1 /* glpspx01.c (primal simplex method) */
2 
3 /***********************************************************************
4 *  This code is part of GLPK (GNU Linear Programming Kit).
5 *
6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
9 *  E-mail: <mao@gnu.org>.
10 *
11 *  GLPK is free software: you can redistribute it and/or modify it
12 *  under the terms of the GNU General Public License as published by
13 *  the Free Software Foundation, either version 3 of the License, or
14 *  (at your option) any later version.
15 *
16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
19 *  License for more details.
20 *
21 *  You should have received a copy of the GNU General Public License
22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
23 ***********************************************************************/
24 
25 #include "glpspx.h"
26 
27 struct csa
28 {     /* common storage area */
29       /*--------------------------------------------------------------*/
30       /* LP data */
31       int m;
32       /* number of rows (auxiliary variables), m > 0 */
33       int n;
34       /* number of columns (structural variables), n > 0 */
35       char *type; /* char type[1+m+n]; */
36       /* type[0] is not used;
37          type[k], 1 <= k <= m+n, is the type of variable x[k]:
38          GLP_FR - free variable
39          GLP_LO - variable with lower bound
40          GLP_UP - variable with upper bound
41          GLP_DB - double-bounded variable
42          GLP_FX - fixed variable */
43       double *lb; /* double lb[1+m+n]; */
44       /* lb[0] is not used;
45          lb[k], 1 <= k <= m+n, is an lower bound of variable x[k];
46          if x[k] has no lower bound, lb[k] is zero */
47       double *ub; /* double ub[1+m+n]; */
48       /* ub[0] is not used;
49          ub[k], 1 <= k <= m+n, is an upper bound of variable x[k];
50          if x[k] has no upper bound, ub[k] is zero;
51          if x[k] is of fixed type, ub[k] is the same as lb[k] */
52       double *coef; /* double coef[1+m+n]; */
53       /* coef[0] is not used;
54          coef[k], 1 <= k <= m+n, is an objective coefficient at
55          variable x[k] (note that on phase I auxiliary variables also
56          may have non-zero objective coefficients) */
57       /*--------------------------------------------------------------*/
58       /* original objective function */
59       double *obj; /* double obj[1+n]; */
60       /* obj[0] is a constant term of the original objective function;
61          obj[j], 1 <= j <= n, is an original objective coefficient at
62          structural variable x[m+j] */
63       double zeta;
64       /* factor used to scale original objective coefficients; its
65          sign defines original optimization direction: zeta > 0 means
66          minimization, zeta < 0 means maximization */
67       /*--------------------------------------------------------------*/
68       /* constraint matrix A; it has m rows and n columns and is stored
69          by columns */
70       int *A_ptr; /* int A_ptr[1+n+1]; */
71       /* A_ptr[0] is not used;
72          A_ptr[j], 1 <= j <= n, is starting position of j-th column in
73          arrays A_ind and A_val; note that A_ptr[1] is always 1;
74          A_ptr[n+1] indicates the position after the last element in
75          arrays A_ind and A_val */
76       int *A_ind; /* int A_ind[A_ptr[n+1]]; */
77       /* row indices */
78       double *A_val; /* double A_val[A_ptr[n+1]]; */
79       /* non-zero element values */
80       /*--------------------------------------------------------------*/
81       /* basis header */
82       int *head; /* int head[1+m+n]; */
83       /* head[0] is not used;
84          head[i], 1 <= i <= m, is the ordinal number of basic variable
85          xB[i]; head[i] = k means that xB[i] = x[k] and i-th column of
86          matrix B is k-th column of matrix (I|-A);
87          head[m+j], 1 <= j <= n, is the ordinal number of non-basic
88          variable xN[j]; head[m+j] = k means that xN[j] = x[k] and j-th
89          column of matrix N is k-th column of matrix (I|-A) */
90       char *stat; /* char stat[1+n]; */
91       /* stat[0] is not used;
92          stat[j], 1 <= j <= n, is the status of non-basic variable
93          xN[j], which defines its active bound:
94          GLP_NL - lower bound is active
95          GLP_NU - upper bound is active
96          GLP_NF - free variable
97          GLP_NS - fixed variable */
98       /*--------------------------------------------------------------*/
99       /* matrix B is the basis matrix; it is composed from columns of
100          the augmented constraint matrix (I|-A) corresponding to basic
101          variables and stored in a factorized (invertable) form */
102       int valid;
103       /* factorization is valid only if this flag is set */
104       BFD *bfd; /* BFD bfd[1:m,1:m]; */
105       /* factorized (invertable) form of the basis matrix */
106       /*--------------------------------------------------------------*/
107       /* matrix N is a matrix composed from columns of the augmented
108          constraint matrix (I|-A) corresponding to non-basic variables
109          except fixed ones; it is stored by rows and changes every time
110          the basis changes */
111       int *N_ptr; /* int N_ptr[1+m+1]; */
112       /* N_ptr[0] is not used;
113          N_ptr[i], 1 <= i <= m, is starting position of i-th row in
114          arrays N_ind and N_val; note that N_ptr[1] is always 1;
115          N_ptr[m+1] indicates the position after the last element in
116          arrays N_ind and N_val */
117       int *N_len; /* int N_len[1+m]; */
118       /* N_len[0] is not used;
119          N_len[i], 1 <= i <= m, is length of i-th row (0 to n) */
120       int *N_ind; /* int N_ind[N_ptr[m+1]]; */
121       /* column indices */
122       double *N_val; /* double N_val[N_ptr[m+1]]; */
123       /* non-zero element values */
124       /*--------------------------------------------------------------*/
125       /* working parameters */
126       int phase;
127       /* search phase:
128          0 - not determined yet
129          1 - search for primal feasible solution
130          2 - search for optimal solution */
131       glp_long tm_beg;
132       /* time value at the beginning of the search */
133       int it_beg;
134       /* simplex iteration count at the beginning of the search */
135       int it_cnt;
136       /* simplex iteration count; it increases by one every time the
137          basis changes (including the case when a non-basic variable
138          jumps to its opposite bound) */
139       int it_dpy;
140       /* simplex iteration count at the most recent display output */
141       /*--------------------------------------------------------------*/
142       /* basic solution components */
143       double *bbar; /* double bbar[1+m]; */
144       /* bbar[0] is not used;
145          bbar[i], 1 <= i <= m, is primal value of basic variable xB[i]
146          (if xB[i] is free, its primal value is not updated) */
147       double *cbar; /* double cbar[1+n]; */
148       /* cbar[0] is not used;
149          cbar[j], 1 <= j <= n, is reduced cost of non-basic variable
150          xN[j] (if xN[j] is fixed, its reduced cost is not updated) */
151       /*--------------------------------------------------------------*/
152       /* the following pricing technique options may be used:
153          GLP_PT_STD - standard ("textbook") pricing;
154          GLP_PT_PSE - projected steepest edge;
155          GLP_PT_DVX - Devex pricing (not implemented yet);
156          in case of GLP_PT_STD the reference space is not used, and all
157          steepest edge coefficients are set to 1 */
158       int refct;
159       /* this count is set to an initial value when the reference space
160          is defined and decreases by one every time the basis changes;
161          once this count reaches zero, the reference space is redefined
162          again */
163       char *refsp; /* char refsp[1+m+n]; */
164       /* refsp[0] is not used;
165          refsp[k], 1 <= k <= m+n, is the flag which means that variable
166          x[k] belongs to the current reference space */
167       double *gamma; /* double gamma[1+n]; */
168       /* gamma[0] is not used;
169          gamma[j], 1 <= j <= n, is the steepest edge coefficient for
170          non-basic variable xN[j]; if xN[j] is fixed, gamma[j] is not
171          used and just set to 1 */
172       /*--------------------------------------------------------------*/
173       /* non-basic variable xN[q] chosen to enter the basis */
174       int q;
175       /* index of the non-basic variable xN[q] chosen, 1 <= q <= n;
176          if the set of eligible non-basic variables is empty and thus
177          no variable has been chosen, q is set to 0 */
178       /*--------------------------------------------------------------*/
179       /* pivot column of the simplex table corresponding to non-basic
180          variable xN[q] chosen is the following vector:
181             T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
182          where B is the current basis matrix, N[q] is a column of the
183          matrix (I|-A) corresponding to xN[q] */
184       int tcol_nnz;
185       /* number of non-zero components, 0 <= nnz <= m */
186       int *tcol_ind; /* int tcol_ind[1+m]; */
187       /* tcol_ind[0] is not used;
188          tcol_ind[t], 1 <= t <= nnz, is an index of non-zero component,
189          i.e. tcol_ind[t] = i means that tcol_vec[i] != 0 */
190       double *tcol_vec; /* double tcol_vec[1+m]; */
191       /* tcol_vec[0] is not used;
192          tcol_vec[i], 1 <= i <= m, is a numeric value of i-th component
193          of the column */
194       double tcol_max;
195       /* infinity (maximum) norm of the column (max |tcol_vec[i]|) */
196       int tcol_num;
197       /* number of significant non-zero components, which means that:
198          |tcol_vec[i]| >= eps for i in tcol_ind[1,...,num],
199          |tcol_vec[i]| <  eps for i in tcol_ind[num+1,...,nnz],
200          where eps is a pivot tolerance */
201       /*--------------------------------------------------------------*/
202       /* basic variable xB[p] chosen to leave the basis */
203       int p;
204       /* index of the basic variable xB[p] chosen, 1 <= p <= m;
205          p = 0 means that no basic variable reaches its bound;
206          p < 0 means that non-basic variable xN[q] reaches its opposite
207          bound before any basic variable */
208       int p_stat;
209       /* new status (GLP_NL, GLP_NU, or GLP_NS) to be assigned to xB[p]
210          once it has left the basis */
211       double teta;
212       /* change of non-basic variable xN[q] (see above), on which xB[p]
213          (or, if p < 0, xN[q] itself) reaches its bound */
214       /*--------------------------------------------------------------*/
215       /* pivot row of the simplex table corresponding to basic variable
216          xB[p] chosen is the following vector:
217             T' * e[p] = - N' * inv(B') * e[p] = - N' * rho,
218          where B' is a matrix transposed to the current basis matrix,
219          N' is a matrix, whose rows are columns of the matrix (I|-A)
220          corresponding to non-basic non-fixed variables */
221       int trow_nnz;
222       /* number of non-zero components, 0 <= nnz <= n */
223       int *trow_ind; /* int trow_ind[1+n]; */
224       /* trow_ind[0] is not used;
225          trow_ind[t], 1 <= t <= nnz, is an index of non-zero component,
226          i.e. trow_ind[t] = j means that trow_vec[j] != 0 */
227       double *trow_vec; /* int trow_vec[1+n]; */
228       /* trow_vec[0] is not used;
229          trow_vec[j], 1 <= j <= n, is a numeric value of j-th component
230          of the row */
231       /*--------------------------------------------------------------*/
232       /* working arrays */
233       double *work1; /* double work1[1+m]; */
234       double *work2; /* double work2[1+m]; */
235       double *work3; /* double work3[1+m]; */
236       double *work4; /* double work4[1+m]; */
237 };
238 
239 static const double kappa = 0.10;
240 
241 /***********************************************************************
242 *  alloc_csa - allocate common storage area
243 *
244 *  This routine allocates all arrays in the common storage area (CSA)
245 *  and returns a pointer to the CSA. */
246 
alloc_csa(glp_prob * lp)247 static struct csa *alloc_csa(glp_prob *lp)
248 {     struct csa *csa;
249       int m = lp->m;
250       int n = lp->n;
251       int nnz = lp->nnz;
252       csa = xmalloc(sizeof(struct csa));
253       xassert(m > 0 && n > 0);
254       csa->m = m;
255       csa->n = n;
256       csa->type = xcalloc(1+m+n, sizeof(char));
257       csa->lb = xcalloc(1+m+n, sizeof(double));
258       csa->ub = xcalloc(1+m+n, sizeof(double));
259       csa->coef = xcalloc(1+m+n, sizeof(double));
260       csa->obj = xcalloc(1+n, sizeof(double));
261       csa->A_ptr = xcalloc(1+n+1, sizeof(int));
262       csa->A_ind = xcalloc(1+nnz, sizeof(int));
263       csa->A_val = xcalloc(1+nnz, sizeof(double));
264       csa->head = xcalloc(1+m+n, sizeof(int));
265       csa->stat = xcalloc(1+n, sizeof(char));
266       csa->N_ptr = xcalloc(1+m+1, sizeof(int));
267       csa->N_len = xcalloc(1+m, sizeof(int));
268       csa->N_ind = NULL; /* will be allocated later */
269       csa->N_val = NULL; /* will be allocated later */
270       csa->bbar = xcalloc(1+m, sizeof(double));
271       csa->cbar = xcalloc(1+n, sizeof(double));
272       csa->refsp = xcalloc(1+m+n, sizeof(char));
273       csa->gamma = xcalloc(1+n, sizeof(double));
274       csa->tcol_ind = xcalloc(1+m, sizeof(int));
275       csa->tcol_vec = xcalloc(1+m, sizeof(double));
276       csa->trow_ind = xcalloc(1+n, sizeof(int));
277       csa->trow_vec = xcalloc(1+n, sizeof(double));
278       csa->work1 = xcalloc(1+m, sizeof(double));
279       csa->work2 = xcalloc(1+m, sizeof(double));
280       csa->work3 = xcalloc(1+m, sizeof(double));
281       csa->work4 = xcalloc(1+m, sizeof(double));
282       return csa;
283 }
284 
285 /***********************************************************************
286 *  init_csa - initialize common storage area
287 *
288 *  This routine initializes all data structures in the common storage
289 *  area (CSA). */
290 
291 static void alloc_N(struct csa *csa);
292 static void build_N(struct csa *csa);
293 
init_csa(struct csa * csa,glp_prob * lp)294 static void init_csa(struct csa *csa, glp_prob *lp)
295 {     int m = csa->m;
296       int n = csa->n;
297       char *type = csa->type;
298       double *lb = csa->lb;
299       double *ub = csa->ub;
300       double *coef = csa->coef;
301       double *obj = csa->obj;
302       int *A_ptr = csa->A_ptr;
303       int *A_ind = csa->A_ind;
304       double *A_val = csa->A_val;
305       int *head = csa->head;
306       char *stat = csa->stat;
307       char *refsp = csa->refsp;
308       double *gamma = csa->gamma;
309       int i, j, k, loc;
310       double cmax;
311       /* auxiliary variables */
312       for (i = 1; i <= m; i++)
313       {  GLPROW *row = lp->row[i];
314          type[i] = (char)row->type;
315          lb[i] = row->lb * row->rii;
316          ub[i] = row->ub * row->rii;
317          coef[i] = 0.0;
318       }
319       /* structural variables */
320       for (j = 1; j <= n; j++)
321       {  GLPCOL *col = lp->col[j];
322          type[m+j] = (char)col->type;
323          lb[m+j] = col->lb / col->sjj;
324          ub[m+j] = col->ub / col->sjj;
325          coef[m+j] = col->coef * col->sjj;
326       }
327       /* original objective function */
328       obj[0] = lp->c0;
329       memcpy(&obj[1], &coef[m+1], n * sizeof(double));
330       /* factor used to scale original objective coefficients */
331       cmax = 0.0;
332       for (j = 1; j <= n; j++)
333          if (cmax < fabs(obj[j])) cmax = fabs(obj[j]);
334       if (cmax == 0.0) cmax = 1.0;
335       switch (lp->dir)
336       {  case GLP_MIN:
337             csa->zeta = + 1.0 / cmax;
338             break;
339          case GLP_MAX:
340             csa->zeta = - 1.0 / cmax;
341             break;
342          default:
343             xassert(lp != lp);
344       }
345 #if 1
346       if (fabs(csa->zeta) < 1.0) csa->zeta *= 1000.0;
347 #endif
348       /* matrix A (by columns) */
349       loc = 1;
350       for (j = 1; j <= n; j++)
351       {  GLPAIJ *aij;
352          A_ptr[j] = loc;
353          for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
354          {  A_ind[loc] = aij->row->i;
355             A_val[loc] = aij->row->rii * aij->val * aij->col->sjj;
356             loc++;
357          }
358       }
359       A_ptr[n+1] = loc;
360       xassert(loc == lp->nnz+1);
361       /* basis header */
362       xassert(lp->valid);
363       memcpy(&head[1], &lp->head[1], m * sizeof(int));
364       k = 0;
365       for (i = 1; i <= m; i++)
366       {  GLPROW *row = lp->row[i];
367          if (row->stat != GLP_BS)
368          {  k++;
369             xassert(k <= n);
370             head[m+k] = i;
371             stat[k] = (char)row->stat;
372          }
373       }
374       for (j = 1; j <= n; j++)
375       {  GLPCOL *col = lp->col[j];
376          if (col->stat != GLP_BS)
377          {  k++;
378             xassert(k <= n);
379             head[m+k] = m + j;
380             stat[k] = (char)col->stat;
381          }
382       }
383       xassert(k == n);
384       /* factorization of matrix B */
385       csa->valid = 1, lp->valid = 0;
386       csa->bfd = lp->bfd, lp->bfd = NULL;
387       /* matrix N (by rows) */
388       alloc_N(csa);
389       build_N(csa);
390       /* working parameters */
391       csa->phase = 0;
392       csa->tm_beg = xtime();
393       csa->it_beg = csa->it_cnt = lp->it_cnt;
394       csa->it_dpy = -1;
395       /* reference space and steepest edge coefficients */
396       csa->refct = 0;
397       memset(&refsp[1], 0, (m+n) * sizeof(char));
398       for (j = 1; j <= n; j++) gamma[j] = 1.0;
399       return;
400 }
401 
402 /***********************************************************************
403 *  invert_B - compute factorization of the basis matrix
404 *
405 *  This routine computes factorization of the current basis matrix B.
406 *
407 *  If the operation is successful, the routine returns zero, otherwise
408 *  non-zero. */
409 
inv_col(void * info,int i,int ind[],double val[])410 static int inv_col(void *info, int i, int ind[], double val[])
411 {     /* this auxiliary routine returns row indices and numeric values
412          of non-zero elements of i-th column of the basis matrix */
413       struct csa *csa = info;
414       int m = csa->m;
415 #ifdef GLP_DEBUG
416       int n = csa->n;
417 #endif
418       int *A_ptr = csa->A_ptr;
419       int *A_ind = csa->A_ind;
420       double *A_val = csa->A_val;
421       int *head = csa->head;
422       int k, len, ptr, t;
423 #ifdef GLP_DEBUG
424       xassert(1 <= i && i <= m);
425 #endif
426       k = head[i]; /* B[i] is k-th column of (I|-A) */
427 #ifdef GLP_DEBUG
428       xassert(1 <= k && k <= m+n);
429 #endif
430       if (k <= m)
431       {  /* B[i] is k-th column of submatrix I */
432          len = 1;
433          ind[1] = k;
434          val[1] = 1.0;
435       }
436       else
437       {  /* B[i] is (k-m)-th column of submatrix (-A) */
438          ptr = A_ptr[k-m];
439          len = A_ptr[k-m+1] - ptr;
440          memcpy(&ind[1], &A_ind[ptr], len * sizeof(int));
441          memcpy(&val[1], &A_val[ptr], len * sizeof(double));
442          for (t = 1; t <= len; t++) val[t] = - val[t];
443       }
444       return len;
445 }
446 
invert_B(struct csa * csa)447 static int invert_B(struct csa *csa)
448 {     int ret;
449       ret = bfd_factorize(csa->bfd, csa->m, NULL, inv_col, csa);
450       csa->valid = (ret == 0);
451       return ret;
452 }
453 
454 /***********************************************************************
455 *  update_B - update factorization of the basis matrix
456 *
457 *  This routine replaces i-th column of the basis matrix B by k-th
458 *  column of the augmented constraint matrix (I|-A) and then updates
459 *  the factorization of B.
460 *
461 *  If the factorization has been successfully updated, the routine
462 *  returns zero, otherwise non-zero. */
463 
update_B(struct csa * csa,int i,int k)464 static int update_B(struct csa *csa, int i, int k)
465 {     int m = csa->m;
466 #ifdef GLP_DEBUG
467       int n = csa->n;
468 #endif
469       int ret;
470 #ifdef GLP_DEBUG
471       xassert(1 <= i && i <= m);
472       xassert(1 <= k && k <= m+n);
473 #endif
474       if (k <= m)
475       {  /* new i-th column of B is k-th column of I */
476          int ind[1+1];
477          double val[1+1];
478          ind[1] = k;
479          val[1] = 1.0;
480          xassert(csa->valid);
481          ret = bfd_update_it(csa->bfd, i, 0, 1, ind, val);
482       }
483       else
484       {  /* new i-th column of B is (k-m)-th column of (-A) */
485          int *A_ptr = csa->A_ptr;
486          int *A_ind = csa->A_ind;
487          double *A_val = csa->A_val;
488          double *val = csa->work1;
489          int beg, end, ptr, len;
490          beg = A_ptr[k-m];
491          end = A_ptr[k-m+1];
492          len = 0;
493          for (ptr = beg; ptr < end; ptr++)
494             val[++len] = - A_val[ptr];
495          xassert(csa->valid);
496          ret = bfd_update_it(csa->bfd, i, 0, len, &A_ind[beg-1], val);
497       }
498       csa->valid = (ret == 0);
499       return ret;
500 }
501 
502 /***********************************************************************
503 *  error_ftran - compute residual vector r = h - B * x
504 *
505 *  This routine computes the residual vector r = h - B * x, where B is
506 *  the current basis matrix, h is the vector of right-hand sides, x is
507 *  the solution vector. */
508 
error_ftran(struct csa * csa,double h[],double x[],double r[])509 static void error_ftran(struct csa *csa, double h[], double x[],
510       double r[])
511 {     int m = csa->m;
512 #ifdef GLP_DEBUG
513       int n = csa->n;
514 #endif
515       int *A_ptr = csa->A_ptr;
516       int *A_ind = csa->A_ind;
517       double *A_val = csa->A_val;
518       int *head = csa->head;
519       int i, k, beg, end, ptr;
520       double temp;
521       /* compute the residual vector:
522          r = h - B * x = h - B[1] * x[1] - ... - B[m] * x[m],
523          where B[1], ..., B[m] are columns of matrix B */
524       memcpy(&r[1], &h[1], m * sizeof(double));
525       for (i = 1; i <= m; i++)
526       {  temp = x[i];
527          if (temp == 0.0) continue;
528          k = head[i]; /* B[i] is k-th column of (I|-A) */
529 #ifdef GLP_DEBUG
530          xassert(1 <= k && k <= m+n);
531 #endif
532          if (k <= m)
533          {  /* B[i] is k-th column of submatrix I */
534             r[k] -= temp;
535          }
536          else
537          {  /* B[i] is (k-m)-th column of submatrix (-A) */
538             beg = A_ptr[k-m];
539             end = A_ptr[k-m+1];
540             for (ptr = beg; ptr < end; ptr++)
541                r[A_ind[ptr]] += A_val[ptr] * temp;
542          }
543       }
544       return;
545 }
546 
547 /***********************************************************************
548 *  refine_ftran - refine solution of B * x = h
549 *
550 *  This routine performs one iteration to refine the solution of
551 *  the system B * x = h, where B is the current basis matrix, h is the
552 *  vector of right-hand sides, x is the solution vector. */
553 
refine_ftran(struct csa * csa,double h[],double x[])554 static void refine_ftran(struct csa *csa, double h[], double x[])
555 {     int m = csa->m;
556       double *r = csa->work1;
557       double *d = csa->work1;
558       int i;
559       /* compute the residual vector r = h - B * x */
560       error_ftran(csa, h, x, r);
561       /* compute the correction vector d = inv(B) * r */
562       xassert(csa->valid);
563       bfd_ftran(csa->bfd, d);
564       /* refine the solution vector (new x) = (old x) + d */
565       for (i = 1; i <= m; i++) x[i] += d[i];
566       return;
567 }
568 
569 /***********************************************************************
570 *  error_btran - compute residual vector r = h - B'* x
571 *
572 *  This routine computes the residual vector r = h - B'* x, where B'
573 *  is a matrix transposed to the current basis matrix, h is the vector
574 *  of right-hand sides, x is the solution vector. */
575 
error_btran(struct csa * csa,double h[],double x[],double r[])576 static void error_btran(struct csa *csa, double h[], double x[],
577       double r[])
578 {     int m = csa->m;
579 #ifdef GLP_DEBUG
580       int n = csa->n;
581 #endif
582       int *A_ptr = csa->A_ptr;
583       int *A_ind = csa->A_ind;
584       double *A_val = csa->A_val;
585       int *head = csa->head;
586       int i, k, beg, end, ptr;
587       double temp;
588       /* compute the residual vector r = b - B'* x */
589       for (i = 1; i <= m; i++)
590       {  /* r[i] := b[i] - (i-th column of B)'* x */
591          k = head[i]; /* B[i] is k-th column of (I|-A) */
592 #ifdef GLP_DEBUG
593          xassert(1 <= k && k <= m+n);
594 #endif
595          temp = h[i];
596          if (k <= m)
597          {  /* B[i] is k-th column of submatrix I */
598             temp -= x[k];
599          }
600          else
601          {  /* B[i] is (k-m)-th column of submatrix (-A) */
602             beg = A_ptr[k-m];
603             end = A_ptr[k-m+1];
604             for (ptr = beg; ptr < end; ptr++)
605                temp += A_val[ptr] * x[A_ind[ptr]];
606          }
607          r[i] = temp;
608       }
609       return;
610 }
611 
612 /***********************************************************************
613 *  refine_btran - refine solution of B'* x = h
614 *
615 *  This routine performs one iteration to refine the solution of the
616 *  system B'* x = h, where B' is a matrix transposed to the current
617 *  basis matrix, h is the vector of right-hand sides, x is the solution
618 *  vector. */
619 
refine_btran(struct csa * csa,double h[],double x[])620 static void refine_btran(struct csa *csa, double h[], double x[])
621 {     int m = csa->m;
622       double *r = csa->work1;
623       double *d = csa->work1;
624       int i;
625       /* compute the residual vector r = h - B'* x */
626       error_btran(csa, h, x, r);
627       /* compute the correction vector d = inv(B') * r */
628       xassert(csa->valid);
629       bfd_btran(csa->bfd, d);
630       /* refine the solution vector (new x) = (old x) + d */
631       for (i = 1; i <= m; i++) x[i] += d[i];
632       return;
633 }
634 
635 /***********************************************************************
636 *  alloc_N - allocate matrix N
637 *
638 *  This routine determines maximal row lengths of matrix N, sets its
639 *  row pointers, and then allocates arrays N_ind and N_val.
640 *
641 *  Note that some fixed structural variables may temporarily become
642 *  double-bounded, so corresponding columns of matrix A should not be
643 *  ignored on calculating maximal row lengths of matrix N. */
644 
alloc_N(struct csa * csa)645 static void alloc_N(struct csa *csa)
646 {     int m = csa->m;
647       int n = csa->n;
648       int *A_ptr = csa->A_ptr;
649       int *A_ind = csa->A_ind;
650       int *N_ptr = csa->N_ptr;
651       int *N_len = csa->N_len;
652       int i, j, beg, end, ptr;
653       /* determine number of non-zeros in each row of the augmented
654          constraint matrix (I|-A) */
655       for (i = 1; i <= m; i++)
656          N_len[i] = 1;
657       for (j = 1; j <= n; j++)
658       {  beg = A_ptr[j];
659          end = A_ptr[j+1];
660          for (ptr = beg; ptr < end; ptr++)
661             N_len[A_ind[ptr]]++;
662       }
663       /* determine maximal row lengths of matrix N and set its row
664          pointers */
665       N_ptr[1] = 1;
666       for (i = 1; i <= m; i++)
667       {  /* row of matrix N cannot have more than n non-zeros */
668          if (N_len[i] > n) N_len[i] = n;
669          N_ptr[i+1] = N_ptr[i] + N_len[i];
670       }
671       /* now maximal number of non-zeros in matrix N is known */
672       csa->N_ind = xcalloc(N_ptr[m+1], sizeof(int));
673       csa->N_val = xcalloc(N_ptr[m+1], sizeof(double));
674       return;
675 }
676 
677 /***********************************************************************
678 *  add_N_col - add column of matrix (I|-A) to matrix N
679 *
680 *  This routine adds j-th column to matrix N which is k-th column of
681 *  the augmented constraint matrix (I|-A). (It is assumed that old j-th
682 *  column was previously removed from matrix N.) */
683 
add_N_col(struct csa * csa,int j,int k)684 static void add_N_col(struct csa *csa, int j, int k)
685 {     int m = csa->m;
686 #ifdef GLP_DEBUG
687       int n = csa->n;
688 #endif
689       int *N_ptr = csa->N_ptr;
690       int *N_len = csa->N_len;
691       int *N_ind = csa->N_ind;
692       double *N_val = csa->N_val;
693       int pos;
694 #ifdef GLP_DEBUG
695       xassert(1 <= j && j <= n);
696       xassert(1 <= k && k <= m+n);
697 #endif
698       if (k <= m)
699       {  /* N[j] is k-th column of submatrix I */
700          pos = N_ptr[k] + (N_len[k]++);
701 #ifdef GLP_DEBUG
702          xassert(pos < N_ptr[k+1]);
703 #endif
704          N_ind[pos] = j;
705          N_val[pos] = 1.0;
706       }
707       else
708       {  /* N[j] is (k-m)-th column of submatrix (-A) */
709          int *A_ptr = csa->A_ptr;
710          int *A_ind = csa->A_ind;
711          double *A_val = csa->A_val;
712          int i, beg, end, ptr;
713          beg = A_ptr[k-m];
714          end = A_ptr[k-m+1];
715          for (ptr = beg; ptr < end; ptr++)
716          {  i = A_ind[ptr]; /* row number */
717             pos = N_ptr[i] + (N_len[i]++);
718 #ifdef GLP_DEBUG
719             xassert(pos < N_ptr[i+1]);
720 #endif
721             N_ind[pos] = j;
722             N_val[pos] = - A_val[ptr];
723          }
724       }
725       return;
726 }
727 
728 /***********************************************************************
729 *  del_N_col - remove column of matrix (I|-A) from matrix N
730 *
731 *  This routine removes j-th column from matrix N which is k-th column
732 *  of the augmented constraint matrix (I|-A). */
733 
del_N_col(struct csa * csa,int j,int k)734 static void del_N_col(struct csa *csa, int j, int k)
735 {     int m = csa->m;
736 #ifdef GLP_DEBUG
737       int n = csa->n;
738 #endif
739       int *N_ptr = csa->N_ptr;
740       int *N_len = csa->N_len;
741       int *N_ind = csa->N_ind;
742       double *N_val = csa->N_val;
743       int pos, head, tail;
744 #ifdef GLP_DEBUG
745       xassert(1 <= j && j <= n);
746       xassert(1 <= k && k <= m+n);
747 #endif
748       if (k <= m)
749       {  /* N[j] is k-th column of submatrix I */
750          /* find element in k-th row of N */
751          head = N_ptr[k];
752          for (pos = head; N_ind[pos] != j; pos++) /* nop */;
753          /* and remove it from the row list */
754          tail = head + (--N_len[k]);
755 #ifdef GLP_DEBUG
756          xassert(pos <= tail);
757 #endif
758          N_ind[pos] = N_ind[tail];
759          N_val[pos] = N_val[tail];
760       }
761       else
762       {  /* N[j] is (k-m)-th column of submatrix (-A) */
763          int *A_ptr = csa->A_ptr;
764          int *A_ind = csa->A_ind;
765          int i, beg, end, ptr;
766          beg = A_ptr[k-m];
767          end = A_ptr[k-m+1];
768          for (ptr = beg; ptr < end; ptr++)
769          {  i = A_ind[ptr]; /* row number */
770             /* find element in i-th row of N */
771             head = N_ptr[i];
772             for (pos = head; N_ind[pos] != j; pos++) /* nop */;
773             /* and remove it from the row list */
774             tail = head + (--N_len[i]);
775 #ifdef GLP_DEBUG
776             xassert(pos <= tail);
777 #endif
778             N_ind[pos] = N_ind[tail];
779             N_val[pos] = N_val[tail];
780          }
781       }
782       return;
783 }
784 
785 /***********************************************************************
786 *  build_N - build matrix N for current basis
787 *
788 *  This routine builds matrix N for the current basis from columns
789 *  of the augmented constraint matrix (I|-A) corresponding to non-basic
790 *  non-fixed variables. */
791 
build_N(struct csa * csa)792 static void build_N(struct csa *csa)
793 {     int m = csa->m;
794       int n = csa->n;
795       int *head = csa->head;
796       char *stat = csa->stat;
797       int *N_len = csa->N_len;
798       int j, k;
799       /* N := empty matrix */
800       memset(&N_len[1], 0, m * sizeof(int));
801       /* go through non-basic columns of matrix (I|-A) */
802       for (j = 1; j <= n; j++)
803       {  if (stat[j] != GLP_NS)
804          {  /* xN[j] is non-fixed; add j-th column to matrix N which is
805                k-th column of matrix (I|-A) */
806             k = head[m+j]; /* x[k] = xN[j] */
807 #ifdef GLP_DEBUG
808             xassert(1 <= k && k <= m+n);
809 #endif
810             add_N_col(csa, j, k);
811          }
812       }
813       return;
814 }
815 
816 /***********************************************************************
817 *  get_xN - determine current value of non-basic variable xN[j]
818 *
819 *  This routine returns the current value of non-basic variable xN[j],
820 *  which is a value of its active bound. */
821 
get_xN(struct csa * csa,int j)822 static double get_xN(struct csa *csa, int j)
823 {     int m = csa->m;
824 #ifdef GLP_DEBUG
825       int n = csa->n;
826 #endif
827       double *lb = csa->lb;
828       double *ub = csa->ub;
829       int *head = csa->head;
830       char *stat = csa->stat;
831       int k;
832       double xN;
833 #ifdef GLP_DEBUG
834       xassert(1 <= j && j <= n);
835 #endif
836       k = head[m+j]; /* x[k] = xN[j] */
837 #ifdef GLP_DEBUG
838       xassert(1 <= k && k <= m+n);
839 #endif
840       switch (stat[j])
841       {  case GLP_NL:
842             /* x[k] is on its lower bound */
843             xN = lb[k]; break;
844          case GLP_NU:
845             /* x[k] is on its upper bound */
846             xN = ub[k]; break;
847          case GLP_NF:
848             /* x[k] is free non-basic variable */
849             xN = 0.0; break;
850          case GLP_NS:
851             /* x[k] is fixed non-basic variable */
852             xN = lb[k]; break;
853          default:
854             xassert(stat != stat);
855       }
856       return xN;
857 }
858 
859 /***********************************************************************
860 *  eval_beta - compute primal values of basic variables
861 *
862 *  This routine computes current primal values of all basic variables:
863 *
864 *     beta = - inv(B) * N * xN,
865 *
866 *  where B is the current basis matrix, N is a matrix built of columns
867 *  of matrix (I|-A) corresponding to non-basic variables, and xN is the
868 *  vector of current values of non-basic variables. */
869 
eval_beta(struct csa * csa,double beta[])870 static void eval_beta(struct csa *csa, double beta[])
871 {     int m = csa->m;
872       int n = csa->n;
873       int *A_ptr = csa->A_ptr;
874       int *A_ind = csa->A_ind;
875       double *A_val = csa->A_val;
876       int *head = csa->head;
877       double *h = csa->work2;
878       int i, j, k, beg, end, ptr;
879       double xN;
880       /* compute the right-hand side vector:
881          h := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n],
882          where N[1], ..., N[n] are columns of matrix N */
883       for (i = 1; i <= m; i++)
884          h[i] = 0.0;
885       for (j = 1; j <= n; j++)
886       {  k = head[m+j]; /* x[k] = xN[j] */
887 #ifdef GLP_DEBUG
888          xassert(1 <= k && k <= m+n);
889 #endif
890          /* determine current value of xN[j] */
891          xN = get_xN(csa, j);
892          if (xN == 0.0) continue;
893          if (k <= m)
894          {  /* N[j] is k-th column of submatrix I */
895             h[k] -= xN;
896          }
897          else
898          {  /* N[j] is (k-m)-th column of submatrix (-A) */
899             beg = A_ptr[k-m];
900             end = A_ptr[k-m+1];
901             for (ptr = beg; ptr < end; ptr++)
902                h[A_ind[ptr]] += xN * A_val[ptr];
903          }
904       }
905       /* solve system B * beta = h */
906       memcpy(&beta[1], &h[1], m * sizeof(double));
907       xassert(csa->valid);
908       bfd_ftran(csa->bfd, beta);
909       /* and refine the solution */
910       refine_ftran(csa, h, beta);
911       return;
912 }
913 
914 /***********************************************************************
915 *  eval_pi - compute vector of simplex multipliers
916 *
917 *  This routine computes the vector of current simplex multipliers:
918 *
919 *     pi = inv(B') * cB,
920 *
921 *  where B' is a matrix transposed to the current basis matrix, cB is
922 *  a subvector of objective coefficients at basic variables. */
923 
eval_pi(struct csa * csa,double pi[])924 static void eval_pi(struct csa *csa, double pi[])
925 {     int m = csa->m;
926       double *c = csa->coef;
927       int *head = csa->head;
928       double *cB = csa->work2;
929       int i;
930       /* construct the right-hand side vector cB */
931       for (i = 1; i <= m; i++)
932          cB[i] = c[head[i]];
933       /* solve system B'* pi = cB */
934       memcpy(&pi[1], &cB[1], m * sizeof(double));
935       xassert(csa->valid);
936       bfd_btran(csa->bfd, pi);
937       /* and refine the solution */
938       refine_btran(csa, cB, pi);
939       return;
940 }
941 
942 /***********************************************************************
943 *  eval_cost - compute reduced cost of non-basic variable xN[j]
944 *
945 *  This routine computes the current reduced cost of non-basic variable
946 *  xN[j]:
947 *
948 *     d[j] = cN[j] - N'[j] * pi,
949 *
950 *  where cN[j] is the objective coefficient at variable xN[j], N[j] is
951 *  a column of the augmented constraint matrix (I|-A) corresponding to
952 *  xN[j], pi is the vector of simplex multipliers. */
953 
eval_cost(struct csa * csa,double pi[],int j)954 static double eval_cost(struct csa *csa, double pi[], int j)
955 {     int m = csa->m;
956 #ifdef GLP_DEBUG
957       int n = csa->n;
958 #endif
959       double *coef = csa->coef;
960       int *head = csa->head;
961       int k;
962       double dj;
963 #ifdef GLP_DEBUG
964       xassert(1 <= j && j <= n);
965 #endif
966       k = head[m+j]; /* x[k] = xN[j] */
967 #ifdef GLP_DEBUG
968       xassert(1 <= k && k <= m+n);
969 #endif
970       dj = coef[k];
971       if (k <= m)
972       {  /* N[j] is k-th column of submatrix I */
973          dj -= pi[k];
974       }
975       else
976       {  /* N[j] is (k-m)-th column of submatrix (-A) */
977          int *A_ptr = csa->A_ptr;
978          int *A_ind = csa->A_ind;
979          double *A_val = csa->A_val;
980          int beg, end, ptr;
981          beg = A_ptr[k-m];
982          end = A_ptr[k-m+1];
983          for (ptr = beg; ptr < end; ptr++)
984             dj += A_val[ptr] * pi[A_ind[ptr]];
985       }
986       return dj;
987 }
988 
989 /***********************************************************************
990 *  eval_bbar - compute and store primal values of basic variables
991 *
992 *  This routine computes primal values of all basic variables and then
993 *  stores them in the solution array. */
994 
eval_bbar(struct csa * csa)995 static void eval_bbar(struct csa *csa)
996 {     eval_beta(csa, csa->bbar);
997       return;
998 }
999 
1000 /***********************************************************************
1001 *  eval_cbar - compute and store reduced costs of non-basic variables
1002 *
1003 *  This routine computes reduced costs of all non-basic variables and
1004 *  then stores them in the solution array. */
1005 
eval_cbar(struct csa * csa)1006 static void eval_cbar(struct csa *csa)
1007 {
1008 #ifdef GLP_DEBUG
1009       int m = csa->m;
1010 #endif
1011       int n = csa->n;
1012 #ifdef GLP_DEBUG
1013       int *head = csa->head;
1014 #endif
1015       double *cbar = csa->cbar;
1016       double *pi = csa->work3;
1017       int j;
1018 #ifdef GLP_DEBUG
1019       int k;
1020 #endif
1021       /* compute simplex multipliers */
1022       eval_pi(csa, pi);
1023       /* compute and store reduced costs */
1024       for (j = 1; j <= n; j++)
1025       {
1026 #ifdef GLP_DEBUG
1027          k = head[m+j]; /* x[k] = xN[j] */
1028          xassert(1 <= k && k <= m+n);
1029 #endif
1030          cbar[j] = eval_cost(csa, pi, j);
1031       }
1032       return;
1033 }
1034 
1035 /***********************************************************************
1036 *  reset_refsp - reset the reference space
1037 *
1038 *  This routine resets (redefines) the reference space used in the
1039 *  projected steepest edge pricing algorithm. */
1040 
reset_refsp(struct csa * csa)1041 static void reset_refsp(struct csa *csa)
1042 {     int m = csa->m;
1043       int n = csa->n;
1044       int *head = csa->head;
1045       char *refsp = csa->refsp;
1046       double *gamma = csa->gamma;
1047       int j, k;
1048       xassert(csa->refct == 0);
1049       csa->refct = 1000;
1050       memset(&refsp[1], 0, (m+n) * sizeof(char));
1051       for (j = 1; j <= n; j++)
1052       {  k = head[m+j]; /* x[k] = xN[j] */
1053          refsp[k] = 1;
1054          gamma[j] = 1.0;
1055       }
1056       return;
1057 }
1058 
1059 /***********************************************************************
1060 *  eval_gamma - compute steepest edge coefficient
1061 *
1062 *  This routine computes the steepest edge coefficient for non-basic
1063 *  variable xN[j] using its direct definition:
1064 *
1065 *     gamma[j] = delta[j] +  sum   alfa[i,j]^2,
1066 *                           i in R
1067 *
1068 *  where delta[j] = 1, if xN[j] is in the current reference space,
1069 *  and 0 otherwise; R is a set of basic variables xB[i], which are in
1070 *  the current reference space; alfa[i,j] are elements of the current
1071 *  simplex table.
1072 *
1073 *  NOTE: The routine is intended only for debugginig purposes. */
1074 
eval_gamma(struct csa * csa,int j)1075 static double eval_gamma(struct csa *csa, int j)
1076 {     int m = csa->m;
1077 #ifdef GLP_DEBUG
1078       int n = csa->n;
1079 #endif
1080       int *head = csa->head;
1081       char *refsp = csa->refsp;
1082       double *alfa = csa->work3;
1083       double *h = csa->work3;
1084       int i, k;
1085       double gamma;
1086 #ifdef GLP_DEBUG
1087       xassert(1 <= j && j <= n);
1088 #endif
1089       k = head[m+j]; /* x[k] = xN[j] */
1090 #ifdef GLP_DEBUG
1091       xassert(1 <= k && k <= m+n);
1092 #endif
1093       /* construct the right-hand side vector h = - N[j] */
1094       for (i = 1; i <= m; i++)
1095          h[i] = 0.0;
1096       if (k <= m)
1097       {  /* N[j] is k-th column of submatrix I */
1098          h[k] = -1.0;
1099       }
1100       else
1101       {  /* N[j] is (k-m)-th column of submatrix (-A) */
1102          int *A_ptr = csa->A_ptr;
1103          int *A_ind = csa->A_ind;
1104          double *A_val = csa->A_val;
1105          int beg, end, ptr;
1106          beg = A_ptr[k-m];
1107          end = A_ptr[k-m+1];
1108          for (ptr = beg; ptr < end; ptr++)
1109             h[A_ind[ptr]] = A_val[ptr];
1110       }
1111       /* solve system B * alfa = h */
1112       xassert(csa->valid);
1113       bfd_ftran(csa->bfd, alfa);
1114       /* compute gamma */
1115       gamma = (refsp[k] ? 1.0 : 0.0);
1116       for (i = 1; i <= m; i++)
1117       {  k = head[i];
1118 #ifdef GLP_DEBUG
1119          xassert(1 <= k && k <= m+n);
1120 #endif
1121          if (refsp[k]) gamma += alfa[i] * alfa[i];
1122       }
1123       return gamma;
1124 }
1125 
1126 /***********************************************************************
1127 *  chuzc - choose non-basic variable (column of the simplex table)
1128 *
1129 *  This routine chooses non-basic variable xN[q], which has largest
1130 *  weighted reduced cost:
1131 *
1132 *     |d[q]| / sqrt(gamma[q]) = max  |d[j]| / sqrt(gamma[j]),
1133 *                              j in J
1134 *
1135 *  where J is a subset of eligible non-basic variables xN[j], d[j] is
1136 *  reduced cost of xN[j], gamma[j] is the steepest edge coefficient.
1137 *
1138 *  The working objective function is always minimized, so the sign of
1139 *  d[q] determines direction, in which xN[q] has to change:
1140 *
1141 *     if d[q] < 0, xN[q] has to increase;
1142 *
1143 *     if d[q] > 0, xN[q] has to decrease.
1144 *
1145 *  If |d[j]| <= tol_dj, where tol_dj is a specified tolerance, xN[j]
1146 *  is not included in J and therefore ignored. (It is assumed that the
1147 *  working objective row is appropriately scaled, i.e. max|c[k]| = 1.)
1148 *
1149 *  If J is empty and no variable has been chosen, q is set to 0. */
1150 
chuzc(struct csa * csa,double tol_dj)1151 static void chuzc(struct csa *csa, double tol_dj)
1152 {     int n = csa->n;
1153       char *stat = csa->stat;
1154       double *cbar = csa->cbar;
1155       double *gamma = csa->gamma;
1156       int j, q;
1157       double dj, best, temp;
1158       /* nothing is chosen so far */
1159       q = 0, best = 0.0;
1160       /* look through the list of non-basic variables */
1161       for (j = 1; j <= n; j++)
1162       {  dj = cbar[j];
1163          switch (stat[j])
1164          {  case GLP_NL:
1165                /* xN[j] can increase */
1166                if (dj >= - tol_dj) continue;
1167                break;
1168             case GLP_NU:
1169                /* xN[j] can decrease */
1170                if (dj <= + tol_dj) continue;
1171                break;
1172             case GLP_NF:
1173                /* xN[j] can change in any direction */
1174                if (- tol_dj <= dj && dj <= + tol_dj) continue;
1175                break;
1176             case GLP_NS:
1177                /* xN[j] cannot change at all */
1178                continue;
1179             default:
1180                xassert(stat != stat);
1181          }
1182          /* xN[j] is eligible non-basic variable; choose one which has
1183             largest weighted reduced cost */
1184 #ifdef GLP_DEBUG
1185          xassert(gamma[j] > 0.0);
1186 #endif
1187          temp = (dj * dj) / gamma[j];
1188          if (best < temp)
1189             q = j, best = temp;
1190       }
1191       /* store the index of non-basic variable xN[q] chosen */
1192       csa->q = q;
1193       return;
1194 }
1195 
1196 /***********************************************************************
1197 *  eval_tcol - compute pivot column of the simplex table
1198 *
1199 *  This routine computes the pivot column of the simplex table, which
1200 *  corresponds to non-basic variable xN[q] chosen.
1201 *
1202 *  The pivot column is the following vector:
1203 *
1204 *     tcol = T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
1205 *
1206 *  where B is the current basis matrix, N[q] is a column of the matrix
1207 *  (I|-A) corresponding to variable xN[q]. */
1208 
eval_tcol(struct csa * csa)1209 static void eval_tcol(struct csa *csa)
1210 {     int m = csa->m;
1211 #ifdef GLP_DEBUG
1212       int n = csa->n;
1213 #endif
1214       int *head = csa->head;
1215       int q = csa->q;
1216       int *tcol_ind = csa->tcol_ind;
1217       double *tcol_vec = csa->tcol_vec;
1218       double *h = csa->tcol_vec;
1219       int i, k, nnz;
1220 #ifdef GLP_DEBUG
1221       xassert(1 <= q && q <= n);
1222 #endif
1223       k = head[m+q]; /* x[k] = xN[q] */
1224 #ifdef GLP_DEBUG
1225       xassert(1 <= k && k <= m+n);
1226 #endif
1227       /* construct the right-hand side vector h = - N[q] */
1228       for (i = 1; i <= m; i++)
1229          h[i] = 0.0;
1230       if (k <= m)
1231       {  /* N[q] is k-th column of submatrix I */
1232          h[k] = -1.0;
1233       }
1234       else
1235       {  /* N[q] is (k-m)-th column of submatrix (-A) */
1236          int *A_ptr = csa->A_ptr;
1237          int *A_ind = csa->A_ind;
1238          double *A_val = csa->A_val;
1239          int beg, end, ptr;
1240          beg = A_ptr[k-m];
1241          end = A_ptr[k-m+1];
1242          for (ptr = beg; ptr < end; ptr++)
1243             h[A_ind[ptr]] = A_val[ptr];
1244       }
1245       /* solve system B * tcol = h */
1246       xassert(csa->valid);
1247       bfd_ftran(csa->bfd, tcol_vec);
1248       /* construct sparse pattern of the pivot column */
1249       nnz = 0;
1250       for (i = 1; i <= m; i++)
1251       {  if (tcol_vec[i] != 0.0)
1252             tcol_ind[++nnz] = i;
1253       }
1254       csa->tcol_nnz = nnz;
1255       return;
1256 }
1257 
1258 /***********************************************************************
1259 *  refine_tcol - refine pivot column of the simplex table
1260 *
1261 *  This routine refines the pivot column of the simplex table assuming
1262 *  that it was previously computed by the routine eval_tcol. */
1263 
refine_tcol(struct csa * csa)1264 static void refine_tcol(struct csa *csa)
1265 {     int m = csa->m;
1266 #ifdef GLP_DEBUG
1267       int n = csa->n;
1268 #endif
1269       int *head = csa->head;
1270       int q = csa->q;
1271       int *tcol_ind = csa->tcol_ind;
1272       double *tcol_vec = csa->tcol_vec;
1273       double *h = csa->work3;
1274       int i, k, nnz;
1275 #ifdef GLP_DEBUG
1276       xassert(1 <= q && q <= n);
1277 #endif
1278       k = head[m+q]; /* x[k] = xN[q] */
1279 #ifdef GLP_DEBUG
1280       xassert(1 <= k && k <= m+n);
1281 #endif
1282       /* construct the right-hand side vector h = - N[q] */
1283       for (i = 1; i <= m; i++)
1284          h[i] = 0.0;
1285       if (k <= m)
1286       {  /* N[q] is k-th column of submatrix I */
1287          h[k] = -1.0;
1288       }
1289       else
1290       {  /* N[q] is (k-m)-th column of submatrix (-A) */
1291          int *A_ptr = csa->A_ptr;
1292          int *A_ind = csa->A_ind;
1293          double *A_val = csa->A_val;
1294          int beg, end, ptr;
1295          beg = A_ptr[k-m];
1296          end = A_ptr[k-m+1];
1297          for (ptr = beg; ptr < end; ptr++)
1298             h[A_ind[ptr]] = A_val[ptr];
1299       }
1300       /* refine solution of B * tcol = h */
1301       refine_ftran(csa, h, tcol_vec);
1302       /* construct sparse pattern of the pivot column */
1303       nnz = 0;
1304       for (i = 1; i <= m; i++)
1305       {  if (tcol_vec[i] != 0.0)
1306             tcol_ind[++nnz] = i;
1307       }
1308       csa->tcol_nnz = nnz;
1309       return;
1310 }
1311 
1312 /***********************************************************************
1313 *  sort_tcol - sort pivot column of the simplex table
1314 *
1315 *  This routine reorders the list of non-zero elements of the pivot
1316 *  column to put significant elements, whose magnitude is not less than
1317 *  a specified tolerance, in front of the list, and stores the number
1318 *  of significant elements in tcol_num. */
1319 
sort_tcol(struct csa * csa,double tol_piv)1320 static void sort_tcol(struct csa *csa, double tol_piv)
1321 {
1322 #ifdef GLP_DEBUG
1323       int m = csa->m;
1324 #endif
1325       int nnz = csa->tcol_nnz;
1326       int *tcol_ind = csa->tcol_ind;
1327       double *tcol_vec = csa->tcol_vec;
1328       int i, num, pos;
1329       double big, eps, temp;
1330       /* compute infinity (maximum) norm of the column */
1331       big = 0.0;
1332       for (pos = 1; pos <= nnz; pos++)
1333       {
1334 #ifdef GLP_DEBUG
1335          i = tcol_ind[pos];
1336          xassert(1 <= i && i <= m);
1337 #endif
1338          temp = fabs(tcol_vec[tcol_ind[pos]]);
1339          if (big < temp) big = temp;
1340       }
1341       csa->tcol_max = big;
1342       /* determine absolute pivot tolerance */
1343       eps = tol_piv * (1.0 + 0.01 * big);
1344       /* move significant column components to front of the list */
1345       for (num = 0; num < nnz; )
1346       {  i = tcol_ind[nnz];
1347          if (fabs(tcol_vec[i]) < eps)
1348             nnz--;
1349          else
1350          {  num++;
1351             tcol_ind[nnz] = tcol_ind[num];
1352             tcol_ind[num] = i;
1353          }
1354       }
1355       csa->tcol_num = num;
1356       return;
1357 }
1358 
1359 /***********************************************************************
1360 *  chuzr - choose basic variable (row of the simplex table)
1361 *
1362 *  This routine chooses basic variable xB[p], which reaches its bound
1363 *  first on changing non-basic variable xN[q] in valid direction.
1364 *
1365 *  The parameter rtol is a relative tolerance used to relax bounds of
1366 *  basic variables. If rtol = 0, the routine implements the standard
1367 *  ratio test. Otherwise, if rtol > 0, the routine implements Harris'
1368 *  two-pass ratio test. In the latter case rtol should be about three
1369 *  times less than a tolerance used to check primal feasibility. */
1370 
chuzr(struct csa * csa,double rtol)1371 static void chuzr(struct csa *csa, double rtol)
1372 {     int m = csa->m;
1373 #ifdef GLP_DEBUG
1374       int n = csa->n;
1375 #endif
1376       char *type = csa->type;
1377       double *lb = csa->lb;
1378       double *ub = csa->ub;
1379       double *coef = csa->coef;
1380       int *head = csa->head;
1381       int phase = csa->phase;
1382       double *bbar = csa->bbar;
1383       double *cbar = csa->cbar;
1384       int q = csa->q;
1385       int *tcol_ind = csa->tcol_ind;
1386       double *tcol_vec = csa->tcol_vec;
1387       int tcol_num = csa->tcol_num;
1388       int i, i_stat, k, p, p_stat, pos;
1389       double alfa, big, delta, s, t, teta, tmax;
1390 #ifdef GLP_DEBUG
1391       xassert(1 <= q && q <= n);
1392 #endif
1393       /* s := - sign(d[q]), where d[q] is reduced cost of xN[q] */
1394 #ifdef GLP_DEBUG
1395       xassert(cbar[q] != 0.0);
1396 #endif
1397       s = (cbar[q] > 0.0 ? -1.0 : +1.0);
1398       /*** FIRST PASS ***/
1399       k = head[m+q]; /* x[k] = xN[q] */
1400 #ifdef GLP_DEBUG
1401       xassert(1 <= k && k <= m+n);
1402 #endif
1403       if (type[k] == GLP_DB)
1404       {  /* xN[q] has both lower and upper bounds */
1405          p = -1, p_stat = 0, teta = ub[k] - lb[k], big = 1.0;
1406       }
1407       else
1408       {  /* xN[q] has no opposite bound */
1409          p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0;
1410       }
1411       /* walk through significant elements of the pivot column */
1412       for (pos = 1; pos <= tcol_num; pos++)
1413       {  i = tcol_ind[pos];
1414 #ifdef GLP_DEBUG
1415          xassert(1 <= i && i <= m);
1416 #endif
1417          k = head[i]; /* x[k] = xB[i] */
1418 #ifdef GLP_DEBUG
1419          xassert(1 <= k && k <= m+n);
1420 #endif
1421          alfa = s * tcol_vec[i];
1422 #ifdef GLP_DEBUG
1423          xassert(alfa != 0.0);
1424 #endif
1425          /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
1426             consider the only case when xN[q] is increasing */
1427          if (alfa > 0.0)
1428          {  /* xB[i] is increasing */
1429             if (phase == 1 && coef[k] < 0.0)
1430             {  /* xB[i] violates its lower bound, which plays the role
1431                   of an upper bound on phase I */
1432                delta = rtol * (1.0 + kappa * fabs(lb[k]));
1433                t = ((lb[k] + delta) - bbar[i]) / alfa;
1434                i_stat = GLP_NL;
1435             }
1436             else if (phase == 1 && coef[k] > 0.0)
1437             {  /* xB[i] violates its upper bound, which plays the role
1438                   of an lower bound on phase I */
1439                continue;
1440             }
1441             else if (type[k] == GLP_UP || type[k] == GLP_DB ||
1442                      type[k] == GLP_FX)
1443             {  /* xB[i] is within its bounds and has an upper bound */
1444                delta = rtol * (1.0 + kappa * fabs(ub[k]));
1445                t = ((ub[k] + delta) - bbar[i]) / alfa;
1446                i_stat = GLP_NU;
1447             }
1448             else
1449             {  /* xB[i] is within its bounds and has no upper bound */
1450                continue;
1451             }
1452          }
1453          else
1454          {  /* xB[i] is decreasing */
1455             if (phase == 1 && coef[k] > 0.0)
1456             {  /* xB[i] violates its upper bound, which plays the role
1457                   of an lower bound on phase I */
1458                delta = rtol * (1.0 + kappa * fabs(ub[k]));
1459                t = ((ub[k] - delta) - bbar[i]) / alfa;
1460                i_stat = GLP_NU;
1461             }
1462             else if (phase == 1 && coef[k] < 0.0)
1463             {  /* xB[i] violates its lower bound, which plays the role
1464                   of an upper bound on phase I */
1465                continue;
1466             }
1467             else if (type[k] == GLP_LO || type[k] == GLP_DB ||
1468                      type[k] == GLP_FX)
1469             {  /* xB[i] is within its bounds and has an lower bound */
1470                delta = rtol * (1.0 + kappa * fabs(lb[k]));
1471                t = ((lb[k] - delta) - bbar[i]) / alfa;
1472                i_stat = GLP_NL;
1473             }
1474             else
1475             {  /* xB[i] is within its bounds and has no lower bound */
1476                continue;
1477             }
1478          }
1479          /* t is a change of xN[q], on which xB[i] reaches its bound
1480             (possibly relaxed); since the basic solution is assumed to
1481             be primal feasible (or pseudo feasible on phase I), t has
1482             to be non-negative by definition; however, it may happen
1483             that xB[i] slightly (i.e. within a tolerance) violates its
1484             bound, that leads to negative t; in the latter case, if
1485             xB[i] is chosen, negative t means that xN[q] changes in
1486             wrong direction; if pivot alfa[i,q] is close to zero, even
1487             small bound violation of xB[i] may lead to a large change
1488             of xN[q] in wrong direction; let, for example, xB[i] >= 0
1489             and in the current basis its value be -5e-9; let also xN[q]
1490             be on its zero bound and should increase; from the ratio
1491             test rule it follows that the pivot alfa[i,q] < 0; however,
1492             if alfa[i,q] is, say, -1e-9, the change of xN[q] in wrong
1493             direction is 5e-9 / (-1e-9) = -5, and using it for updating
1494             values of other basic variables will give absolutely wrong
1495             results; therefore, if t is negative, we should replace it
1496             by exact zero assuming that xB[i] is exactly on its bound,
1497             and the violation appears due to round-off errors */
1498          if (t < 0.0) t = 0.0;
1499          /* apply minimal ratio test */
1500          if (teta > t || teta == t && big < fabs(alfa))
1501             p = i, p_stat = i_stat, teta = t, big = fabs(alfa);
1502       }
1503       /* the second pass is skipped in the following cases: */
1504       /* if the standard ratio test is used */
1505       if (rtol == 0.0) goto done;
1506       /* if xN[q] reaches its opposite bound or if no basic variable
1507          has been chosen on the first pass */
1508       if (p <= 0) goto done;
1509       /* if xB[p] is a blocking variable, i.e. if it prevents xN[q]
1510          from any change */
1511       if (teta == 0.0) goto done;
1512       /*** SECOND PASS ***/
1513       /* here tmax is a maximal change of xN[q], on which the solution
1514          remains primal feasible (or pseudo feasible on phase I) within
1515          a tolerance */
1516 #if 0
1517       tmax = (1.0 + 10.0 * DBL_EPSILON) * teta;
1518 #else
1519       tmax = teta;
1520 #endif
1521       /* nothing is chosen so far */
1522       p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0;
1523       /* walk through significant elements of the pivot column */
1524       for (pos = 1; pos <= tcol_num; pos++)
1525       {  i = tcol_ind[pos];
1526 #ifdef GLP_DEBUG
1527          xassert(1 <= i && i <= m);
1528 #endif
1529          k = head[i]; /* x[k] = xB[i] */
1530 #ifdef GLP_DEBUG
1531          xassert(1 <= k && k <= m+n);
1532 #endif
1533          alfa = s * tcol_vec[i];
1534 #ifdef GLP_DEBUG
1535          xassert(alfa != 0.0);
1536 #endif
1537          /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
1538             consider the only case when xN[q] is increasing */
1539          if (alfa > 0.0)
1540          {  /* xB[i] is increasing */
1541             if (phase == 1 && coef[k] < 0.0)
1542             {  /* xB[i] violates its lower bound, which plays the role
1543                   of an upper bound on phase I */
1544                t = (lb[k] - bbar[i]) / alfa;
1545                i_stat = GLP_NL;
1546             }
1547             else if (phase == 1 && coef[k] > 0.0)
1548             {  /* xB[i] violates its upper bound, which plays the role
1549                   of an lower bound on phase I */
1550                continue;
1551             }
1552             else if (type[k] == GLP_UP || type[k] == GLP_DB ||
1553                      type[k] == GLP_FX)
1554             {  /* xB[i] is within its bounds and has an upper bound */
1555                t = (ub[k] - bbar[i]) / alfa;
1556                i_stat = GLP_NU;
1557             }
1558             else
1559             {  /* xB[i] is within its bounds and has no upper bound */
1560                continue;
1561             }
1562          }
1563          else
1564          {  /* xB[i] is decreasing */
1565             if (phase == 1 && coef[k] > 0.0)
1566             {  /* xB[i] violates its upper bound, which plays the role
1567                   of an lower bound on phase I */
1568                t = (ub[k] - bbar[i]) / alfa;
1569                i_stat = GLP_NU;
1570             }
1571             else if (phase == 1 && coef[k] < 0.0)
1572             {  /* xB[i] violates its lower bound, which plays the role
1573                   of an upper bound on phase I */
1574                continue;
1575             }
1576             else if (type[k] == GLP_LO || type[k] == GLP_DB ||
1577                      type[k] == GLP_FX)
1578             {  /* xB[i] is within its bounds and has an lower bound */
1579                t = (lb[k] - bbar[i]) / alfa;
1580                i_stat = GLP_NL;
1581             }
1582             else
1583             {  /* xB[i] is within its bounds and has no lower bound */
1584                continue;
1585             }
1586          }
1587          /* (see comments for the first pass) */
1588          if (t < 0.0) t = 0.0;
1589          /* t is a change of xN[q], on which xB[i] reaches its bound;
1590             if t <= tmax, all basic variables can violate their bounds
1591             only within relaxation tolerance delta; we can use this
1592             freedom and choose basic variable having largest influence
1593             coefficient to avoid possible numeric instability */
1594          if (t <= tmax && big < fabs(alfa))
1595             p = i, p_stat = i_stat, teta = t, big = fabs(alfa);
1596       }
1597       /* something must be chosen on the second pass */
1598       xassert(p != 0);
1599 done: /* store the index and status of basic variable xB[p] chosen */
1600       csa->p = p;
1601       if (p > 0 && type[head[p]] == GLP_FX)
1602          csa->p_stat = GLP_NS;
1603       else
1604          csa->p_stat = p_stat;
1605       /* store corresponding change of non-basic variable xN[q] */
1606 #ifdef GLP_DEBUG
1607       xassert(teta >= 0.0);
1608 #endif
1609       csa->teta = s * teta;
1610       return;
1611 }
1612 
1613 /***********************************************************************
1614 *  eval_rho - compute pivot row of the inverse
1615 *
1616 *  This routine computes the pivot (p-th) row of the inverse inv(B),
1617 *  which corresponds to basic variable xB[p] chosen:
1618 *
1619 *     rho = inv(B') * e[p],
1620 *
1621 *  where B' is a matrix transposed to the current basis matrix, e[p]
1622 *  is unity vector. */
1623 
eval_rho(struct csa * csa,double rho[])1624 static void eval_rho(struct csa *csa, double rho[])
1625 {     int m = csa->m;
1626       int p = csa->p;
1627       double *e = rho;
1628       int i;
1629 #ifdef GLP_DEBUG
1630       xassert(1 <= p && p <= m);
1631 #endif
1632       /* construct the right-hand side vector e[p] */
1633       for (i = 1; i <= m; i++)
1634          e[i] = 0.0;
1635       e[p] = 1.0;
1636       /* solve system B'* rho = e[p] */
1637       xassert(csa->valid);
1638       bfd_btran(csa->bfd, rho);
1639       return;
1640 }
1641 
1642 /***********************************************************************
1643 *  refine_rho - refine pivot row of the inverse
1644 *
1645 *  This routine refines the pivot row of the inverse inv(B) assuming
1646 *  that it was previously computed by the routine eval_rho. */
1647 
refine_rho(struct csa * csa,double rho[])1648 static void refine_rho(struct csa *csa, double rho[])
1649 {     int m = csa->m;
1650       int p = csa->p;
1651       double *e = csa->work3;
1652       int i;
1653 #ifdef GLP_DEBUG
1654       xassert(1 <= p && p <= m);
1655 #endif
1656       /* construct the right-hand side vector e[p] */
1657       for (i = 1; i <= m; i++)
1658          e[i] = 0.0;
1659       e[p] = 1.0;
1660       /* refine solution of B'* rho = e[p] */
1661       refine_btran(csa, e, rho);
1662       return;
1663 }
1664 
1665 /***********************************************************************
1666 *  eval_trow - compute pivot row of the simplex table
1667 *
1668 *  This routine computes the pivot row of the simplex table, which
1669 *  corresponds to basic variable xB[p] chosen.
1670 *
1671 *  The pivot row is the following vector:
1672 *
1673 *     trow = T'* e[p] = - N'* inv(B') * e[p] = - N' * rho,
1674 *
1675 *  where rho is the pivot row of the inverse inv(B) previously computed
1676 *  by the routine eval_rho.
1677 *
1678 *  Note that elements of the pivot row corresponding to fixed non-basic
1679 *  variables are not computed. */
1680 
eval_trow(struct csa * csa,double rho[])1681 static void eval_trow(struct csa *csa, double rho[])
1682 {     int m = csa->m;
1683       int n = csa->n;
1684 #ifdef GLP_DEBUG
1685       char *stat = csa->stat;
1686 #endif
1687       int *N_ptr = csa->N_ptr;
1688       int *N_len = csa->N_len;
1689       int *N_ind = csa->N_ind;
1690       double *N_val = csa->N_val;
1691       int *trow_ind = csa->trow_ind;
1692       double *trow_vec = csa->trow_vec;
1693       int i, j, beg, end, ptr, nnz;
1694       double temp;
1695       /* clear the pivot row */
1696       for (j = 1; j <= n; j++)
1697          trow_vec[j] = 0.0;
1698       /* compute the pivot row as a linear combination of rows of the
1699          matrix N: trow = - rho[1] * N'[1] - ... - rho[m] * N'[m] */
1700       for (i = 1; i <= m; i++)
1701       {  temp = rho[i];
1702          if (temp == 0.0) continue;
1703          /* trow := trow - rho[i] * N'[i] */
1704          beg = N_ptr[i];
1705          end = beg + N_len[i];
1706          for (ptr = beg; ptr < end; ptr++)
1707          {
1708 #ifdef GLP_DEBUG
1709             j = N_ind[ptr];
1710             xassert(1 <= j && j <= n);
1711             xassert(stat[j] != GLP_NS);
1712 #endif
1713             trow_vec[N_ind[ptr]] -= temp * N_val[ptr];
1714          }
1715       }
1716       /* construct sparse pattern of the pivot row */
1717       nnz = 0;
1718       for (j = 1; j <= n; j++)
1719       {  if (trow_vec[j] != 0.0)
1720             trow_ind[++nnz] = j;
1721       }
1722       csa->trow_nnz = nnz;
1723       return;
1724 }
1725 
1726 /***********************************************************************
1727 *  update_bbar - update values of basic variables
1728 *
1729 *  This routine updates values of all basic variables for the adjacent
1730 *  basis. */
1731 
update_bbar(struct csa * csa)1732 static void update_bbar(struct csa *csa)
1733 {
1734 #ifdef GLP_DEBUG
1735       int m = csa->m;
1736       int n = csa->n;
1737 #endif
1738       double *bbar = csa->bbar;
1739       int q = csa->q;
1740       int tcol_nnz = csa->tcol_nnz;
1741       int *tcol_ind = csa->tcol_ind;
1742       double *tcol_vec = csa->tcol_vec;
1743       int p = csa->p;
1744       double teta = csa->teta;
1745       int i, pos;
1746 #ifdef GLP_DEBUG
1747       xassert(1 <= q && q <= n);
1748       xassert(p < 0 || 1 <= p && p <= m);
1749 #endif
1750       /* if xN[q] leaves the basis, compute its value in the adjacent
1751          basis, where it will replace xB[p] */
1752       if (p > 0)
1753          bbar[p] = get_xN(csa, q) + teta;
1754       /* update values of other basic variables (except xB[p], because
1755          it will be replaced by xN[q]) */
1756       if (teta == 0.0) goto done;
1757       for (pos = 1; pos <= tcol_nnz; pos++)
1758       {  i = tcol_ind[pos];
1759          /* skip xB[p] */
1760          if (i == p) continue;
1761          /* (change of xB[i]) = alfa[i,q] * (change of xN[q]) */
1762          bbar[i] += tcol_vec[i] * teta;
1763       }
1764 done: return;
1765 }
1766 
1767 /***********************************************************************
1768 *  reeval_cost - recompute reduced cost of non-basic variable xN[q]
1769 *
1770 *  This routine recomputes reduced cost of non-basic variable xN[q] for
1771 *  the current basis more accurately using its direct definition:
1772 *
1773 *     d[q] = cN[q] - N'[q] * pi =
1774 *
1775 *          = cN[q] - N'[q] * (inv(B') * cB) =
1776 *
1777 *          = cN[q] - (cB' * inv(B) * N[q]) =
1778 *
1779 *          = cN[q] + cB' * (pivot column).
1780 *
1781 *  It is assumed that the pivot column of the simplex table is already
1782 *  computed. */
1783 
reeval_cost(struct csa * csa)1784 static double reeval_cost(struct csa *csa)
1785 {     int m = csa->m;
1786 #ifdef GLP_DEBUG
1787       int n = csa->n;
1788 #endif
1789       double *coef = csa->coef;
1790       int *head = csa->head;
1791       int q = csa->q;
1792       int tcol_nnz = csa->tcol_nnz;
1793       int *tcol_ind = csa->tcol_ind;
1794       double *tcol_vec = csa->tcol_vec;
1795       int i, pos;
1796       double dq;
1797 #ifdef GLP_DEBUG
1798       xassert(1 <= q && q <= n);
1799 #endif
1800       dq = coef[head[m+q]];
1801       for (pos = 1; pos <= tcol_nnz; pos++)
1802       {  i = tcol_ind[pos];
1803 #ifdef GLP_DEBUG
1804          xassert(1 <= i && i <= m);
1805 #endif
1806          dq += coef[head[i]] * tcol_vec[i];
1807       }
1808       return dq;
1809 }
1810 
1811 /***********************************************************************
1812 *  update_cbar - update reduced costs of non-basic variables
1813 *
1814 *  This routine updates reduced costs of all (except fixed) non-basic
1815 *  variables for the adjacent basis. */
1816 
update_cbar(struct csa * csa)1817 static void update_cbar(struct csa *csa)
1818 {
1819 #ifdef GLP_DEBUG
1820       int n = csa->n;
1821 #endif
1822       double *cbar = csa->cbar;
1823       int q = csa->q;
1824       int trow_nnz = csa->trow_nnz;
1825       int *trow_ind = csa->trow_ind;
1826       double *trow_vec = csa->trow_vec;
1827       int j, pos;
1828       double new_dq;
1829 #ifdef GLP_DEBUG
1830       xassert(1 <= q && q <= n);
1831 #endif
1832       /* compute reduced cost of xB[p] in the adjacent basis, where it
1833          will replace xN[q] */
1834 #ifdef GLP_DEBUG
1835       xassert(trow_vec[q] != 0.0);
1836 #endif
1837       new_dq = (cbar[q] /= trow_vec[q]);
1838       /* update reduced costs of other non-basic variables (except
1839          xN[q], because it will be replaced by xB[p]) */
1840       for (pos = 1; pos <= trow_nnz; pos++)
1841       {  j = trow_ind[pos];
1842          /* skip xN[q] */
1843          if (j == q) continue;
1844          cbar[j] -= trow_vec[j] * new_dq;
1845       }
1846       return;
1847 }
1848 
1849 /***********************************************************************
1850 *  update_gamma - update steepest edge coefficients
1851 *
1852 *  This routine updates steepest-edge coefficients for the adjacent
1853 *  basis. */
1854 
update_gamma(struct csa * csa)1855 static void update_gamma(struct csa *csa)
1856 {     int m = csa->m;
1857 #ifdef GLP_DEBUG
1858       int n = csa->n;
1859 #endif
1860       char *type = csa->type;
1861       int *A_ptr = csa->A_ptr;
1862       int *A_ind = csa->A_ind;
1863       double *A_val = csa->A_val;
1864       int *head = csa->head;
1865       char *refsp = csa->refsp;
1866       double *gamma = csa->gamma;
1867       int q = csa->q;
1868       int tcol_nnz = csa->tcol_nnz;
1869       int *tcol_ind = csa->tcol_ind;
1870       double *tcol_vec = csa->tcol_vec;
1871       int p = csa->p;
1872       int trow_nnz = csa->trow_nnz;
1873       int *trow_ind = csa->trow_ind;
1874       double *trow_vec = csa->trow_vec;
1875       double *u = csa->work3;
1876       int i, j, k, pos, beg, end, ptr;
1877       double gamma_q, delta_q, pivot, s, t, t1, t2;
1878 #ifdef GLP_DEBUG
1879       xassert(1 <= p && p <= m);
1880       xassert(1 <= q && q <= n);
1881 #endif
1882       /* the basis changes, so decrease the count */
1883       xassert(csa->refct > 0);
1884       csa->refct--;
1885       /* recompute gamma[q] for the current basis more accurately and
1886          compute auxiliary vector u */
1887       gamma_q = delta_q = (refsp[head[m+q]] ? 1.0 : 0.0);
1888       for (i = 1; i <= m; i++) u[i] = 0.0;
1889       for (pos = 1; pos <= tcol_nnz; pos++)
1890       {  i = tcol_ind[pos];
1891          if (refsp[head[i]])
1892          {  u[i] = t = tcol_vec[i];
1893             gamma_q += t * t;
1894          }
1895          else
1896             u[i] = 0.0;
1897       }
1898       xassert(csa->valid);
1899       bfd_btran(csa->bfd, u);
1900       /* update gamma[k] for other non-basic variables (except fixed
1901          variables and xN[q], because it will be replaced by xB[p]) */
1902       pivot = trow_vec[q];
1903 #ifdef GLP_DEBUG
1904       xassert(pivot != 0.0);
1905 #endif
1906       for (pos = 1; pos <= trow_nnz; pos++)
1907       {  j = trow_ind[pos];
1908          /* skip xN[q] */
1909          if (j == q) continue;
1910          /* compute t */
1911          t = trow_vec[j] / pivot;
1912          /* compute inner product s = N'[j] * u */
1913          k = head[m+j]; /* x[k] = xN[j] */
1914          if (k <= m)
1915             s = u[k];
1916          else
1917          {  s = 0.0;
1918             beg = A_ptr[k-m];
1919             end = A_ptr[k-m+1];
1920             for (ptr = beg; ptr < end; ptr++)
1921                s -= A_val[ptr] * u[A_ind[ptr]];
1922          }
1923          /* compute gamma[k] for the adjacent basis */
1924          t1 = gamma[j] + t * t * gamma_q + 2.0 * t * s;
1925          t2 = (refsp[k] ? 1.0 : 0.0) + delta_q * t * t;
1926          gamma[j] = (t1 >= t2 ? t1 : t2);
1927          if (gamma[j] < DBL_EPSILON) gamma[j] = DBL_EPSILON;
1928       }
1929       /* compute gamma[q] for the adjacent basis */
1930       if (type[head[p]] == GLP_FX)
1931          gamma[q] = 1.0;
1932       else
1933       {  gamma[q] = gamma_q / (pivot * pivot);
1934          if (gamma[q] < DBL_EPSILON) gamma[q] = DBL_EPSILON;
1935       }
1936       return;
1937 }
1938 
1939 /***********************************************************************
1940 *  err_in_bbar - compute maximal relative error in primal solution
1941 *
1942 *  This routine returns maximal relative error:
1943 *
1944 *     max |beta[i] - bbar[i]| / (1 + |beta[i]|),
1945 *
1946 *  where beta and bbar are, respectively, directly computed and the
1947 *  current (updated) values of basic variables.
1948 *
1949 *  NOTE: The routine is intended only for debugginig purposes. */
1950 
err_in_bbar(struct csa * csa)1951 static double err_in_bbar(struct csa *csa)
1952 {     int m = csa->m;
1953       double *bbar = csa->bbar;
1954       int i;
1955       double e, emax, *beta;
1956       beta = xcalloc(1+m, sizeof(double));
1957       eval_beta(csa, beta);
1958       emax = 0.0;
1959       for (i = 1; i <= m; i++)
1960       {  e = fabs(beta[i] - bbar[i]) / (1.0 + fabs(beta[i]));
1961          if (emax < e) emax = e;
1962       }
1963       xfree(beta);
1964       return emax;
1965 }
1966 
1967 /***********************************************************************
1968 *  err_in_cbar - compute maximal relative error in dual solution
1969 *
1970 *  This routine returns maximal relative error:
1971 *
1972 *     max |cost[j] - cbar[j]| / (1 + |cost[j]|),
1973 *
1974 *  where cost and cbar are, respectively, directly computed and the
1975 *  current (updated) reduced costs of non-basic non-fixed variables.
1976 *
1977 *  NOTE: The routine is intended only for debugginig purposes. */
1978 
err_in_cbar(struct csa * csa)1979 static double err_in_cbar(struct csa *csa)
1980 {     int m = csa->m;
1981       int n = csa->n;
1982       char *stat = csa->stat;
1983       double *cbar = csa->cbar;
1984       int j;
1985       double e, emax, cost, *pi;
1986       pi = xcalloc(1+m, sizeof(double));
1987       eval_pi(csa, pi);
1988       emax = 0.0;
1989       for (j = 1; j <= n; j++)
1990       {  if (stat[j] == GLP_NS) continue;
1991          cost = eval_cost(csa, pi, j);
1992          e = fabs(cost - cbar[j]) / (1.0 + fabs(cost));
1993          if (emax < e) emax = e;
1994       }
1995       xfree(pi);
1996       return emax;
1997 }
1998 
1999 /***********************************************************************
2000 *  err_in_gamma - compute maximal relative error in steepest edge cff.
2001 *
2002 *  This routine returns maximal relative error:
2003 *
2004 *     max |gamma'[j] - gamma[j]| / (1 + |gamma'[j]),
2005 *
2006 *  where gamma'[j] and gamma[j] are, respectively, directly computed
2007 *  and the current (updated) steepest edge coefficients for non-basic
2008 *  non-fixed variable x[j].
2009 *
2010 *  NOTE: The routine is intended only for debugginig purposes. */
2011 
err_in_gamma(struct csa * csa)2012 static double err_in_gamma(struct csa *csa)
2013 {     int n = csa->n;
2014       char *stat = csa->stat;
2015       double *gamma = csa->gamma;
2016       int j;
2017       double e, emax, temp;
2018       emax = 0.0;
2019       for (j = 1; j <= n; j++)
2020       {  if (stat[j] == GLP_NS)
2021          {  xassert(gamma[j] == 1.0);
2022             continue;
2023          }
2024          temp = eval_gamma(csa, j);
2025          e = fabs(temp - gamma[j]) / (1.0 + fabs(temp));
2026          if (emax < e) emax = e;
2027       }
2028       return emax;
2029 }
2030 
2031 /***********************************************************************
2032 *  change_basis - change basis header
2033 *
2034 *  This routine changes the basis header to make it corresponding to
2035 *  the adjacent basis. */
2036 
change_basis(struct csa * csa)2037 static void change_basis(struct csa *csa)
2038 {     int m = csa->m;
2039 #ifdef GLP_DEBUG
2040       int n = csa->n;
2041       char *type = csa->type;
2042 #endif
2043       int *head = csa->head;
2044       char *stat = csa->stat;
2045       int q = csa->q;
2046       int p = csa->p;
2047       int p_stat = csa->p_stat;
2048       int k;
2049 #ifdef GLP_DEBUG
2050       xassert(1 <= q && q <= n);
2051 #endif
2052       if (p < 0)
2053       {  /* xN[q] goes to its opposite bound */
2054 #ifdef GLP_DEBUG
2055          k = head[m+q]; /* x[k] = xN[q] */
2056          xassert(1 <= k && k <= m+n);
2057          xassert(type[k] == GLP_DB);
2058 #endif
2059          switch (stat[q])
2060          {  case GLP_NL:
2061                /* xN[q] increases */
2062                stat[q] = GLP_NU;
2063                break;
2064             case GLP_NU:
2065                /* xN[q] decreases */
2066                stat[q] = GLP_NL;
2067                break;
2068             default:
2069                xassert(stat != stat);
2070          }
2071       }
2072       else
2073       {  /* xB[p] leaves the basis, xN[q] enters the basis */
2074 #ifdef GLP_DEBUG
2075          xassert(1 <= p && p <= m);
2076          k = head[p]; /* x[k] = xB[p] */
2077          switch (p_stat)
2078          {  case GLP_NL:
2079                /* xB[p] goes to its lower bound */
2080                xassert(type[k] == GLP_LO || type[k] == GLP_DB);
2081                break;
2082             case GLP_NU:
2083                /* xB[p] goes to its upper bound */
2084                xassert(type[k] == GLP_UP || type[k] == GLP_DB);
2085                break;
2086             case GLP_NS:
2087                /* xB[p] goes to its fixed value */
2088                xassert(type[k] == GLP_NS);
2089                break;
2090             default:
2091                xassert(p_stat != p_stat);
2092          }
2093 #endif
2094          /* xB[p] <-> xN[q] */
2095          k = head[p], head[p] = head[m+q], head[m+q] = k;
2096          stat[q] = (char)p_stat;
2097       }
2098       return;
2099 }
2100 
2101 /***********************************************************************
2102 *  set_aux_obj - construct auxiliary objective function
2103 *
2104 *  The auxiliary objective function is a separable piecewise linear
2105 *  convex function, which is the sum of primal infeasibilities:
2106 *
2107 *     z = t[1] + ... + t[m+n] -> minimize,
2108 *
2109 *  where:
2110 *
2111 *            / lb[k] - x[k], if x[k] < lb[k]
2112 *            |
2113 *     t[k] = <  0, if lb[k] <= x[k] <= ub[k]
2114 *            |
2115 *            \ x[k] - ub[k], if x[k] > ub[k]
2116 *
2117 *  This routine computes objective coefficients for the current basis
2118 *  and returns the number of non-zero terms t[k]. */
2119 
set_aux_obj(struct csa * csa,double tol_bnd)2120 static int set_aux_obj(struct csa *csa, double tol_bnd)
2121 {     int m = csa->m;
2122       int n = csa->n;
2123       char *type = csa->type;
2124       double *lb = csa->lb;
2125       double *ub = csa->ub;
2126       double *coef = csa->coef;
2127       int *head = csa->head;
2128       double *bbar = csa->bbar;
2129       int i, k, cnt = 0;
2130       double eps;
2131       /* use a bit more restrictive tolerance */
2132       tol_bnd *= 0.90;
2133       /* clear all objective coefficients */
2134       for (k = 1; k <= m+n; k++)
2135          coef[k] = 0.0;
2136       /* walk through the list of basic variables */
2137       for (i = 1; i <= m; i++)
2138       {  k = head[i]; /* x[k] = xB[i] */
2139          if (type[k] == GLP_LO || type[k] == GLP_DB ||
2140              type[k] == GLP_FX)
2141          {  /* x[k] has lower bound */
2142             eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
2143             if (bbar[i] < lb[k] - eps)
2144             {  /* and violates it */
2145                coef[k] = -1.0;
2146                cnt++;
2147             }
2148          }
2149          if (type[k] == GLP_UP || type[k] == GLP_DB ||
2150              type[k] == GLP_FX)
2151          {  /* x[k] has upper bound */
2152             eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
2153             if (bbar[i] > ub[k] + eps)
2154             {  /* and violates it */
2155                coef[k] = +1.0;
2156                cnt++;
2157             }
2158          }
2159       }
2160       return cnt;
2161 }
2162 
2163 /***********************************************************************
2164 *  set_orig_obj - restore original objective function
2165 *
2166 *  This routine assigns scaled original objective coefficients to the
2167 *  working objective function. */
2168 
set_orig_obj(struct csa * csa)2169 static void set_orig_obj(struct csa *csa)
2170 {     int m = csa->m;
2171       int n = csa->n;
2172       double *coef = csa->coef;
2173       double *obj = csa->obj;
2174       double zeta = csa->zeta;
2175       int i, j;
2176       for (i = 1; i <= m; i++)
2177          coef[i] = 0.0;
2178       for (j = 1; j <= n; j++)
2179          coef[m+j] = zeta * obj[j];
2180       return;
2181 }
2182 
2183 /***********************************************************************
2184 *  check_stab - check numerical stability of basic solution
2185 *
2186 *  If the current basic solution is primal feasible (or pseudo feasible
2187 *  on phase I) within a tolerance, this routine returns zero, otherwise
2188 *  it returns non-zero. */
2189 
check_stab(struct csa * csa,double tol_bnd)2190 static int check_stab(struct csa *csa, double tol_bnd)
2191 {     int m = csa->m;
2192 #ifdef GLP_DEBUG
2193       int n = csa->n;
2194 #endif
2195       char *type = csa->type;
2196       double *lb = csa->lb;
2197       double *ub = csa->ub;
2198       double *coef = csa->coef;
2199       int *head = csa->head;
2200       int phase = csa->phase;
2201       double *bbar = csa->bbar;
2202       int i, k;
2203       double eps;
2204       /* walk through the list of basic variables */
2205       for (i = 1; i <= m; i++)
2206       {  k = head[i]; /* x[k] = xB[i] */
2207 #ifdef GLP_DEBUG
2208          xassert(1 <= k && k <= m+n);
2209 #endif
2210          if (phase == 1 && coef[k] < 0.0)
2211          {  /* x[k] must not be greater than its lower bound */
2212 #ifdef GLP_DEBUG
2213             xassert(type[k] == GLP_LO || type[k] == GLP_DB ||
2214                     type[k] == GLP_FX);
2215 #endif
2216             eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
2217             if (bbar[i] > lb[k] + eps) return 1;
2218          }
2219          else if (phase == 1 && coef[k] > 0.0)
2220          {  /* x[k] must not be less than its upper bound */
2221 #ifdef GLP_DEBUG
2222             xassert(type[k] == GLP_UP || type[k] == GLP_DB ||
2223                     type[k] == GLP_FX);
2224 #endif
2225             eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
2226             if (bbar[i] < ub[k] - eps) return 1;
2227          }
2228          else
2229          {  /* either phase = 1 and coef[k] = 0, or phase = 2 */
2230             if (type[k] == GLP_LO || type[k] == GLP_DB ||
2231                 type[k] == GLP_FX)
2232             {  /* x[k] must not be less than its lower bound */
2233                eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
2234                if (bbar[i] < lb[k] - eps) return 1;
2235             }
2236             if (type[k] == GLP_UP || type[k] == GLP_DB ||
2237                 type[k] == GLP_FX)
2238             {  /* x[k] must not be greater then its upper bound */
2239                eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
2240                if (bbar[i] > ub[k] + eps) return 1;
2241             }
2242          }
2243       }
2244       /* basic solution is primal feasible within a tolerance */
2245       return 0;
2246 }
2247 
2248 /***********************************************************************
2249 *  check_feas - check primal feasibility of basic solution
2250 *
2251 *  If the current basic solution is primal feasible within a tolerance,
2252 *  this routine returns zero, otherwise it returns non-zero. */
2253 
check_feas(struct csa * csa,double tol_bnd)2254 static int check_feas(struct csa *csa, double tol_bnd)
2255 {     int m = csa->m;
2256 #ifdef GLP_DEBUG
2257       int n = csa->n;
2258       char *type = csa->type;
2259 #endif
2260       double *lb = csa->lb;
2261       double *ub = csa->ub;
2262       double *coef = csa->coef;
2263       int *head = csa->head;
2264       double *bbar = csa->bbar;
2265       int i, k;
2266       double eps;
2267       xassert(csa->phase == 1);
2268       /* walk through the list of basic variables */
2269       for (i = 1; i <= m; i++)
2270       {  k = head[i]; /* x[k] = xB[i] */
2271 #ifdef GLP_DEBUG
2272          xassert(1 <= k && k <= m+n);
2273 #endif
2274          if (coef[k] < 0.0)
2275          {  /* check if x[k] still violates its lower bound */
2276 #ifdef GLP_DEBUG
2277             xassert(type[k] == GLP_LO || type[k] == GLP_DB ||
2278                     type[k] == GLP_FX);
2279 #endif
2280             eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
2281             if (bbar[i] < lb[k] - eps) return 1;
2282          }
2283          else if (coef[k] > 0.0)
2284          {  /* check if x[k] still violates its upper bound */
2285 #ifdef GLP_DEBUG
2286             xassert(type[k] == GLP_UP || type[k] == GLP_DB ||
2287                     type[k] == GLP_FX);
2288 #endif
2289             eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
2290             if (bbar[i] > ub[k] + eps) return 1;
2291          }
2292       }
2293       /* basic solution is primal feasible within a tolerance */
2294       return 0;
2295 }
2296 
2297 /***********************************************************************
2298 *  eval_obj - compute original objective function
2299 *
2300 *  This routine computes the current value of the original objective
2301 *  function. */
2302 
eval_obj(struct csa * csa)2303 static double eval_obj(struct csa *csa)
2304 {     int m = csa->m;
2305       int n = csa->n;
2306       double *obj = csa->obj;
2307       int *head = csa->head;
2308       double *bbar = csa->bbar;
2309       int i, j, k;
2310       double sum;
2311       sum = obj[0];
2312       /* walk through the list of basic variables */
2313       for (i = 1; i <= m; i++)
2314       {  k = head[i]; /* x[k] = xB[i] */
2315 #ifdef GLP_DEBUG
2316          xassert(1 <= k && k <= m+n);
2317 #endif
2318          if (k > m)
2319             sum += obj[k-m] * bbar[i];
2320       }
2321       /* walk through the list of non-basic variables */
2322       for (j = 1; j <= n; j++)
2323       {  k = head[m+j]; /* x[k] = xN[j] */
2324 #ifdef GLP_DEBUG
2325          xassert(1 <= k && k <= m+n);
2326 #endif
2327          if (k > m)
2328             sum += obj[k-m] * get_xN(csa, j);
2329       }
2330       return sum;
2331 }
2332 
2333 /***********************************************************************
2334 *  display - display the search progress
2335 *
2336 *  This routine displays some information about the search progress
2337 *  that includes:
2338 *
2339 *  the search phase;
2340 *
2341 *  the number of simplex iterations performed by the solver;
2342 *
2343 *  the original objective value;
2344 *
2345 *  the sum of (scaled) primal infeasibilities;
2346 *
2347 *  the number of basic fixed variables. */
2348 
display(struct csa * csa,const glp_smcp * parm,int spec)2349 static void display(struct csa *csa, const glp_smcp *parm, int spec)
2350 {     int m = csa->m;
2351 #ifdef GLP_DEBUG
2352       int n = csa->n;
2353 #endif
2354       char *type = csa->type;
2355       double *lb = csa->lb;
2356       double *ub = csa->ub;
2357       int phase = csa->phase;
2358       int *head = csa->head;
2359       double *bbar = csa->bbar;
2360       int i, k, cnt;
2361       double sum;
2362       if (parm->msg_lev < GLP_MSG_ON) goto skip;
2363       if (parm->out_dly > 0 &&
2364          1000.0 * xdifftime(xtime(), csa->tm_beg) < parm->out_dly)
2365          goto skip;
2366       if (csa->it_cnt == csa->it_dpy) goto skip;
2367       if (!spec && csa->it_cnt % parm->out_frq != 0) goto skip;
2368       /* compute the sum of primal infeasibilities and determine the
2369          number of basic fixed variables */
2370       sum = 0.0, cnt = 0;
2371       for (i = 1; i <= m; i++)
2372       {  k = head[i]; /* x[k] = xB[i] */
2373 #ifdef GLP_DEBUG
2374          xassert(1 <= k && k <= m+n);
2375 #endif
2376          if (type[k] == GLP_LO || type[k] == GLP_DB ||
2377              type[k] == GLP_FX)
2378          {  /* x[k] has lower bound */
2379             if (bbar[i] < lb[k])
2380                sum += (lb[k] - bbar[i]);
2381          }
2382          if (type[k] == GLP_UP || type[k] == GLP_DB ||
2383              type[k] == GLP_FX)
2384          {  /* x[k] has upper bound */
2385             if (bbar[i] > ub[k])
2386                sum += (bbar[i] - ub[k]);
2387          }
2388          if (type[k] == GLP_FX) cnt++;
2389       }
2390       xprintf("%c%6d: obj = %17.9e  infeas = %10.3e (%d)\n",
2391          phase == 1 ? ' ' : '*', csa->it_cnt, eval_obj(csa), sum, cnt);
2392       csa->it_dpy = csa->it_cnt;
2393 skip: return;
2394 }
2395 
2396 /***********************************************************************
2397 *  store_sol - store basic solution back to the problem object
2398 *
2399 *  This routine stores basic solution components back to the problem
2400 *  object. */
2401 
store_sol(struct csa * csa,glp_prob * lp,int p_stat,int d_stat,int ray)2402 static void store_sol(struct csa *csa, glp_prob *lp, int p_stat,
2403       int d_stat, int ray)
2404 {     int m = csa->m;
2405       int n = csa->n;
2406       double zeta = csa->zeta;
2407       int *head = csa->head;
2408       char *stat = csa->stat;
2409       double *bbar = csa->bbar;
2410       double *cbar = csa->cbar;
2411       int i, j, k;
2412 #ifdef GLP_DEBUG
2413       xassert(lp->m == m);
2414       xassert(lp->n == n);
2415 #endif
2416       /* basis factorization */
2417 #ifdef GLP_DEBUG
2418       xassert(!lp->valid && lp->bfd == NULL);
2419       xassert(csa->valid && csa->bfd != NULL);
2420 #endif
2421       lp->valid = 1, csa->valid = 0;
2422       lp->bfd = csa->bfd, csa->bfd = NULL;
2423       memcpy(&lp->head[1], &head[1], m * sizeof(int));
2424       /* basic solution status */
2425       lp->pbs_stat = p_stat;
2426       lp->dbs_stat = d_stat;
2427       /* objective function value */
2428       lp->obj_val = eval_obj(csa);
2429       /* simplex iteration count */
2430       lp->it_cnt = csa->it_cnt;
2431       /* unbounded ray */
2432       lp->some = ray;
2433       /* basic variables */
2434       for (i = 1; i <= m; i++)
2435       {  k = head[i]; /* x[k] = xB[i] */
2436 #ifdef GLP_DEBUG
2437          xassert(1 <= k && k <= m+n);
2438 #endif
2439          if (k <= m)
2440          {  GLPROW *row = lp->row[k];
2441             row->stat = GLP_BS;
2442             row->bind = i;
2443             row->prim = bbar[i] / row->rii;
2444             row->dual = 0.0;
2445          }
2446          else
2447          {  GLPCOL *col = lp->col[k-m];
2448             col->stat = GLP_BS;
2449             col->bind = i;
2450             col->prim = bbar[i] * col->sjj;
2451             col->dual = 0.0;
2452          }
2453       }
2454       /* non-basic variables */
2455       for (j = 1; j <= n; j++)
2456       {  k = head[m+j]; /* x[k] = xN[j] */
2457 #ifdef GLP_DEBUG
2458          xassert(1 <= k && k <= m+n);
2459 #endif
2460          if (k <= m)
2461          {  GLPROW *row = lp->row[k];
2462             row->stat = stat[j];
2463             row->bind = 0;
2464 #if 0
2465             row->prim = get_xN(csa, j) / row->rii;
2466 #else
2467             switch (stat[j])
2468             {  case GLP_NL:
2469                   row->prim = row->lb; break;
2470                case GLP_NU:
2471                   row->prim = row->ub; break;
2472                case GLP_NF:
2473                   row->prim = 0.0; break;
2474                case GLP_NS:
2475                   row->prim = row->lb; break;
2476                default:
2477                   xassert(stat != stat);
2478             }
2479 #endif
2480             row->dual = (cbar[j] * row->rii) / zeta;
2481          }
2482          else
2483          {  GLPCOL *col = lp->col[k-m];
2484             col->stat = stat[j];
2485             col->bind = 0;
2486 #if 0
2487             col->prim = get_xN(csa, j) * col->sjj;
2488 #else
2489             switch (stat[j])
2490             {  case GLP_NL:
2491                   col->prim = col->lb; break;
2492                case GLP_NU:
2493                   col->prim = col->ub; break;
2494                case GLP_NF:
2495                   col->prim = 0.0; break;
2496                case GLP_NS:
2497                   col->prim = col->lb; break;
2498                default:
2499                   xassert(stat != stat);
2500             }
2501 #endif
2502             col->dual = (cbar[j] / col->sjj) / zeta;
2503          }
2504       }
2505       return;
2506 }
2507 
2508 /***********************************************************************
2509 *  free_csa - deallocate common storage area
2510 *
2511 *  This routine frees all the memory allocated to arrays in the common
2512 *  storage area (CSA). */
2513 
free_csa(struct csa * csa)2514 static void free_csa(struct csa *csa)
2515 {     xfree(csa->type);
2516       xfree(csa->lb);
2517       xfree(csa->ub);
2518       xfree(csa->coef);
2519       xfree(csa->obj);
2520       xfree(csa->A_ptr);
2521       xfree(csa->A_ind);
2522       xfree(csa->A_val);
2523       xfree(csa->head);
2524       xfree(csa->stat);
2525       xfree(csa->N_ptr);
2526       xfree(csa->N_len);
2527       xfree(csa->N_ind);
2528       xfree(csa->N_val);
2529       xfree(csa->bbar);
2530       xfree(csa->cbar);
2531       xfree(csa->refsp);
2532       xfree(csa->gamma);
2533       xfree(csa->tcol_ind);
2534       xfree(csa->tcol_vec);
2535       xfree(csa->trow_ind);
2536       xfree(csa->trow_vec);
2537       xfree(csa->work1);
2538       xfree(csa->work2);
2539       xfree(csa->work3);
2540       xfree(csa->work4);
2541       xfree(csa);
2542       return;
2543 }
2544 
2545 /***********************************************************************
2546 *  spx_primal - core LP solver based on the primal simplex method
2547 *
2548 *  SYNOPSIS
2549 *
2550 *  #include "glpspx.h"
2551 *  int spx_primal(glp_prob *lp, const glp_smcp *parm);
2552 *
2553 *  DESCRIPTION
2554 *
2555 *  The routine spx_primal is a core LP solver based on the two-phase
2556 *  primal simplex method.
2557 *
2558 *  RETURNS
2559 *
2560 *  0  LP instance has been successfully solved.
2561 *
2562 *  GLP_EITLIM
2563 *     Iteration limit has been exhausted.
2564 *
2565 *  GLP_ETMLIM
2566 *     Time limit has been exhausted.
2567 *
2568 *  GLP_EFAIL
2569 *     The solver failed to solve LP instance. */
2570 
spx_primal(glp_prob * lp,const glp_smcp * parm)2571 int spx_primal(glp_prob *lp, const glp_smcp *parm)
2572 {     struct csa *csa;
2573       int binv_st = 2;
2574       /* status of basis matrix factorization:
2575          0 - invalid; 1 - just computed; 2 - updated */
2576       int bbar_st = 0;
2577       /* status of primal values of basic variables:
2578          0 - invalid; 1 - just computed; 2 - updated */
2579       int cbar_st = 0;
2580       /* status of reduced costs of non-basic variables:
2581          0 - invalid; 1 - just computed; 2 - updated */
2582       int rigorous = 0;
2583       /* rigorous mode flag; this flag is used to enable iterative
2584          refinement on computing pivot rows and columns of the simplex
2585          table */
2586       int check = 0;
2587       int p_stat, d_stat, ret;
2588       /* allocate and initialize the common storage area */
2589       csa = alloc_csa(lp);
2590       init_csa(csa, lp);
2591       if (parm->msg_lev >= GLP_MSG_DBG)
2592          xprintf("Objective scale factor = %g\n", csa->zeta);
2593 loop: /* main loop starts here */
2594       /* compute factorization of the basis matrix */
2595       if (binv_st == 0)
2596       {  ret = invert_B(csa);
2597          if (ret != 0)
2598          {  if (parm->msg_lev >= GLP_MSG_ERR)
2599             {  xprintf("Error: unable to factorize the basis matrix (%d"
2600                   ")\n", ret);
2601                xprintf("Sorry, basis recovery procedure not implemented"
2602                   " yet\n");
2603             }
2604             xassert(!lp->valid && lp->bfd == NULL);
2605             lp->bfd = csa->bfd, csa->bfd = NULL;
2606             lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
2607             lp->obj_val = 0.0;
2608             lp->it_cnt = csa->it_cnt;
2609             lp->some = 0;
2610             ret = GLP_EFAIL;
2611             goto done;
2612          }
2613          csa->valid = 1;
2614          binv_st = 1; /* just computed */
2615          /* invalidate basic solution components */
2616          bbar_st = cbar_st = 0;
2617       }
2618       /* compute primal values of basic variables */
2619       if (bbar_st == 0)
2620       {  eval_bbar(csa);
2621          bbar_st = 1; /* just computed */
2622          /* determine the search phase, if not determined yet */
2623          if (csa->phase == 0)
2624          {  if (set_aux_obj(csa, parm->tol_bnd) > 0)
2625             {  /* current basic solution is primal infeasible */
2626                /* start to minimize the sum of infeasibilities */
2627                csa->phase = 1;
2628             }
2629             else
2630             {  /* current basic solution is primal feasible */
2631                /* start to minimize the original objective function */
2632                set_orig_obj(csa);
2633                csa->phase = 2;
2634             }
2635             xassert(check_stab(csa, parm->tol_bnd) == 0);
2636             /* working objective coefficients have been changed, so
2637                invalidate reduced costs */
2638             cbar_st = 0;
2639             display(csa, parm, 1);
2640          }
2641          /* make sure that the current basic solution remains primal
2642             feasible (or pseudo feasible on phase I) */
2643          if (check_stab(csa, parm->tol_bnd))
2644          {  /* there are excessive bound violations due to round-off
2645                errors */
2646             if (parm->msg_lev >= GLP_MSG_ERR)
2647                xprintf("Warning: numerical instability (primal simplex,"
2648                   " phase %s)\n", csa->phase == 1 ? "I" : "II");
2649             /* restart the search */
2650             csa->phase = 0;
2651             binv_st = 0;
2652             rigorous = 5;
2653             goto loop;
2654          }
2655       }
2656       xassert(csa->phase == 1 || csa->phase == 2);
2657       /* on phase I we do not need to wait until the current basic
2658          solution becomes dual feasible; it is sufficient to make sure
2659          that no basic variable violates its bounds */
2660       if (csa->phase == 1 && !check_feas(csa, parm->tol_bnd))
2661       {  /* the current basis is primal feasible; switch to phase II */
2662          csa->phase = 2;
2663          set_orig_obj(csa);
2664          cbar_st = 0;
2665          display(csa, parm, 1);
2666       }
2667       /* compute reduced costs of non-basic variables */
2668       if (cbar_st == 0)
2669       {  eval_cbar(csa);
2670          cbar_st = 1; /* just computed */
2671       }
2672       /* redefine the reference space, if required */
2673       switch (parm->pricing)
2674       {  case GLP_PT_STD:
2675             break;
2676          case GLP_PT_PSE:
2677             if (csa->refct == 0) reset_refsp(csa);
2678             break;
2679          default:
2680             xassert(parm != parm);
2681       }
2682       /* at this point the basis factorization and all basic solution
2683          components are valid */
2684       xassert(binv_st && bbar_st && cbar_st);
2685       /* check accuracy of current basic solution components (only for
2686          debugging) */
2687       if (check)
2688       {  double e_bbar = err_in_bbar(csa);
2689          double e_cbar = err_in_cbar(csa);
2690          double e_gamma =
2691             (parm->pricing == GLP_PT_PSE ? err_in_gamma(csa) : 0.0);
2692          xprintf("e_bbar = %10.3e; e_cbar = %10.3e; e_gamma = %10.3e\n",
2693             e_bbar, e_cbar, e_gamma);
2694          xassert(e_bbar <= 1e-5 && e_cbar <= 1e-5 && e_gamma <= 1e-3);
2695       }
2696       /* check if the iteration limit has been exhausted */
2697       if (parm->it_lim < INT_MAX &&
2698           csa->it_cnt - csa->it_beg >= parm->it_lim)
2699       {  if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1)
2700          {  if (bbar_st != 1) bbar_st = 0;
2701             if (csa->phase == 2 && cbar_st != 1) cbar_st = 0;
2702             goto loop;
2703          }
2704          display(csa, parm, 1);
2705          if (parm->msg_lev >= GLP_MSG_ALL)
2706             xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
2707          switch (csa->phase)
2708          {  case 1:
2709                p_stat = GLP_INFEAS;
2710                set_orig_obj(csa);
2711                eval_cbar(csa);
2712                break;
2713             case 2:
2714                p_stat = GLP_FEAS;
2715                break;
2716             default:
2717                xassert(csa != csa);
2718          }
2719          chuzc(csa, parm->tol_dj);
2720          d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
2721          store_sol(csa, lp, p_stat, d_stat, 0);
2722          ret = GLP_EITLIM;
2723          goto done;
2724       }
2725       /* check if the time limit has been exhausted */
2726       if (parm->tm_lim < INT_MAX &&
2727           1000.0 * xdifftime(xtime(), csa->tm_beg) >= parm->tm_lim)
2728       {  if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1)
2729          {  if (bbar_st != 1) bbar_st = 0;
2730             if (csa->phase == 2 && cbar_st != 1) cbar_st = 0;
2731             goto loop;
2732          }
2733          display(csa, parm, 1);
2734          if (parm->msg_lev >= GLP_MSG_ALL)
2735             xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
2736          switch (csa->phase)
2737          {  case 1:
2738                p_stat = GLP_INFEAS;
2739                set_orig_obj(csa);
2740                eval_cbar(csa);
2741                break;
2742             case 2:
2743                p_stat = GLP_FEAS;
2744                break;
2745             default:
2746                xassert(csa != csa);
2747          }
2748          chuzc(csa, parm->tol_dj);
2749          d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
2750          store_sol(csa, lp, p_stat, d_stat, 0);
2751          ret = GLP_ETMLIM;
2752          goto done;
2753       }
2754       /* display the search progress */
2755       display(csa, parm, 0);
2756       /* choose non-basic variable xN[q] */
2757       chuzc(csa, parm->tol_dj);
2758       if (csa->q == 0)
2759       {  if (bbar_st != 1 || cbar_st != 1)
2760          {  if (bbar_st != 1) bbar_st = 0;
2761             if (cbar_st != 1) cbar_st = 0;
2762             goto loop;
2763          }
2764          display(csa, parm, 1);
2765          switch (csa->phase)
2766          {  case 1:
2767                if (parm->msg_lev >= GLP_MSG_ALL)
2768                   xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n");
2769                p_stat = GLP_NOFEAS;
2770                set_orig_obj(csa);
2771                eval_cbar(csa);
2772                chuzc(csa, parm->tol_dj);
2773                d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
2774                break;
2775             case 2:
2776                if (parm->msg_lev >= GLP_MSG_ALL)
2777                   xprintf("OPTIMAL SOLUTION FOUND\n");
2778                p_stat = d_stat = GLP_FEAS;
2779                break;
2780             default:
2781                xassert(csa != csa);
2782          }
2783          store_sol(csa, lp, p_stat, d_stat, 0);
2784          ret = 0;
2785          goto done;
2786       }
2787       /* compute pivot column of the simplex table */
2788       eval_tcol(csa);
2789       if (rigorous) refine_tcol(csa);
2790       sort_tcol(csa, parm->tol_piv);
2791       /* check accuracy of the reduced cost of xN[q] */
2792       {  double d1 = csa->cbar[csa->q]; /* less accurate */
2793          double d2 = reeval_cost(csa);  /* more accurate */
2794          xassert(d1 != 0.0);
2795          if (fabs(d1 - d2) > 1e-5 * (1.0 + fabs(d2)) ||
2796              !(d1 < 0.0 && d2 < 0.0 || d1 > 0.0 && d2 > 0.0))
2797          {  if (parm->msg_lev >= GLP_MSG_DBG)
2798                xprintf("d1 = %.12g; d2 = %.12g\n", d1, d2);
2799             if (cbar_st != 1 || !rigorous)
2800             {  if (cbar_st != 1) cbar_st = 0;
2801                rigorous = 5;
2802                goto loop;
2803             }
2804          }
2805          /* replace cbar[q] by more accurate value keeping its sign */
2806          if (d1 > 0.0)
2807             csa->cbar[csa->q] = (d2 > 0.0 ? d2 : +DBL_EPSILON);
2808          else
2809             csa->cbar[csa->q] = (d2 < 0.0 ? d2 : -DBL_EPSILON);
2810       }
2811       /* choose basic variable xB[p] */
2812       switch (parm->r_test)
2813       {  case GLP_RT_STD:
2814             chuzr(csa, 0.0);
2815             break;
2816          case GLP_RT_HAR:
2817             chuzr(csa, 0.30 * parm->tol_bnd);
2818             break;
2819          default:
2820             xassert(parm != parm);
2821       }
2822       if (csa->p == 0)
2823       {  if (bbar_st != 1 || cbar_st != 1 || !rigorous)
2824          {  if (bbar_st != 1) bbar_st = 0;
2825             if (cbar_st != 1) cbar_st = 0;
2826             rigorous = 1;
2827             goto loop;
2828          }
2829          display(csa, parm, 1);
2830          switch (csa->phase)
2831          {  case 1:
2832                if (parm->msg_lev >= GLP_MSG_ERR)
2833                   xprintf("Error: unable to choose basic variable on ph"
2834                      "ase I\n");
2835                xassert(!lp->valid && lp->bfd == NULL);
2836                lp->bfd = csa->bfd, csa->bfd = NULL;
2837                lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
2838                lp->obj_val = 0.0;
2839                lp->it_cnt = csa->it_cnt;
2840                lp->some = 0;
2841                ret = GLP_EFAIL;
2842                break;
2843             case 2:
2844                if (parm->msg_lev >= GLP_MSG_ALL)
2845                   xprintf("PROBLEM HAS UNBOUNDED SOLUTION\n");
2846                store_sol(csa, lp, GLP_FEAS, GLP_NOFEAS,
2847                   csa->head[csa->m+csa->q]);
2848                ret = 0;
2849                break;
2850             default:
2851                xassert(csa != csa);
2852          }
2853          goto done;
2854       }
2855       /* check if the pivot element is acceptable */
2856       if (csa->p > 0)
2857       {  double piv = csa->tcol_vec[csa->p];
2858          double eps = 1e-5 * (1.0 + 0.01 * csa->tcol_max);
2859          if (fabs(piv) < eps)
2860          {  if (parm->msg_lev >= GLP_MSG_DBG)
2861                xprintf("piv = %.12g; eps = %g\n", piv, eps);
2862             if (!rigorous)
2863             {  rigorous = 5;
2864                goto loop;
2865             }
2866          }
2867       }
2868       /* now xN[q] and xB[p] have been chosen anyhow */
2869       /* compute pivot row of the simplex table */
2870       if (csa->p > 0)
2871       {  double *rho = csa->work4;
2872          eval_rho(csa, rho);
2873          if (rigorous) refine_rho(csa, rho);
2874          eval_trow(csa, rho);
2875       }
2876       /* accuracy check based on the pivot element */
2877       if (csa->p > 0)
2878       {  double piv1 = csa->tcol_vec[csa->p]; /* more accurate */
2879          double piv2 = csa->trow_vec[csa->q]; /* less accurate */
2880          xassert(piv1 != 0.0);
2881          if (fabs(piv1 - piv2) > 1e-8 * (1.0 + fabs(piv1)) ||
2882              !(piv1 > 0.0 && piv2 > 0.0 || piv1 < 0.0 && piv2 < 0.0))
2883          {  if (parm->msg_lev >= GLP_MSG_DBG)
2884                xprintf("piv1 = %.12g; piv2 = %.12g\n", piv1, piv2);
2885             if (binv_st != 1 || !rigorous)
2886             {  if (binv_st != 1) binv_st = 0;
2887                rigorous = 5;
2888                goto loop;
2889             }
2890             /* use more accurate version in the pivot row */
2891             if (csa->trow_vec[csa->q] == 0.0)
2892             {  csa->trow_nnz++;
2893                xassert(csa->trow_nnz <= csa->n);
2894                csa->trow_ind[csa->trow_nnz] = csa->q;
2895             }
2896             csa->trow_vec[csa->q] = piv1;
2897          }
2898       }
2899       /* update primal values of basic variables */
2900       update_bbar(csa);
2901       bbar_st = 2; /* updated */
2902       /* update reduced costs of non-basic variables */
2903       if (csa->p > 0)
2904       {  update_cbar(csa);
2905          cbar_st = 2; /* updated */
2906          /* on phase I objective coefficient of xB[p] in the adjacent
2907             basis becomes zero */
2908          if (csa->phase == 1)
2909          {  int k = csa->head[csa->p]; /* x[k] = xB[p] -> xN[q] */
2910             csa->cbar[csa->q] -= csa->coef[k];
2911             csa->coef[k] = 0.0;
2912          }
2913       }
2914       /* update steepest edge coefficients */
2915       if (csa->p > 0)
2916       {  switch (parm->pricing)
2917          {  case GLP_PT_STD:
2918                break;
2919             case GLP_PT_PSE:
2920                if (csa->refct > 0) update_gamma(csa);
2921                break;
2922             default:
2923                xassert(parm != parm);
2924          }
2925       }
2926       /* update factorization of the basis matrix */
2927       if (csa->p > 0)
2928       {  ret = update_B(csa, csa->p, csa->head[csa->m+csa->q]);
2929          if (ret == 0)
2930             binv_st = 2; /* updated */
2931          else
2932          {  csa->valid = 0;
2933             binv_st = 0; /* invalid */
2934          }
2935       }
2936       /* update matrix N */
2937       if (csa->p > 0)
2938       {  del_N_col(csa, csa->q, csa->head[csa->m+csa->q]);
2939          if (csa->type[csa->head[csa->p]] != GLP_FX)
2940             add_N_col(csa, csa->q, csa->head[csa->p]);
2941       }
2942       /* change the basis header */
2943       change_basis(csa);
2944       /* iteration complete */
2945       csa->it_cnt++;
2946       if (rigorous > 0) rigorous--;
2947       goto loop;
2948 done: /* deallocate the common storage area */
2949       free_csa(csa);
2950       /* return to the calling program */
2951       return ret;
2952 }
2953 
2954 /* eof */
2955