1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 /*
28  * g723_24.c
29  *
30  * Description:
31  *
32  * g723_24_encoder (), g723_24_decoder ()
33  *
34  * These routines comprise an implementation of the CCITT G.723 24 Kbps
35  * ADPCM coding algorithm.  Essentially, this implementation is identical to
36  * the bit level description except for a few deviations which take advantage
37  * of workstation attributes, such as hardware 2's complement arithmetic.
38  *
39  */
40 
41 #include "g72x.h"
42 #include "g72x_priv.h"
43 
44 /*
45  * Maps G.723_24 code word to reconstructed scale factor normalized log
46  * magnitude values.
47  */
48 static short _dqlntab [8] = { -2048, 135, 273, 373, 373, 273, 135, -2048 } ;
49 
50 /* Maps G.723_24 code word to log of scale factor multiplier. */
51 static short _witab [8] = { -128, 960, 4384, 18624, 18624, 4384, 960, -128 } ;
52 
53 /*
54  * Maps G.723_24 code words to a set of values whose long and short
55  * term averages are computed and then compared to give an indication
56  * how stationary (steady state) the signal is.
57  */
58 static short _fitab [8] = { 0, 0x200, 0x400, 0xE00, 0xE00, 0x400, 0x200, 0 } ;
59 
60 static short qtab_723_24 [3] = { 8, 218, 331 } ;
61 
62 /*
63  * g723_24_encoder ()
64  *
65  * Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code.
66  * Returns -1 if invalid input coding value.
67  */
68 int
g723_24_encoder(int sl,G72x_STATE * state_ptr)69 g723_24_encoder (
70 	int		sl,
71 	G72x_STATE *state_ptr)
72 {
73 	short		sei, sezi, se, sez ;	/* ACCUM */
74 	short		d ;			/* SUBTA */
75 	short		y ;			/* MIX */
76 	short		sr ;			/* ADDB */
77 	short		dqsez ;			/* ADDC */
78 	short		dq, i ;
79 
80 	/* linearize input sample to 14-bit PCM */
81 	sl >>= 2 ;		/* sl of 14-bit dynamic range */
82 
83 	sezi = predictor_zero (state_ptr) ;
84 	sez = sezi >> 1 ;
85 	sei = sezi + predictor_pole (state_ptr) ;
86 	se = sei >> 1 ;			/* se = estimated signal */
87 
88 	d = sl - se ;			/* d = estimation diff. */
89 
90 	/* quantize prediction difference d */
91 	y = step_size (state_ptr) ;	/* quantizer step size */
92 	i = quantize (d, y, qtab_723_24, 3) ;	/* i = ADPCM code */
93 	dq = reconstruct (i & 4, _dqlntab [i], y) ; /* quantized diff. */
94 
95 	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq ; /* reconstructed signal */
96 
97 	dqsez = sr + sez - se ;		/* pole prediction diff. */
98 
99 	update (3, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ;
100 
101 	return i ;
102 }
103 
104 /*
105  * g723_24_decoder ()
106  *
107  * Decodes a 3-bit CCITT G.723_24 ADPCM code and returns
108  * the resulting 16-bit linear PCM, A-law or u-law sample value.
109  * -1 is returned if the output coding is unknown.
110  */
111 int
g723_24_decoder(int i,G72x_STATE * state_ptr)112 g723_24_decoder (
113 	int		i,
114 	G72x_STATE *state_ptr)
115 {
116 	short		sezi, sei, sez, se ;	/* ACCUM */
117 	short		y ;			/* MIX */
118 	short		sr ;			/* ADDB */
119 	short		dq ;
120 	short		dqsez ;
121 
122 	i &= 0x07 ;			/* mask to get proper bits */
123 	sezi = predictor_zero (state_ptr) ;
124 	sez = sezi >> 1 ;
125 	sei = sezi + predictor_pole (state_ptr) ;
126 	se = sei >> 1 ;			/* se = estimated signal */
127 
128 	y = step_size (state_ptr) ;	/* adaptive quantizer step size */
129 	dq = reconstruct (i & 0x04, _dqlntab [i], y) ; /* unquantize pred diff */
130 
131 	sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq) ; /* reconst. signal */
132 
133 	dqsez = sr - se + sez ;			/* pole prediction diff. */
134 
135 	update (3, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ;
136 
137 	return arith_shift_left (sr, 2) ;	/* sr was of 14-bit dynamic range */
138 }
139 
140