1 /* glpnpp04.c */
2 
3 /***********************************************************************
4 *  This code is part of GLPK (GNU Linear Programming Kit).
5 *
6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
9 *  E-mail: <mao@gnu.org>.
10 *
11 *  GLPK is free software: you can redistribute it and/or modify it
12 *  under the terms of the GNU General Public License as published by
13 *  the Free Software Foundation, either version 3 of the License, or
14 *  (at your option) any later version.
15 *
16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
19 *  License for more details.
20 *
21 *  You should have received a copy of the GNU General Public License
22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
23 ***********************************************************************/
24 
25 #include "glpnpp.h"
26 
27 /***********************************************************************
28 *  NAME
29 *
30 *  npp_binarize_prob - binarize MIP problem
31 *
32 *  SYNOPSIS
33 *
34 *  #include "glpnpp.h"
35 *  int npp_binarize_prob(NPP *npp);
36 *
37 *  DESCRIPTION
38 *
39 *  The routine npp_binarize_prob replaces in the original MIP problem
40 *  every integer variable:
41 *
42 *     l[q] <= x[q] <= u[q],                                          (1)
43 *
44 *  where l[q] < u[q], by an equivalent sum of binary variables.
45 *
46 *  RETURNS
47 *
48 *  The routine returns the number of integer variables for which the
49 *  transformation failed, because u[q] - l[q] > d_max.
50 *
51 *  PROBLEM TRANSFORMATION
52 *
53 *  If variable x[q] has non-zero lower bound, it is first processed
54 *  with the routine npp_lbnd_col. Thus, we can assume that:
55 *
56 *     0 <= x[q] <= u[q].                                             (2)
57 *
58 *  If u[q] = 1, variable x[q] is already binary, so further processing
59 *  is not needed. Let, therefore, that 2 <= u[q] <= d_max, and n be a
60 *  smallest integer such that u[q] <= 2^n - 1 (n >= 2, since u[q] >= 2).
61 *  Then variable x[q] can be replaced by the following sum:
62 *
63 *            n-1
64 *     x[q] = sum 2^k x[k],                                           (3)
65 *            k=0
66 *
67 *  where x[k] are binary columns (variables). If u[q] < 2^n - 1, the
68 *  following additional inequality constraint must be also included in
69 *  the transformed problem:
70 *
71 *     n-1
72 *     sum 2^k x[k] <= u[q].                                          (4)
73 *     k=0
74 *
75 *  Note: Assuming that in the transformed problem x[q] becomes binary
76 *  variable x[0], this transformation causes new n-1 binary variables
77 *  to appear.
78 *
79 *  Substituting x[q] from (3) to the objective row gives:
80 *
81 *     z = sum c[j] x[j] + c[0] =
82 *          j
83 *
84 *       = sum c[j] x[j] + c[q] x[q] + c[0] =
85 *         j!=q
86 *                              n-1
87 *       = sum c[j] x[j] + c[q] sum 2^k x[k] + c[0] =
88 *         j!=q                 k=0
89 *                         n-1
90 *       = sum c[j] x[j] + sum c[k] x[k] + c[0],
91 *         j!=q            k=0
92 *
93 *  where:
94 *
95 *     c[k] = 2^k c[q],  k = 0, ..., n-1.                             (5)
96 *
97 *  And substituting x[q] from (3) to i-th constraint row i gives:
98 *
99 *     L[i] <= sum a[i,j] x[j] <= U[i]  ==>
100 *              j
101 *
102 *     L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i]  ==>
103 *             j!=q
104 *                                      n-1
105 *     L[i] <= sum a[i,j] x[j] + a[i,q] sum 2^k x[k] <= U[i]  ==>
106 *             j!=q                     k=0
107 *                               n-1
108 *     L[i] <= sum a[i,j] x[j] + sum a[i,k] x[k] <= U[i],
109 *             j!=q              k=0
110 *
111 *  where:
112 *
113 *     a[i,k] = 2^k a[i,q],  k = 0, ..., n-1.                         (6)
114 *
115 *  RECOVERING SOLUTION
116 *
117 *  Value of variable x[q] is computed with formula (3). */
118 
119 struct binarize
120 {     int q;
121       /* column reference number for x[q] = x[0] */
122       int j;
123       /* column reference number for x[1]; x[2] has reference number
124          j+1, x[3] - j+2, etc. */
125       int n;
126       /* total number of binary variables, n >= 2 */
127 };
128 
129 static int rcv_binarize_prob(NPP *npp, void *info);
130 
npp_binarize_prob(NPP * npp)131 int npp_binarize_prob(NPP *npp)
132 {     /* binarize MIP problem */
133       struct binarize *info;
134       NPPROW *row;
135       NPPCOL *col, *bin;
136       NPPAIJ *aij;
137       int u, n, k, temp, nfails, nvars, nbins, nrows;
138       /* new variables will be added to the end of the column list, so
139          we go from the end to beginning of the column list */
140       nfails = nvars = nbins = nrows = 0;
141       for (col = npp->c_tail; col != NULL; col = col->prev)
142       {  /* skip continuous variable */
143          if (!col->is_int) continue;
144          /* skip fixed variable */
145          if (col->lb == col->ub) continue;
146          /* skip binary variable */
147          if (col->lb == 0.0 && col->ub == 1.0) continue;
148          /* check if the transformation is applicable */
149          if (col->lb < -1e6 || col->ub > +1e6 ||
150              col->ub - col->lb > 4095.0)
151          {  /* unfortunately, not */
152             nfails++;
153             continue;
154          }
155          /* process integer non-binary variable x[q] */
156          nvars++;
157          /* make x[q] non-negative, if its lower bound is non-zero */
158          if (col->lb != 0.0)
159             npp_lbnd_col(npp, col);
160          /* now 0 <= x[q] <= u[q] */
161          xassert(col->lb == 0.0);
162          u = (int)col->ub;
163          xassert(col->ub == (double)u);
164          /* if x[q] is binary, further processing is not needed */
165          if (u == 1) continue;
166          /* determine smallest n such that u <= 2^n - 1 (thus, n is the
167             number of binary variables needed) */
168          n = 2, temp = 4;
169          while (u >= temp)
170             n++, temp += temp;
171          nbins += n;
172          /* create transformation stack entry */
173          info = npp_push_tse(npp,
174             rcv_binarize_prob, sizeof(struct binarize));
175          info->q = col->j;
176          info->j = 0; /* will be set below */
177          info->n = n;
178          /* if u < 2^n - 1, we need one additional row for (4) */
179          if (u < temp - 1)
180          {  row = npp_add_row(npp), nrows++;
181             row->lb = -DBL_MAX, row->ub = u;
182          }
183          else
184             row = NULL;
185          /* in the transformed problem variable x[q] becomes binary
186             variable x[0], so its objective and constraint coefficients
187             are not changed */
188          col->ub = 1.0;
189          /* include x[0] into constraint (4) */
190          if (row != NULL)
191             npp_add_aij(npp, row, col, 1.0);
192          /* add other binary variables x[1], ..., x[n-1] */
193          for (k = 1, temp = 2; k < n; k++, temp += temp)
194          {  /* add new binary variable x[k] */
195             bin = npp_add_col(npp);
196             bin->is_int = 1;
197             bin->lb = 0.0, bin->ub = 1.0;
198             bin->coef = (double)temp * col->coef;
199             /* store column reference number for x[1] */
200             if (info->j == 0)
201                info->j = bin->j;
202             else
203                xassert(info->j + (k-1) == bin->j);
204             /* duplicate constraint coefficients for x[k]; this also
205                automatically includes x[k] into constraint (4) */
206             for (aij = col->ptr; aij != NULL; aij = aij->c_next)
207                npp_add_aij(npp, aij->row, bin, (double)temp * aij->val);
208          }
209       }
210       if (nvars > 0)
211          xprintf("%d integer variable(s) were replaced by %d binary one"
212             "s\n", nvars, nbins);
213       if (nrows > 0)
214          xprintf("%d row(s) were added due to binarization\n", nrows);
215       if (nfails > 0)
216          xprintf("Binarization failed for %d integer variable(s)\n",
217             nfails);
218       return nfails;
219 }
220 
rcv_binarize_prob(NPP * npp,void * _info)221 static int rcv_binarize_prob(NPP *npp, void *_info)
222 {     /* recovery binarized variable */
223       struct binarize *info = _info;
224       int k, temp;
225       double sum;
226       /* compute value of x[q]; see formula (3) */
227       sum = npp->c_value[info->q];
228       for (k = 1, temp = 2; k < info->n; k++, temp += temp)
229          sum += (double)temp * npp->c_value[info->j + (k-1)];
230       npp->c_value[info->q] = sum;
231       return 0;
232 }
233 
234 /**********************************************************************/
235 
236 struct elem
237 {     /* linear form element a[j] x[j] */
238       double aj;
239       /* non-zero coefficient value */
240       NPPCOL *xj;
241       /* pointer to variable (column) */
242       struct elem *next;
243       /* pointer to another term */
244 };
245 
copy_form(NPP * npp,NPPROW * row,double s)246 static struct elem *copy_form(NPP *npp, NPPROW *row, double s)
247 {     /* copy linear form */
248       NPPAIJ *aij;
249       struct elem *ptr, *e;
250       ptr = NULL;
251       for (aij = row->ptr; aij != NULL; aij = aij->r_next)
252       {  e = dmp_get_atom(npp->pool, sizeof(struct elem));
253          e->aj = s * aij->val;
254          e->xj = aij->col;
255          e->next = ptr;
256          ptr = e;
257       }
258       return ptr;
259 }
260 
drop_form(NPP * npp,struct elem * ptr)261 static void drop_form(NPP *npp, struct elem *ptr)
262 {     /* drop linear form */
263       struct elem *e;
264       while (ptr != NULL)
265       {  e = ptr;
266          ptr = e->next;
267          dmp_free_atom(npp->pool, e, sizeof(struct elem));
268       }
269       return;
270 }
271 
272 /***********************************************************************
273 *  NAME
274 *
275 *  npp_is_packing - test if constraint is packing inequality
276 *
277 *  SYNOPSIS
278 *
279 *  #include "glpnpp.h"
280 *  int npp_is_packing(NPP *npp, NPPROW *row);
281 *
282 *  RETURNS
283 *
284 *  If the specified row (constraint) is packing inequality (see below),
285 *  the routine npp_is_packing returns non-zero. Otherwise, it returns
286 *  zero.
287 *
288 *  PACKING INEQUALITIES
289 *
290 *  In canonical format the packing inequality is the following:
291 *
292 *     sum  x[j] <= 1,                                                (1)
293 *    j in J
294 *
295 *  where all variables x[j] are binary. This inequality expresses the
296 *  condition that in any integer feasible solution at most one variable
297 *  from set J can take non-zero (unity) value while other variables
298 *  must be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because
299 *  if J is empty or |J| = 1, the inequality (1) is redundant.
300 *
301 *  In general case the packing inequality may include original variables
302 *  x[j] as well as their complements x~[j]:
303 *
304 *     sum   x[j] + sum   x~[j] <= 1,                                 (2)
305 *    j in Jp      j in Jn
306 *
307 *  where Jp and Jn are not intersected. Therefore, using substitution
308 *  x~[j] = 1 - x[j] gives the packing inequality in generalized format:
309 *
310 *     sum   x[j] - sum   x[j] <= 1 - |Jn|.                           (3)
311 *    j in Jp      j in Jn */
312 
npp_is_packing(NPP * npp,NPPROW * row)313 int npp_is_packing(NPP *npp, NPPROW *row)
314 {     /* test if constraint is packing inequality */
315       NPPCOL *col;
316       NPPAIJ *aij;
317       int b;
318       xassert(npp == npp);
319       if (!(row->lb == -DBL_MAX && row->ub != +DBL_MAX))
320          return 0;
321       b = 1;
322       for (aij = row->ptr; aij != NULL; aij = aij->r_next)
323       {  col = aij->col;
324          if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
325             return 0;
326          if (aij->val == +1.0)
327             ;
328          else if (aij->val == -1.0)
329             b--;
330          else
331             return 0;
332       }
333       if (row->ub != (double)b) return 0;
334       return 1;
335 }
336 
337 /***********************************************************************
338 *  NAME
339 *
340 *  npp_hidden_packing - identify hidden packing inequality
341 *
342 *  SYNOPSIS
343 *
344 *  #include "glpnpp.h"
345 *  int npp_hidden_packing(NPP *npp, NPPROW *row);
346 *
347 *  DESCRIPTION
348 *
349 *  The routine npp_hidden_packing processes specified inequality
350 *  constraint, which includes only binary variables, and the number of
351 *  the variables is not less than two. If the original inequality is
352 *  equivalent to a packing inequality, the routine replaces it by this
353 *  equivalent inequality. If the original constraint is double-sided
354 *  inequality, it is replaced by a pair of single-sided inequalities,
355 *  if necessary.
356 *
357 *  RETURNS
358 *
359 *  If the original inequality constraint was replaced by equivalent
360 *  packing inequality, the routine npp_hidden_packing returns non-zero.
361 *  Otherwise, it returns zero.
362 *
363 *  PROBLEM TRANSFORMATION
364 *
365 *  Consider an inequality constraint:
366 *
367 *     sum  a[j] x[j] <= b,                                           (1)
368 *    j in J
369 *
370 *  where all variables x[j] are binary, and |J| >= 2. (In case of '>='
371 *  inequality it can be transformed to '<=' format by multiplying both
372 *  its sides by -1.)
373 *
374 *  Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution
375 *  x[j] = 1 - x~[j] for all j in Jn, we have:
376 *
377 *     sum   a[j] x[j] <= b  ==>
378 *    j in J
379 *
380 *     sum   a[j] x[j] + sum   a[j] x[j] <= b  ==>
381 *    j in Jp           j in Jn
382 *
383 *     sum   a[j] x[j] + sum   a[j] (1 - x~[j]) <= b  ==>
384 *    j in Jp           j in Jn
385 *
386 *     sum   a[j] x[j] - sum   a[j] x~[j] <= b - sum   a[j].
387 *    j in Jp           j in Jn                 j in Jn
388 *
389 *  Thus, meaning the transformation above, we can assume that in
390 *  inequality (1) all coefficients a[j] are positive. Moreover, we can
391 *  assume that a[j] <= b. In fact, let a[j] > b; then the following
392 *  three cases are possible:
393 *
394 *  1) b < 0. In this case inequality (1) is infeasible, so the problem
395 *     has no feasible solution (see the routine npp_analyze_row);
396 *
397 *  2) b = 0. In this case inequality (1) is a forcing inequality on its
398 *     upper bound (see the routine npp_forcing row), from which it
399 *     follows that all variables x[j] should be fixed at zero;
400 *
401 *  3) b > 0. In this case inequality (1) defines an implied zero upper
402 *     bound for variable x[j] (see the routine npp_implied_bounds), from
403 *     which it follows that x[j] should be fixed at zero.
404 *
405 *  It is assumed that all three cases listed above have been recognized
406 *  by the routine npp_process_prob, which performs basic MIP processing
407 *  prior to a call the routine npp_hidden_packing. So, if one of these
408 *  cases occurs, we should just skip processing such constraint.
409 *
410 *  Thus, let 0 < a[j] <= b. Then it is obvious that constraint (1) is
411 *  equivalent to packing inquality only if:
412 *
413 *     a[j] + a[k] > b + eps                                          (2)
414 *
415 *  for all j, k in J, j != k, where eps is an absolute tolerance for
416 *  row (linear form) value. Checking the condition (2) for all j and k,
417 *  j != k, requires time O(|J|^2). However, this time can be reduced to
418 *  O(|J|), if use minimal a[j] and a[k], in which case it is sufficient
419 *  to check the condition (2) only once.
420 *
421 *  Once the original inequality (1) is replaced by equivalent packing
422 *  inequality, we need to perform back substitution x~[j] = 1 - x[j] for
423 *  all j in Jn (see above).
424 *
425 *  RECOVERING SOLUTION
426 *
427 *  None needed. */
428 
hidden_packing(NPP * npp,struct elem * ptr,double * _b)429 static int hidden_packing(NPP *npp, struct elem *ptr, double *_b)
430 {     /* process inequality constraint: sum a[j] x[j] <= b;
431          0 - specified row is NOT hidden packing inequality;
432          1 - specified row is packing inequality;
433          2 - specified row is hidden packing inequality. */
434       struct elem *e, *ej, *ek;
435       int neg;
436       double b = *_b, eps;
437       xassert(npp == npp);
438       /* a[j] must be non-zero, x[j] must be binary, for all j in J */
439       for (e = ptr; e != NULL; e = e->next)
440       {  xassert(e->aj != 0.0);
441          xassert(e->xj->is_int);
442          xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0);
443       }
444       /* check if the specified inequality constraint already has the
445          form of packing inequality */
446       neg = 0; /* neg is |Jn| */
447       for (e = ptr; e != NULL; e = e->next)
448       {  if (e->aj == +1.0)
449             ;
450          else if (e->aj == -1.0)
451             neg++;
452          else
453             break;
454       }
455       if (e == NULL)
456       {  /* all coefficients a[j] are +1 or -1; check rhs b */
457          if (b == (double)(1 - neg))
458          {  /* it is packing inequality; no processing is needed */
459             return 1;
460          }
461       }
462       /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j]
463          positive; the result is a~[j] = |a[j]| and new rhs b */
464       for (e = ptr; e != NULL; e = e->next)
465          if (e->aj < 0) b -= e->aj;
466       /* now a[j] > 0 for all j in J (actually |a[j]| are used) */
467       /* if a[j] > b, skip processing--this case must not appear */
468       for (e = ptr; e != NULL; e = e->next)
469          if (fabs(e->aj) > b) return 0;
470       /* now 0 < a[j] <= b for all j in J */
471       /* find two minimal coefficients a[j] and a[k], j != k */
472       ej = NULL;
473       for (e = ptr; e != NULL; e = e->next)
474          if (ej == NULL || fabs(ej->aj) > fabs(e->aj)) ej = e;
475       xassert(ej != NULL);
476       ek = NULL;
477       for (e = ptr; e != NULL; e = e->next)
478          if (e != ej)
479             if (ek == NULL || fabs(ek->aj) > fabs(e->aj)) ek = e;
480       xassert(ek != NULL);
481       /* the specified constraint is equivalent to packing inequality
482          iff a[j] + a[k] > b + eps */
483       eps = 1e-3 + 1e-6 * fabs(b);
484       if (fabs(ej->aj) + fabs(ek->aj) <= b + eps) return 0;
485       /* perform back substitution x~[j] = 1 - x[j] and construct the
486          final equivalent packing inequality in generalized format */
487       b = 1.0;
488       for (e = ptr; e != NULL; e = e->next)
489       {  if (e->aj > 0.0)
490             e->aj = +1.0;
491          else /* e->aj < 0.0 */
492             e->aj = -1.0, b -= 1.0;
493       }
494       *_b = b;
495       return 2;
496 }
497 
npp_hidden_packing(NPP * npp,NPPROW * row)498 int npp_hidden_packing(NPP *npp, NPPROW *row)
499 {     /* identify hidden packing inequality */
500       NPPROW *copy;
501       NPPAIJ *aij;
502       struct elem *ptr, *e;
503       int kase, ret, count = 0;
504       double b;
505       /* the row must be inequality constraint */
506       xassert(row->lb < row->ub);
507       for (kase = 0; kase <= 1; kase++)
508       {  if (kase == 0)
509          {  /* process row upper bound */
510             if (row->ub == +DBL_MAX) continue;
511             ptr = copy_form(npp, row, +1.0);
512             b = + row->ub;
513          }
514          else
515          {  /* process row lower bound */
516             if (row->lb == -DBL_MAX) continue;
517             ptr = copy_form(npp, row, -1.0);
518             b = - row->lb;
519          }
520          /* now the inequality has the form "sum a[j] x[j] <= b" */
521          ret = hidden_packing(npp, ptr, &b);
522          xassert(0 <= ret && ret <= 2);
523          if (kase == 1 && ret == 1 || ret == 2)
524          {  /* the original inequality has been identified as hidden
525                packing inequality */
526             count++;
527 #ifdef GLP_DEBUG
528             xprintf("Original constraint:\n");
529             for (aij = row->ptr; aij != NULL; aij = aij->r_next)
530                xprintf(" %+g x%d", aij->val, aij->col->j);
531             if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb);
532             if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub);
533             xprintf("\n");
534             xprintf("Equivalent packing inequality:\n");
535             for (e = ptr; e != NULL; e = e->next)
536                xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j);
537             xprintf(", <= %g\n", b);
538 #endif
539             if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
540             {  /* the original row is single-sided inequality; no copy
541                   is needed */
542                copy = NULL;
543             }
544             else
545             {  /* the original row is double-sided inequality; we need
546                   to create its copy for other bound before replacing it
547                   with the equivalent inequality */
548                copy = npp_add_row(npp);
549                if (kase == 0)
550                {  /* the copy is for lower bound */
551                   copy->lb = row->lb, copy->ub = +DBL_MAX;
552                }
553                else
554                {  /* the copy is for upper bound */
555                   copy->lb = -DBL_MAX, copy->ub = row->ub;
556                }
557                /* copy original row coefficients */
558                for (aij = row->ptr; aij != NULL; aij = aij->r_next)
559                   npp_add_aij(npp, copy, aij->col, aij->val);
560             }
561             /* replace the original inequality by equivalent one */
562             npp_erase_row(npp, row);
563             row->lb = -DBL_MAX, row->ub = b;
564             for (e = ptr; e != NULL; e = e->next)
565                npp_add_aij(npp, row, e->xj, e->aj);
566             /* continue processing lower bound for the copy */
567             if (copy != NULL) row = copy;
568          }
569          drop_form(npp, ptr);
570       }
571       return count;
572 }
573 
574 /***********************************************************************
575 *  NAME
576 *
577 *  npp_implied_packing - identify implied packing inequality
578 *
579 *  SYNOPSIS
580 *
581 *  #include "glpnpp.h"
582 *  int npp_implied_packing(NPP *npp, NPPROW *row, int which,
583 *     NPPCOL *var[], char set[]);
584 *
585 *  DESCRIPTION
586 *
587 *  The routine npp_implied_packing processes specified row (constraint)
588 *  of general format:
589 *
590 *     L <= sum a[j] x[j] <= U.                                       (1)
591 *           j
592 *
593 *  If which = 0, only lower bound L, which must exist, is considered,
594 *  while upper bound U is ignored. Similarly, if which = 1, only upper
595 *  bound U, which must exist, is considered, while lower bound L is
596 *  ignored. Thus, if the specified row is a double-sided inequality or
597 *  equality constraint, this routine should be called twice for both
598 *  lower and upper bounds.
599 *
600 *  The routine npp_implied_packing attempts to find a non-trivial (i.e.
601 *  having not less than two binary variables) packing inequality:
602 *
603 *     sum   x[j] - sum   x[j] <= 1 - |Jn|,                           (2)
604 *    j in Jp      j in Jn
605 *
606 *  which is relaxation of the constraint (1) in the sense that any
607 *  solution satisfying to that constraint also satisfies to the packing
608 *  inequality (2). If such relaxation exists, the routine stores
609 *  pointers to descriptors of corresponding binary variables and their
610 *  flags, resp., to locations var[1], var[2], ..., var[len] and set[1],
611 *  set[2], ..., set[len], where set[j] = 0 means that j in Jp and
612 *  set[j] = 1 means that j in Jn.
613 *
614 *  RETURNS
615 *
616 *  The routine npp_implied_packing returns len, which is the total
617 *  number of binary variables in the packing inequality found, len >= 2.
618 *  However, if the relaxation does not exist, the routine returns zero.
619 *
620 *  ALGORITHM
621 *
622 *  If which = 0, the constraint coefficients (1) are multiplied by -1
623 *  and b is assigned -L; if which = 1, the constraint coefficients (1)
624 *  are not changed and b is assigned +U. In both cases the specified
625 *  constraint gets the following format:
626 *
627 *     sum a[j] x[j] <= b.                                            (3)
628 *      j
629 *
630 *  (Note that (3) is a relaxation of (1), because one of bounds L or U
631 *  is ignored.)
632 *
633 *  Let J be set of binary variables, Kp be set of non-binary (integer
634 *  or continuous) variables with a[j] > 0, and Kn be set of non-binary
635 *  variables with a[j] < 0. Then the inequality (3) can be written as
636 *  follows:
637 *
638 *     sum  a[j] x[j] <= b - sum   a[j] x[j] - sum   a[j] x[j].       (4)
639 *    j in J                j in Kp           j in Kn
640 *
641 *  To get rid of non-binary variables we can replace the inequality (4)
642 *  by the following relaxed inequality:
643 *
644 *     sum  a[j] x[j] <= b~,                                          (5)
645 *    j in J
646 *
647 *  where:
648 *
649 *     b~ = sup(b - sum   a[j] x[j] - sum   a[j] x[j]) =
650 *                 j in Kp           j in Kn
651 *
652 *        = b - inf sum   a[j] x[j] - inf sum   a[j] x[j] =           (6)
653 *                 j in Kp               j in Kn
654 *
655 *        = b - sum   a[j] l[j] - sum   a[j] u[j].
656 *             j in Kp           j in Kn
657 *
658 *  Note that if lower bound l[j] (if j in Kp) or upper bound u[j]
659 *  (if j in Kn) of some non-binary variable x[j] does not exist, then
660 *  formally b = +oo, in which case further analysis is not performed.
661 *
662 *  Let Bp = {j in J: a[j] > 0}, Bn = {j in J: a[j] < 0}. To make all
663 *  the inequality coefficients in (5) positive, we replace all x[j] in
664 *  Bn by their complementaries, substituting x[j] = 1 - x~[j] for all
665 *  j in Bn, that gives:
666 *
667 *     sum   a[j] x[j] - sum   a[j] x~[j] <= b~ - sum   a[j].         (7)
668 *    j in Bp           j in Bn                  j in Bn
669 *
670 *  This inequality is a relaxation of the original constraint (1), and
671 *  it is a binary knapsack inequality. Writing it in the standard format
672 *  we have:
673 *
674 *     sum  alfa[j] z[j] <= beta,                                     (8)
675 *    j in J
676 *
677 *  where:
678 *               ( + a[j],   if j in Bp,
679 *     alfa[j] = <                                                    (9)
680 *               ( - a[j],   if j in Bn,
681 *
682 *               ( x[j],     if j in Bp,
683 *        z[j] = <                                                   (10)
684 *               ( 1 - x[j], if j in Bn,
685 *
686 *        beta = b~ - sum   a[j].                                    (11)
687 *                   j in Bn
688 *
689 *  In the inequality (8) all coefficients are positive, therefore, the
690 *  packing relaxation to be found for this inequality is the following:
691 *
692 *     sum  z[j] <= 1.                                               (12)
693 *    j in P
694 *
695 *  It is obvious that set P within J, which we would like to find, must
696 *  satisfy to the following condition:
697 *
698 *     alfa[j] + alfa[k] > beta + eps  for all j, k in P, j != k,    (13)
699 *
700 *  where eps is an absolute tolerance for value of the linear form.
701 *  Thus, it is natural to take P = {j: alpha[j] > (beta + eps) / 2}.
702 *  Moreover, if in the equality (8) there exist coefficients alfa[k],
703 *  for which alfa[k] <= (beta + eps) / 2, but which, nevertheless,
704 *  satisfies to the condition (13) for all j in P, *one* corresponding
705 *  variable z[k] (having, for example, maximal coefficient alfa[k]) can
706 *  be included in set P, that allows increasing the number of binary
707 *  variables in (12) by one.
708 *
709 *  Once the set P has been built, for the inequality (12) we need to
710 *  perform back substitution according to (10) in order to express it
711 *  through the original binary variables. As the result of such back
712 *  substitution the relaxed packing inequality get its final format (2),
713 *  where Jp = J intersect Bp, and Jn = J intersect Bn. */
714 
npp_implied_packing(NPP * npp,NPPROW * row,int which,NPPCOL * var[],char set[])715 int npp_implied_packing(NPP *npp, NPPROW *row, int which,
716       NPPCOL *var[], char set[])
717 {     struct elem *ptr, *e, *i, *k;
718       int len = 0;
719       double b, eps;
720       /* build inequality (3) */
721       if (which == 0)
722       {  ptr = copy_form(npp, row, -1.0);
723          xassert(row->lb != -DBL_MAX);
724          b = - row->lb;
725       }
726       else if (which == 1)
727       {  ptr = copy_form(npp, row, +1.0);
728          xassert(row->ub != +DBL_MAX);
729          b = + row->ub;
730       }
731       /* remove non-binary variables to build relaxed inequality (5);
732          compute its right-hand side b~ with formula (6) */
733       for (e = ptr; e != NULL; e = e->next)
734       {  if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0))
735          {  /* x[j] is non-binary variable */
736             if (e->aj > 0.0)
737             {  if (e->xj->lb == -DBL_MAX) goto done;
738                b -= e->aj * e->xj->lb;
739             }
740             else /* e->aj < 0.0 */
741             {  if (e->xj->ub == +DBL_MAX) goto done;
742                b -= e->aj * e->xj->ub;
743             }
744             /* a[j] = 0 means that variable x[j] is removed */
745             e->aj = 0.0;
746          }
747       }
748       /* substitute x[j] = 1 - x~[j] to build knapsack inequality (8);
749          compute its right-hand side beta with formula (11) */
750       for (e = ptr; e != NULL; e = e->next)
751          if (e->aj < 0.0) b -= e->aj;
752       /* if beta is close to zero, the knapsack inequality is either
753          infeasible or forcing inequality; this must never happen, so
754          we skip further analysis */
755       if (b < 1e-3) goto done;
756       /* build set P as well as sets Jp and Jn, and determine x[k] as
757          explained above in comments to the routine */
758       eps = 1e-3 + 1e-6 * b;
759       i = k = NULL;
760       for (e = ptr; e != NULL; e = e->next)
761       {  /* note that alfa[j] = |a[j]| */
762          if (fabs(e->aj) > 0.5 * (b + eps))
763          {  /* alfa[j] > (b + eps) / 2; include x[j] in set P, i.e. in
764                set Jp or Jn */
765             var[++len] = e->xj;
766             set[len] = (char)(e->aj > 0.0 ? 0 : 1);
767             /* alfa[i] = min alfa[j] over all j included in set P */
768             if (i == NULL || fabs(i->aj) > fabs(e->aj)) i = e;
769          }
770          else if (fabs(e->aj) >= 1e-3)
771          {  /* alfa[k] = max alfa[j] over all j not included in set P;
772                we skip coefficient a[j] if it is close to zero to avoid
773                numerically unreliable results */
774             if (k == NULL || fabs(k->aj) < fabs(e->aj)) k = e;
775          }
776       }
777       /* if alfa[k] satisfies to condition (13) for all j in P, include
778          x[k] in P */
779       if (i != NULL && k != NULL && fabs(i->aj) + fabs(k->aj) > b + eps)
780       {  var[++len] = k->xj;
781          set[len] = (char)(k->aj > 0.0 ? 0 : 1);
782       }
783       /* trivial packing inequality being redundant must never appear,
784          so we just ignore it */
785       if (len < 2) len = 0;
786 done: drop_form(npp, ptr);
787       return len;
788 }
789 
790 /***********************************************************************
791 *  NAME
792 *
793 *  npp_is_covering - test if constraint is covering inequality
794 *
795 *  SYNOPSIS
796 *
797 *  #include "glpnpp.h"
798 *  int npp_is_covering(NPP *npp, NPPROW *row);
799 *
800 *  RETURNS
801 *
802 *  If the specified row (constraint) is covering inequality (see below),
803 *  the routine npp_is_covering returns non-zero. Otherwise, it returns
804 *  zero.
805 *
806 *  COVERING INEQUALITIES
807 *
808 *  In canonical format the covering inequality is the following:
809 *
810 *     sum  x[j] >= 1,                                                (1)
811 *    j in J
812 *
813 *  where all variables x[j] are binary. This inequality expresses the
814 *  condition that in any integer feasible solution variables in set J
815 *  cannot be all equal to zero at the same time, i.e. at least one
816 *  variable must take non-zero (unity) value. W.l.o.g. it is assumed
817 *  that |J| >= 2, because if J is empty, the inequality (1) is
818 *  infeasible, and if |J| = 1, the inequality (1) is a forcing row.
819 *
820 *  In general case the covering inequality may include original
821 *  variables x[j] as well as their complements x~[j]:
822 *
823 *     sum   x[j] + sum   x~[j] >= 1,                                 (2)
824 *    j in Jp      j in Jn
825 *
826 *  where Jp and Jn are not intersected. Therefore, using substitution
827 *  x~[j] = 1 - x[j] gives the packing inequality in generalized format:
828 *
829 *     sum   x[j] - sum   x[j] >= 1 - |Jn|.                           (3)
830 *    j in Jp      j in Jn
831 *
832 *  (May note that the inequality (3) cuts off infeasible solutions,
833 *  where x[j] = 0 for all j in Jp and x[j] = 1 for all j in Jn.)
834 *
835 *  NOTE: If |J| = 2, the inequality (3) is equivalent to packing
836 *        inequality (see the routine npp_is_packing). */
837 
npp_is_covering(NPP * npp,NPPROW * row)838 int npp_is_covering(NPP *npp, NPPROW *row)
839 {     /* test if constraint is covering inequality */
840       NPPCOL *col;
841       NPPAIJ *aij;
842       int b;
843       xassert(npp == npp);
844       if (!(row->lb != -DBL_MAX && row->ub == +DBL_MAX))
845          return 0;
846       b = 1;
847       for (aij = row->ptr; aij != NULL; aij = aij->r_next)
848       {  col = aij->col;
849          if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
850             return 0;
851          if (aij->val == +1.0)
852             ;
853          else if (aij->val == -1.0)
854             b--;
855          else
856             return 0;
857       }
858       if (row->lb != (double)b) return 0;
859       return 1;
860 }
861 
862 /***********************************************************************
863 *  NAME
864 *
865 *  npp_hidden_covering - identify hidden covering inequality
866 *
867 *  SYNOPSIS
868 *
869 *  #include "glpnpp.h"
870 *  int npp_hidden_covering(NPP *npp, NPPROW *row);
871 *
872 *  DESCRIPTION
873 *
874 *  The routine npp_hidden_covering processes specified inequality
875 *  constraint, which includes only binary variables, and the number of
876 *  the variables is not less than three. If the original inequality is
877 *  equivalent to a covering inequality (see below), the routine
878 *  replaces it by the equivalent inequality. If the original constraint
879 *  is double-sided inequality, it is replaced by a pair of single-sided
880 *  inequalities, if necessary.
881 *
882 *  RETURNS
883 *
884 *  If the original inequality constraint was replaced by equivalent
885 *  covering inequality, the routine npp_hidden_covering returns
886 *  non-zero. Otherwise, it returns zero.
887 *
888 *  PROBLEM TRANSFORMATION
889 *
890 *  Consider an inequality constraint:
891 *
892 *     sum  a[j] x[j] >= b,                                           (1)
893 *    j in J
894 *
895 *  where all variables x[j] are binary, and |J| >= 3. (In case of '<='
896 *  inequality it can be transformed to '>=' format by multiplying both
897 *  its sides by -1.)
898 *
899 *  Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution
900 *  x[j] = 1 - x~[j] for all j in Jn, we have:
901 *
902 *     sum   a[j] x[j] >= b  ==>
903 *    j in J
904 *
905 *     sum   a[j] x[j] + sum   a[j] x[j] >= b  ==>
906 *    j in Jp           j in Jn
907 *
908 *     sum   a[j] x[j] + sum   a[j] (1 - x~[j]) >= b  ==>
909 *    j in Jp           j in Jn
910 *
911 *     sum  m   a[j] x[j] - sum   a[j] x~[j] >= b - sum   a[j].
912 *    j in Jp              j in Jn                 j in Jn
913 *
914 *  Thus, meaning the transformation above, we can assume that in
915 *  inequality (1) all coefficients a[j] are positive. Moreover, we can
916 *  assume that b > 0, because otherwise the inequality (1) would be
917 *  redundant (see the routine npp_analyze_row). It is then obvious that
918 *  constraint (1) is equivalent to covering inequality only if:
919 *
920 *     a[j] >= b,                                                     (2)
921 *
922 *  for all j in J.
923 *
924 *  Once the original inequality (1) is replaced by equivalent covering
925 *  inequality, we need to perform back substitution x~[j] = 1 - x[j] for
926 *  all j in Jn (see above).
927 *
928 *  RECOVERING SOLUTION
929 *
930 *  None needed. */
931 
hidden_covering(NPP * npp,struct elem * ptr,double * _b)932 static int hidden_covering(NPP *npp, struct elem *ptr, double *_b)
933 {     /* process inequality constraint: sum a[j] x[j] >= b;
934          0 - specified row is NOT hidden covering inequality;
935          1 - specified row is covering inequality;
936          2 - specified row is hidden covering inequality. */
937       struct elem *e;
938       int neg;
939       double b = *_b, eps;
940       xassert(npp == npp);
941       /* a[j] must be non-zero, x[j] must be binary, for all j in J */
942       for (e = ptr; e != NULL; e = e->next)
943       {  xassert(e->aj != 0.0);
944          xassert(e->xj->is_int);
945          xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0);
946       }
947       /* check if the specified inequality constraint already has the
948          form of covering inequality */
949       neg = 0; /* neg is |Jn| */
950       for (e = ptr; e != NULL; e = e->next)
951       {  if (e->aj == +1.0)
952             ;
953          else if (e->aj == -1.0)
954             neg++;
955          else
956             break;
957       }
958       if (e == NULL)
959       {  /* all coefficients a[j] are +1 or -1; check rhs b */
960          if (b == (double)(1 - neg))
961          {  /* it is covering inequality; no processing is needed */
962             return 1;
963          }
964       }
965       /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j]
966          positive; the result is a~[j] = |a[j]| and new rhs b */
967       for (e = ptr; e != NULL; e = e->next)
968          if (e->aj < 0) b -= e->aj;
969       /* now a[j] > 0 for all j in J (actually |a[j]| are used) */
970       /* if b <= 0, skip processing--this case must not appear */
971       if (b < 1e-3) return 0;
972       /* now a[j] > 0 for all j in J, and b > 0 */
973       /* the specified constraint is equivalent to covering inequality
974          iff a[j] >= b for all j in J */
975       eps = 1e-9 + 1e-12 * fabs(b);
976       for (e = ptr; e != NULL; e = e->next)
977          if (fabs(e->aj) < b - eps) return 0;
978       /* perform back substitution x~[j] = 1 - x[j] and construct the
979          final equivalent covering inequality in generalized format */
980       b = 1.0;
981       for (e = ptr; e != NULL; e = e->next)
982       {  if (e->aj > 0.0)
983             e->aj = +1.0;
984          else /* e->aj < 0.0 */
985             e->aj = -1.0, b -= 1.0;
986       }
987       *_b = b;
988       return 2;
989 }
990 
npp_hidden_covering(NPP * npp,NPPROW * row)991 int npp_hidden_covering(NPP *npp, NPPROW *row)
992 {     /* identify hidden covering inequality */
993       NPPROW *copy;
994       NPPAIJ *aij;
995       struct elem *ptr, *e;
996       int kase, ret, count = 0;
997       double b;
998       /* the row must be inequality constraint */
999       xassert(row->lb < row->ub);
1000       for (kase = 0; kase <= 1; kase++)
1001       {  if (kase == 0)
1002          {  /* process row lower bound */
1003             if (row->lb == -DBL_MAX) continue;
1004             ptr = copy_form(npp, row, +1.0);
1005             b = + row->lb;
1006          }
1007          else
1008          {  /* process row upper bound */
1009             if (row->ub == +DBL_MAX) continue;
1010             ptr = copy_form(npp, row, -1.0);
1011             b = - row->ub;
1012          }
1013          /* now the inequality has the form "sum a[j] x[j] >= b" */
1014          ret = hidden_covering(npp, ptr, &b);
1015          xassert(0 <= ret && ret <= 2);
1016          if (kase == 1 && ret == 1 || ret == 2)
1017          {  /* the original inequality has been identified as hidden
1018                covering inequality */
1019             count++;
1020 #ifdef GLP_DEBUG
1021             xprintf("Original constraint:\n");
1022             for (aij = row->ptr; aij != NULL; aij = aij->r_next)
1023                xprintf(" %+g x%d", aij->val, aij->col->j);
1024             if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb);
1025             if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub);
1026             xprintf("\n");
1027             xprintf("Equivalent covering inequality:\n");
1028             for (e = ptr; e != NULL; e = e->next)
1029                xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j);
1030             xprintf(", >= %g\n", b);
1031 #endif
1032             if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
1033             {  /* the original row is single-sided inequality; no copy
1034                   is needed */
1035                copy = NULL;
1036             }
1037             else
1038             {  /* the original row is double-sided inequality; we need
1039                   to create its copy for other bound before replacing it
1040                   with the equivalent inequality */
1041                copy = npp_add_row(npp);
1042                if (kase == 0)
1043                {  /* the copy is for upper bound */
1044                   copy->lb = -DBL_MAX, copy->ub = row->ub;
1045                }
1046                else
1047                {  /* the copy is for lower bound */
1048                   copy->lb = row->lb, copy->ub = +DBL_MAX;
1049                }
1050                /* copy original row coefficients */
1051                for (aij = row->ptr; aij != NULL; aij = aij->r_next)
1052                   npp_add_aij(npp, copy, aij->col, aij->val);
1053             }
1054             /* replace the original inequality by equivalent one */
1055             npp_erase_row(npp, row);
1056             row->lb = b, row->ub = +DBL_MAX;
1057             for (e = ptr; e != NULL; e = e->next)
1058                npp_add_aij(npp, row, e->xj, e->aj);
1059             /* continue processing upper bound for the copy */
1060             if (copy != NULL) row = copy;
1061          }
1062          drop_form(npp, ptr);
1063       }
1064       return count;
1065 }
1066 
1067 /***********************************************************************
1068 *  NAME
1069 *
1070 *  npp_is_partitioning - test if constraint is partitioning equality
1071 *
1072 *  SYNOPSIS
1073 *
1074 *  #include "glpnpp.h"
1075 *  int npp_is_partitioning(NPP *npp, NPPROW *row);
1076 *
1077 *  RETURNS
1078 *
1079 *  If the specified row (constraint) is partitioning equality (see
1080 *  below), the routine npp_is_partitioning returns non-zero. Otherwise,
1081 *  it returns zero.
1082 *
1083 *  PARTITIONING EQUALITIES
1084 *
1085 *  In canonical format the partitioning equality is the following:
1086 *
1087 *     sum  x[j] = 1,                                                 (1)
1088 *    j in J
1089 *
1090 *  where all variables x[j] are binary. This equality expresses the
1091 *  condition that in any integer feasible solution exactly one variable
1092 *  in set J must take non-zero (unity) value while other variables must
1093 *  be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because if
1094 *  J is empty, the inequality (1) is infeasible, and if |J| = 1, the
1095 *  inequality (1) is a fixing row.
1096 *
1097 *  In general case the partitioning equality may include original
1098 *  variables x[j] as well as their complements x~[j]:
1099 *
1100 *     sum   x[j] + sum   x~[j] = 1,                                  (2)
1101 *    j in Jp      j in Jn
1102 *
1103 *  where Jp and Jn are not intersected. Therefore, using substitution
1104 *  x~[j] = 1 - x[j] leads to the partitioning equality in generalized
1105 *  format:
1106 *
1107 *     sum   x[j] - sum   x[j] = 1 - |Jn|.                            (3)
1108 *    j in Jp      j in Jn */
1109 
npp_is_partitioning(NPP * npp,NPPROW * row)1110 int npp_is_partitioning(NPP *npp, NPPROW *row)
1111 {     /* test if constraint is partitioning equality */
1112       NPPCOL *col;
1113       NPPAIJ *aij;
1114       int b;
1115       xassert(npp == npp);
1116       if (row->lb != row->ub) return 0;
1117       b = 1;
1118       for (aij = row->ptr; aij != NULL; aij = aij->r_next)
1119       {  col = aij->col;
1120          if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
1121             return 0;
1122          if (aij->val == +1.0)
1123             ;
1124          else if (aij->val == -1.0)
1125             b--;
1126          else
1127             return 0;
1128       }
1129       if (row->lb != (double)b) return 0;
1130       return 1;
1131 }
1132 
1133 /***********************************************************************
1134 *  NAME
1135 *
1136 *  npp_reduce_ineq_coef - reduce inequality constraint coefficients
1137 *
1138 *  SYNOPSIS
1139 *
1140 *  #include "glpnpp.h"
1141 *  int npp_reduce_ineq_coef(NPP *npp, NPPROW *row);
1142 *
1143 *  DESCRIPTION
1144 *
1145 *  The routine npp_reduce_ineq_coef processes specified inequality
1146 *  constraint attempting to replace it by an equivalent constraint,
1147 *  where magnitude of coefficients at binary variables is smaller than
1148 *  in the original constraint. If the inequality is double-sided, it is
1149 *  replaced by a pair of single-sided inequalities, if necessary.
1150 *
1151 *  RETURNS
1152 *
1153 *  The routine npp_reduce_ineq_coef returns the number of coefficients
1154 *  reduced.
1155 *
1156 *  BACKGROUND
1157 *
1158 *  Consider an inequality constraint:
1159 *
1160 *     sum  a[j] x[j] >= b.                                           (1)
1161 *    j in J
1162 *
1163 *  (In case of '<=' inequality it can be transformed to '>=' format by
1164 *  multiplying both its sides by -1.) Let x[k] be a binary variable;
1165 *  other variables can be integer as well as continuous. We can write
1166 *  constraint (1) as follows:
1167 *
1168 *     a[k] x[k] + t[k] >= b,                                         (2)
1169 *
1170 *  where:
1171 *
1172 *     t[k] = sum      a[j] x[j].                                     (3)
1173 *           j in J\{k}
1174 *
1175 *  Since x[k] is binary, constraint (2) is equivalent to disjunction of
1176 *  the following two constraints:
1177 *
1178 *     x[k] = 0,  t[k] >= b                                           (4)
1179 *
1180 *        OR
1181 *
1182 *     x[k] = 1,  t[k] >= b - a[k].                                   (5)
1183 *
1184 *  Let also that for the partial sum t[k] be known some its implied
1185 *  lower bound inf t[k].
1186 *
1187 *  Case a[k] > 0. Let inf t[k] < b, since otherwise both constraints
1188 *  (4) and (5) and therefore constraint (2) are redundant.
1189 *  If inf t[k] > b - a[k], only constraint (5) is redundant, in which
1190 *  case it can be replaced with the following redundant and therefore
1191 *  equivalent constraint:
1192 *
1193 *     t[k] >= b - a'[k] = inf t[k],                                  (6)
1194 *
1195 *  where:
1196 *
1197 *     a'[k] = b - inf t[k].                                          (7)
1198 *
1199 *  Thus, the original constraint (2) is equivalent to the following
1200 *  constraint with coefficient at variable x[k] changed:
1201 *
1202 *     a'[k] x[k] + t[k] >= b.                                        (8)
1203 *
1204 *  From inf t[k] < b it follows that a'[k] > 0, i.e. the coefficient
1205 *  at x[k] keeps its sign. And from inf t[k] > b - a[k] it follows that
1206 *  a'[k] < a[k], i.e. the coefficient reduces in magnitude.
1207 *
1208 *  Case a[k] < 0. Let inf t[k] < b - a[k], since otherwise both
1209 *  constraints (4) and (5) and therefore constraint (2) are redundant.
1210 *  If inf t[k] > b, only constraint (4) is redundant, in which case it
1211 *  can be replaced with the following redundant and therefore equivalent
1212 *  constraint:
1213 *
1214 *     t[k] >= b' = inf t[k].                                         (9)
1215 *
1216 *  Rewriting constraint (5) as follows:
1217 *
1218 *     t[k] >= b - a[k] = b' - a'[k],                                (10)
1219 *
1220 *  where:
1221 *
1222 *     a'[k] = a[k] + b' - b = a[k] + inf t[k] - b,                  (11)
1223 *
1224 *  we can see that disjunction of constraint (9) and (10) is equivalent
1225 *  to disjunction of constraint (4) and (5), from which it follows that
1226 *  the original constraint (2) is equivalent to the following constraint
1227 *  with both coefficient at variable x[k] and right-hand side changed:
1228 *
1229 *     a'[k] x[k] + t[k] >= b'.                                      (12)
1230 *
1231 *  From inf t[k] < b - a[k] it follows that a'[k] < 0, i.e. the
1232 *  coefficient at x[k] keeps its sign. And from inf t[k] > b it follows
1233 *  that a'[k] > a[k], i.e. the coefficient reduces in magnitude.
1234 *
1235 *  PROBLEM TRANSFORMATION
1236 *
1237 *  In the routine npp_reduce_ineq_coef the following implied lower
1238 *  bound of the partial sum (3) is used:
1239 *
1240 *     inf t[k] = sum       a[j] l[j] + sum       a[j] u[j],         (13)
1241 *               j in Jp\{k}           k in Jn\{k}
1242 *
1243 *  where Jp = {j : a[j] > 0}, Jn = {j : a[j] < 0}, l[j] and u[j] are
1244 *  lower and upper bounds, resp., of variable x[j].
1245 *
1246 *  In order to compute inf t[k] more efficiently, the following formula,
1247 *  which is equivalent to (13), is actually used:
1248 *
1249 *                ( h - a[k] l[k] = h,        if a[k] > 0,
1250 *     inf t[k] = <                                                  (14)
1251 *                ( h - a[k] u[k] = h - a[k], if a[k] < 0,
1252 *
1253 *  where:
1254 *
1255 *     h = sum   a[j] l[j] + sum   a[j] u[j]                         (15)
1256 *        j in Jp           j in Jn
1257 *
1258 *  is the implied lower bound of row (1).
1259 *
1260 *  Reduction of positive coefficient (a[k] > 0) does not change value
1261 *  of h, since l[k] = 0. In case of reduction of negative coefficient
1262 *  (a[k] < 0) from (11) it follows that:
1263 *
1264 *     delta a[k] = a'[k] - a[k] = inf t[k] - b  (> 0),              (16)
1265 *
1266 *  so new value of h (accounting that u[k] = 1) can be computed as
1267 *  follows:
1268 *
1269 *     h := h + delta a[k] = h + (inf t[k] - b).                     (17)
1270 *
1271 *  RECOVERING SOLUTION
1272 *
1273 *  None needed. */
1274 
reduce_ineq_coef(NPP * npp,struct elem * ptr,double * _b)1275 static int reduce_ineq_coef(NPP *npp, struct elem *ptr, double *_b)
1276 {     /* process inequality constraint: sum a[j] x[j] >= b */
1277       /* returns: the number of coefficients reduced */
1278       struct elem *e;
1279       int count = 0;
1280       double h, inf_t, new_a, b = *_b;
1281       xassert(npp == npp);
1282       /* compute h; see (15) */
1283       h = 0.0;
1284       for (e = ptr; e != NULL; e = e->next)
1285       {  if (e->aj > 0.0)
1286          {  if (e->xj->lb == -DBL_MAX) goto done;
1287             h += e->aj * e->xj->lb;
1288          }
1289          else /* e->aj < 0.0 */
1290          {  if (e->xj->ub == +DBL_MAX) goto done;
1291             h += e->aj * e->xj->ub;
1292          }
1293       }
1294       /* perform reduction of coefficients at binary variables */
1295       for (e = ptr; e != NULL; e = e->next)
1296       {  /* skip non-binary variable */
1297          if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0))
1298             continue;
1299          if (e->aj > 0.0)
1300          {  /* compute inf t[k]; see (14) */
1301             inf_t = h;
1302             if (b - e->aj < inf_t && inf_t < b)
1303             {  /* compute reduced coefficient a'[k]; see (7) */
1304                new_a = b - inf_t;
1305                if (new_a >= +1e-3 &&
1306                    e->aj - new_a >= 0.01 * (1.0 + e->aj))
1307                {  /* accept a'[k] */
1308 #ifdef GLP_DEBUG
1309                   xprintf("+");
1310 #endif
1311                   e->aj = new_a;
1312                   count++;
1313                }
1314             }
1315          }
1316          else /* e->aj < 0.0 */
1317          {  /* compute inf t[k]; see (14) */
1318             inf_t = h - e->aj;
1319             if (b < inf_t && inf_t < b - e->aj)
1320             {  /* compute reduced coefficient a'[k]; see (11) */
1321                new_a = e->aj + (inf_t - b);
1322                if (new_a <= -1e-3 &&
1323                    new_a - e->aj >= 0.01 * (1.0 - e->aj))
1324                {  /* accept a'[k] */
1325 #ifdef GLP_DEBUG
1326                   xprintf("-");
1327 #endif
1328                   e->aj = new_a;
1329                   /* update h; see (17) */
1330                   h += (inf_t - b);
1331                   /* compute b'; see (9) */
1332                   b = inf_t;
1333                   count++;
1334                }
1335             }
1336          }
1337       }
1338       *_b = b;
1339 done: return count;
1340 }
1341 
npp_reduce_ineq_coef(NPP * npp,NPPROW * row)1342 int npp_reduce_ineq_coef(NPP *npp, NPPROW *row)
1343 {     /* reduce inequality constraint coefficients */
1344       NPPROW *copy;
1345       NPPAIJ *aij;
1346       struct elem *ptr, *e;
1347       int kase, count[2];
1348       double b;
1349       /* the row must be inequality constraint */
1350       xassert(row->lb < row->ub);
1351       count[0] = count[1] = 0;
1352       for (kase = 0; kase <= 1; kase++)
1353       {  if (kase == 0)
1354          {  /* process row lower bound */
1355             if (row->lb == -DBL_MAX) continue;
1356 #ifdef GLP_DEBUG
1357             xprintf("L");
1358 #endif
1359             ptr = copy_form(npp, row, +1.0);
1360             b = + row->lb;
1361          }
1362          else
1363          {  /* process row upper bound */
1364             if (row->ub == +DBL_MAX) continue;
1365 #ifdef GLP_DEBUG
1366             xprintf("U");
1367 #endif
1368             ptr = copy_form(npp, row, -1.0);
1369             b = - row->ub;
1370          }
1371          /* now the inequality has the form "sum a[j] x[j] >= b" */
1372          count[kase] = reduce_ineq_coef(npp, ptr, &b);
1373          if (count[kase] > 0)
1374          {  /* the original inequality has been replaced by equivalent
1375                one with coefficients reduced */
1376             if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
1377             {  /* the original row is single-sided inequality; no copy
1378                   is needed */
1379                copy = NULL;
1380             }
1381             else
1382             {  /* the original row is double-sided inequality; we need
1383                   to create its copy for other bound before replacing it
1384                   with the equivalent inequality */
1385 #ifdef GLP_DEBUG
1386                xprintf("*");
1387 #endif
1388                copy = npp_add_row(npp);
1389                if (kase == 0)
1390                {  /* the copy is for upper bound */
1391                   copy->lb = -DBL_MAX, copy->ub = row->ub;
1392                }
1393                else
1394                {  /* the copy is for lower bound */
1395                   copy->lb = row->lb, copy->ub = +DBL_MAX;
1396                }
1397                /* copy original row coefficients */
1398                for (aij = row->ptr; aij != NULL; aij = aij->r_next)
1399                   npp_add_aij(npp, copy, aij->col, aij->val);
1400             }
1401             /* replace the original inequality by equivalent one */
1402             npp_erase_row(npp, row);
1403             row->lb = b, row->ub = +DBL_MAX;
1404             for (e = ptr; e != NULL; e = e->next)
1405                npp_add_aij(npp, row, e->xj, e->aj);
1406             /* continue processing upper bound for the copy */
1407             if (copy != NULL) row = copy;
1408          }
1409          drop_form(npp, ptr);
1410       }
1411       return count[0] + count[1];
1412 }
1413 
1414 /* eof */
1415