1 /* glpapi01.c (problem creating and modifying routines) */
2 
3 /***********************************************************************
4 *  This code is part of GLPK (GNU Linear Programming Kit).
5 *
6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
9 *  E-mail: <mao@gnu.org>.
10 *
11 *  GLPK is free software: you can redistribute it and/or modify it
12 *  under the terms of the GNU General Public License as published by
13 *  the Free Software Foundation, either version 3 of the License, or
14 *  (at your option) any later version.
15 *
16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
19 *  License for more details.
20 *
21 *  You should have received a copy of the GNU General Public License
22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
23 ***********************************************************************/
24 
25 #include "glpios.h"
26 
27 /* CAUTION: DO NOT CHANGE THE LIMITS BELOW */
28 
29 #define M_MAX 100000000 /* = 100*10^6 */
30 /* maximal number of rows in the problem object */
31 
32 #define N_MAX 100000000 /* = 100*10^6 */
33 /* maximal number of columns in the problem object */
34 
35 #define NNZ_MAX 500000000 /* = 500*10^6 */
36 /* maximal number of constraint coefficients in the problem object */
37 
38 /***********************************************************************
39 *  NAME
40 *
41 *  glp_create_prob - create problem object
42 *
43 *  SYNOPSIS
44 *
45 *  glp_prob *glp_create_prob(void);
46 *
47 *  DESCRIPTION
48 *
49 *  The routine glp_create_prob creates a new problem object, which is
50 *  initially "empty", i.e. has no rows and columns.
51 *
52 *  RETURNS
53 *
54 *  The routine returns a pointer to the object created, which should be
55 *  used in any subsequent operations on this object. */
56 
create_prob(glp_prob * lp)57 static void create_prob(glp_prob *lp)
58 {     lp->magic = GLP_PROB_MAGIC;
59       lp->pool = dmp_create_pool();
60 #if 0 /* 17/XI-2009 */
61       lp->cps = xmalloc(sizeof(struct LPXCPS));
62       lpx_reset_parms(lp);
63 #else
64       lp->parms = NULL;
65 #endif
66       lp->tree = NULL;
67 #if 0
68       lp->lwa = 0;
69       lp->cwa = NULL;
70 #endif
71       /* LP/MIP data */
72       lp->name = NULL;
73       lp->obj = NULL;
74       lp->dir = GLP_MIN;
75       lp->c0 = 0.0;
76       lp->m_max = 100;
77       lp->n_max = 200;
78       lp->m = lp->n = 0;
79       lp->nnz = 0;
80       lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *));
81       lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *));
82       lp->r_tree = lp->c_tree = NULL;
83       /* basis factorization */
84       lp->valid = 0;
85       lp->head = xcalloc(1+lp->m_max, sizeof(int));
86       lp->bfcp = NULL;
87       lp->bfd = NULL;
88       /* basic solution (LP) */
89       lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
90       lp->obj_val = 0.0;
91       lp->it_cnt = 0;
92       lp->some = 0;
93       /* interior-point solution (LP) */
94       lp->ipt_stat = GLP_UNDEF;
95       lp->ipt_obj = 0.0;
96       /* integer solution (MIP) */
97       lp->mip_stat = GLP_UNDEF;
98       lp->mip_obj = 0.0;
99       return;
100 }
101 
glp_create_prob(void)102 glp_prob *glp_create_prob(void)
103 {     glp_prob *lp;
104       lp = xmalloc(sizeof(glp_prob));
105       create_prob(lp);
106       return lp;
107 }
108 
109 /***********************************************************************
110 *  NAME
111 *
112 *  glp_set_prob_name - assign (change) problem name
113 *
114 *  SYNOPSIS
115 *
116 *  void glp_set_prob_name(glp_prob *lp, const char *name);
117 *
118 *  DESCRIPTION
119 *
120 *  The routine glp_set_prob_name assigns a given symbolic name (1 up to
121 *  255 characters) to the specified problem object.
122 *
123 *  If the parameter name is NULL or empty string, the routine erases an
124 *  existing symbolic name of the problem object. */
125 
glp_set_prob_name(glp_prob * lp,const char * name)126 void glp_set_prob_name(glp_prob *lp, const char *name)
127 {     glp_tree *tree = lp->tree;
128       if (tree != NULL && tree->reason != 0)
129          xerror("glp_set_prob_name: operation not allowed\n");
130       if (lp->name != NULL)
131       {  dmp_free_atom(lp->pool, lp->name, strlen(lp->name)+1);
132          lp->name = NULL;
133       }
134       if (!(name == NULL || name[0] == '\0'))
135       {  int k;
136          for (k = 0; name[k] != '\0'; k++)
137          {  if (k == 256)
138                xerror("glp_set_prob_name: problem name too long\n");
139             if (iscntrl((unsigned char)name[k]))
140                xerror("glp_set_prob_name: problem name contains invalid"
141                   " character(s)\n");
142          }
143          lp->name = dmp_get_atom(lp->pool, strlen(name)+1);
144          strcpy(lp->name, name);
145       }
146       return;
147 }
148 
149 /***********************************************************************
150 *  NAME
151 *
152 *  glp_set_obj_name - assign (change) objective function name
153 *
154 *  SYNOPSIS
155 *
156 *  void glp_set_obj_name(glp_prob *lp, const char *name);
157 *
158 *  DESCRIPTION
159 *
160 *  The routine glp_set_obj_name assigns a given symbolic name (1 up to
161 *  255 characters) to the objective function of the specified problem
162 *  object.
163 *
164 *  If the parameter name is NULL or empty string, the routine erases an
165 *  existing name of the objective function. */
166 
glp_set_obj_name(glp_prob * lp,const char * name)167 void glp_set_obj_name(glp_prob *lp, const char *name)
168 {     glp_tree *tree = lp->tree;
169       if (tree != NULL && tree->reason != 0)
170          xerror("glp_set_obj_name: operation not allowed\n");
171      if (lp->obj != NULL)
172       {  dmp_free_atom(lp->pool, lp->obj, strlen(lp->obj)+1);
173          lp->obj = NULL;
174       }
175       if (!(name == NULL || name[0] == '\0'))
176       {  int k;
177          for (k = 0; name[k] != '\0'; k++)
178          {  if (k == 256)
179                xerror("glp_set_obj_name: objective name too long\n");
180             if (iscntrl((unsigned char)name[k]))
181                xerror("glp_set_obj_name: objective name contains invali"
182                   "d character(s)\n");
183          }
184          lp->obj = dmp_get_atom(lp->pool, strlen(name)+1);
185          strcpy(lp->obj, name);
186       }
187       return;
188 }
189 
190 /***********************************************************************
191 *  NAME
192 *
193 *  glp_set_obj_dir - set (change) optimization direction flag
194 *
195 *  SYNOPSIS
196 *
197 *  void glp_set_obj_dir(glp_prob *lp, int dir);
198 *
199 *  DESCRIPTION
200 *
201 *  The routine glp_set_obj_dir sets (changes) optimization direction
202 *  flag (i.e. "sense" of the objective function) as specified by the
203 *  parameter dir:
204 *
205 *  GLP_MIN - minimization;
206 *  GLP_MAX - maximization. */
207 
glp_set_obj_dir(glp_prob * lp,int dir)208 void glp_set_obj_dir(glp_prob *lp, int dir)
209 {     glp_tree *tree = lp->tree;
210       if (tree != NULL && tree->reason != 0)
211          xerror("glp_set_obj_dir: operation not allowed\n");
212      if (!(dir == GLP_MIN || dir == GLP_MAX))
213          xerror("glp_set_obj_dir: dir = %d; invalid direction flag\n",
214             dir);
215       lp->dir = dir;
216       return;
217 }
218 
219 /***********************************************************************
220 *  NAME
221 *
222 *  glp_add_rows - add new rows to problem object
223 *
224 *  SYNOPSIS
225 *
226 *  int glp_add_rows(glp_prob *lp, int nrs);
227 *
228 *  DESCRIPTION
229 *
230 *  The routine glp_add_rows adds nrs rows (constraints) to the specified
231 *  problem object. New rows are always added to the end of the row list,
232 *  so the ordinal numbers of existing rows remain unchanged.
233 *
234 *  Being added each new row is initially free (unbounded) and has empty
235 *  list of the constraint coefficients.
236 *
237 *  RETURNS
238 *
239 *  The routine glp_add_rows returns the ordinal number of the first new
240 *  row added to the problem object. */
241 
glp_add_rows(glp_prob * lp,int nrs)242 int glp_add_rows(glp_prob *lp, int nrs)
243 {     glp_tree *tree = lp->tree;
244       GLPROW *row;
245       int m_new, i;
246       /* determine new number of rows */
247       if (nrs < 1)
248          xerror("glp_add_rows: nrs = %d; invalid number of rows\n",
249             nrs);
250       if (nrs > M_MAX - lp->m)
251          xerror("glp_add_rows: nrs = %d; too many rows\n", nrs);
252       m_new = lp->m + nrs;
253       /* increase the room, if necessary */
254       if (lp->m_max < m_new)
255       {  GLPROW **save = lp->row;
256          while (lp->m_max < m_new)
257          {  lp->m_max += lp->m_max;
258             xassert(lp->m_max > 0);
259          }
260          lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *));
261          memcpy(&lp->row[1], &save[1], lp->m * sizeof(GLPROW *));
262          xfree(save);
263          /* do not forget about the basis header */
264          xfree(lp->head);
265          lp->head = xcalloc(1+lp->m_max, sizeof(int));
266       }
267       /* add new rows to the end of the row list */
268       for (i = lp->m+1; i <= m_new; i++)
269       {  /* create row descriptor */
270          lp->row[i] = row = dmp_get_atom(lp->pool, sizeof(GLPROW));
271          row->i = i;
272          row->name = NULL;
273          row->node = NULL;
274 #if 1 /* 20/IX-2008 */
275          row->level = 0;
276          row->origin = 0;
277          row->klass = 0;
278          if (tree != NULL)
279          {  switch (tree->reason)
280             {  case 0:
281                   break;
282                case GLP_IROWGEN:
283                   xassert(tree->curr != NULL);
284                   row->level = tree->curr->level;
285                   row->origin = GLP_RF_LAZY;
286                   break;
287                case GLP_ICUTGEN:
288                   xassert(tree->curr != NULL);
289                   row->level = tree->curr->level;
290                   row->origin = GLP_RF_CUT;
291                   break;
292                default:
293                   xassert(tree != tree);
294             }
295          }
296 #endif
297          row->type = GLP_FR;
298          row->lb = row->ub = 0.0;
299          row->ptr = NULL;
300          row->rii = 1.0;
301          row->stat = GLP_BS;
302 #if 0
303          row->bind = -1;
304 #else
305          row->bind = 0;
306 #endif
307          row->prim = row->dual = 0.0;
308          row->pval = row->dval = 0.0;
309          row->mipx = 0.0;
310       }
311       /* set new number of rows */
312       lp->m = m_new;
313       /* invalidate the basis factorization */
314       lp->valid = 0;
315 #if 1
316       if (tree != NULL && tree->reason != 0) tree->reopt = 1;
317 #endif
318       /* return the ordinal number of the first row added */
319       return m_new - nrs + 1;
320 }
321 
322 /***********************************************************************
323 *  NAME
324 *
325 *  glp_add_cols - add new columns to problem object
326 *
327 *  SYNOPSIS
328 *
329 *  int glp_add_cols(glp_prob *lp, int ncs);
330 *
331 *  DESCRIPTION
332 *
333 *  The routine glp_add_cols adds ncs columns (structural variables) to
334 *  the specified problem object. New columns are always added to the end
335 *  of the column list, so the ordinal numbers of existing columns remain
336 *  unchanged.
337 *
338 *  Being added each new column is initially fixed at zero and has empty
339 *  list of the constraint coefficients.
340 *
341 *  RETURNS
342 *
343 *  The routine glp_add_cols returns the ordinal number of the first new
344 *  column added to the problem object. */
345 
glp_add_cols(glp_prob * lp,int ncs)346 int glp_add_cols(glp_prob *lp, int ncs)
347 {     glp_tree *tree = lp->tree;
348       GLPCOL *col;
349       int n_new, j;
350       if (tree != NULL && tree->reason != 0)
351          xerror("glp_add_cols: operation not allowed\n");
352       /* determine new number of columns */
353       if (ncs < 1)
354          xerror("glp_add_cols: ncs = %d; invalid number of columns\n",
355             ncs);
356       if (ncs > N_MAX - lp->n)
357          xerror("glp_add_cols: ncs = %d; too many columns\n", ncs);
358       n_new = lp->n + ncs;
359       /* increase the room, if necessary */
360       if (lp->n_max < n_new)
361       {  GLPCOL **save = lp->col;
362          while (lp->n_max < n_new)
363          {  lp->n_max += lp->n_max;
364             xassert(lp->n_max > 0);
365          }
366          lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *));
367          memcpy(&lp->col[1], &save[1], lp->n * sizeof(GLPCOL *));
368          xfree(save);
369       }
370       /* add new columns to the end of the column list */
371       for (j = lp->n+1; j <= n_new; j++)
372       {  /* create column descriptor */
373          lp->col[j] = col = dmp_get_atom(lp->pool, sizeof(GLPCOL));
374          col->j = j;
375          col->name = NULL;
376          col->node = NULL;
377          col->kind = GLP_CV;
378          col->type = GLP_FX;
379          col->lb = col->ub = 0.0;
380          col->coef = 0.0;
381          col->ptr = NULL;
382          col->sjj = 1.0;
383          col->stat = GLP_NS;
384 #if 0
385          col->bind = -1;
386 #else
387          col->bind = 0; /* the basis may remain valid */
388 #endif
389          col->prim = col->dual = 0.0;
390          col->pval = col->dval = 0.0;
391          col->mipx = 0.0;
392       }
393       /* set new number of columns */
394       lp->n = n_new;
395       /* return the ordinal number of the first column added */
396       return n_new - ncs + 1;
397 }
398 
399 /***********************************************************************
400 *  NAME
401 *
402 *  glp_set_row_name - assign (change) row name
403 *
404 *  SYNOPSIS
405 *
406 *  void glp_set_row_name(glp_prob *lp, int i, const char *name);
407 *
408 *  DESCRIPTION
409 *
410 *  The routine glp_set_row_name assigns a given symbolic name (1 up to
411 *  255 characters) to i-th row (auxiliary variable) of the specified
412 *  problem object.
413 *
414 *  If the parameter name is NULL or empty string, the routine erases an
415 *  existing name of i-th row. */
416 
glp_set_row_name(glp_prob * lp,int i,const char * name)417 void glp_set_row_name(glp_prob *lp, int i, const char *name)
418 {     glp_tree *tree = lp->tree;
419       GLPROW *row;
420       if (!(1 <= i && i <= lp->m))
421          xerror("glp_set_row_name: i = %d; row number out of range\n",
422             i);
423       row = lp->row[i];
424       if (tree != NULL && tree->reason != 0)
425       {  xassert(tree->curr != NULL);
426          xassert(row->level == tree->curr->level);
427       }
428       if (row->name != NULL)
429       {  if (row->node != NULL)
430          {  xassert(lp->r_tree != NULL);
431             avl_delete_node(lp->r_tree, row->node);
432             row->node = NULL;
433          }
434          dmp_free_atom(lp->pool, row->name, strlen(row->name)+1);
435          row->name = NULL;
436       }
437       if (!(name == NULL || name[0] == '\0'))
438       {  int k;
439          for (k = 0; name[k] != '\0'; k++)
440          {  if (k == 256)
441                xerror("glp_set_row_name: i = %d; row name too long\n",
442                   i);
443             if (iscntrl((unsigned char)name[k]))
444                xerror("glp_set_row_name: i = %d: row name contains inva"
445                   "lid character(s)\n", i);
446          }
447          row->name = dmp_get_atom(lp->pool, strlen(name)+1);
448          strcpy(row->name, name);
449          if (lp->r_tree != NULL)
450          {  xassert(row->node == NULL);
451             row->node = avl_insert_node(lp->r_tree, row->name);
452             avl_set_node_link(row->node, row);
453          }
454       }
455       return;
456 }
457 
458 /***********************************************************************
459 *  NAME
460 *
461 *  glp_set_col_name - assign (change) column name
462 *
463 *  SYNOPSIS
464 *
465 *  void glp_set_col_name(glp_prob *lp, int j, const char *name);
466 *
467 *  DESCRIPTION
468 *
469 *  The routine glp_set_col_name assigns a given symbolic name (1 up to
470 *  255 characters) to j-th column (structural variable) of the specified
471 *  problem object.
472 *
473 *  If the parameter name is NULL or empty string, the routine erases an
474 *  existing name of j-th column. */
475 
glp_set_col_name(glp_prob * lp,int j,const char * name)476 void glp_set_col_name(glp_prob *lp, int j, const char *name)
477 {     glp_tree *tree = lp->tree;
478       GLPCOL *col;
479       if (tree != NULL && tree->reason != 0)
480          xerror("glp_set_col_name: operation not allowed\n");
481       if (!(1 <= j && j <= lp->n))
482          xerror("glp_set_col_name: j = %d; column number out of range\n"
483             , j);
484       col = lp->col[j];
485       if (col->name != NULL)
486       {  if (col->node != NULL)
487          {  xassert(lp->c_tree != NULL);
488             avl_delete_node(lp->c_tree, col->node);
489             col->node = NULL;
490          }
491          dmp_free_atom(lp->pool, col->name, strlen(col->name)+1);
492          col->name = NULL;
493       }
494       if (!(name == NULL || name[0] == '\0'))
495       {  int k;
496          for (k = 0; name[k] != '\0'; k++)
497          {  if (k == 256)
498                xerror("glp_set_col_name: j = %d; column name too long\n"
499                   , j);
500             if (iscntrl((unsigned char)name[k]))
501                xerror("glp_set_col_name: j = %d: column name contains i"
502                   "nvalid character(s)\n", j);
503          }
504          col->name = dmp_get_atom(lp->pool, strlen(name)+1);
505          strcpy(col->name, name);
506          if (lp->c_tree != NULL && col->name != NULL)
507          {  xassert(col->node == NULL);
508             col->node = avl_insert_node(lp->c_tree, col->name);
509             avl_set_node_link(col->node, col);
510          }
511       }
512       return;
513 }
514 
515 /***********************************************************************
516 *  NAME
517 *
518 *  glp_set_row_bnds - set (change) row bounds
519 *
520 *  SYNOPSIS
521 *
522 *  void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb,
523 *     double ub);
524 *
525 *  DESCRIPTION
526 *
527 *  The routine glp_set_row_bnds sets (changes) the type and bounds of
528 *  i-th row (auxiliary variable) of the specified problem object.
529 *
530 *  Parameters type, lb, and ub specify the type, lower bound, and upper
531 *  bound, respectively, as follows:
532 *
533 *     Type           Bounds        Comments
534 *     ------------------------------------------------------
535 *     GLP_FR   -inf <  x <  +inf   Free variable
536 *     GLP_LO     lb <= x <  +inf   Variable with lower bound
537 *     GLP_UP   -inf <  x <=  ub    Variable with upper bound
538 *     GLP_DB     lb <= x <=  ub    Double-bounded variable
539 *     GLP_FX           x  =  lb    Fixed variable
540 *
541 *  where x is the auxiliary variable associated with i-th row.
542 *
543 *  If the row has no lower bound, the parameter lb is ignored. If the
544 *  row has no upper bound, the parameter ub is ignored. If the row is
545 *  an equality constraint (i.e. the corresponding auxiliary variable is
546 *  of fixed type), only the parameter lb is used while the parameter ub
547 *  is ignored. */
548 
glp_set_row_bnds(glp_prob * lp,int i,int type,double lb,double ub)549 void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb,
550       double ub)
551 {     GLPROW *row;
552       if (!(1 <= i && i <= lp->m))
553          xerror("glp_set_row_bnds: i = %d; row number out of range\n",
554             i);
555       row = lp->row[i];
556       row->type = type;
557       switch (type)
558       {  case GLP_FR:
559             row->lb = row->ub = 0.0;
560             if (row->stat != GLP_BS) row->stat = GLP_NF;
561             break;
562          case GLP_LO:
563             row->lb = lb, row->ub = 0.0;
564             if (row->stat != GLP_BS) row->stat = GLP_NL;
565             break;
566          case GLP_UP:
567             row->lb = 0.0, row->ub = ub;
568             if (row->stat != GLP_BS) row->stat = GLP_NU;
569             break;
570          case GLP_DB:
571             row->lb = lb, row->ub = ub;
572             if (!(row->stat == GLP_BS ||
573                   row->stat == GLP_NL || row->stat == GLP_NU))
574                row->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU);
575             break;
576          case GLP_FX:
577             row->lb = row->ub = lb;
578             if (row->stat != GLP_BS) row->stat = GLP_NS;
579             break;
580          default:
581             xerror("glp_set_row_bnds: i = %d; type = %d; invalid row ty"
582                "pe\n", i, type);
583       }
584       return;
585 }
586 
587 /***********************************************************************
588 *  NAME
589 *
590 *  glp_set_col_bnds - set (change) column bounds
591 *
592 *  SYNOPSIS
593 *
594 *  void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb,
595 *     double ub);
596 *
597 *  DESCRIPTION
598 *
599 *  The routine glp_set_col_bnds sets (changes) the type and bounds of
600 *  j-th column (structural variable) of the specified problem object.
601 *
602 *  Parameters type, lb, and ub specify the type, lower bound, and upper
603 *  bound, respectively, as follows:
604 *
605 *     Type           Bounds        Comments
606 *     ------------------------------------------------------
607 *     GLP_FR   -inf <  x <  +inf   Free variable
608 *     GLP_LO     lb <= x <  +inf   Variable with lower bound
609 *     GLP_UP   -inf <  x <=  ub    Variable with upper bound
610 *     GLP_DB     lb <= x <=  ub    Double-bounded variable
611 *     GLP_FX           x  =  lb    Fixed variable
612 *
613 *  where x is the structural variable associated with j-th column.
614 *
615 *  If the column has no lower bound, the parameter lb is ignored. If the
616 *  column has no upper bound, the parameter ub is ignored. If the column
617 *  is of fixed type, only the parameter lb is used while the parameter
618 *  ub is ignored. */
619 
glp_set_col_bnds(glp_prob * lp,int j,int type,double lb,double ub)620 void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb,
621       double ub)
622 {     GLPCOL *col;
623       if (!(1 <= j && j <= lp->n))
624          xerror("glp_set_col_bnds: j = %d; column number out of range\n"
625             , j);
626       col = lp->col[j];
627       col->type = type;
628       switch (type)
629       {  case GLP_FR:
630             col->lb = col->ub = 0.0;
631             if (col->stat != GLP_BS) col->stat = GLP_NF;
632             break;
633          case GLP_LO:
634             col->lb = lb, col->ub = 0.0;
635             if (col->stat != GLP_BS) col->stat = GLP_NL;
636             break;
637          case GLP_UP:
638             col->lb = 0.0, col->ub = ub;
639             if (col->stat != GLP_BS) col->stat = GLP_NU;
640             break;
641          case GLP_DB:
642             col->lb = lb, col->ub = ub;
643             if (!(col->stat == GLP_BS ||
644                   col->stat == GLP_NL || col->stat == GLP_NU))
645                col->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU);
646             break;
647          case GLP_FX:
648             col->lb = col->ub = lb;
649             if (col->stat != GLP_BS) col->stat = GLP_NS;
650             break;
651          default:
652             xerror("glp_set_col_bnds: j = %d; type = %d; invalid column"
653                " type\n", j, type);
654       }
655       return;
656 }
657 
658 /***********************************************************************
659 *  NAME
660 *
661 *  glp_set_obj_coef - set (change) obj. coefficient or constant term
662 *
663 *  SYNOPSIS
664 *
665 *  void glp_set_obj_coef(glp_prob *lp, int j, double coef);
666 *
667 *  DESCRIPTION
668 *
669 *  The routine glp_set_obj_coef sets (changes) objective coefficient at
670 *  j-th column (structural variable) of the specified problem object.
671 *
672 *  If the parameter j is 0, the routine sets (changes) the constant term
673 *  ("shift") of the objective function. */
674 
glp_set_obj_coef(glp_prob * lp,int j,double coef)675 void glp_set_obj_coef(glp_prob *lp, int j, double coef)
676 {     glp_tree *tree = lp->tree;
677       if (tree != NULL && tree->reason != 0)
678          xerror("glp_set_obj_coef: operation not allowed\n");
679       if (!(0 <= j && j <= lp->n))
680          xerror("glp_set_obj_coef: j = %d; column number out of range\n"
681             , j);
682       if (j == 0)
683          lp->c0 = coef;
684       else
685          lp->col[j]->coef = coef;
686       return;
687 }
688 
689 /***********************************************************************
690 *  NAME
691 *
692 *  glp_set_mat_row - set (replace) row of the constraint matrix
693 *
694 *  SYNOPSIS
695 *
696 *  void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[],
697 *     const double val[]);
698 *
699 *  DESCRIPTION
700 *
701 *  The routine glp_set_mat_row stores (replaces) the contents of i-th
702 *  row of the constraint matrix of the specified problem object.
703 *
704 *  Column indices and numeric values of new row elements must be placed
705 *  in locations ind[1], ..., ind[len] and val[1], ..., val[len], where
706 *  0 <= len <= n is the new length of i-th row, n is the current number
707 *  of columns in the problem object. Elements with identical column
708 *  indices are not allowed. Zero elements are allowed, but they are not
709 *  stored in the constraint matrix.
710 *
711 *  If the parameter len is zero, the parameters ind and/or val can be
712 *  specified as NULL. */
713 
glp_set_mat_row(glp_prob * lp,int i,int len,const int ind[],const double val[])714 void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[],
715       const double val[])
716 {     glp_tree *tree = lp->tree;
717       GLPROW *row;
718       GLPCOL *col;
719       GLPAIJ *aij, *next;
720       int j, k;
721       /* obtain pointer to i-th row */
722       if (!(1 <= i && i <= lp->m))
723          xerror("glp_set_mat_row: i = %d; row number out of range\n",
724             i);
725       row = lp->row[i];
726       if (tree != NULL && tree->reason != 0)
727       {  xassert(tree->curr != NULL);
728          xassert(row->level == tree->curr->level);
729       }
730       /* remove all existing elements from i-th row */
731       while (row->ptr != NULL)
732       {  /* take next element in the row */
733          aij = row->ptr;
734          /* remove the element from the row list */
735          row->ptr = aij->r_next;
736          /* obtain pointer to corresponding column */
737          col = aij->col;
738          /* remove the element from the column list */
739          if (aij->c_prev == NULL)
740             col->ptr = aij->c_next;
741          else
742             aij->c_prev->c_next = aij->c_next;
743          if (aij->c_next == NULL)
744             ;
745          else
746             aij->c_next->c_prev = aij->c_prev;
747          /* return the element to the memory pool */
748          dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
749          /* if the corresponding column is basic, invalidate the basis
750             factorization */
751          if (col->stat == GLP_BS) lp->valid = 0;
752       }
753       /* store new contents of i-th row */
754       if (!(0 <= len && len <= lp->n))
755          xerror("glp_set_mat_row: i = %d; len = %d; invalid row length "
756             "\n", i, len);
757       if (len > NNZ_MAX - lp->nnz)
758          xerror("glp_set_mat_row: i = %d; len = %d; too many constraint"
759             " coefficients\n", i, len);
760       for (k = 1; k <= len; k++)
761       {  /* take number j of corresponding column */
762          j = ind[k];
763          /* obtain pointer to j-th column */
764          if (!(1 <= j && j <= lp->n))
765             xerror("glp_set_mat_row: i = %d; ind[%d] = %d; column index"
766                " out of range\n", i, k, j);
767          col = lp->col[j];
768          /* if there is element with the same column index, it can only
769             be found in the beginning of j-th column list */
770          if (col->ptr != NULL && col->ptr->row->i == i)
771             xerror("glp_set_mat_row: i = %d; ind[%d] = %d; duplicate co"
772                "lumn indices not allowed\n", i, k, j);
773          /* create new element */
774          aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++;
775          aij->row = row;
776          aij->col = col;
777          aij->val = val[k];
778          /* add the new element to the beginning of i-th row and j-th
779             column lists */
780          aij->r_prev = NULL;
781          aij->r_next = row->ptr;
782          aij->c_prev = NULL;
783          aij->c_next = col->ptr;
784          if (aij->r_next != NULL) aij->r_next->r_prev = aij;
785          if (aij->c_next != NULL) aij->c_next->c_prev = aij;
786          row->ptr = col->ptr = aij;
787          /* if the corresponding column is basic, invalidate the basis
788             factorization */
789          if (col->stat == GLP_BS && aij->val != 0.0) lp->valid = 0;
790       }
791       /* remove zero elements from i-th row */
792       for (aij = row->ptr; aij != NULL; aij = next)
793       {  next = aij->r_next;
794          if (aij->val == 0.0)
795          {  /* remove the element from the row list */
796             if (aij->r_prev == NULL)
797                row->ptr = next;
798             else
799                aij->r_prev->r_next = next;
800             if (next == NULL)
801                ;
802             else
803                next->r_prev = aij->r_prev;
804             /* remove the element from the column list */
805             xassert(aij->c_prev == NULL);
806             aij->col->ptr = aij->c_next;
807             if (aij->c_next != NULL) aij->c_next->c_prev = NULL;
808             /* return the element to the memory pool */
809             dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
810          }
811       }
812       return;
813 }
814 
815 /***********************************************************************
816 *  NAME
817 *
818 *  glp_set_mat_col - set (replace) column of the constraint matrix
819 *
820 *  SYNOPSIS
821 *
822 *  void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[],
823 *     const double val[]);
824 *
825 *  DESCRIPTION
826 *
827 *  The routine glp_set_mat_col stores (replaces) the contents of j-th
828 *  column of the constraint matrix of the specified problem object.
829 *
830 *  Row indices and numeric values of new column elements must be placed
831 *  in locations ind[1], ..., ind[len] and val[1], ..., val[len], where
832 *  0 <= len <= m is the new length of j-th column, m is the current
833 *  number of rows in the problem object. Elements with identical column
834 *  indices are not allowed. Zero elements are allowed, but they are not
835 *  stored in the constraint matrix.
836 *
837 *  If the parameter len is zero, the parameters ind and/or val can be
838 *  specified as NULL. */
839 
glp_set_mat_col(glp_prob * lp,int j,int len,const int ind[],const double val[])840 void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[],
841       const double val[])
842 {     glp_tree *tree = lp->tree;
843       GLPROW *row;
844       GLPCOL *col;
845       GLPAIJ *aij, *next;
846       int i, k;
847       if (tree != NULL && tree->reason != 0)
848          xerror("glp_set_mat_col: operation not allowed\n");
849       /* obtain pointer to j-th column */
850       if (!(1 <= j && j <= lp->n))
851          xerror("glp_set_mat_col: j = %d; column number out of range\n",
852             j);
853       col = lp->col[j];
854       /* remove all existing elements from j-th column */
855       while (col->ptr != NULL)
856       {  /* take next element in the column */
857          aij = col->ptr;
858          /* remove the element from the column list */
859          col->ptr = aij->c_next;
860          /* obtain pointer to corresponding row */
861          row = aij->row;
862          /* remove the element from the row list */
863          if (aij->r_prev == NULL)
864             row->ptr = aij->r_next;
865          else
866             aij->r_prev->r_next = aij->r_next;
867          if (aij->r_next == NULL)
868             ;
869          else
870             aij->r_next->r_prev = aij->r_prev;
871          /* return the element to the memory pool */
872          dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
873       }
874       /* store new contents of j-th column */
875       if (!(0 <= len && len <= lp->m))
876          xerror("glp_set_mat_col: j = %d; len = %d; invalid column leng"
877             "th\n", j, len);
878       if (len > NNZ_MAX - lp->nnz)
879          xerror("glp_set_mat_col: j = %d; len = %d; too many constraint"
880             " coefficients\n", j, len);
881       for (k = 1; k <= len; k++)
882       {  /* take number i of corresponding row */
883          i = ind[k];
884          /* obtain pointer to i-th row */
885          if (!(1 <= i && i <= lp->m))
886             xerror("glp_set_mat_col: j = %d; ind[%d] = %d; row index ou"
887                "t of range\n", j, k, i);
888          row = lp->row[i];
889          /* if there is element with the same row index, it can only be
890             found in the beginning of i-th row list */
891          if (row->ptr != NULL && row->ptr->col->j == j)
892             xerror("glp_set_mat_col: j = %d; ind[%d] = %d; duplicate ro"
893                "w indices not allowed\n", j, k, i);
894          /* create new element */
895          aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++;
896          aij->row = row;
897          aij->col = col;
898          aij->val = val[k];
899          /* add the new element to the beginning of i-th row and j-th
900             column lists */
901          aij->r_prev = NULL;
902          aij->r_next = row->ptr;
903          aij->c_prev = NULL;
904          aij->c_next = col->ptr;
905          if (aij->r_next != NULL) aij->r_next->r_prev = aij;
906          if (aij->c_next != NULL) aij->c_next->c_prev = aij;
907          row->ptr = col->ptr = aij;
908       }
909       /* remove zero elements from j-th column */
910       for (aij = col->ptr; aij != NULL; aij = next)
911       {  next = aij->c_next;
912          if (aij->val == 0.0)
913          {  /* remove the element from the row list */
914             xassert(aij->r_prev == NULL);
915             aij->row->ptr = aij->r_next;
916             if (aij->r_next != NULL) aij->r_next->r_prev = NULL;
917             /* remove the element from the column list */
918             if (aij->c_prev == NULL)
919                col->ptr = next;
920             else
921                aij->c_prev->c_next = next;
922             if (next == NULL)
923                ;
924             else
925                next->c_prev = aij->c_prev;
926             /* return the element to the memory pool */
927             dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
928          }
929       }
930       /* if j-th column is basic, invalidate the basis factorization */
931       if (col->stat == GLP_BS) lp->valid = 0;
932       return;
933 }
934 
935 /***********************************************************************
936 *  NAME
937 *
938 *  glp_load_matrix - load (replace) the whole constraint matrix
939 *
940 *  SYNOPSIS
941 *
942 *  void glp_load_matrix(glp_prob *lp, int ne, const int ia[],
943 *     const int ja[], const double ar[]);
944 *
945 *  DESCRIPTION
946 *
947 *  The routine glp_load_matrix loads the constraint matrix passed in
948 *  the arrays ia, ja, and ar into the specified problem object. Before
949 *  loading the current contents of the constraint matrix is destroyed.
950 *
951 *  Constraint coefficients (elements of the constraint matrix) must be
952 *  specified as triplets (ia[k], ja[k], ar[k]) for k = 1, ..., ne,
953 *  where ia[k] is the row index, ja[k] is the column index, ar[k] is a
954 *  numeric value of corresponding constraint coefficient. The parameter
955 *  ne specifies the total number of (non-zero) elements in the matrix
956 *  to be loaded. Coefficients with identical indices are not allowed.
957 *  Zero coefficients are allowed, however, they are not stored in the
958 *  constraint matrix.
959 *
960 *  If the parameter ne is zero, the parameters ia, ja, and ar can be
961 *  specified as NULL. */
962 
glp_load_matrix(glp_prob * lp,int ne,const int ia[],const int ja[],const double ar[])963 void glp_load_matrix(glp_prob *lp, int ne, const int ia[],
964       const int ja[], const double ar[])
965 {     glp_tree *tree = lp->tree;
966       GLPROW *row;
967       GLPCOL *col;
968       GLPAIJ *aij, *next;
969       int i, j, k;
970       if (tree != NULL && tree->reason != 0)
971          xerror("glp_load_matrix: operation not allowed\n");
972       /* clear the constraint matrix */
973       for (i = 1; i <= lp->m; i++)
974       {  row = lp->row[i];
975          while (row->ptr != NULL)
976          {  aij = row->ptr;
977             row->ptr = aij->r_next;
978             dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
979          }
980       }
981       xassert(lp->nnz == 0);
982       for (j = 1; j <= lp->n; j++) lp->col[j]->ptr = NULL;
983       /* load the new contents of the constraint matrix and build its
984          row lists */
985       if (ne < 0)
986          xerror("glp_load_matrix: ne = %d; invalid number of constraint"
987             " coefficients\n", ne);
988       if (ne > NNZ_MAX)
989          xerror("glp_load_matrix: ne = %d; too many constraint coeffici"
990             "ents\n", ne);
991       for (k = 1; k <= ne; k++)
992       {  /* take indices of new element */
993          i = ia[k], j = ja[k];
994          /* obtain pointer to i-th row */
995          if (!(1 <= i && i <= lp->m))
996             xerror("glp_load_matrix: ia[%d] = %d; row index out of rang"
997                "e\n", k, i);
998          row = lp->row[i];
999          /* obtain pointer to j-th column */
1000          if (!(1 <= j && j <= lp->n))
1001             xerror("glp_load_matrix: ja[%d] = %d; column index out of r"
1002                "ange\n", k, j);
1003          col = lp->col[j];
1004          /* create new element */
1005          aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++;
1006          aij->row = row;
1007          aij->col = col;
1008          aij->val = ar[k];
1009          /* add the new element to the beginning of i-th row list */
1010          aij->r_prev = NULL;
1011          aij->r_next = row->ptr;
1012          if (aij->r_next != NULL) aij->r_next->r_prev = aij;
1013          row->ptr = aij;
1014       }
1015       xassert(lp->nnz == ne);
1016       /* build column lists of the constraint matrix and check elements
1017          with identical indices */
1018       for (i = 1; i <= lp->m; i++)
1019       {  for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next)
1020          {  /* obtain pointer to corresponding column */
1021             col = aij->col;
1022             /* if there is element with identical indices, it can only
1023                be found in the beginning of j-th column list */
1024             if (col->ptr != NULL && col->ptr->row->i == i)
1025             {  for (k = 1; k <= ne; k++)
1026                   if (ia[k] == i && ja[k] == col->j) break;
1027                xerror("glp_load_mat: ia[%d] = %d; ja[%d] = %d; duplicat"
1028                   "e indices not allowed\n", k, i, k, col->j);
1029             }
1030             /* add the element to the beginning of j-th column list */
1031             aij->c_prev = NULL;
1032             aij->c_next = col->ptr;
1033             if (aij->c_next != NULL) aij->c_next->c_prev = aij;
1034             col->ptr = aij;
1035          }
1036       }
1037       /* remove zero elements from the constraint matrix */
1038       for (i = 1; i <= lp->m; i++)
1039       {  row = lp->row[i];
1040          for (aij = row->ptr; aij != NULL; aij = next)
1041          {  next = aij->r_next;
1042             if (aij->val == 0.0)
1043             {  /* remove the element from the row list */
1044                if (aij->r_prev == NULL)
1045                   row->ptr = next;
1046                else
1047                   aij->r_prev->r_next = next;
1048                if (next == NULL)
1049                   ;
1050                else
1051                   next->r_prev = aij->r_prev;
1052                /* remove the element from the column list */
1053                if (aij->c_prev == NULL)
1054                   aij->col->ptr = aij->c_next;
1055                else
1056                   aij->c_prev->c_next = aij->c_next;
1057                if (aij->c_next == NULL)
1058                   ;
1059                else
1060                   aij->c_next->c_prev = aij->c_prev;
1061                /* return the element to the memory pool */
1062                dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--;
1063             }
1064          }
1065       }
1066       /* invalidate the basis factorization */
1067       lp->valid = 0;
1068       return;
1069 }
1070 
1071 /***********************************************************************
1072 *  NAME
1073 *
1074 *  glp_check_dup - check for duplicate elements in sparse matrix
1075 *
1076 *  SYNOPSIS
1077 *
1078 *  int glp_check_dup(int m, int n, int ne, const int ia[],
1079 *     const int ja[]);
1080 *
1081 *  DESCRIPTION
1082 *
1083 *  The routine glp_check_dup checks for duplicate elements (that is,
1084 *  elements with identical indices) in a sparse matrix specified in the
1085 *  coordinate format.
1086 *
1087 *  The parameters m and n specifies, respectively, the number of rows
1088 *  and columns in the matrix, m >= 0, n >= 0.
1089 *
1090 *  The parameter ne specifies the number of (structurally) non-zero
1091 *  elements in the matrix, ne >= 0.
1092 *
1093 *  Elements of the matrix are specified as doublets (ia[k],ja[k]) for
1094 *  k = 1,...,ne, where ia[k] is a row index, ja[k] is a column index.
1095 *
1096 *  The routine glp_check_dup can be used prior to a call to the routine
1097 *  glp_load_matrix to check that the constraint matrix to be loaded has
1098 *  no duplicate elements.
1099 *
1100 *  RETURNS
1101 *
1102 *  The routine glp_check_dup returns one of the following values:
1103 *
1104 *   0 - the matrix has no duplicate elements;
1105 *
1106 *  -k - indices ia[k] or/and ja[k] are out of range;
1107 *
1108 *  +k - element (ia[k],ja[k]) is duplicate. */
1109 
glp_check_dup(int m,int n,int ne,const int ia[],const int ja[])1110 int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[])
1111 {     int i, j, k, *ptr, *next, ret;
1112       char *flag;
1113       if (m < 0)
1114          xerror("glp_check_dup: m = %d; invalid parameter\n");
1115       if (n < 0)
1116          xerror("glp_check_dup: n = %d; invalid parameter\n");
1117       if (ne < 0)
1118          xerror("glp_check_dup: ne = %d; invalid parameter\n");
1119       if (ne > 0 && ia == NULL)
1120          xerror("glp_check_dup: ia = %p; invalid parameter\n", ia);
1121       if (ne > 0 && ja == NULL)
1122          xerror("glp_check_dup: ja = %p; invalid parameter\n", ja);
1123       for (k = 1; k <= ne; k++)
1124       {  i = ia[k], j = ja[k];
1125          if (!(1 <= i && i <= m && 1 <= j && j <= n))
1126          {  ret = -k;
1127             goto done;
1128          }
1129       }
1130       if (m == 0 || n == 0)
1131       {  ret = 0;
1132          goto done;
1133       }
1134       /* allocate working arrays */
1135       ptr = xcalloc(1+m, sizeof(int));
1136       next = xcalloc(1+ne, sizeof(int));
1137       flag = xcalloc(1+n, sizeof(char));
1138       /* build row lists */
1139       for (i = 1; i <= m; i++)
1140          ptr[i] = 0;
1141       for (k = 1; k <= ne; k++)
1142       {  i = ia[k];
1143          next[k] = ptr[i];
1144          ptr[i] = k;
1145       }
1146       /* clear column flags */
1147       for (j = 1; j <= n; j++)
1148          flag[j] = 0;
1149       /* check for duplicate elements */
1150       for (i = 1; i <= m; i++)
1151       {  for (k = ptr[i]; k != 0; k = next[k])
1152          {  j = ja[k];
1153             if (flag[j])
1154             {  /* find first element (i,j) */
1155                for (k = 1; k <= ne; k++)
1156                   if (ia[k] == i && ja[k] == j) break;
1157                xassert(k <= ne);
1158                /* find next (duplicate) element (i,j) */
1159                for (k++; k <= ne; k++)
1160                   if (ia[k] == i && ja[k] == j) break;
1161                xassert(k <= ne);
1162                ret = +k;
1163                goto skip;
1164             }
1165             flag[j] = 1;
1166          }
1167          /* clear column flags */
1168          for (k = ptr[i]; k != 0; k = next[k])
1169             flag[ja[k]] = 0;
1170       }
1171       /* no duplicate element found */
1172       ret = 0;
1173 skip: /* free working arrays */
1174       xfree(ptr);
1175       xfree(next);
1176       xfree(flag);
1177 done: return ret;
1178 }
1179 
1180 /***********************************************************************
1181 *  NAME
1182 *
1183 *  glp_sort_matrix - sort elements of the constraint matrix
1184 *
1185 *  SYNOPSIS
1186 *
1187 *  void glp_sort_matrix(glp_prob *P);
1188 *
1189 *  DESCRIPTION
1190 *
1191 *  The routine glp_sort_matrix sorts elements of the constraint matrix
1192 *  rebuilding its row and column linked lists. On exit from the routine
1193 *  the constraint matrix is not changed, however, elements in the row
1194 *  linked lists become ordered by ascending column indices, and the
1195 *  elements in the column linked lists become ordered by ascending row
1196 *  indices. */
1197 
glp_sort_matrix(glp_prob * P)1198 void glp_sort_matrix(glp_prob *P)
1199 {     GLPAIJ *aij;
1200       int i, j;
1201       if (P == NULL || P->magic != GLP_PROB_MAGIC)
1202          xerror("glp_sort_matrix: P = %p; invalid problem object\n",
1203             P);
1204       /* rebuild row linked lists */
1205       for (i = P->m; i >= 1; i--)
1206          P->row[i]->ptr = NULL;
1207       for (j = P->n; j >= 1; j--)
1208       {  for (aij = P->col[j]->ptr; aij != NULL; aij = aij->c_next)
1209          {  i = aij->row->i;
1210             aij->r_prev = NULL;
1211             aij->r_next = P->row[i]->ptr;
1212             if (aij->r_next != NULL) aij->r_next->r_prev = aij;
1213             P->row[i]->ptr = aij;
1214          }
1215       }
1216       /* rebuild column linked lists */
1217       for (j = P->n; j >= 1; j--)
1218          P->col[j]->ptr = NULL;
1219       for (i = P->m; i >= 1; i--)
1220       {  for (aij = P->row[i]->ptr; aij != NULL; aij = aij->r_next)
1221          {  j = aij->col->j;
1222             aij->c_prev = NULL;
1223             aij->c_next = P->col[j]->ptr;
1224             if (aij->c_next != NULL) aij->c_next->c_prev = aij;
1225             P->col[j]->ptr = aij;
1226          }
1227       }
1228       return;
1229 }
1230 
1231 /***********************************************************************
1232 *  NAME
1233 *
1234 *  glp_del_rows - delete rows from problem object
1235 *
1236 *  SYNOPSIS
1237 *
1238 *  void glp_del_rows(glp_prob *lp, int nrs, const int num[]);
1239 *
1240 *  DESCRIPTION
1241 *
1242 *  The routine glp_del_rows deletes rows from the specified problem
1243 *  object. Ordinal numbers of rows to be deleted should be placed in
1244 *  locations num[1], ..., num[nrs], where nrs > 0.
1245 *
1246 *  Note that deleting rows involves changing ordinal numbers of other
1247 *  rows remaining in the problem object. New ordinal numbers of the
1248 *  remaining rows are assigned under the assumption that the original
1249 *  order of rows is not changed. */
1250 
glp_del_rows(glp_prob * lp,int nrs,const int num[])1251 void glp_del_rows(glp_prob *lp, int nrs, const int num[])
1252 {     glp_tree *tree = lp->tree;
1253       GLPROW *row;
1254       int i, k, m_new;
1255       /* mark rows to be deleted */
1256       if (!(1 <= nrs && nrs <= lp->m))
1257          xerror("glp_del_rows: nrs = %d; invalid number of rows\n",
1258             nrs);
1259       for (k = 1; k <= nrs; k++)
1260       {  /* take the number of row to be deleted */
1261          i = num[k];
1262          /* obtain pointer to i-th row */
1263          if (!(1 <= i && i <= lp->m))
1264             xerror("glp_del_rows: num[%d] = %d; row number out of range"
1265                "\n", k, i);
1266          row = lp->row[i];
1267          if (tree != NULL && tree->reason != 0)
1268          {  if (!(tree->reason == GLP_IROWGEN ||
1269                   tree->reason == GLP_ICUTGEN))
1270                xerror("glp_del_rows: operation not allowed\n");
1271             xassert(tree->curr != NULL);
1272             if (row->level != tree->curr->level)
1273                xerror("glp_del_rows: num[%d] = %d; invalid attempt to d"
1274                   "elete row created not in current subproblem\n", k,i);
1275             if (row->stat != GLP_BS)
1276                xerror("glp_del_rows: num[%d] = %d; invalid attempt to d"
1277                   "elete active row (constraint)\n", k, i);
1278             tree->reinv = 1;
1279          }
1280          /* check that the row is not marked yet */
1281          if (row->i == 0)
1282             xerror("glp_del_rows: num[%d] = %d; duplicate row numbers n"
1283                "ot allowed\n", k, i);
1284          /* erase symbolic name assigned to the row */
1285          glp_set_row_name(lp, i, NULL);
1286          xassert(row->node == NULL);
1287          /* erase corresponding row of the constraint matrix */
1288          glp_set_mat_row(lp, i, 0, NULL, NULL);
1289          xassert(row->ptr == NULL);
1290          /* mark the row to be deleted */
1291          row->i = 0;
1292       }
1293       /* delete all marked rows from the row list */
1294       m_new = 0;
1295       for (i = 1; i <= lp->m; i++)
1296       {  /* obtain pointer to i-th row */
1297          row = lp->row[i];
1298          /* check if the row is marked */
1299          if (row->i == 0)
1300          {  /* it is marked, delete it */
1301             dmp_free_atom(lp->pool, row, sizeof(GLPROW));
1302          }
1303          else
1304          {  /* it is not marked; keep it */
1305             row->i = ++m_new;
1306             lp->row[row->i] = row;
1307          }
1308       }
1309       /* set new number of rows */
1310       lp->m = m_new;
1311       /* invalidate the basis factorization */
1312       lp->valid = 0;
1313       return;
1314 }
1315 
1316 /***********************************************************************
1317 *  NAME
1318 *
1319 *  glp_del_cols - delete columns from problem object
1320 *
1321 *  SYNOPSIS
1322 *
1323 *  void glp_del_cols(glp_prob *lp, int ncs, const int num[]);
1324 *
1325 *  DESCRIPTION
1326 *
1327 *  The routine glp_del_cols deletes columns from the specified problem
1328 *  object. Ordinal numbers of columns to be deleted should be placed in
1329 *  locations num[1], ..., num[ncs], where ncs > 0.
1330 *
1331 *  Note that deleting columns involves changing ordinal numbers of
1332 *  other columns remaining in the problem object. New ordinal numbers
1333 *  of the remaining columns are assigned under the assumption that the
1334 *  original order of columns is not changed. */
1335 
glp_del_cols(glp_prob * lp,int ncs,const int num[])1336 void glp_del_cols(glp_prob *lp, int ncs, const int num[])
1337 {     glp_tree *tree = lp->tree;
1338       GLPCOL *col;
1339       int j, k, n_new;
1340       if (tree != NULL && tree->reason != 0)
1341          xerror("glp_del_cols: operation not allowed\n");
1342       /* mark columns to be deleted */
1343       if (!(1 <= ncs && ncs <= lp->n))
1344          xerror("glp_del_cols: ncs = %d; invalid number of columns\n",
1345             ncs);
1346       for (k = 1; k <= ncs; k++)
1347       {  /* take the number of column to be deleted */
1348          j = num[k];
1349          /* obtain pointer to j-th column */
1350          if (!(1 <= j && j <= lp->n))
1351             xerror("glp_del_cols: num[%d] = %d; column number out of ra"
1352                "nge", k, j);
1353          col = lp->col[j];
1354          /* check that the column is not marked yet */
1355          if (col->j == 0)
1356             xerror("glp_del_cols: num[%d] = %d; duplicate column number"
1357                "s not allowed\n", k, j);
1358          /* erase symbolic name assigned to the column */
1359          glp_set_col_name(lp, j, NULL);
1360          xassert(col->node == NULL);
1361          /* erase corresponding column of the constraint matrix */
1362          glp_set_mat_col(lp, j, 0, NULL, NULL);
1363          xassert(col->ptr == NULL);
1364          /* mark the column to be deleted */
1365          col->j = 0;
1366          /* if it is basic, invalidate the basis factorization */
1367          if (col->stat == GLP_BS) lp->valid = 0;
1368       }
1369       /* delete all marked columns from the column list */
1370       n_new = 0;
1371       for (j = 1; j <= lp->n; j++)
1372       {  /* obtain pointer to j-th column */
1373          col = lp->col[j];
1374          /* check if the column is marked */
1375          if (col->j == 0)
1376          {  /* it is marked; delete it */
1377             dmp_free_atom(lp->pool, col, sizeof(GLPCOL));
1378          }
1379          else
1380          {  /* it is not marked; keep it */
1381             col->j = ++n_new;
1382             lp->col[col->j] = col;
1383          }
1384       }
1385       /* set new number of columns */
1386       lp->n = n_new;
1387       /* if the basis header is still valid, adjust it */
1388       if (lp->valid)
1389       {  int m = lp->m;
1390          int *head = lp->head;
1391          for (j = 1; j <= n_new; j++)
1392          {  k = lp->col[j]->bind;
1393             if (k != 0)
1394             {  xassert(1 <= k && k <= m);
1395                head[k] = m + j;
1396             }
1397          }
1398       }
1399       return;
1400 }
1401 
1402 /***********************************************************************
1403 *  NAME
1404 *
1405 *  glp_copy_prob - copy problem object content
1406 *
1407 *  SYNOPSIS
1408 *
1409 *  void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);
1410 *
1411 *  DESCRIPTION
1412 *
1413 *  The routine glp_copy_prob copies the content of the problem object
1414 *  prob to the problem object dest.
1415 *
1416 *  The parameter names is a flag. If it is non-zero, the routine also
1417 *  copies all symbolic names; otherwise, if it is zero, symbolic names
1418 *  are not copied. */
1419 
glp_copy_prob(glp_prob * dest,glp_prob * prob,int names)1420 void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names)
1421 {     glp_tree *tree = dest->tree;
1422       glp_bfcp bfcp;
1423       int i, j, len, *ind;
1424       double *val;
1425       if (tree != NULL && tree->reason != 0)
1426          xerror("glp_copy_prob: operation not allowed\n");
1427       if (dest == prob)
1428          xerror("glp_copy_prob: copying problem object to itself not al"
1429             "lowed\n");
1430       if (!(names == GLP_ON || names == GLP_OFF))
1431          xerror("glp_copy_prob: names = %d; invalid parameter\n",
1432             names);
1433       glp_erase_prob(dest);
1434       if (names && prob->name != NULL)
1435          glp_set_prob_name(dest, prob->name);
1436       if (names && prob->obj != NULL)
1437          glp_set_obj_name(dest, prob->obj);
1438       dest->dir = prob->dir;
1439       dest->c0 = prob->c0;
1440       if (prob->m > 0)
1441          glp_add_rows(dest, prob->m);
1442       if (prob->n > 0)
1443          glp_add_cols(dest, prob->n);
1444       glp_get_bfcp(prob, &bfcp);
1445       glp_set_bfcp(dest, &bfcp);
1446       dest->pbs_stat = prob->pbs_stat;
1447       dest->dbs_stat = prob->dbs_stat;
1448       dest->obj_val = prob->obj_val;
1449       dest->some = prob->some;
1450       dest->ipt_stat = prob->ipt_stat;
1451       dest->ipt_obj = prob->ipt_obj;
1452       dest->mip_stat = prob->mip_stat;
1453       dest->mip_obj = prob->mip_obj;
1454       for (i = 1; i <= prob->m; i++)
1455       {  GLPROW *to = dest->row[i];
1456          GLPROW *from = prob->row[i];
1457          if (names && from->name != NULL)
1458             glp_set_row_name(dest, i, from->name);
1459          to->type = from->type;
1460          to->lb = from->lb;
1461          to->ub = from->ub;
1462          to->rii = from->rii;
1463          to->stat = from->stat;
1464          to->prim = from->prim;
1465          to->dual = from->dual;
1466          to->pval = from->pval;
1467          to->dval = from->dval;
1468          to->mipx = from->mipx;
1469       }
1470       ind = xcalloc(1+prob->m, sizeof(int));
1471       val = xcalloc(1+prob->m, sizeof(double));
1472       for (j = 1; j <= prob->n; j++)
1473       {  GLPCOL *to = dest->col[j];
1474          GLPCOL *from = prob->col[j];
1475          if (names && from->name != NULL)
1476             glp_set_col_name(dest, j, from->name);
1477          to->kind = from->kind;
1478          to->type = from->type;
1479          to->lb = from->lb;
1480          to->ub = from->ub;
1481          to->coef = from->coef;
1482          len = glp_get_mat_col(prob, j, ind, val);
1483          glp_set_mat_col(dest, j, len, ind, val);
1484          to->sjj = from->sjj;
1485          to->stat = from->stat;
1486          to->prim = from->prim;
1487          to->dual = from->dual;
1488          to->pval = from->pval;
1489          to->dval = from->dval;
1490          to->mipx = from->mipx;
1491       }
1492       xfree(ind);
1493       xfree(val);
1494       return;
1495 }
1496 
1497 /***********************************************************************
1498 *  NAME
1499 *
1500 *  glp_erase_prob - erase problem object content
1501 *
1502 *  SYNOPSIS
1503 *
1504 *  void glp_erase_prob(glp_prob *lp);
1505 *
1506 *  DESCRIPTION
1507 *
1508 *  The routine glp_erase_prob erases the content of the specified
1509 *  problem object. The effect of this operation is the same as if the
1510 *  problem object would be deleted with the routine glp_delete_prob and
1511 *  then created anew with the routine glp_create_prob, with exception
1512 *  that the handle (pointer) to the problem object remains valid. */
1513 
1514 static void delete_prob(glp_prob *lp);
1515 
glp_erase_prob(glp_prob * lp)1516 void glp_erase_prob(glp_prob *lp)
1517 {     glp_tree *tree = lp->tree;
1518       if (tree != NULL && tree->reason != 0)
1519          xerror("glp_erase_prob: operation not allowed\n");
1520       delete_prob(lp);
1521       create_prob(lp);
1522       return;
1523 }
1524 
1525 /***********************************************************************
1526 *  NAME
1527 *
1528 *  glp_delete_prob - delete problem object
1529 *
1530 *  SYNOPSIS
1531 *
1532 *  void glp_delete_prob(glp_prob *lp);
1533 *
1534 *  DESCRIPTION
1535 *
1536 *  The routine glp_delete_prob deletes the specified problem object and
1537 *  frees all the memory allocated to it. */
1538 
delete_prob(glp_prob * lp)1539 static void delete_prob(glp_prob *lp)
1540 {     lp->magic = 0x3F3F3F3F;
1541       dmp_delete_pool(lp->pool);
1542 #if 0 /* 17/XI-2009 */
1543       xfree(lp->cps);
1544 #else
1545       if (lp->parms != NULL) xfree(lp->parms);
1546 #endif
1547       xassert(lp->tree == NULL);
1548 #if 0
1549       if (lp->cwa != NULL) xfree(lp->cwa);
1550 #endif
1551       xfree(lp->row);
1552       xfree(lp->col);
1553       if (lp->r_tree != NULL) avl_delete_tree(lp->r_tree);
1554       if (lp->c_tree != NULL) avl_delete_tree(lp->c_tree);
1555       xfree(lp->head);
1556       if (lp->bfcp != NULL) xfree(lp->bfcp);
1557       if (lp->bfd != NULL) bfd_delete_it(lp->bfd);
1558       return;
1559 }
1560 
glp_delete_prob(glp_prob * lp)1561 void glp_delete_prob(glp_prob *lp)
1562 {     glp_tree *tree = lp->tree;
1563       if (tree != NULL && tree->reason != 0)
1564          xerror("glp_delete_prob: operation not allowed\n");
1565       delete_prob(lp);
1566       xfree(lp);
1567       return;
1568 }
1569 
1570 /* eof */
1571