software is possible.
26 ** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27 **
28 ** $Id: fixed.h,v 1.32 2007/11/01 12:33:30 menno Exp $
29 **/
30 
31 #ifndef __FIXED_H__
32 #define __FIXED_H__
33 
34 #ifdef __cplusplus
35 extern "C" {
36 #endif
37 
38 #if defined(_WIN32_WCE) && defined(_ARM_)
39 #include <cmnintrin.h>
40 #endif
41 
42 
43 #define COEF_BITS 28
44 #define COEF_PRECISION (1 << COEF_BITS)
45 #define REAL_BITS 14 // MAXIMUM OF 14 FOR FIXED POINT SBR
46 #define REAL_PRECISION (1 << REAL_BITS)
47 
48 /* FRAC is the fractional only part of the fixed point number [0.0..1.0) */
49 #define FRAC_SIZE 32 /* frac is a 32 bit integer */
50 #define FRAC_BITS 31
51 #define FRAC_PRECISION ((uint32_t)(1 << FRAC_BITS))
52 #define FRAC_MAX 0x7FFFFFFF
53 
54 typedef int32_t real_t;
55 
56 
57 #define REAL_CONST(A) (((A) >= 0) ? ((real_t)((A)*(REAL_PRECISION)+0.5)) : ((real_t)((A)*(REAL_PRECISION)-0.5)))
58 #define COEF_CONST(A) (((A) >= 0) ? ((real_t)((A)*(COEF_PRECISION)+0.5)) : ((real_t)((A)*(COEF_PRECISION)-0.5)))
59 #define FRAC_CONST(A) (((A) == 1.00) ? ((real_t)FRAC_MAX) : (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5))))
60 //#define FRAC_CONST(A) (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5)))
61 
62 #define Q2_BITS 22
63 #define Q2_PRECISION (1 << Q2_BITS)
64 #define Q2_CONST(A) (((A) >= 0) ? ((real_t)((A)*(Q2_PRECISION)+0.5)) : ((real_t)((A)*(Q2_PRECISION)-0.5)))
65 
66 #if defined(_WIN32) && !defined(_WIN32_WCE)
67 
68 /* multiply with real shift */
MUL_R(real_t A,real_t B)69 static INLINE real_t MUL_R(real_t A, real_t B)
70 {
71     _asm {
72         mov eax,A
73         imul B
74         shrd eax,edx,REAL_BITS
75     }
76 }
77 
78 /* multiply with coef shift */
MUL_C(real_t A,real_t B)79 static INLINE real_t MUL_C(real_t A, real_t B)
80 {
81     _asm {
82         mov eax,A
83         imul B
84         shrd eax,edx,COEF_BITS
85     }
86 }
87 
MUL_Q2(real_t A,real_t B)88 static INLINE real_t MUL_Q2(real_t A, real_t B)
89 {
90     _asm {
91         mov eax,A
92         imul B
93         shrd eax,edx,Q2_BITS
94     }
95 }
96 
MUL_SHIFT6(real_t A,real_t B)97 static INLINE real_t MUL_SHIFT6(real_t A, real_t B)
98 {
99     _asm {
100         mov eax,A
101         imul B
102         shrd eax,edx,6
103     }
104 }
105 
MUL_SHIFT23(real_t A,real_t B)106 static INLINE real_t MUL_SHIFT23(real_t A, real_t B)
107 {
108     _asm {
109         mov eax,A
110         imul B
111         shrd eax,edx,23
112     }
113 }
114 
115 #if 1
_MulHigh(real_t A,real_t B)116 static INLINE real_t _MulHigh(real_t A, real_t B)
117 {
118     _asm {
119         mov eax,A
120         imul B
121         mov eax,edx
122     }
123 }
124 
125 /* multiply with fractional shift */
MUL_F(real_t A,real_t B)126 static INLINE real_t MUL_F(real_t A, real_t B)
127 {
128     return _MulHigh(A,B) << (FRAC_SIZE-FRAC_BITS);
129 }
130 
131 /* Complex multiplication */
ComplexMult(real_t * y1,real_t * y2,real_t x1,real_t x2,real_t c1,real_t c2)132 static INLINE void ComplexMult(real_t *y1, real_t *y2,
133     real_t x1, real_t x2, real_t c1, real_t c2)
134 {
135     *y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS);
136     *y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS);
137 }
138 #else
MUL_F(real_t A,real_t B)139 static INLINE real_t MUL_F(real_t A, real_t B)
140 {
141     _asm {
142         mov eax,A
143         imul B
144         shrd eax,edx,FRAC_BITS
145     }
146 }
147 
148 /* Complex multiplication */
ComplexMult(real_t * y1,real_t * y2,real_t x1,real_t x2,real_t c1,real_t c2)149 static INLINE void ComplexMult(real_t *y1, real_t *y2,
150     real_t x1, real_t x2, real_t c1, real_t c2)
151 {
152     *y1 = MUL_F(x1, c1) + MUL_F(x2, c2);
153     *y2 = MUL_F(x2, c1) - MUL_F(x1, c2);
154 }
155 #endif
156 
157 #elif defined(__GNUC__) && defined (__arm__)
158 
159 /* taken from MAD */
160 #define arm_mul(x, y, SCALEBITS) \
161 ({ \
162     uint32_t __hi; \
163     uint32_t __lo; \
164     uint32_t __result; \
165     asm("smull  %0, %1, %3, %4\n\t" \
166         "movs   %0, %0, lsr %5\n\t" \
167         "adc    %2, %0, %1, lsl %6" \
168         : "=&r" (__lo), "=&r" (__hi), "=r" (__result) \
169         : "%r" (x), "r" (y), \
170         "M" (SCALEBITS), "M" (32 - (SCALEBITS)) \
171         : "cc"); \
172         __result; \
173 })
174 
MUL_R(real_t A,real_t B)175 static INLINE real_t MUL_R(real_t A, real_t B)
176 {
177     return arm_mul(A, B, REAL_BITS);
178 }
179 
MUL_C(real_t A,real_t B)180 static INLINE real_t MUL_C(real_t A, real_t B)
181 {
182     return arm_mul(A, B, COEF_BITS);
183 }
184 
MUL_Q2(real_t A,real_t B)185 static INLINE real_t MUL_Q2(real_t A, real_t B)
186 {
187     return arm_mul(A, B, Q2_BITS);
188 }
189 
MUL_SHIFT6(real_t A,real_t B)190 static INLINE real_t MUL_SHIFT6(real_t A, real_t B)
191 {
192     return arm_mul(A, B, 6);
193 }
194 
MUL_SHIFT23(real_t A,real_t B)195 static INLINE real_t MUL_SHIFT23(real_t A, real_t B)
196 {
197     return arm_mul(A, B, 23);
198 }
199 
_MulHigh(real_t x,real_t y)200 static INLINE real_t _MulHigh(real_t x, real_t y)
201 {
202     uint32_t __lo;
203     uint32_t __hi;
204     asm("smull\t%0, %1, %2, %3"
205         : "=&r"(__lo),"=&r"(__hi)
206         : "%r"(x),"r"(y)
207         : "cc");
208     return __hi;
209 }
210 
MUL_F(real_t A,real_t B)211 static INLINE real_t MUL_F(real_t A, real_t B)
212 {
213     return _MulHigh(A, B) << (FRAC_SIZE-FRAC_BITS);
214 }
215 
216 /* Complex multiplication */
ComplexMult(real_t * y1,real_t * y2,real_t x1,real_t x2,real_t c1,real_t c2)217 static INLINE void ComplexMult(real_t *y1, real_t *y2,
218     real_t x1, real_t x2, real_t c1, real_t c2)
219 {
220     int32_t tmp, yt1, yt2;
221     asm("smull %0, %1, %4, %6\n\t"
222         "smlal %0, %1, %5, %7\n\t"
223         "rsb   %3, %4, #0\n\t"
224         "smull %0, %2, %5, %6\n\t"
225         "smlal %0, %2, %3, %7"
226         : "=&r" (tmp), "=&r" (yt1), "=&r" (yt2), "=r" (x1)
227         : "3" (x1), "r" (x2), "r" (c1), "r" (c2)
228         : "cc" );
229     *y1 = yt1 << (FRAC_SIZE-FRAC_BITS);
230     *y2 = yt2 << (FRAC_SIZE-FRAC_BITS);
231 }
232 
233 #else
234 
235   /* multiply with real shift */
236   #define MUL_R(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (REAL_BITS-1))) >> REAL_BITS)
237   /* multiply with coef shift */
238   #define MUL_C(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (COEF_BITS-1))) >> COEF_BITS)
239   /* multiply with fractional shift */
240 #if defined(_WIN32_WCE) && defined(_ARM_)
241   /* eVC for PocketPC has an intrinsic function that returns only the high 32 bits of a 32x32 bit multiply */
MUL_F(real_t A,real_t B)242   static INLINE real_t MUL_F(real_t A, real_t B)
243   {
244       return _MulHigh(A,B) << (32-FRAC_BITS);
245   }
246 #else
247 #ifdef __BFIN__
248 #define _MulHigh(X,Y) ({ int __xxo;                      \
249      asm (                                               \
250          "a1 = %2.H * %1.L (IS,M);\n\t"                  \
251          "a0 = %1.H * %2.H, a1+= %1.H * %2.L (IS,M);\n\t"\
252          "a1 = a1 >>> 16;\n\t"                           \
253          "%0 = (a0 += a1);\n\t"                          \
254          : "=d" (__xxo) : "d" (X), "d" (Y) : "A0","A1"); __xxo; })
255 
256 #define MUL_F(X,Y) ({ int __xxo;                         \
257      asm (                                               \
258          "a1 = %2.H * %1.L (M);\n\t"                     \
259          "a0 = %1.H * %2.H, a1+= %1.H * %2.L (M);\n\t"   \
260          "a1 = a1 >>> 16;\n\t"                           \
261          "%0 = (a0 += a1);\n\t"                          \
262          : "=d" (__xxo) : "d" (X), "d" (Y) : "A0","A1"); __xxo; })
263 #else
264   #define _MulHigh(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_SIZE-1))) >> FRAC_SIZE)
265   #define MUL_F(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_BITS-1))) >> FRAC_BITS)
266 #endif
267 #endif
268   #define MUL_Q2(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (Q2_BITS-1))) >> Q2_BITS)
269   #define MUL_SHIFT6(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (6-1))) >> 6)
270   #define MUL_SHIFT23(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (23-1))) >> 23)
271 
272 /* Complex multiplication */
ComplexMult(real_t * y1,real_t * y2,real_t x1,real_t x2,real_t c1,real_t c2)273 static INLINE void ComplexMult(real_t *y1, real_t *y2,
274     real_t x1, real_t x2, real_t c1, real_t c2)
275 {
276     *y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS);
277     *y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS);
278 }
279 
280 #endif
281 
282 
283 
284 #ifdef __cplusplus
285 }
286 #endif
287 #endif
288