1 /* glplpf.h (LP basis factorization, Schur complement version) */
2 
3 /***********************************************************************
4 *  This code is part of GLPK (GNU Linear Programming Kit).
5 *
6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
9 *  E-mail: <mao@gnu.org>.
10 *
11 *  GLPK is free software: you can redistribute it and/or modify it
12 *  under the terms of the GNU General Public License as published by
13 *  the Free Software Foundation, either version 3 of the License, or
14 *  (at your option) any later version.
15 *
16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
19 *  License for more details.
20 *
21 *  You should have received a copy of the GNU General Public License
22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
23 ***********************************************************************/
24 
25 #ifndef GLPLPF_H
26 #define GLPLPF_H
27 
28 #include "glpscf.h"
29 #include "glpluf.h"
AMD_preprocess(Int n,const Int Ap[],const Int Ai[],Int Rp[],Int Ri[],Int W[],Int Flag[])30 
31 /***********************************************************************
32 *  The structure LPF defines the factorization of the basis mxm matrix
33 *  B, where m is the number of rows in corresponding problem instance.
34 *
35 *  This factorization is the following septet:
36 *
37 *     [B] = (L0, U0, R, S, C, P, Q),                                 (1)
38 *
39 *  and is based on the following main equality:
40 *
41 *     ( B  F^)     ( B0 F )       ( L0 0 ) ( U0 R )
42 *     (      ) = P (      ) Q = P (      ) (      ) Q,               (2)
43 *     ( G^ H^)     ( G  H )       ( S  I ) ( 0  C )
44 *
45 *  where:
46 *
47 *  B is the current basis matrix (not stored);
48 *
49 *  F^, G^, H^ are some additional matrices (not stored);
50 *
51 *  B0 is some initial basis matrix (not stored);
52 *
53 *  F, G, H are some additional matrices (not stored);
54 *
55 *  P, Q are permutation matrices (stored in both row- and column-like
56 *  formats);
57 *
58 *  L0, U0 are some matrices that defines a factorization of the initial
59 *  basis matrix B0 = L0 * U0 (stored in an invertable form);
60 *
61 *  R is a matrix defined from L0 * R = F, so R = inv(L0) * F (stored in
62 *  a column-wise sparse format);
63 *
64 *  S is a matrix defined from S * U0 = G, so S = G * inv(U0) (stored in
65 *  a row-wise sparse format);
66 *
67 *  C is the Schur complement for matrix (B0 F G H). It is defined from
68 *  S * R + C = H, so C = H - S * R = H - G * inv(U0) * inv(L0) * F =
69 *  = H - G * inv(B0) * F. Matrix C is stored in an invertable form.
70 *
71 *  REFERENCES
72 *
73 *  1. M.A.Saunders, "LUSOL: A basis package for constrained optimiza-
74 *     tion," SCCM, Stanford University, 2006.
75 *
76 *  2. M.A.Saunders, "Notes 5: Basis Updates," CME 318, Stanford Univer-
77 *     sity, Spring 2006.
78 *
79 *  3. M.A.Saunders, "Notes 6: LUSOL---a Basis Factorization Package,"
80 *     ibid. */
81 
82 typedef struct LPF LPF;
83 
84 struct LPF
85 {     /* LP basis factorization */
86       int valid;
87       /* the factorization is valid only if this flag is set */
88       /*--------------------------------------------------------------*/
89       /* initial basis matrix B0 */
90       int m0_max;
91       /* maximal value of m0 (increased automatically, if necessary) */
92       int m0;
93       /* the order of B0 */
94       LUF *luf;
95       /* LU-factorization of B0 */
96       /*--------------------------------------------------------------*/
97       /* current basis matrix B */
98       int m;
99       /* the order of B */
100       double *B; /* double B[1+m*m]; */
101       /* B in dense format stored by rows and used only for debugging;
102          normally this array is not allocated */
103       /*--------------------------------------------------------------*/
104       /* augmented matrix (B0 F G H) of the order m0+n */
105       int n_max;
106       /* maximal number of additional rows and columns */
107       int n;
108       /* current number of additional rows and columns */
109       /*--------------------------------------------------------------*/
110       /* m0xn matrix R in column-wise format */
111       int *R_ptr; /* int R_ptr[1+n_max]; */
112       /* R_ptr[j], 1 <= j <= n, is a pointer to j-th column */
113       int *R_len; /* int R_len[1+n_max]; */
114       /* R_len[j], 1 <= j <= n, is the length of j-th column */
115       /*--------------------------------------------------------------*/
116       /* nxm0 matrix S in row-wise format */
117       int *S_ptr; /* int S_ptr[1+n_max]; */
118       /* S_ptr[i], 1 <= i <= n, is a pointer to i-th row */
119       int *S_len; /* int S_len[1+n_max]; */
120       /* S_len[i], 1 <= i <= n, is the length of i-th row */
121       /*--------------------------------------------------------------*/
122       /* Schur complement C of the order n */
123       SCF *scf; /* SCF scf[1:n_max]; */
124       /* factorization of the Schur complement */
125       /*--------------------------------------------------------------*/
126       /* matrix P of the order m0+n */
127       int *P_row; /* int P_row[1+m0_max+n_max]; */
128       /* P_row[i] = j means that P[i,j] = 1 */
129       int *P_col; /* int P_col[1+m0_max+n_max]; */
130       /* P_col[j] = i means that P[i,j] = 1 */
131       /*--------------------------------------------------------------*/
132       /* matrix Q of the order m0+n */
133       int *Q_row; /* int Q_row[1+m0_max+n_max]; */
134       /* Q_row[i] = j means that Q[i,j] = 1 */
135       int *Q_col; /* int Q_col[1+m0_max+n_max]; */
136       /* Q_col[j] = i means that Q[i,j] = 1 */
137       /*--------------------------------------------------------------*/
138       /* Sparse Vector Area (SVA) is a set of locations intended to
139          store sparse vectors which represent columns of matrix R and
140          rows of matrix S; each location is a doublet (ind, val), where
141          ind is an index, val is a numerical value of a sparse vector
142          element; in the whole each sparse vector is a set of adjacent
143          locations defined by a pointer to its first element and its
144          length, i.e. the number of its elements */
145       int v_size;
146       /* the SVA size, in locations; locations are numbered by integers
147          1, 2, ..., v_size, and location 0 is not used */
148       int v_ptr;
149       /* pointer to the first available location */
150       int *v_ind; /* int v_ind[1+v_size]; */
151       /* v_ind[k], 1 <= k <= v_size, is the index field of location k */
152       double *v_val; /* double v_val[1+v_size]; */
153       /* v_val[k], 1 <= k <= v_size, is the value field of location k */
154       /*--------------------------------------------------------------*/
155       double *work1; /* double work1[1+m0+n_max]; */
156       /* working array */
157       double *work2; /* double work2[1+m0+n_max]; */
158       /* working array */
159 };
160 
161 /* return codes: */
162 #define LPF_ESING    1  /* singular matrix */
163 #define LPF_ECOND    2  /* ill-conditioned matrix */
164 #define LPF_ELIMIT   3  /* update limit reached */
165 
166 #define lpf_create_it _glp_lpf_create_it
167 LPF *lpf_create_it(void);
168 /* create LP basis factorization */
169 
170 #define lpf_factorize _glp_lpf_factorize
171 int lpf_factorize(LPF *lpf, int m, const int bh[], int (*col)
172       (void *info, int j, int ind[], double val[]), void *info);
173 /* compute LP basis factorization */
174 
175 #define lpf_ftran _glp_lpf_ftran
176 void lpf_ftran(LPF *lpf, double x[]);
177 /* perform forward transformation (solve system B*x = b) */
178 
179 #define lpf_btran _glp_lpf_btran
180 void lpf_btran(LPF *lpf, double x[]);
181 /* perform backward transformation (solve system B'*x = b) */
182 
183 #define lpf_update_it _glp_lpf_update_it
184 int lpf_update_it(LPF *lpf, int j, int bh, int len, const int ind[],
185       const double val[]);
186 /* update LP basis factorization */
187 
188 #define lpf_delete_it _glp_lpf_delete_it
189 void lpf_delete_it(LPF *lpf);
190 /* delete LP basis factorization */
191 
192 #endif
193 
194 /* eof */
195