1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test.  They are subject to change without notice.
34 
35 // GOOGLETEST_CM0001 DO NOT DELETE
36 
37 #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 
40 #include "gtest/internal/gtest-port.h"
41 
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif  // GTEST_OS_LINUX
48 
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52 
53 #include <ctype.h>
54 #include <float.h>
55 #include <string.h>
56 #include <cstdint>
57 #include <iomanip>
58 #include <limits>
59 #include <map>
60 #include <set>
61 #include <string>
62 #include <type_traits>
63 #include <vector>
64 
65 #include "gtest/gtest-message.h"
66 #include "gtest/internal/gtest-filepath.h"
67 #include "gtest/internal/gtest-string.h"
68 #include "gtest/internal/gtest-type-util.h"
69 
70 // Due to C++ preprocessor weirdness, we need double indirection to
71 // concatenate two tokens when one of them is __LINE__.  Writing
72 //
73 //   foo ## __LINE__
74 //
75 // will result in the token foo__LINE__, instead of foo followed by
76 // the current line number.  For more details, see
77 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
78 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
79 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
80 
81 // Stringifies its argument.
82 // Work around a bug in visual studio which doesn't accept code like this:
83 //
84 //   #define GTEST_STRINGIFY_(name) #name
85 //   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
86 //   MACRO(, x, y)
87 //
88 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
89 // This is allowed by the spec.
90 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
91 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
92 
93 namespace proto2 {
94 class MessageLite;
95 }
96 
97 namespace testing {
98 
99 // Forward declarations.
100 
101 class AssertionResult;                 // Result of an assertion.
102 class Message;                         // Represents a failure message.
103 class Test;                            // Represents a test.
104 class TestInfo;                        // Information about a test.
105 class TestPartResult;                  // Result of a test part.
106 class UnitTest;                        // A collection of test suites.
107 
108 template <typename T>
109 ::std::string PrintToString(const T& value);
110 
111 namespace internal {
112 
113 struct TraceInfo;                      // Information about a trace point.
114 class TestInfoImpl;                    // Opaque implementation of TestInfo
115 class UnitTestImpl;                    // Opaque implementation of UnitTest
116 
117 // The text used in failure messages to indicate the start of the
118 // stack trace.
119 GTEST_API_ extern const char kStackTraceMarker[];
120 
121 // An IgnoredValue object can be implicitly constructed from ANY value.
122 class IgnoredValue {
123   struct Sink {};
124  public:
125   // This constructor template allows any value to be implicitly
126   // converted to IgnoredValue.  The object has no data member and
127   // doesn't try to remember anything about the argument.  We
128   // deliberately omit the 'explicit' keyword in order to allow the
129   // conversion to be implicit.
130   // Disable the conversion if T already has a magical conversion operator.
131   // Otherwise we get ambiguity.
132   template <typename T,
133             typename std::enable_if<!std::is_convertible<T, Sink>::value,
134                                     int>::type = 0>
IgnoredValue(const T &)135   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
136 };
137 
138 // Appends the user-supplied message to the Google-Test-generated message.
139 GTEST_API_ std::string AppendUserMessage(
140     const std::string& gtest_msg, const Message& user_msg);
141 
142 #if GTEST_HAS_EXCEPTIONS
143 
144 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
145 /* an exported class was derived from a class that was not exported */)
146 
147 // This exception is thrown by (and only by) a failed Google Test
148 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
149 // are enabled).  We derive it from std::runtime_error, which is for
150 // errors presumably detectable only at run time.  Since
151 // std::runtime_error inherits from std::exception, many testing
152 // frameworks know how to extract and print the message inside it.
153 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
154  public:
155   explicit GoogleTestFailureException(const TestPartResult& failure);
156 };
157 
GTEST_DISABLE_MSC_WARNINGS_POP_()158 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
159 
160 #endif  // GTEST_HAS_EXCEPTIONS
161 
162 namespace edit_distance {
163 // Returns the optimal edits to go from 'left' to 'right'.
164 // All edits cost the same, with replace having lower priority than
165 // add/remove.
166 // Simple implementation of the Wagner-Fischer algorithm.
167 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
168 enum EditType { kMatch, kAdd, kRemove, kReplace };
169 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
170     const std::vector<size_t>& left, const std::vector<size_t>& right);
171 
172 // Same as above, but the input is represented as strings.
173 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
174     const std::vector<std::string>& left,
175     const std::vector<std::string>& right);
176 
177 // Create a diff of the input strings in Unified diff format.
178 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
179                                          const std::vector<std::string>& right,
180                                          size_t context = 2);
181 
182 }  // namespace edit_distance
183 
184 // Calculate the diff between 'left' and 'right' and return it in unified diff
185 // format.
186 // If not null, stores in 'total_line_count' the total number of lines found
187 // in left + right.
188 GTEST_API_ std::string DiffStrings(const std::string& left,
189                                    const std::string& right,
190                                    size_t* total_line_count);
191 
192 // Constructs and returns the message for an equality assertion
193 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
194 //
195 // The first four parameters are the expressions used in the assertion
196 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
197 // where foo is 5 and bar is 6, we have:
198 //
199 //   expected_expression: "foo"
200 //   actual_expression:   "bar"
201 //   expected_value:      "5"
202 //   actual_value:        "6"
203 //
204 // The ignoring_case parameter is true if and only if the assertion is a
205 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
206 // be inserted into the message.
207 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
208                                      const char* actual_expression,
209                                      const std::string& expected_value,
210                                      const std::string& actual_value,
211                                      bool ignoring_case);
212 
213 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
214 GTEST_API_ std::string GetBoolAssertionFailureMessage(
215     const AssertionResult& assertion_result,
216     const char* expression_text,
217     const char* actual_predicate_value,
218     const char* expected_predicate_value);
219 
220 // This template class represents an IEEE floating-point number
221 // (either single-precision or double-precision, depending on the
222 // template parameters).
223 //
224 // The purpose of this class is to do more sophisticated number
225 // comparison.  (Due to round-off error, etc, it's very unlikely that
226 // two floating-points will be equal exactly.  Hence a naive
227 // comparison by the == operation often doesn't work.)
228 //
229 // Format of IEEE floating-point:
230 //
231 //   The most-significant bit being the leftmost, an IEEE
232 //   floating-point looks like
233 //
234 //     sign_bit exponent_bits fraction_bits
235 //
236 //   Here, sign_bit is a single bit that designates the sign of the
237 //   number.
238 //
239 //   For float, there are 8 exponent bits and 23 fraction bits.
240 //
241 //   For double, there are 11 exponent bits and 52 fraction bits.
242 //
243 //   More details can be found at
244 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
245 //
246 // Template parameter:
247 //
248 //   RawType: the raw floating-point type (either float or double)
249 template <typename RawType>
250 class FloatingPoint {
251  public:
252   // Defines the unsigned integer type that has the same size as the
253   // floating point number.
254   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
255 
256   // Constants.
257 
258   // # of bits in a number.
259   static const size_t kBitCount = 8*sizeof(RawType);
260 
261   // # of fraction bits in a number.
262   static const size_t kFractionBitCount =
263     std::numeric_limits<RawType>::digits - 1;
264 
265   // # of exponent bits in a number.
266   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
267 
268   // The mask for the sign bit.
269   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
270 
271   // The mask for the fraction bits.
272   static const Bits kFractionBitMask =
273     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
274 
275   // The mask for the exponent bits.
276   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
277 
278   // How many ULP's (Units in the Last Place) we want to tolerate when
279   // comparing two numbers.  The larger the value, the more error we
280   // allow.  A 0 value means that two numbers must be exactly the same
281   // to be considered equal.
282   //
283   // The maximum error of a single floating-point operation is 0.5
284   // units in the last place.  On Intel CPU's, all floating-point
285   // calculations are done with 80-bit precision, while double has 64
286   // bits.  Therefore, 4 should be enough for ordinary use.
287   //
288   // See the following article for more details on ULP:
289   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
290   static const uint32_t kMaxUlps = 4;
291 
292   // Constructs a FloatingPoint from a raw floating-point number.
293   //
294   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
295   // around may change its bits, although the new value is guaranteed
296   // to be also a NAN.  Therefore, don't expect this constructor to
297   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)298   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
299 
300   // Static methods
301 
302   // Reinterprets a bit pattern as a floating-point number.
303   //
304   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)305   static RawType ReinterpretBits(const Bits bits) {
306     FloatingPoint fp(0);
307     fp.u_.bits_ = bits;
308     return fp.u_.value_;
309   }
310 
311   // Returns the floating-point number that represent positive infinity.
Infinity()312   static RawType Infinity() {
313     return ReinterpretBits(kExponentBitMask);
314   }
315 
316   // Returns the maximum representable finite floating-point number.
317   static RawType Max();
318 
319   // Non-static methods
320 
321   // Returns the bits that represents this number.
bits()322   const Bits &bits() const { return u_.bits_; }
323 
324   // Returns the exponent bits of this number.
exponent_bits()325   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
326 
327   // Returns the fraction bits of this number.
fraction_bits()328   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
329 
330   // Returns the sign bit of this number.
sign_bit()331   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
332 
333   // Returns true if and only if this is NAN (not a number).
is_nan()334   bool is_nan() const {
335     // It's a NAN if the exponent bits are all ones and the fraction
336     // bits are not entirely zeros.
337     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
338   }
339 
340   // Returns true if and only if this number is at most kMaxUlps ULP's away
341   // from rhs.  In particular, this function:
342   //
343   //   - returns false if either number is (or both are) NAN.
344   //   - treats really large numbers as almost equal to infinity.
345   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)346   bool AlmostEquals(const FloatingPoint& rhs) const {
347     // The IEEE standard says that any comparison operation involving
348     // a NAN must return false.
349     if (is_nan() || rhs.is_nan()) return false;
350 
351     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
352         <= kMaxUlps;
353   }
354 
355  private:
356   // The data type used to store the actual floating-point number.
357   union FloatingPointUnion {
358     RawType value_;  // The raw floating-point number.
359     Bits bits_;      // The bits that represent the number.
360   };
361 
362   // Converts an integer from the sign-and-magnitude representation to
363   // the biased representation.  More precisely, let N be 2 to the
364   // power of (kBitCount - 1), an integer x is represented by the
365   // unsigned number x + N.
366   //
367   // For instance,
368   //
369   //   -N + 1 (the most negative number representable using
370   //          sign-and-magnitude) is represented by 1;
371   //   0      is represented by N; and
372   //   N - 1  (the biggest number representable using
373   //          sign-and-magnitude) is represented by 2N - 1.
374   //
375   // Read http://en.wikipedia.org/wiki/Signed_number_representations
376   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)377   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
378     if (kSignBitMask & sam) {
379       // sam represents a negative number.
380       return ~sam + 1;
381     } else {
382       // sam represents a positive number.
383       return kSignBitMask | sam;
384     }
385   }
386 
387   // Given two numbers in the sign-and-magnitude representation,
388   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)389   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
390                                                      const Bits &sam2) {
391     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
392     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
393     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
394   }
395 
396   FloatingPointUnion u_;
397 };
398 
399 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
400 // macro defined by <windows.h>.
401 template <>
Max()402 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
403 template <>
Max()404 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
405 
406 // Typedefs the instances of the FloatingPoint template class that we
407 // care to use.
408 typedef FloatingPoint<float> Float;
409 typedef FloatingPoint<double> Double;
410 
411 // In order to catch the mistake of putting tests that use different
412 // test fixture classes in the same test suite, we need to assign
413 // unique IDs to fixture classes and compare them.  The TypeId type is
414 // used to hold such IDs.  The user should treat TypeId as an opaque
415 // type: the only operation allowed on TypeId values is to compare
416 // them for equality using the == operator.
417 typedef const void* TypeId;
418 
419 template <typename T>
420 class TypeIdHelper {
421  public:
422   // dummy_ must not have a const type.  Otherwise an overly eager
423   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
424   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
425   static bool dummy_;
426 };
427 
428 template <typename T>
429 bool TypeIdHelper<T>::dummy_ = false;
430 
431 // GetTypeId<T>() returns the ID of type T.  Different values will be
432 // returned for different types.  Calling the function twice with the
433 // same type argument is guaranteed to return the same ID.
434 template <typename T>
GetTypeId()435 TypeId GetTypeId() {
436   // The compiler is required to allocate a different
437   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
438   // the template.  Therefore, the address of dummy_ is guaranteed to
439   // be unique.
440   return &(TypeIdHelper<T>::dummy_);
441 }
442 
443 // Returns the type ID of ::testing::Test.  Always call this instead
444 // of GetTypeId< ::testing::Test>() to get the type ID of
445 // ::testing::Test, as the latter may give the wrong result due to a
446 // suspected linker bug when compiling Google Test as a Mac OS X
447 // framework.
448 GTEST_API_ TypeId GetTestTypeId();
449 
450 // Defines the abstract factory interface that creates instances
451 // of a Test object.
452 class TestFactoryBase {
453  public:
~TestFactoryBase()454   virtual ~TestFactoryBase() {}
455 
456   // Creates a test instance to run. The instance is both created and destroyed
457   // within TestInfoImpl::Run()
458   virtual Test* CreateTest() = 0;
459 
460  protected:
TestFactoryBase()461   TestFactoryBase() {}
462 
463  private:
464   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
465 };
466 
467 // This class provides implementation of TeastFactoryBase interface.
468 // It is used in TEST and TEST_F macros.
469 template <class TestClass>
470 class TestFactoryImpl : public TestFactoryBase {
471  public:
CreateTest()472   Test* CreateTest() override { return new TestClass; }
473 };
474 
475 #if GTEST_OS_WINDOWS
476 
477 // Predicate-formatters for implementing the HRESULT checking macros
478 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
479 // We pass a long instead of HRESULT to avoid causing an
480 // include dependency for the HRESULT type.
481 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
482                                             long hr);  // NOLINT
483 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
484                                             long hr);  // NOLINT
485 
486 #endif  // GTEST_OS_WINDOWS
487 
488 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
489 using SetUpTestSuiteFunc = void (*)();
490 using TearDownTestSuiteFunc = void (*)();
491 
492 struct CodeLocation {
CodeLocationCodeLocation493   CodeLocation(const std::string& a_file, int a_line)
494       : file(a_file), line(a_line) {}
495 
496   std::string file;
497   int line;
498 };
499 
500 //  Helper to identify which setup function for TestCase / TestSuite to call.
501 //  Only one function is allowed, either TestCase or TestSute but not both.
502 
503 // Utility functions to help SuiteApiResolver
504 using SetUpTearDownSuiteFuncType = void (*)();
505 
GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a,SetUpTearDownSuiteFuncType def)506 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
507     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
508   return a == def ? nullptr : a;
509 }
510 
511 template <typename T>
512 //  Note that SuiteApiResolver inherits from T because
513 //  SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way
514 //  SuiteApiResolver can access them.
515 struct SuiteApiResolver : T {
516   // testing::Test is only forward declared at this point. So we make it a
517   // dependend class for the compiler to be OK with it.
518   using Test =
519       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
520 
GetSetUpCaseOrSuiteSuiteApiResolver521   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
522                                                         int line_num) {
523 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
524     SetUpTearDownSuiteFuncType test_case_fp =
525         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
526     SetUpTearDownSuiteFuncType test_suite_fp =
527         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
528 
529     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
530         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
531            "make sure there is only one present at "
532         << filename << ":" << line_num;
533 
534     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
535 #else
536     (void)(filename);
537     (void)(line_num);
538     return &T::SetUpTestSuite;
539 #endif
540   }
541 
GetTearDownCaseOrSuiteSuiteApiResolver542   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
543                                                            int line_num) {
544 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
545     SetUpTearDownSuiteFuncType test_case_fp =
546         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
547     SetUpTearDownSuiteFuncType test_suite_fp =
548         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
549 
550     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
551         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
552            " please make sure there is only one present at"
553         << filename << ":" << line_num;
554 
555     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
556 #else
557     (void)(filename);
558     (void)(line_num);
559     return &T::TearDownTestSuite;
560 #endif
561   }
562 };
563 
564 // Creates a new TestInfo object and registers it with Google Test;
565 // returns the created object.
566 //
567 // Arguments:
568 //
569 //   test_suite_name:  name of the test suite
570 //   name:             name of the test
571 //   type_param:       the name of the test's type parameter, or NULL if
572 //                     this is not a typed or a type-parameterized test.
573 //   value_param:      text representation of the test's value parameter,
574 //                     or NULL if this is not a type-parameterized test.
575 //   code_location:    code location where the test is defined
576 //   fixture_class_id: ID of the test fixture class
577 //   set_up_tc:        pointer to the function that sets up the test suite
578 //   tear_down_tc:     pointer to the function that tears down the test suite
579 //   factory:          pointer to the factory that creates a test object.
580 //                     The newly created TestInfo instance will assume
581 //                     ownership of the factory object.
582 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
583     const char* test_suite_name, const char* name, const char* type_param,
584     const char* value_param, CodeLocation code_location,
585     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
586     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
587 
588 // If *pstr starts with the given prefix, modifies *pstr to be right
589 // past the prefix and returns true; otherwise leaves *pstr unchanged
590 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
591 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
592 
593 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
594 /* class A needs to have dll-interface to be used by clients of class B */)
595 
596 // State of the definition of a type-parameterized test suite.
597 class GTEST_API_ TypedTestSuitePState {
598  public:
TypedTestSuitePState()599   TypedTestSuitePState() : registered_(false) {}
600 
601   // Adds the given test name to defined_test_names_ and return true
602   // if the test suite hasn't been registered; otherwise aborts the
603   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)604   bool AddTestName(const char* file, int line, const char* case_name,
605                    const char* test_name) {
606     if (registered_) {
607       fprintf(stderr,
608               "%s Test %s must be defined before "
609               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
610               FormatFileLocation(file, line).c_str(), test_name, case_name);
611       fflush(stderr);
612       posix::Abort();
613     }
614     registered_tests_.insert(
615         ::std::make_pair(test_name, CodeLocation(file, line)));
616     return true;
617   }
618 
TestExists(const std::string & test_name)619   bool TestExists(const std::string& test_name) const {
620     return registered_tests_.count(test_name) > 0;
621   }
622 
GetCodeLocation(const std::string & test_name)623   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
624     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
625     GTEST_CHECK_(it != registered_tests_.end());
626     return it->second;
627   }
628 
629   // Verifies that registered_tests match the test names in
630   // defined_test_names_; returns registered_tests if successful, or
631   // aborts the program otherwise.
632   const char* VerifyRegisteredTestNames(const char* test_suite_name,
633                                         const char* file, int line,
634                                         const char* registered_tests);
635 
636  private:
637   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
638 
639   bool registered_;
640   RegisteredTestsMap registered_tests_;
641 };
642 
643 //  Legacy API is deprecated but still available
644 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
645 using TypedTestCasePState = TypedTestSuitePState;
646 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
647 
GTEST_DISABLE_MSC_WARNINGS_POP_()648 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
649 
650 // Skips to the first non-space char after the first comma in 'str';
651 // returns NULL if no comma is found in 'str'.
652 inline const char* SkipComma(const char* str) {
653   const char* comma = strchr(str, ',');
654   if (comma == nullptr) {
655     return nullptr;
656   }
657   while (IsSpace(*(++comma))) {}
658   return comma;
659 }
660 
661 // Returns the prefix of 'str' before the first comma in it; returns
662 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)663 inline std::string GetPrefixUntilComma(const char* str) {
664   const char* comma = strchr(str, ',');
665   return comma == nullptr ? str : std::string(str, comma);
666 }
667 
668 // Splits a given string on a given delimiter, populating a given
669 // vector with the fields.
670 void SplitString(const ::std::string& str, char delimiter,
671                  ::std::vector< ::std::string>* dest);
672 
673 // The default argument to the template below for the case when the user does
674 // not provide a name generator.
675 struct DefaultNameGenerator {
676   template <typename T>
GetNameDefaultNameGenerator677   static std::string GetName(int i) {
678     return StreamableToString(i);
679   }
680 };
681 
682 template <typename Provided = DefaultNameGenerator>
683 struct NameGeneratorSelector {
684   typedef Provided type;
685 };
686 
687 template <typename NameGenerator>
GenerateNamesRecursively(internal::None,std::vector<std::string> *,int)688 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
689 
690 template <typename NameGenerator, typename Types>
GenerateNamesRecursively(Types,std::vector<std::string> * result,int i)691 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
692   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
693   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
694                                           i + 1);
695 }
696 
697 template <typename NameGenerator, typename Types>
GenerateNames()698 std::vector<std::string> GenerateNames() {
699   std::vector<std::string> result;
700   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
701   return result;
702 }
703 
704 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
705 // registers a list of type-parameterized tests with Google Test.  The
706 // return value is insignificant - we just need to return something
707 // such that we can call this function in a namespace scope.
708 //
709 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
710 // template parameter.  It's defined in gtest-type-util.h.
711 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
712 class TypeParameterizedTest {
713  public:
714   // 'index' is the index of the test in the type list 'Types'
715   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
716   // Types).  Valid values for 'index' are [0, N - 1] where N is the
717   // length of Types.
718   static bool Register(const char* prefix, const CodeLocation& code_location,
719                        const char* case_name, const char* test_names, int index,
720                        const std::vector<std::string>& type_names =
721                            GenerateNames<DefaultNameGenerator, Types>()) {
722     typedef typename Types::Head Type;
723     typedef Fixture<Type> FixtureClass;
724     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
725 
726     // First, registers the first type-parameterized test in the type
727     // list.
728     MakeAndRegisterTestInfo(
729         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
730          "/" + type_names[static_cast<size_t>(index)])
731             .c_str(),
732         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
733         GetTypeName<Type>().c_str(),
734         nullptr,  // No value parameter.
735         code_location, GetTypeId<FixtureClass>(),
736         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
737             code_location.file.c_str(), code_location.line),
738         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
739             code_location.file.c_str(), code_location.line),
740         new TestFactoryImpl<TestClass>);
741 
742     // Next, recurses (at compile time) with the tail of the type list.
743     return TypeParameterizedTest<Fixture, TestSel,
744                                  typename Types::Tail>::Register(prefix,
745                                                                  code_location,
746                                                                  case_name,
747                                                                  test_names,
748                                                                  index + 1,
749                                                                  type_names);
750   }
751 };
752 
753 // The base case for the compile time recursion.
754 template <GTEST_TEMPLATE_ Fixture, class TestSel>
755 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
756  public:
757   static bool Register(const char* /*prefix*/, const CodeLocation&,
758                        const char* /*case_name*/, const char* /*test_names*/,
759                        int /*index*/,
760                        const std::vector<std::string>& =
761                            std::vector<std::string>() /*type_names*/) {
762     return true;
763   }
764 };
765 
766 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
767                                                    CodeLocation code_location);
768 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
769     const char* case_name);
770 
771 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
772 // registers *all combinations* of 'Tests' and 'Types' with Google
773 // Test.  The return value is insignificant - we just need to return
774 // something such that we can call this function in a namespace scope.
775 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
776 class TypeParameterizedTestSuite {
777  public:
778   static bool Register(const char* prefix, CodeLocation code_location,
779                        const TypedTestSuitePState* state, const char* case_name,
780                        const char* test_names,
781                        const std::vector<std::string>& type_names =
782                            GenerateNames<DefaultNameGenerator, Types>()) {
783     RegisterTypeParameterizedTestSuiteInstantiation(case_name);
784     std::string test_name = StripTrailingSpaces(
785         GetPrefixUntilComma(test_names));
786     if (!state->TestExists(test_name)) {
787       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
788               case_name, test_name.c_str(),
789               FormatFileLocation(code_location.file.c_str(),
790                                  code_location.line).c_str());
791       fflush(stderr);
792       posix::Abort();
793     }
794     const CodeLocation& test_location = state->GetCodeLocation(test_name);
795 
796     typedef typename Tests::Head Head;
797 
798     // First, register the first test in 'Test' for each type in 'Types'.
799     TypeParameterizedTest<Fixture, Head, Types>::Register(
800         prefix, test_location, case_name, test_names, 0, type_names);
801 
802     // Next, recurses (at compile time) with the tail of the test list.
803     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
804                                       Types>::Register(prefix, code_location,
805                                                        state, case_name,
806                                                        SkipComma(test_names),
807                                                        type_names);
808   }
809 };
810 
811 // The base case for the compile time recursion.
812 template <GTEST_TEMPLATE_ Fixture, typename Types>
813 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
814  public:
815   static bool Register(const char* /*prefix*/, const CodeLocation&,
816                        const TypedTestSuitePState* /*state*/,
817                        const char* /*case_name*/, const char* /*test_names*/,
818                        const std::vector<std::string>& =
819                            std::vector<std::string>() /*type_names*/) {
820     return true;
821   }
822 };
823 
824 // Returns the current OS stack trace as an std::string.
825 //
826 // The maximum number of stack frames to be included is specified by
827 // the gtest_stack_trace_depth flag.  The skip_count parameter
828 // specifies the number of top frames to be skipped, which doesn't
829 // count against the number of frames to be included.
830 //
831 // For example, if Foo() calls Bar(), which in turn calls
832 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
833 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
834 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
835     UnitTest* unit_test, int skip_count);
836 
837 // Helpers for suppressing warnings on unreachable code or constant
838 // condition.
839 
840 // Always returns true.
841 GTEST_API_ bool AlwaysTrue();
842 
843 // Always returns false.
AlwaysFalse()844 inline bool AlwaysFalse() { return !AlwaysTrue(); }
845 
846 // Helper for suppressing false warning from Clang on a const char*
847 // variable declared in a conditional expression always being NULL in
848 // the else branch.
849 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr850   ConstCharPtr(const char* str) : value(str) {}
851   operator bool() const { return true; }
852   const char* value;
853 };
854 
855 // Helper for declaring std::string within 'if' statement
856 // in pre C++17 build environment.
857 struct TrueWithString {
858   TrueWithString() = default;
TrueWithStringTrueWithString859   explicit TrueWithString(const char* str) : value(str) {}
TrueWithStringTrueWithString860   explicit TrueWithString(const std::string& str) : value(str) {}
861   explicit operator bool() const { return true; }
862   std::string value;
863 };
864 
865 // A simple Linear Congruential Generator for generating random
866 // numbers with a uniform distribution.  Unlike rand() and srand(), it
867 // doesn't use global state (and therefore can't interfere with user
868 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
869 // but it's good enough for our purposes.
870 class GTEST_API_ Random {
871  public:
872   static const uint32_t kMaxRange = 1u << 31;
873 
Random(uint32_t seed)874   explicit Random(uint32_t seed) : state_(seed) {}
875 
Reseed(uint32_t seed)876   void Reseed(uint32_t seed) { state_ = seed; }
877 
878   // Generates a random number from [0, range).  Crashes if 'range' is
879   // 0 or greater than kMaxRange.
880   uint32_t Generate(uint32_t range);
881 
882  private:
883   uint32_t state_;
884   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
885 };
886 
887 // Turns const U&, U&, const U, and U all into U.
888 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
889   typename std::remove_const<typename std::remove_reference<T>::type>::type
890 
891 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
892 // that's true if and only if T has methods DebugString() and ShortDebugString()
893 // that return std::string.
894 template <typename T>
895 class HasDebugStringAndShortDebugString {
896  private:
897   template <typename C>
898   static auto CheckDebugString(C*) -> typename std::is_same<
899       std::string, decltype(std::declval<const C>().DebugString())>::type;
900   template <typename>
901   static std::false_type CheckDebugString(...);
902 
903   template <typename C>
904   static auto CheckShortDebugString(C*) -> typename std::is_same<
905       std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
906   template <typename>
907   static std::false_type CheckShortDebugString(...);
908 
909   using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
910   using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
911 
912  public:
913   static constexpr bool value =
914       HasDebugStringType::value && HasShortDebugStringType::value;
915 };
916 
917 template <typename T>
918 constexpr bool HasDebugStringAndShortDebugString<T>::value;
919 
920 // When the compiler sees expression IsContainerTest<C>(0), if C is an
921 // STL-style container class, the first overload of IsContainerTest
922 // will be viable (since both C::iterator* and C::const_iterator* are
923 // valid types and NULL can be implicitly converted to them).  It will
924 // be picked over the second overload as 'int' is a perfect match for
925 // the type of argument 0.  If C::iterator or C::const_iterator is not
926 // a valid type, the first overload is not viable, and the second
927 // overload will be picked.  Therefore, we can determine whether C is
928 // a container class by checking the type of IsContainerTest<C>(0).
929 // The value of the expression is insignificant.
930 //
931 // In C++11 mode we check the existence of a const_iterator and that an
932 // iterator is properly implemented for the container.
933 //
934 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
935 // The reason is that C++ injects the name of a class as a member of the
936 // class itself (e.g. you can refer to class iterator as either
937 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
938 // only, for example, we would mistakenly think that a class named
939 // iterator is an STL container.
940 //
941 // Also note that the simpler approach of overloading
942 // IsContainerTest(typename C::const_iterator*) and
943 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
944 typedef int IsContainer;
945 template <class C,
946           class Iterator = decltype(::std::declval<const C&>().begin()),
947           class = decltype(::std::declval<const C&>().end()),
948           class = decltype(++::std::declval<Iterator&>()),
949           class = decltype(*::std::declval<Iterator>()),
950           class = typename C::const_iterator>
IsContainerTest(int)951 IsContainer IsContainerTest(int /* dummy */) {
952   return 0;
953 }
954 
955 typedef char IsNotContainer;
956 template <class C>
IsContainerTest(long)957 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
958 
959 // Trait to detect whether a type T is a hash table.
960 // The heuristic used is that the type contains an inner type `hasher` and does
961 // not contain an inner type `reverse_iterator`.
962 // If the container is iterable in reverse, then order might actually matter.
963 template <typename T>
964 struct IsHashTable {
965  private:
966   template <typename U>
967   static char test(typename U::hasher*, typename U::reverse_iterator*);
968   template <typename U>
969   static int test(typename U::hasher*, ...);
970   template <typename U>
971   static char test(...);
972 
973  public:
974   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
975 };
976 
977 template <typename T>
978 const bool IsHashTable<T>::value;
979 
980 template <typename C,
981           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
982 struct IsRecursiveContainerImpl;
983 
984 template <typename C>
985 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
986 
987 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
988 // obey the same inconsistencies as the IsContainerTest, namely check if
989 // something is a container is relying on only const_iterator in C++11 and
990 // is relying on both const_iterator and iterator otherwise
991 template <typename C>
992 struct IsRecursiveContainerImpl<C, true> {
993   using value_type = decltype(*std::declval<typename C::const_iterator>());
994   using type =
995       std::is_same<typename std::remove_const<
996                        typename std::remove_reference<value_type>::type>::type,
997                    C>;
998 };
999 
1000 // IsRecursiveContainer<Type> is a unary compile-time predicate that
1001 // evaluates whether C is a recursive container type. A recursive container
1002 // type is a container type whose value_type is equal to the container type
1003 // itself. An example for a recursive container type is
1004 // boost::filesystem::path, whose iterator has a value_type that is equal to
1005 // boost::filesystem::path.
1006 template <typename C>
1007 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
1008 
1009 // Utilities for native arrays.
1010 
1011 // ArrayEq() compares two k-dimensional native arrays using the
1012 // elements' operator==, where k can be any integer >= 0.  When k is
1013 // 0, ArrayEq() degenerates into comparing a single pair of values.
1014 
1015 template <typename T, typename U>
1016 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1017 
1018 // This generic version is used when k is 0.
1019 template <typename T, typename U>
1020 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
1021 
1022 // This overload is used when k >= 1.
1023 template <typename T, typename U, size_t N>
1024 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
1025   return internal::ArrayEq(lhs, N, rhs);
1026 }
1027 
1028 // This helper reduces code bloat.  If we instead put its logic inside
1029 // the previous ArrayEq() function, arrays with different sizes would
1030 // lead to different copies of the template code.
1031 template <typename T, typename U>
1032 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1033   for (size_t i = 0; i != size; i++) {
1034     if (!internal::ArrayEq(lhs[i], rhs[i]))
1035       return false;
1036   }
1037   return true;
1038 }
1039 
1040 // Finds the first element in the iterator range [begin, end) that
1041 // equals elem.  Element may be a native array type itself.
1042 template <typename Iter, typename Element>
1043 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1044   for (Iter it = begin; it != end; ++it) {
1045     if (internal::ArrayEq(*it, elem))
1046       return it;
1047   }
1048   return end;
1049 }
1050 
1051 // CopyArray() copies a k-dimensional native array using the elements'
1052 // operator=, where k can be any integer >= 0.  When k is 0,
1053 // CopyArray() degenerates into copying a single value.
1054 
1055 template <typename T, typename U>
1056 void CopyArray(const T* from, size_t size, U* to);
1057 
1058 // This generic version is used when k is 0.
1059 template <typename T, typename U>
1060 inline void CopyArray(const T& from, U* to) { *to = from; }
1061 
1062 // This overload is used when k >= 1.
1063 template <typename T, typename U, size_t N>
1064 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1065   internal::CopyArray(from, N, *to);
1066 }
1067 
1068 // This helper reduces code bloat.  If we instead put its logic inside
1069 // the previous CopyArray() function, arrays with different sizes
1070 // would lead to different copies of the template code.
1071 template <typename T, typename U>
1072 void CopyArray(const T* from, size_t size, U* to) {
1073   for (size_t i = 0; i != size; i++) {
1074     internal::CopyArray(from[i], to + i);
1075   }
1076 }
1077 
1078 // The relation between an NativeArray object (see below) and the
1079 // native array it represents.
1080 // We use 2 different structs to allow non-copyable types to be used, as long
1081 // as RelationToSourceReference() is passed.
1082 struct RelationToSourceReference {};
1083 struct RelationToSourceCopy {};
1084 
1085 // Adapts a native array to a read-only STL-style container.  Instead
1086 // of the complete STL container concept, this adaptor only implements
1087 // members useful for Google Mock's container matchers.  New members
1088 // should be added as needed.  To simplify the implementation, we only
1089 // support Element being a raw type (i.e. having no top-level const or
1090 // reference modifier).  It's the client's responsibility to satisfy
1091 // this requirement.  Element can be an array type itself (hence
1092 // multi-dimensional arrays are supported).
1093 template <typename Element>
1094 class NativeArray {
1095  public:
1096   // STL-style container typedefs.
1097   typedef Element value_type;
1098   typedef Element* iterator;
1099   typedef const Element* const_iterator;
1100 
1101   // Constructs from a native array. References the source.
1102   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1103     InitRef(array, count);
1104   }
1105 
1106   // Constructs from a native array. Copies the source.
1107   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1108     InitCopy(array, count);
1109   }
1110 
1111   // Copy constructor.
1112   NativeArray(const NativeArray& rhs) {
1113     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1114   }
1115 
1116   ~NativeArray() {
1117     if (clone_ != &NativeArray::InitRef)
1118       delete[] array_;
1119   }
1120 
1121   // STL-style container methods.
1122   size_t size() const { return size_; }
1123   const_iterator begin() const { return array_; }
1124   const_iterator end() const { return array_ + size_; }
1125   bool operator==(const NativeArray& rhs) const {
1126     return size() == rhs.size() &&
1127         ArrayEq(begin(), size(), rhs.begin());
1128   }
1129 
1130  private:
1131   static_assert(!std::is_const<Element>::value, "Type must not be const");
1132   static_assert(!std::is_reference<Element>::value,
1133                 "Type must not be a reference");
1134 
1135   // Initializes this object with a copy of the input.
1136   void InitCopy(const Element* array, size_t a_size) {
1137     Element* const copy = new Element[a_size];
1138     CopyArray(array, a_size, copy);
1139     array_ = copy;
1140     size_ = a_size;
1141     clone_ = &NativeArray::InitCopy;
1142   }
1143 
1144   // Initializes this object with a reference of the input.
1145   void InitRef(const Element* array, size_t a_size) {
1146     array_ = array;
1147     size_ = a_size;
1148     clone_ = &NativeArray::InitRef;
1149   }
1150 
1151   const Element* array_;
1152   size_t size_;
1153   void (NativeArray::*clone_)(const Element*, size_t);
1154 };
1155 
1156 // Backport of std::index_sequence.
1157 template <size_t... Is>
1158 struct IndexSequence {
1159   using type = IndexSequence;
1160 };
1161 
1162 // Double the IndexSequence, and one if plus_one is true.
1163 template <bool plus_one, typename T, size_t sizeofT>
1164 struct DoubleSequence;
1165 template <size_t... I, size_t sizeofT>
1166 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1167   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1168 };
1169 template <size_t... I, size_t sizeofT>
1170 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1171   using type = IndexSequence<I..., (sizeofT + I)...>;
1172 };
1173 
1174 // Backport of std::make_index_sequence.
1175 // It uses O(ln(N)) instantiation depth.
1176 template <size_t N>
1177 struct MakeIndexSequenceImpl
1178     : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1179                      N / 2>::type {};
1180 
1181 template <>
1182 struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1183 
1184 template <size_t N>
1185 using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1186 
1187 template <typename... T>
1188 using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1189 
1190 template <size_t>
1191 struct Ignore {
1192   Ignore(...);  // NOLINT
1193 };
1194 
1195 template <typename>
1196 struct ElemFromListImpl;
1197 template <size_t... I>
1198 struct ElemFromListImpl<IndexSequence<I...>> {
1199   // We make Ignore a template to solve a problem with MSVC.
1200   // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1201   // MSVC doesn't understand how to deal with that pack expansion.
1202   // Use `0 * I` to have a single instantiation of Ignore.
1203   template <typename R>
1204   static R Apply(Ignore<0 * I>..., R (*)(), ...);
1205 };
1206 
1207 template <size_t N, typename... T>
1208 struct ElemFromList {
1209   using type =
1210       decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1211           static_cast<T (*)()>(nullptr)...));
1212 };
1213 
1214 struct FlatTupleConstructTag {};
1215 
1216 template <typename... T>
1217 class FlatTuple;
1218 
1219 template <typename Derived, size_t I>
1220 struct FlatTupleElemBase;
1221 
1222 template <typename... T, size_t I>
1223 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1224   using value_type = typename ElemFromList<I, T...>::type;
1225   FlatTupleElemBase() = default;
1226   template <typename Arg>
1227   explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1228       : value(std::forward<Arg>(t)) {}
1229   value_type value;
1230 };
1231 
1232 template <typename Derived, typename Idx>
1233 struct FlatTupleBase;
1234 
1235 template <size_t... Idx, typename... T>
1236 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1237     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1238   using Indices = IndexSequence<Idx...>;
1239   FlatTupleBase() = default;
1240   template <typename... Args>
1241   explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1242       : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1243                                                 std::forward<Args>(args))... {}
1244 
1245   template <size_t I>
1246   const typename ElemFromList<I, T...>::type& Get() const {
1247     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1248   }
1249 
1250   template <size_t I>
1251   typename ElemFromList<I, T...>::type& Get() {
1252     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1253   }
1254 
1255   template <typename F>
1256   auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1257     return std::forward<F>(f)(Get<Idx>()...);
1258   }
1259 
1260   template <typename F>
1261   auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1262     return std::forward<F>(f)(Get<Idx>()...);
1263   }
1264 };
1265 
1266 // Analog to std::tuple but with different tradeoffs.
1267 // This class minimizes the template instantiation depth, thus allowing more
1268 // elements than std::tuple would. std::tuple has been seen to require an
1269 // instantiation depth of more than 10x the number of elements in some
1270 // implementations.
1271 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1272 // regardless of T...
1273 // MakeIndexSequence, on the other hand, it is recursive but with an
1274 // instantiation depth of O(ln(N)).
1275 template <typename... T>
1276 class FlatTuple
1277     : private FlatTupleBase<FlatTuple<T...>,
1278                             typename MakeIndexSequence<sizeof...(T)>::type> {
1279   using Indices = typename FlatTupleBase<
1280       FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1281 
1282  public:
1283   FlatTuple() = default;
1284   template <typename... Args>
1285   explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1286       : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1287 
1288   using FlatTuple::FlatTupleBase::Apply;
1289   using FlatTuple::FlatTupleBase::Get;
1290 };
1291 
1292 // Utility functions to be called with static_assert to induce deprecation
1293 // warnings.
1294 GTEST_INTERNAL_DEPRECATED(
1295     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1296     "INSTANTIATE_TEST_SUITE_P")
1297 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1298 
1299 GTEST_INTERNAL_DEPRECATED(
1300     "TYPED_TEST_CASE_P is deprecated, please use "
1301     "TYPED_TEST_SUITE_P")
1302 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1303 
1304 GTEST_INTERNAL_DEPRECATED(
1305     "TYPED_TEST_CASE is deprecated, please use "
1306     "TYPED_TEST_SUITE")
1307 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1308 
1309 GTEST_INTERNAL_DEPRECATED(
1310     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1311     "REGISTER_TYPED_TEST_SUITE_P")
1312 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1313 
1314 GTEST_INTERNAL_DEPRECATED(
1315     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1316     "INSTANTIATE_TYPED_TEST_SUITE_P")
1317 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1318 
1319 }  // namespace internal
1320 }  // namespace testing
1321 
1322 namespace std {
1323 // Some standard library implementations use `struct tuple_size` and some use
1324 // `class tuple_size`. Clang warns about the mismatch.
1325 // https://reviews.llvm.org/D55466
1326 #ifdef __clang__
1327 #pragma clang diagnostic push
1328 #pragma clang diagnostic ignored "-Wmismatched-tags"
1329 #endif
1330 template <typename... Ts>
1331 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1332     : std::integral_constant<size_t, sizeof...(Ts)> {};
1333 #ifdef __clang__
1334 #pragma clang diagnostic pop
1335 #endif
1336 }  // namespace std
1337 
1338 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1339   ::testing::internal::AssertHelper(result_type, file, line, message) \
1340     = ::testing::Message()
1341 
1342 #define GTEST_MESSAGE_(message, result_type) \
1343   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1344 
1345 #define GTEST_FATAL_FAILURE_(message) \
1346   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1347 
1348 #define GTEST_NONFATAL_FAILURE_(message) \
1349   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1350 
1351 #define GTEST_SUCCESS_(message) \
1352   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1353 
1354 #define GTEST_SKIP_(message) \
1355   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1356 
1357 // Suppress MSVC warning 4072 (unreachable code) for the code following
1358 // statement if it returns or throws (or doesn't return or throw in some
1359 // situations).
1360 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1361 // "else" from attaching to our "if".
1362 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1363   if (::testing::internal::AlwaysTrue()) {                        \
1364     statement;                                                    \
1365   } else                     /* NOLINT */                         \
1366     static_assert(true, "")  // User must have a semicolon after expansion.
1367 
1368 #if GTEST_HAS_EXCEPTIONS
1369 
1370 namespace testing {
1371 namespace internal {
1372 
1373 class NeverThrown {
1374  public:
1375   const char* what() const noexcept {
1376     return "this exception should never be thrown";
1377   }
1378 };
1379 
1380 }  // namespace internal
1381 }  // namespace testing
1382 
1383 #if GTEST_HAS_RTTI
1384 
1385 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1386 
1387 #else  // GTEST_HAS_RTTI
1388 
1389 #define GTEST_EXCEPTION_TYPE_(e) \
1390   std::string { "an std::exception-derived error" }
1391 
1392 #endif  // GTEST_HAS_RTTI
1393 
1394 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)   \
1395   catch (typename std::conditional<                                            \
1396          std::is_same<typename std::remove_cv<typename std::remove_reference<  \
1397                           expected_exception>::type>::type,                    \
1398                       std::exception>::value,                                  \
1399          const ::testing::internal::NeverThrown&, const std::exception&>::type \
1400              e) {                                                              \
1401     gtest_msg.value = "Expected: " #statement                                  \
1402                       " throws an exception of type " #expected_exception      \
1403                       ".\n  Actual: it throws ";                               \
1404     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                               \
1405     gtest_msg.value += " with description \"";                                 \
1406     gtest_msg.value += e.what();                                               \
1407     gtest_msg.value += "\".";                                                  \
1408     goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);                \
1409   }
1410 
1411 #else  // GTEST_HAS_EXCEPTIONS
1412 
1413 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1414 
1415 #endif  // GTEST_HAS_EXCEPTIONS
1416 
1417 #define GTEST_TEST_THROW_(statement, expected_exception, fail)              \
1418   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                             \
1419   if (::testing::internal::TrueWithString gtest_msg{}) {                    \
1420     bool gtest_caught_expected = false;                                     \
1421     try {                                                                   \
1422       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);            \
1423     } catch (expected_exception const&) {                                   \
1424       gtest_caught_expected = true;                                         \
1425     }                                                                       \
1426     GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)    \
1427     catch (...) {                                                           \
1428       gtest_msg.value = "Expected: " #statement                             \
1429                         " throws an exception of type " #expected_exception \
1430                         ".\n  Actual: it throws a different type.";         \
1431       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1432     }                                                                       \
1433     if (!gtest_caught_expected) {                                           \
1434       gtest_msg.value = "Expected: " #statement                             \
1435                         " throws an exception of type " #expected_exception \
1436                         ".\n  Actual: it throws nothing.";                  \
1437       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1438     }                                                                       \
1439   } else /*NOLINT*/                                                         \
1440     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__)                   \
1441         : fail(gtest_msg.value.c_str())
1442 
1443 #if GTEST_HAS_EXCEPTIONS
1444 
1445 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                \
1446   catch (std::exception const& e) {                               \
1447     gtest_msg.value = "it throws ";                               \
1448     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                  \
1449     gtest_msg.value += " with description \"";                    \
1450     gtest_msg.value += e.what();                                  \
1451     gtest_msg.value += "\".";                                     \
1452     goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1453   }
1454 
1455 #else  // GTEST_HAS_EXCEPTIONS
1456 
1457 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1458 
1459 #endif  // GTEST_HAS_EXCEPTIONS
1460 
1461 #define GTEST_TEST_NO_THROW_(statement, fail) \
1462   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1463   if (::testing::internal::TrueWithString gtest_msg{}) { \
1464     try { \
1465       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1466     } \
1467     GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1468     catch (...) { \
1469       gtest_msg.value = "it throws."; \
1470       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1471     } \
1472   } else \
1473     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1474       fail(("Expected: " #statement " doesn't throw an exception.\n" \
1475             "  Actual: " + gtest_msg.value).c_str())
1476 
1477 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1478   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1479   if (::testing::internal::AlwaysTrue()) { \
1480     bool gtest_caught_any = false; \
1481     try { \
1482       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1483     } \
1484     catch (...) { \
1485       gtest_caught_any = true; \
1486     } \
1487     if (!gtest_caught_any) { \
1488       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1489     } \
1490   } else \
1491     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1492       fail("Expected: " #statement " throws an exception.\n" \
1493            "  Actual: it doesn't.")
1494 
1495 
1496 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1497 // either a boolean expression or an AssertionResult. text is a textual
1498 // representation of expression as it was passed into the EXPECT_TRUE.
1499 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1500   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1501   if (const ::testing::AssertionResult gtest_ar_ = \
1502       ::testing::AssertionResult(expression)) \
1503     ; \
1504   else \
1505     fail(::testing::internal::GetBoolAssertionFailureMessage(\
1506         gtest_ar_, text, #actual, #expected).c_str())
1507 
1508 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1509   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1510   if (::testing::internal::AlwaysTrue()) { \
1511     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1512     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1513     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1514       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1515     } \
1516   } else \
1517     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1518       fail("Expected: " #statement " doesn't generate new fatal " \
1519            "failures in the current thread.\n" \
1520            "  Actual: it does.")
1521 
1522 // Expands to the name of the class that implements the given test.
1523 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1524   test_suite_name##_##test_name##_Test
1525 
1526 // Helper macro for defining tests.
1527 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)      \
1528   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                \
1529                 "test_suite_name must not be empty");                         \
1530   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                      \
1531                 "test_name must not be empty");                               \
1532   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                    \
1533       : public parent_class {                                                 \
1534    public:                                                                    \
1535     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default;           \
1536     ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
1537     GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
1538                                                            test_name));       \
1539     GTEST_DISALLOW_MOVE_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
1540                                                            test_name));       \
1541                                                                               \
1542    private:                                                                   \
1543     void TestBody() override;                                                 \
1544     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;     \
1545   };                                                                          \
1546                                                                               \
1547   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,          \
1548                                                     test_name)::test_info_ =  \
1549       ::testing::internal::MakeAndRegisterTestInfo(                           \
1550           #test_suite_name, #test_name, nullptr, nullptr,                     \
1551           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1552           ::testing::internal::SuiteApiResolver<                              \
1553               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),         \
1554           ::testing::internal::SuiteApiResolver<                              \
1555               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),      \
1556           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(    \
1557               test_suite_name, test_name)>);                                  \
1558   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1559 
1560 #endif  // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1561