1 //! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2 //!
3 //! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4 //! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5 //! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logoColor=white&logo=
6 //!
7 //! <br>
8 //!
9 //! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10 //! crate. This library serves two purposes:
11 //!
12 //! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/
13 //!
14 //! - **Bring proc-macro-like functionality to other contexts like build.rs and
15 //!   main.rs.** Types from `proc_macro` are entirely specific to procedural
16 //!   macros and cannot ever exist in code outside of a procedural macro.
17 //!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
18 //!   By developing foundational libraries like [syn] and [quote] against
19 //!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
20 //!   becomes easily applicable to many other use cases and we avoid
21 //!   reimplementing non-macro equivalents of those libraries.
22 //!
23 //! - **Make procedural macros unit testable.** As a consequence of being
24 //!   specific to procedural macros, nothing that uses `proc_macro` can be
25 //!   executed from a unit test. In order for helper libraries or components of
26 //!   a macro to be testable in isolation, they must be implemented using
27 //!   `proc_macro2`.
28 //!
29 //! [syn]: https://github.com/dtolnay/syn
30 //! [quote]: https://github.com/dtolnay/quote
31 //!
32 //! # Usage
33 //!
34 //! The skeleton of a typical procedural macro typically looks like this:
35 //!
36 //! ```
37 //! extern crate proc_macro;
38 //!
39 //! # const IGNORE: &str = stringify! {
40 //! #[proc_macro_derive(MyDerive)]
41 //! # };
42 //! # #[cfg(wrap_proc_macro)]
43 //! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
44 //!     let input = proc_macro2::TokenStream::from(input);
45 //!
46 //!     let output: proc_macro2::TokenStream = {
47 //!         /* transform input */
48 //!         # input
49 //!     };
50 //!
51 //!     proc_macro::TokenStream::from(output)
52 //! }
53 //! ```
54 //!
55 //! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
56 //! propagate parse errors correctly back to the compiler when parsing fails.
57 //!
58 //! [`parse_macro_input!`]: https://docs.rs/syn/1.0/syn/macro.parse_macro_input.html
59 //!
60 //! # Unstable features
61 //!
62 //! The default feature set of proc-macro2 tracks the most recent stable
63 //! compiler API. Functionality in `proc_macro` that is not yet stable is not
64 //! exposed by proc-macro2 by default.
65 //!
66 //! To opt into the additional APIs available in the most recent nightly
67 //! compiler, the `procmacro2_semver_exempt` config flag must be passed to
68 //! rustc. We will polyfill those nightly-only APIs back to Rust 1.31.0. As
69 //! these are unstable APIs that track the nightly compiler, minor versions of
70 //! proc-macro2 may make breaking changes to them at any time.
71 //!
72 //! ```sh
73 //! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
74 //! ```
75 //!
76 //! Note that this must not only be done for your crate, but for any crate that
77 //! depends on your crate. This infectious nature is intentional, as it serves
78 //! as a reminder that you are outside of the normal semver guarantees.
79 //!
80 //! Semver exempt methods are marked as such in the proc-macro2 documentation.
81 //!
82 //! # Thread-Safety
83 //!
84 //! Most types in this crate are `!Sync` because the underlying compiler
85 //! types make use of thread-local memory, meaning they cannot be accessed from
86 //! a different thread.
87 
88 // Proc-macro2 types in rustdoc of other crates get linked to here.
89 #![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.36")]
90 #![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
91 #![cfg_attr(super_unstable, feature(proc_macro_def_site))]
92 #![cfg_attr(doc_cfg, feature(doc_cfg))]
93 #![allow(
94     clippy::cast_lossless,
95     clippy::cast_possible_truncation,
96     clippy::doc_markdown,
97     clippy::items_after_statements,
98     clippy::manual_assert,
99     clippy::must_use_candidate,
100     clippy::needless_doctest_main,
101     clippy::return_self_not_must_use,
102     clippy::shadow_unrelated,
103     clippy::trivially_copy_pass_by_ref,
104     clippy::unnecessary_wraps,
105     clippy::unused_self,
106     clippy::used_underscore_binding,
107     clippy::vec_init_then_push
108 )]
109 
110 #[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
111 compile_error! {"\
112     Something is not right. If you've tried to turn on \
113     procmacro2_semver_exempt, you need to ensure that it \
114     is turned on for the compilation of the proc-macro2 \
115     build script as well.
116 "}
117 
118 #[cfg(use_proc_macro)]
119 extern crate proc_macro;
120 
121 mod marker;
122 mod parse;
123 
124 #[cfg(wrap_proc_macro)]
125 mod detection;
126 
127 // Public for proc_macro2::fallback::force() and unforce(), but those are quite
128 // a niche use case so we omit it from rustdoc.
129 #[doc(hidden)]
130 pub mod fallback;
131 
132 #[cfg(not(wrap_proc_macro))]
133 use crate::fallback as imp;
134 #[path = "wrapper.rs"]
135 #[cfg(wrap_proc_macro)]
136 mod imp;
137 
138 use crate::marker::Marker;
139 use std::cmp::Ordering;
140 use std::error::Error;
141 use std::fmt::{self, Debug, Display};
142 use std::hash::{Hash, Hasher};
143 use std::iter::FromIterator;
144 use std::ops::RangeBounds;
145 #[cfg(procmacro2_semver_exempt)]
146 use std::path::PathBuf;
147 use std::str::FromStr;
148 
149 /// An abstract stream of tokens, or more concretely a sequence of token trees.
150 ///
151 /// This type provides interfaces for iterating over token trees and for
152 /// collecting token trees into one stream.
153 ///
154 /// Token stream is both the input and output of `#[proc_macro]`,
155 /// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
156 #[derive(Clone)]
157 pub struct TokenStream {
158     inner: imp::TokenStream,
159     _marker: Marker,
160 }
161 
162 /// Error returned from `TokenStream::from_str`.
163 pub struct LexError {
164     inner: imp::LexError,
165     _marker: Marker,
166 }
167 
168 impl TokenStream {
_new(inner: imp::TokenStream) -> Self169     fn _new(inner: imp::TokenStream) -> Self {
170         TokenStream {
171             inner,
172             _marker: Marker,
173         }
174     }
175 
_new_stable(inner: fallback::TokenStream) -> Self176     fn _new_stable(inner: fallback::TokenStream) -> Self {
177         TokenStream {
178             inner: inner.into(),
179             _marker: Marker,
180         }
181     }
182 
183     /// Returns an empty `TokenStream` containing no token trees.
new() -> Self184     pub fn new() -> Self {
185         TokenStream::_new(imp::TokenStream::new())
186     }
187 
188     /// Checks if this `TokenStream` is empty.
is_empty(&self) -> bool189     pub fn is_empty(&self) -> bool {
190         self.inner.is_empty()
191     }
192 }
193 
194 /// `TokenStream::default()` returns an empty stream,
195 /// i.e. this is equivalent with `TokenStream::new()`.
196 impl Default for TokenStream {
default() -> Self197     fn default() -> Self {
198         TokenStream::new()
199     }
200 }
201 
202 /// Attempts to break the string into tokens and parse those tokens into a token
203 /// stream.
204 ///
205 /// May fail for a number of reasons, for example, if the string contains
206 /// unbalanced delimiters or characters not existing in the language.
207 ///
208 /// NOTE: Some errors may cause panics instead of returning `LexError`. We
209 /// reserve the right to change these errors into `LexError`s later.
210 impl FromStr for TokenStream {
211     type Err = LexError;
212 
from_str(src: &str) -> Result<TokenStream, LexError>213     fn from_str(src: &str) -> Result<TokenStream, LexError> {
214         let e = src.parse().map_err(|e| LexError {
215             inner: e,
216             _marker: Marker,
217         })?;
218         Ok(TokenStream::_new(e))
219     }
220 }
221 
222 #[cfg(use_proc_macro)]
223 impl From<proc_macro::TokenStream> for TokenStream {
from(inner: proc_macro::TokenStream) -> TokenStream224     fn from(inner: proc_macro::TokenStream) -> TokenStream {
225         TokenStream::_new(inner.into())
226     }
227 }
228 
229 #[cfg(use_proc_macro)]
230 impl From<TokenStream> for proc_macro::TokenStream {
from(inner: TokenStream) -> proc_macro::TokenStream231     fn from(inner: TokenStream) -> proc_macro::TokenStream {
232         inner.inner.into()
233     }
234 }
235 
236 impl From<TokenTree> for TokenStream {
from(token: TokenTree) -> Self237     fn from(token: TokenTree) -> Self {
238         TokenStream::_new(imp::TokenStream::from(token))
239     }
240 }
241 
242 impl Extend<TokenTree> for TokenStream {
extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I)243     fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
244         self.inner.extend(streams);
245     }
246 }
247 
248 impl Extend<TokenStream> for TokenStream {
extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I)249     fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
250         self.inner
251             .extend(streams.into_iter().map(|stream| stream.inner));
252     }
253 }
254 
255 /// Collects a number of token trees into a single stream.
256 impl FromIterator<TokenTree> for TokenStream {
from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self257     fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
258         TokenStream::_new(streams.into_iter().collect())
259     }
260 }
261 impl FromIterator<TokenStream> for TokenStream {
from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self262     fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
263         TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
264     }
265 }
266 
267 /// Prints the token stream as a string that is supposed to be losslessly
268 /// convertible back into the same token stream (modulo spans), except for
269 /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
270 /// numeric literals.
271 impl Display for TokenStream {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result272     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
273         Display::fmt(&self.inner, f)
274     }
275 }
276 
277 /// Prints token in a form convenient for debugging.
278 impl Debug for TokenStream {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result279     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
280         Debug::fmt(&self.inner, f)
281     }
282 }
283 
284 impl LexError {
span(&self) -> Span285     pub fn span(&self) -> Span {
286         Span::_new(self.inner.span())
287     }
288 }
289 
290 impl Debug for LexError {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result291     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
292         Debug::fmt(&self.inner, f)
293     }
294 }
295 
296 impl Display for LexError {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result297     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
298         Display::fmt(&self.inner, f)
299     }
300 }
301 
302 impl Error for LexError {}
303 
304 /// The source file of a given `Span`.
305 ///
306 /// This type is semver exempt and not exposed by default.
307 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
308 #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
309 #[derive(Clone, PartialEq, Eq)]
310 pub struct SourceFile {
311     inner: imp::SourceFile,
312     _marker: Marker,
313 }
314 
315 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
316 impl SourceFile {
_new(inner: imp::SourceFile) -> Self317     fn _new(inner: imp::SourceFile) -> Self {
318         SourceFile {
319             inner,
320             _marker: Marker,
321         }
322     }
323 
324     /// Get the path to this source file.
325     ///
326     /// ### Note
327     ///
328     /// If the code span associated with this `SourceFile` was generated by an
329     /// external macro, this may not be an actual path on the filesystem. Use
330     /// [`is_real`] to check.
331     ///
332     /// Also note that even if `is_real` returns `true`, if
333     /// `--remap-path-prefix` was passed on the command line, the path as given
334     /// may not actually be valid.
335     ///
336     /// [`is_real`]: #method.is_real
path(&self) -> PathBuf337     pub fn path(&self) -> PathBuf {
338         self.inner.path()
339     }
340 
341     /// Returns `true` if this source file is a real source file, and not
342     /// generated by an external macro's expansion.
is_real(&self) -> bool343     pub fn is_real(&self) -> bool {
344         self.inner.is_real()
345     }
346 }
347 
348 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
349 impl Debug for SourceFile {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result350     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
351         Debug::fmt(&self.inner, f)
352     }
353 }
354 
355 /// A line-column pair representing the start or end of a `Span`.
356 ///
357 /// This type is semver exempt and not exposed by default.
358 #[cfg(span_locations)]
359 #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))]
360 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
361 pub struct LineColumn {
362     /// The 1-indexed line in the source file on which the span starts or ends
363     /// (inclusive).
364     pub line: usize,
365     /// The 0-indexed column (in UTF-8 characters) in the source file on which
366     /// the span starts or ends (inclusive).
367     pub column: usize,
368 }
369 
370 #[cfg(span_locations)]
371 impl Ord for LineColumn {
cmp(&self, other: &Self) -> Ordering372     fn cmp(&self, other: &Self) -> Ordering {
373         self.line
374             .cmp(&other.line)
375             .then(self.column.cmp(&other.column))
376     }
377 }
378 
379 #[cfg(span_locations)]
380 impl PartialOrd for LineColumn {
partial_cmp(&self, other: &Self) -> Option<Ordering>381     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
382         Some(self.cmp(other))
383     }
384 }
385 
386 /// A region of source code, along with macro expansion information.
387 #[derive(Copy, Clone)]
388 pub struct Span {
389     inner: imp::Span,
390     _marker: Marker,
391 }
392 
393 impl Span {
_new(inner: imp::Span) -> Self394     fn _new(inner: imp::Span) -> Self {
395         Span {
396             inner,
397             _marker: Marker,
398         }
399     }
400 
_new_stable(inner: fallback::Span) -> Self401     fn _new_stable(inner: fallback::Span) -> Self {
402         Span {
403             inner: inner.into(),
404             _marker: Marker,
405         }
406     }
407 
408     /// The span of the invocation of the current procedural macro.
409     ///
410     /// Identifiers created with this span will be resolved as if they were
411     /// written directly at the macro call location (call-site hygiene) and
412     /// other code at the macro call site will be able to refer to them as well.
call_site() -> Self413     pub fn call_site() -> Self {
414         Span::_new(imp::Span::call_site())
415     }
416 
417     /// The span located at the invocation of the procedural macro, but with
418     /// local variables, labels, and `$crate` resolved at the definition site
419     /// of the macro. This is the same hygiene behavior as `macro_rules`.
420     ///
421     /// This function requires Rust 1.45 or later.
422     #[cfg(not(no_hygiene))]
mixed_site() -> Self423     pub fn mixed_site() -> Self {
424         Span::_new(imp::Span::mixed_site())
425     }
426 
427     /// A span that resolves at the macro definition site.
428     ///
429     /// This method is semver exempt and not exposed by default.
430     #[cfg(procmacro2_semver_exempt)]
431     #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
def_site() -> Self432     pub fn def_site() -> Self {
433         Span::_new(imp::Span::def_site())
434     }
435 
436     /// Creates a new span with the same line/column information as `self` but
437     /// that resolves symbols as though it were at `other`.
resolved_at(&self, other: Span) -> Span438     pub fn resolved_at(&self, other: Span) -> Span {
439         Span::_new(self.inner.resolved_at(other.inner))
440     }
441 
442     /// Creates a new span with the same name resolution behavior as `self` but
443     /// with the line/column information of `other`.
located_at(&self, other: Span) -> Span444     pub fn located_at(&self, other: Span) -> Span {
445         Span::_new(self.inner.located_at(other.inner))
446     }
447 
448     /// Convert `proc_macro2::Span` to `proc_macro::Span`.
449     ///
450     /// This method is available when building with a nightly compiler, or when
451     /// building with rustc 1.29+ *without* semver exempt features.
452     ///
453     /// # Panics
454     ///
455     /// Panics if called from outside of a procedural macro. Unlike
456     /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
457     /// the context of a procedural macro invocation.
458     #[cfg(wrap_proc_macro)]
unwrap(self) -> proc_macro::Span459     pub fn unwrap(self) -> proc_macro::Span {
460         self.inner.unwrap()
461     }
462 
463     // Soft deprecated. Please use Span::unwrap.
464     #[cfg(wrap_proc_macro)]
465     #[doc(hidden)]
unstable(self) -> proc_macro::Span466     pub fn unstable(self) -> proc_macro::Span {
467         self.unwrap()
468     }
469 
470     /// The original source file into which this span points.
471     ///
472     /// This method is semver exempt and not exposed by default.
473     #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
474     #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
source_file(&self) -> SourceFile475     pub fn source_file(&self) -> SourceFile {
476         SourceFile::_new(self.inner.source_file())
477     }
478 
479     /// Get the starting line/column in the source file for this span.
480     ///
481     /// This method requires the `"span-locations"` feature to be enabled.
482     ///
483     /// When executing in a procedural macro context, the returned line/column
484     /// are only meaningful if compiled with a nightly toolchain. The stable
485     /// toolchain does not have this information available. When executing
486     /// outside of a procedural macro, such as main.rs or build.rs, the
487     /// line/column are always meaningful regardless of toolchain.
488     #[cfg(span_locations)]
489     #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))]
start(&self) -> LineColumn490     pub fn start(&self) -> LineColumn {
491         let imp::LineColumn { line, column } = self.inner.start();
492         LineColumn { line, column }
493     }
494 
495     /// Get the ending line/column in the source file for this span.
496     ///
497     /// This method requires the `"span-locations"` feature to be enabled.
498     ///
499     /// When executing in a procedural macro context, the returned line/column
500     /// are only meaningful if compiled with a nightly toolchain. The stable
501     /// toolchain does not have this information available. When executing
502     /// outside of a procedural macro, such as main.rs or build.rs, the
503     /// line/column are always meaningful regardless of toolchain.
504     #[cfg(span_locations)]
505     #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))]
end(&self) -> LineColumn506     pub fn end(&self) -> LineColumn {
507         let imp::LineColumn { line, column } = self.inner.end();
508         LineColumn { line, column }
509     }
510 
511     /// Create a new span encompassing `self` and `other`.
512     ///
513     /// Returns `None` if `self` and `other` are from different files.
514     ///
515     /// Warning: the underlying [`proc_macro::Span::join`] method is
516     /// nightly-only. When called from within a procedural macro not using a
517     /// nightly compiler, this method will always return `None`.
518     ///
519     /// [`proc_macro::Span::join`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.join
join(&self, other: Span) -> Option<Span>520     pub fn join(&self, other: Span) -> Option<Span> {
521         self.inner.join(other.inner).map(Span::_new)
522     }
523 
524     /// Compares two spans to see if they're equal.
525     ///
526     /// This method is semver exempt and not exposed by default.
527     #[cfg(procmacro2_semver_exempt)]
528     #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
eq(&self, other: &Span) -> bool529     pub fn eq(&self, other: &Span) -> bool {
530         self.inner.eq(&other.inner)
531     }
532 }
533 
534 /// Prints a span in a form convenient for debugging.
535 impl Debug for Span {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result536     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
537         Debug::fmt(&self.inner, f)
538     }
539 }
540 
541 /// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
542 #[derive(Clone)]
543 pub enum TokenTree {
544     /// A token stream surrounded by bracket delimiters.
545     Group(Group),
546     /// An identifier.
547     Ident(Ident),
548     /// A single punctuation character (`+`, `,`, `$`, etc.).
549     Punct(Punct),
550     /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
551     Literal(Literal),
552 }
553 
554 impl TokenTree {
555     /// Returns the span of this tree, delegating to the `span` method of
556     /// the contained token or a delimited stream.
span(&self) -> Span557     pub fn span(&self) -> Span {
558         match self {
559             TokenTree::Group(t) => t.span(),
560             TokenTree::Ident(t) => t.span(),
561             TokenTree::Punct(t) => t.span(),
562             TokenTree::Literal(t) => t.span(),
563         }
564     }
565 
566     /// Configures the span for *only this token*.
567     ///
568     /// Note that if this token is a `Group` then this method will not configure
569     /// the span of each of the internal tokens, this will simply delegate to
570     /// the `set_span` method of each variant.
set_span(&mut self, span: Span)571     pub fn set_span(&mut self, span: Span) {
572         match self {
573             TokenTree::Group(t) => t.set_span(span),
574             TokenTree::Ident(t) => t.set_span(span),
575             TokenTree::Punct(t) => t.set_span(span),
576             TokenTree::Literal(t) => t.set_span(span),
577         }
578     }
579 }
580 
581 impl From<Group> for TokenTree {
from(g: Group) -> TokenTree582     fn from(g: Group) -> TokenTree {
583         TokenTree::Group(g)
584     }
585 }
586 
587 impl From<Ident> for TokenTree {
from(g: Ident) -> TokenTree588     fn from(g: Ident) -> TokenTree {
589         TokenTree::Ident(g)
590     }
591 }
592 
593 impl From<Punct> for TokenTree {
from(g: Punct) -> TokenTree594     fn from(g: Punct) -> TokenTree {
595         TokenTree::Punct(g)
596     }
597 }
598 
599 impl From<Literal> for TokenTree {
from(g: Literal) -> TokenTree600     fn from(g: Literal) -> TokenTree {
601         TokenTree::Literal(g)
602     }
603 }
604 
605 /// Prints the token tree as a string that is supposed to be losslessly
606 /// convertible back into the same token tree (modulo spans), except for
607 /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
608 /// numeric literals.
609 impl Display for TokenTree {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result610     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
611         match self {
612             TokenTree::Group(t) => Display::fmt(t, f),
613             TokenTree::Ident(t) => Display::fmt(t, f),
614             TokenTree::Punct(t) => Display::fmt(t, f),
615             TokenTree::Literal(t) => Display::fmt(t, f),
616         }
617     }
618 }
619 
620 /// Prints token tree in a form convenient for debugging.
621 impl Debug for TokenTree {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result622     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
623         // Each of these has the name in the struct type in the derived debug,
624         // so don't bother with an extra layer of indirection
625         match self {
626             TokenTree::Group(t) => Debug::fmt(t, f),
627             TokenTree::Ident(t) => {
628                 let mut debug = f.debug_struct("Ident");
629                 debug.field("sym", &format_args!("{}", t));
630                 imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
631                 debug.finish()
632             }
633             TokenTree::Punct(t) => Debug::fmt(t, f),
634             TokenTree::Literal(t) => Debug::fmt(t, f),
635         }
636     }
637 }
638 
639 /// A delimited token stream.
640 ///
641 /// A `Group` internally contains a `TokenStream` which is surrounded by
642 /// `Delimiter`s.
643 #[derive(Clone)]
644 pub struct Group {
645     inner: imp::Group,
646 }
647 
648 /// Describes how a sequence of token trees is delimited.
649 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
650 pub enum Delimiter {
651     /// `( ... )`
652     Parenthesis,
653     /// `{ ... }`
654     Brace,
655     /// `[ ... ]`
656     Bracket,
657     /// `Ø ... Ø`
658     ///
659     /// An implicit delimiter, that may, for example, appear around tokens
660     /// coming from a "macro variable" `$var`. It is important to preserve
661     /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
662     /// Implicit delimiters may not survive roundtrip of a token stream through
663     /// a string.
664     None,
665 }
666 
667 impl Group {
_new(inner: imp::Group) -> Self668     fn _new(inner: imp::Group) -> Self {
669         Group { inner }
670     }
671 
_new_stable(inner: fallback::Group) -> Self672     fn _new_stable(inner: fallback::Group) -> Self {
673         Group {
674             inner: inner.into(),
675         }
676     }
677 
678     /// Creates a new `Group` with the given delimiter and token stream.
679     ///
680     /// This constructor will set the span for this group to
681     /// `Span::call_site()`. To change the span you can use the `set_span`
682     /// method below.
new(delimiter: Delimiter, stream: TokenStream) -> Self683     pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
684         Group {
685             inner: imp::Group::new(delimiter, stream.inner),
686         }
687     }
688 
689     /// Returns the delimiter of this `Group`
delimiter(&self) -> Delimiter690     pub fn delimiter(&self) -> Delimiter {
691         self.inner.delimiter()
692     }
693 
694     /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
695     ///
696     /// Note that the returned token stream does not include the delimiter
697     /// returned above.
stream(&self) -> TokenStream698     pub fn stream(&self) -> TokenStream {
699         TokenStream::_new(self.inner.stream())
700     }
701 
702     /// Returns the span for the delimiters of this token stream, spanning the
703     /// entire `Group`.
704     ///
705     /// ```text
706     /// pub fn span(&self) -> Span {
707     ///            ^^^^^^^
708     /// ```
span(&self) -> Span709     pub fn span(&self) -> Span {
710         Span::_new(self.inner.span())
711     }
712 
713     /// Returns the span pointing to the opening delimiter of this group.
714     ///
715     /// ```text
716     /// pub fn span_open(&self) -> Span {
717     ///                 ^
718     /// ```
span_open(&self) -> Span719     pub fn span_open(&self) -> Span {
720         Span::_new(self.inner.span_open())
721     }
722 
723     /// Returns the span pointing to the closing delimiter of this group.
724     ///
725     /// ```text
726     /// pub fn span_close(&self) -> Span {
727     ///                        ^
728     /// ```
span_close(&self) -> Span729     pub fn span_close(&self) -> Span {
730         Span::_new(self.inner.span_close())
731     }
732 
733     /// Configures the span for this `Group`'s delimiters, but not its internal
734     /// tokens.
735     ///
736     /// This method will **not** set the span of all the internal tokens spanned
737     /// by this group, but rather it will only set the span of the delimiter
738     /// tokens at the level of the `Group`.
set_span(&mut self, span: Span)739     pub fn set_span(&mut self, span: Span) {
740         self.inner.set_span(span.inner);
741     }
742 }
743 
744 /// Prints the group as a string that should be losslessly convertible back
745 /// into the same group (modulo spans), except for possibly `TokenTree::Group`s
746 /// with `Delimiter::None` delimiters.
747 impl Display for Group {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result748     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
749         Display::fmt(&self.inner, formatter)
750     }
751 }
752 
753 impl Debug for Group {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result754     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
755         Debug::fmt(&self.inner, formatter)
756     }
757 }
758 
759 /// A `Punct` is a single punctuation character like `+`, `-` or `#`.
760 ///
761 /// Multicharacter operators like `+=` are represented as two instances of
762 /// `Punct` with different forms of `Spacing` returned.
763 #[derive(Clone)]
764 pub struct Punct {
765     ch: char,
766     spacing: Spacing,
767     span: Span,
768 }
769 
770 /// Whether a `Punct` is followed immediately by another `Punct` or followed by
771 /// another token or whitespace.
772 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
773 pub enum Spacing {
774     /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
775     Alone,
776     /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
777     ///
778     /// Additionally, single quote `'` can join with identifiers to form
779     /// lifetimes `'ident`.
780     Joint,
781 }
782 
783 impl Punct {
784     /// Creates a new `Punct` from the given character and spacing.
785     ///
786     /// The `ch` argument must be a valid punctuation character permitted by the
787     /// language, otherwise the function will panic.
788     ///
789     /// The returned `Punct` will have the default span of `Span::call_site()`
790     /// which can be further configured with the `set_span` method below.
new(ch: char, spacing: Spacing) -> Self791     pub fn new(ch: char, spacing: Spacing) -> Self {
792         Punct {
793             ch,
794             spacing,
795             span: Span::call_site(),
796         }
797     }
798 
799     /// Returns the value of this punctuation character as `char`.
as_char(&self) -> char800     pub fn as_char(&self) -> char {
801         self.ch
802     }
803 
804     /// Returns the spacing of this punctuation character, indicating whether
805     /// it's immediately followed by another `Punct` in the token stream, so
806     /// they can potentially be combined into a multicharacter operator
807     /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
808     /// so the operator has certainly ended.
spacing(&self) -> Spacing809     pub fn spacing(&self) -> Spacing {
810         self.spacing
811     }
812 
813     /// Returns the span for this punctuation character.
span(&self) -> Span814     pub fn span(&self) -> Span {
815         self.span
816     }
817 
818     /// Configure the span for this punctuation character.
set_span(&mut self, span: Span)819     pub fn set_span(&mut self, span: Span) {
820         self.span = span;
821     }
822 }
823 
824 /// Prints the punctuation character as a string that should be losslessly
825 /// convertible back into the same character.
826 impl Display for Punct {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result827     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
828         Display::fmt(&self.ch, f)
829     }
830 }
831 
832 impl Debug for Punct {
fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result833     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
834         let mut debug = fmt.debug_struct("Punct");
835         debug.field("char", &self.ch);
836         debug.field("spacing", &self.spacing);
837         imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
838         debug.finish()
839     }
840 }
841 
842 /// A word of Rust code, which may be a keyword or legal variable name.
843 ///
844 /// An identifier consists of at least one Unicode code point, the first of
845 /// which has the XID_Start property and the rest of which have the XID_Continue
846 /// property.
847 ///
848 /// - The empty string is not an identifier. Use `Option<Ident>`.
849 /// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
850 ///
851 /// An identifier constructed with `Ident::new` is permitted to be a Rust
852 /// keyword, though parsing one through its [`Parse`] implementation rejects
853 /// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
854 /// behaviour of `Ident::new`.
855 ///
856 /// [`Parse`]: https://docs.rs/syn/1.0/syn/parse/trait.Parse.html
857 ///
858 /// # Examples
859 ///
860 /// A new ident can be created from a string using the `Ident::new` function.
861 /// A span must be provided explicitly which governs the name resolution
862 /// behavior of the resulting identifier.
863 ///
864 /// ```
865 /// use proc_macro2::{Ident, Span};
866 ///
867 /// fn main() {
868 ///     let call_ident = Ident::new("calligraphy", Span::call_site());
869 ///
870 ///     println!("{}", call_ident);
871 /// }
872 /// ```
873 ///
874 /// An ident can be interpolated into a token stream using the `quote!` macro.
875 ///
876 /// ```
877 /// use proc_macro2::{Ident, Span};
878 /// use quote::quote;
879 ///
880 /// fn main() {
881 ///     let ident = Ident::new("demo", Span::call_site());
882 ///
883 ///     // Create a variable binding whose name is this ident.
884 ///     let expanded = quote! { let #ident = 10; };
885 ///
886 ///     // Create a variable binding with a slightly different name.
887 ///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
888 ///     let expanded = quote! { let #temp_ident = 10; };
889 /// }
890 /// ```
891 ///
892 /// A string representation of the ident is available through the `to_string()`
893 /// method.
894 ///
895 /// ```
896 /// # use proc_macro2::{Ident, Span};
897 /// #
898 /// # let ident = Ident::new("another_identifier", Span::call_site());
899 /// #
900 /// // Examine the ident as a string.
901 /// let ident_string = ident.to_string();
902 /// if ident_string.len() > 60 {
903 ///     println!("Very long identifier: {}", ident_string)
904 /// }
905 /// ```
906 #[derive(Clone)]
907 pub struct Ident {
908     inner: imp::Ident,
909     _marker: Marker,
910 }
911 
912 impl Ident {
_new(inner: imp::Ident) -> Self913     fn _new(inner: imp::Ident) -> Self {
914         Ident {
915             inner,
916             _marker: Marker,
917         }
918     }
919 
920     /// Creates a new `Ident` with the given `string` as well as the specified
921     /// `span`.
922     ///
923     /// The `string` argument must be a valid identifier permitted by the
924     /// language, otherwise the function will panic.
925     ///
926     /// Note that `span`, currently in rustc, configures the hygiene information
927     /// for this identifier.
928     ///
929     /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
930     /// hygiene meaning that identifiers created with this span will be resolved
931     /// as if they were written directly at the location of the macro call, and
932     /// other code at the macro call site will be able to refer to them as well.
933     ///
934     /// Later spans like `Span::def_site()` will allow to opt-in to
935     /// "definition-site" hygiene meaning that identifiers created with this
936     /// span will be resolved at the location of the macro definition and other
937     /// code at the macro call site will not be able to refer to them.
938     ///
939     /// Due to the current importance of hygiene this constructor, unlike other
940     /// tokens, requires a `Span` to be specified at construction.
941     ///
942     /// # Panics
943     ///
944     /// Panics if the input string is neither a keyword nor a legal variable
945     /// name. If you are not sure whether the string contains an identifier and
946     /// need to handle an error case, use
947     /// <a href="https://docs.rs/syn/1.0/syn/fn.parse_str.html"><code
948     ///   style="padding-right:0;">syn::parse_str</code></a><code
949     ///   style="padding-left:0;">::&lt;Ident&gt;</code>
950     /// rather than `Ident::new`.
new(string: &str, span: Span) -> Self951     pub fn new(string: &str, span: Span) -> Self {
952         Ident::_new(imp::Ident::new(string, span.inner))
953     }
954 
955     /// Same as `Ident::new`, but creates a raw identifier (`r#ident`).
956     ///
957     /// This method is semver exempt and not exposed by default.
958     #[cfg(procmacro2_semver_exempt)]
959     #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
new_raw(string: &str, span: Span) -> Self960     pub fn new_raw(string: &str, span: Span) -> Self {
961         Ident::_new_raw(string, span)
962     }
963 
_new_raw(string: &str, span: Span) -> Self964     fn _new_raw(string: &str, span: Span) -> Self {
965         Ident::_new(imp::Ident::new_raw(string, span.inner))
966     }
967 
968     /// Returns the span of this `Ident`.
span(&self) -> Span969     pub fn span(&self) -> Span {
970         Span::_new(self.inner.span())
971     }
972 
973     /// Configures the span of this `Ident`, possibly changing its hygiene
974     /// context.
set_span(&mut self, span: Span)975     pub fn set_span(&mut self, span: Span) {
976         self.inner.set_span(span.inner);
977     }
978 }
979 
980 impl PartialEq for Ident {
eq(&self, other: &Ident) -> bool981     fn eq(&self, other: &Ident) -> bool {
982         self.inner == other.inner
983     }
984 }
985 
986 impl<T> PartialEq<T> for Ident
987 where
988     T: ?Sized + AsRef<str>,
989 {
eq(&self, other: &T) -> bool990     fn eq(&self, other: &T) -> bool {
991         self.inner == other
992     }
993 }
994 
995 impl Eq for Ident {}
996 
997 impl PartialOrd for Ident {
partial_cmp(&self, other: &Ident) -> Option<Ordering>998     fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
999         Some(self.cmp(other))
1000     }
1001 }
1002 
1003 impl Ord for Ident {
cmp(&self, other: &Ident) -> Ordering1004     fn cmp(&self, other: &Ident) -> Ordering {
1005         self.to_string().cmp(&other.to_string())
1006     }
1007 }
1008 
1009 impl Hash for Ident {
hash<H: Hasher>(&self, hasher: &mut H)1010     fn hash<H: Hasher>(&self, hasher: &mut H) {
1011         self.to_string().hash(hasher);
1012     }
1013 }
1014 
1015 /// Prints the identifier as a string that should be losslessly convertible back
1016 /// into the same identifier.
1017 impl Display for Ident {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1018     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1019         Display::fmt(&self.inner, f)
1020     }
1021 }
1022 
1023 impl Debug for Ident {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1024     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1025         Debug::fmt(&self.inner, f)
1026     }
1027 }
1028 
1029 /// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1030 /// byte character (`b'a'`), an integer or floating point number with or without
1031 /// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1032 ///
1033 /// Boolean literals like `true` and `false` do not belong here, they are
1034 /// `Ident`s.
1035 #[derive(Clone)]
1036 pub struct Literal {
1037     inner: imp::Literal,
1038     _marker: Marker,
1039 }
1040 
1041 macro_rules! suffixed_int_literals {
1042     ($($name:ident => $kind:ident,)*) => ($(
1043         /// Creates a new suffixed integer literal with the specified value.
1044         ///
1045         /// This function will create an integer like `1u32` where the integer
1046         /// value specified is the first part of the token and the integral is
1047         /// also suffixed at the end. Literals created from negative numbers may
1048         /// not survive roundtrips through `TokenStream` or strings and may be
1049         /// broken into two tokens (`-` and positive literal).
1050         ///
1051         /// Literals created through this method have the `Span::call_site()`
1052         /// span by default, which can be configured with the `set_span` method
1053         /// below.
1054         pub fn $name(n: $kind) -> Literal {
1055             Literal::_new(imp::Literal::$name(n))
1056         }
1057     )*)
1058 }
1059 
1060 macro_rules! unsuffixed_int_literals {
1061     ($($name:ident => $kind:ident,)*) => ($(
1062         /// Creates a new unsuffixed integer literal with the specified value.
1063         ///
1064         /// This function will create an integer like `1` where the integer
1065         /// value specified is the first part of the token. No suffix is
1066         /// specified on this token, meaning that invocations like
1067         /// `Literal::i8_unsuffixed(1)` are equivalent to
1068         /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1069         /// may not survive roundtrips through `TokenStream` or strings and may
1070         /// be broken into two tokens (`-` and positive literal).
1071         ///
1072         /// Literals created through this method have the `Span::call_site()`
1073         /// span by default, which can be configured with the `set_span` method
1074         /// below.
1075         pub fn $name(n: $kind) -> Literal {
1076             Literal::_new(imp::Literal::$name(n))
1077         }
1078     )*)
1079 }
1080 
1081 impl Literal {
_new(inner: imp::Literal) -> Self1082     fn _new(inner: imp::Literal) -> Self {
1083         Literal {
1084             inner,
1085             _marker: Marker,
1086         }
1087     }
1088 
_new_stable(inner: fallback::Literal) -> Self1089     fn _new_stable(inner: fallback::Literal) -> Self {
1090         Literal {
1091             inner: inner.into(),
1092             _marker: Marker,
1093         }
1094     }
1095 
1096     suffixed_int_literals! {
1097         u8_suffixed => u8,
1098         u16_suffixed => u16,
1099         u32_suffixed => u32,
1100         u64_suffixed => u64,
1101         u128_suffixed => u128,
1102         usize_suffixed => usize,
1103         i8_suffixed => i8,
1104         i16_suffixed => i16,
1105         i32_suffixed => i32,
1106         i64_suffixed => i64,
1107         i128_suffixed => i128,
1108         isize_suffixed => isize,
1109     }
1110 
1111     unsuffixed_int_literals! {
1112         u8_unsuffixed => u8,
1113         u16_unsuffixed => u16,
1114         u32_unsuffixed => u32,
1115         u64_unsuffixed => u64,
1116         u128_unsuffixed => u128,
1117         usize_unsuffixed => usize,
1118         i8_unsuffixed => i8,
1119         i16_unsuffixed => i16,
1120         i32_unsuffixed => i32,
1121         i64_unsuffixed => i64,
1122         i128_unsuffixed => i128,
1123         isize_unsuffixed => isize,
1124     }
1125 
1126     /// Creates a new unsuffixed floating-point literal.
1127     ///
1128     /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1129     /// the float's value is emitted directly into the token but no suffix is
1130     /// used, so it may be inferred to be a `f64` later in the compiler.
1131     /// Literals created from negative numbers may not survive rountrips through
1132     /// `TokenStream` or strings and may be broken into two tokens (`-` and
1133     /// positive literal).
1134     ///
1135     /// # Panics
1136     ///
1137     /// This function requires that the specified float is finite, for example
1138     /// if it is infinity or NaN this function will panic.
f64_unsuffixed(f: f64) -> Literal1139     pub fn f64_unsuffixed(f: f64) -> Literal {
1140         assert!(f.is_finite());
1141         Literal::_new(imp::Literal::f64_unsuffixed(f))
1142     }
1143 
1144     /// Creates a new suffixed floating-point literal.
1145     ///
1146     /// This constructor will create a literal like `1.0f64` where the value
1147     /// specified is the preceding part of the token and `f64` is the suffix of
1148     /// the token. This token will always be inferred to be an `f64` in the
1149     /// compiler. Literals created from negative numbers may not survive
1150     /// rountrips through `TokenStream` or strings and may be broken into two
1151     /// tokens (`-` and positive literal).
1152     ///
1153     /// # Panics
1154     ///
1155     /// This function requires that the specified float is finite, for example
1156     /// if it is infinity or NaN this function will panic.
f64_suffixed(f: f64) -> Literal1157     pub fn f64_suffixed(f: f64) -> Literal {
1158         assert!(f.is_finite());
1159         Literal::_new(imp::Literal::f64_suffixed(f))
1160     }
1161 
1162     /// Creates a new unsuffixed floating-point literal.
1163     ///
1164     /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1165     /// the float's value is emitted directly into the token but no suffix is
1166     /// used, so it may be inferred to be a `f64` later in the compiler.
1167     /// Literals created from negative numbers may not survive rountrips through
1168     /// `TokenStream` or strings and may be broken into two tokens (`-` and
1169     /// positive literal).
1170     ///
1171     /// # Panics
1172     ///
1173     /// This function requires that the specified float is finite, for example
1174     /// if it is infinity or NaN this function will panic.
f32_unsuffixed(f: f32) -> Literal1175     pub fn f32_unsuffixed(f: f32) -> Literal {
1176         assert!(f.is_finite());
1177         Literal::_new(imp::Literal::f32_unsuffixed(f))
1178     }
1179 
1180     /// Creates a new suffixed floating-point literal.
1181     ///
1182     /// This constructor will create a literal like `1.0f32` where the value
1183     /// specified is the preceding part of the token and `f32` is the suffix of
1184     /// the token. This token will always be inferred to be an `f32` in the
1185     /// compiler. Literals created from negative numbers may not survive
1186     /// rountrips through `TokenStream` or strings and may be broken into two
1187     /// tokens (`-` and positive literal).
1188     ///
1189     /// # Panics
1190     ///
1191     /// This function requires that the specified float is finite, for example
1192     /// if it is infinity or NaN this function will panic.
f32_suffixed(f: f32) -> Literal1193     pub fn f32_suffixed(f: f32) -> Literal {
1194         assert!(f.is_finite());
1195         Literal::_new(imp::Literal::f32_suffixed(f))
1196     }
1197 
1198     /// String literal.
string(string: &str) -> Literal1199     pub fn string(string: &str) -> Literal {
1200         Literal::_new(imp::Literal::string(string))
1201     }
1202 
1203     /// Character literal.
character(ch: char) -> Literal1204     pub fn character(ch: char) -> Literal {
1205         Literal::_new(imp::Literal::character(ch))
1206     }
1207 
1208     /// Byte string literal.
byte_string(s: &[u8]) -> Literal1209     pub fn byte_string(s: &[u8]) -> Literal {
1210         Literal::_new(imp::Literal::byte_string(s))
1211     }
1212 
1213     /// Returns the span encompassing this literal.
span(&self) -> Span1214     pub fn span(&self) -> Span {
1215         Span::_new(self.inner.span())
1216     }
1217 
1218     /// Configures the span associated for this literal.
set_span(&mut self, span: Span)1219     pub fn set_span(&mut self, span: Span) {
1220         self.inner.set_span(span.inner);
1221     }
1222 
1223     /// Returns a `Span` that is a subset of `self.span()` containing only
1224     /// the source bytes in range `range`. Returns `None` if the would-be
1225     /// trimmed span is outside the bounds of `self`.
1226     ///
1227     /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1228     /// nightly-only. When called from within a procedural macro not using a
1229     /// nightly compiler, this method will always return `None`.
1230     ///
1231     /// [`proc_macro::Literal::subspan`]: https://doc.rust-lang.org/proc_macro/struct.Literal.html#method.subspan
subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span>1232     pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1233         self.inner.subspan(range).map(Span::_new)
1234     }
1235 
1236     // Intended for the `quote!` macro to use when constructing a proc-macro2
1237     // token out of a macro_rules $:literal token, which is already known to be
1238     // a valid literal. This avoids reparsing/validating the literal's string
1239     // representation. This is not public API other than for quote.
1240     #[doc(hidden)]
from_str_unchecked(repr: &str) -> Self1241     pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1242         Literal::_new(imp::Literal::from_str_unchecked(repr))
1243     }
1244 }
1245 
1246 impl FromStr for Literal {
1247     type Err = LexError;
1248 
from_str(repr: &str) -> Result<Self, LexError>1249     fn from_str(repr: &str) -> Result<Self, LexError> {
1250         repr.parse().map(Literal::_new).map_err(|inner| LexError {
1251             inner,
1252             _marker: Marker,
1253         })
1254     }
1255 }
1256 
1257 impl Debug for Literal {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1258     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1259         Debug::fmt(&self.inner, f)
1260     }
1261 }
1262 
1263 impl Display for Literal {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1264     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1265         Display::fmt(&self.inner, f)
1266     }
1267 }
1268 
1269 /// Public implementation details for the `TokenStream` type, such as iterators.
1270 pub mod token_stream {
1271     use crate::marker::Marker;
1272     use crate::{imp, TokenTree};
1273     use std::fmt::{self, Debug};
1274 
1275     pub use crate::TokenStream;
1276 
1277     /// An iterator over `TokenStream`'s `TokenTree`s.
1278     ///
1279     /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1280     /// delimited groups, and returns whole groups as token trees.
1281     #[derive(Clone)]
1282     pub struct IntoIter {
1283         inner: imp::TokenTreeIter,
1284         _marker: Marker,
1285     }
1286 
1287     impl Iterator for IntoIter {
1288         type Item = TokenTree;
1289 
next(&mut self) -> Option<TokenTree>1290         fn next(&mut self) -> Option<TokenTree> {
1291             self.inner.next()
1292         }
1293     }
1294 
1295     impl Debug for IntoIter {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1296         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1297             Debug::fmt(&self.inner, f)
1298         }
1299     }
1300 
1301     impl IntoIterator for TokenStream {
1302         type Item = TokenTree;
1303         type IntoIter = IntoIter;
1304 
into_iter(self) -> IntoIter1305         fn into_iter(self) -> IntoIter {
1306             IntoIter {
1307                 inner: self.inner.into_iter(),
1308                 _marker: Marker,
1309             }
1310         }
1311     }
1312 }
1313