1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 /*
28  * g711.c
29  *
30  * u-law, A-law and linear PCM conversions.
31  */
32 
33 #include "snack.h"
34 
35 /*
36  * Functions Snack_Lin2Alaw, Snack_Lin2Mulaw have been updated to correctly
37  * convert unquantized 16 bit values.
38  * Tables for direct u- to A-law and A- to u-law conversions have been
39  * corrected.
40  * Borge Lindberg, Center for PersonKommunikation, Aalborg University.
41  * bli@cpk.auc.dk
42  *
43  */
44 
45 #define	SIGN_BIT	(0x80)		/* Sign bit for a A-law byte. */
46 #define	QUANT_MASK	(0xf)		/* Quantization field mask. */
47 #define	NSEGS		(8)		/* Number of A-law segments. */
48 #define	SEG_SHIFT	(4)		/* Left shift for segment number. */
49 #define	SEG_MASK	(0x70)		/* Segment field mask. */
50 
51 static short seg_aend[8] = {0x1F, 0x3F, 0x7F, 0xFF,
52 			    0x1FF, 0x3FF, 0x7FF, 0xFFF};
53 static short seg_uend[8] = {0x3F, 0x7F, 0xFF, 0x1FF,
54 			    0x3FF, 0x7FF, 0xFFF, 0x1FFF};
55 
56 /* copy from CCITT G.711 specifications */
57 unsigned char _u2a[128] = {			/* u- to A-law conversions */
58 	1,	1,	2,	2,	3,	3,	4,	4,
59 	5,	5,	6,	6,	7,	7,	8,	8,
60 	9,	10,	11,	12,	13,	14,	15,	16,
61 	17,	18,	19,	20,	21,	22,	23,	24,
62 	25,	27,	29,	31,	33,	34,	35,	36,
63 	37,	38,	39,	40,	41,	42,	43,	44,
64 	46,	48,	49,	50,	51,	52,	53,	54,
65 	55,	56,	57,	58,	59,	60,	61,	62,
66 	64,	65,	66,	67,	68,	69,	70,	71,
67 	72,	73,	74,	75,	76,	77,	78,	79,
68 /* corrected:
69 	81,	82,	83,	84,	85,	86,	87,	88,
70    should be: */
71 	80,	82,	83,	84,	85,	86,	87,	88,
72 	89,	90,	91,	92,	93,	94,	95,	96,
73 	97,	98,	99,	100,	101,	102,	103,	104,
74 	105,	106,	107,	108,	109,	110,	111,	112,
75 	113,	114,	115,	116,	117,	118,	119,	120,
76 	121,	122,	123,	124,	125,	126,	127,	128};
77 
78 unsigned char _a2u[128] = {			/* A- to u-law conversions */
79 	1,	3,	5,	7,	9,	11,	13,	15,
80 	16,	17,	18,	19,	20,	21,	22,	23,
81 	24,	25,	26,	27,	28,	29,	30,	31,
82 	32,	32,	33,	33,	34,	34,	35,	35,
83 	36,	37,	38,	39,	40,	41,	42,	43,
84 	44,	45,	46,	47,	48,	48,	49,	49,
85 	50,	51,	52,	53,	54,	55,	56,	57,
86 	58,	59,	60,	61,	62,	63,	64,	64,
87 	65,	66,	67,	68,	69,	70,	71,	72,
88 /* corrected:
89 	73,	74,	75,	76,	77,	78,	79,	79,
90    should be: */
91 	73,	74,	75,	76,	77,	78,	79,	80,
92 
93 	80,	81,	82,	83,	84,	85,	86,	87,
94 	88,	89,	90,	91,	92,	93,	94,	95,
95 	96,	97,	98,	99,	100,	101,	102,	103,
96 	104,	105,	106,	107,	108,	109,	110,	111,
97 	112,	113,	114,	115,	116,	117,	118,	119,
98 	120,	121,	122,	123,	124,	125,	126,	127};
99 
100 static short
search(short val,short * table,short size)101 search(
102 	short		val,
103 	short		*table,
104 	short		size)
105 {
106 	short		i;
107 
108 	for (i = 0; i < size; i++) {
109 		if (val <= *table++)
110 			return (i);
111 	}
112 	return (size);
113 }
114 
115 /*
116  * Snack_Lin2Alaw() - Convert a 16-bit linear PCM value to 8-bit A-law
117  *
118  * Snack_Lin2Alaw() accepts an 16-bit integer and encodes it as A-law data.
119  *
120  *		Linear Input Code	Compressed Code
121  *	------------------------	---------------
122  *	0000000wxyza			000wxyz
123  *	0000001wxyza			001wxyz
124  *	000001wxyzab			010wxyz
125  *	00001wxyzabc			011wxyz
126  *	0001wxyzabcd			100wxyz
127  *	001wxyzabcde			101wxyz
128  *	01wxyzabcdef			110wxyz
129  *	1wxyzabcdefg			111wxyz
130  *
131  * For further information see John C. Bellamy's Digital Telephony, 1982,
132  * John Wiley & Sons, pps 98-111 and 472-476.
133  */
134 
135 unsigned char
Snack_Lin2Alaw(short pcm_val)136 Snack_Lin2Alaw(
137 	short		pcm_val)	/* 2's complement (16-bit range) */
138 {
139 	short		mask;
140 	short		seg;
141 	unsigned char	aval;
142 
143 	pcm_val = pcm_val >> 3;
144 
145 	if (pcm_val >= 0) {
146 		mask = 0xD5;		/* sign (7th) bit = 1 */
147 	} else {
148 		mask = 0x55;		/* sign bit = 0 */
149 		pcm_val = -pcm_val - 1;
150 	}
151 
152 	/* Convert the scaled magnitude to segment number. */
153 	seg = search(pcm_val, seg_aend, 8);
154 
155 	/* Combine the sign, segment, and quantization bits. */
156 
157 	if (seg >= 8)		/* out of range, return maximum value. */
158 		return (unsigned char) (0x7F ^ mask);
159 	else {
160 		aval = (unsigned char) seg << SEG_SHIFT;
161 		if (seg < 2)
162 			aval |= (pcm_val >> 1) & QUANT_MASK;
163 		else
164 			aval |= (pcm_val >> seg) & QUANT_MASK;
165 		return (aval ^ mask);
166 	}
167 }
168 
169 /*
170  * Snack_Alaw2Lin() - Convert an A-law value to 16-bit linear PCM
171  *
172  */
173 short
Snack_Alaw2Lin(unsigned char a_val)174 Snack_Alaw2Lin(
175 	unsigned char	a_val)
176 {
177 	short		t;
178 	short		seg;
179 
180 	a_val ^= 0x55;
181 
182 	t = (a_val & QUANT_MASK) << 4;
183 	seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT;
184 	switch (seg) {
185 	case 0:
186 		t += 8;
187 		break;
188 	case 1:
189 		t += 0x108;
190 		break;
191 	default:
192 		t += 0x108;
193 		t <<= seg - 1;
194 	}
195 	return ((a_val & SIGN_BIT) ? t : -t);
196 }
197 
198 #define	BIAS		(0x84)		/* Bias for linear code. */
199 #define CLIP            8159
200 
201 /*
202  * Snack_Lin2Mulaw() - Convert a linear PCM value to u-law
203  *
204  * In order to simplify the encoding process, the original linear magnitude
205  * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
206  * (33 - 8191). The result can be seen in the following encoding table:
207  *
208  *	Biased Linear Input Code	Compressed Code
209  *	------------------------	---------------
210  *	00000001wxyza			000wxyz
211  *	0000001wxyzab			001wxyz
212  *	000001wxyzabc			010wxyz
213  *	00001wxyzabcd			011wxyz
214  *	0001wxyzabcde			100wxyz
215  *	001wxyzabcdef			101wxyz
216  *	01wxyzabcdefg			110wxyz
217  *	1wxyzabcdefgh			111wxyz
218  *
219  * Each biased linear code has a leading 1 which identifies the segment
220  * number. The value of the segment number is equal to 7 minus the number
221  * of leading 0's. The quantization interval is directly available as the
222  * four bits wxyz.  * The trailing bits (a - h) are ignored.
223  *
224  * Ordinarily the complement of the resulting code word is used for
225  * transmission, and so the code word is complemented before it is returned.
226  *
227  * For further information see John C. Bellamy's Digital Telephony, 1982,
228  * John Wiley & Sons, pps 98-111 and 472-476.
229  */
230 unsigned char
Snack_Lin2Mulaw(short pcm_val)231 Snack_Lin2Mulaw(
232 	short		pcm_val)	/* 2's complement (16-bit range) */
233 {
234 	short		mask;
235 	short		seg;
236 	unsigned char	uval;
237 
238 	/* Get the sign and the magnitude of the value. */
239 	pcm_val = pcm_val >> 2;
240 	if (pcm_val < 0) {
241 		pcm_val = -pcm_val;
242 		mask = 0x7F;
243 	} else {
244 		mask = 0xFF;
245 	}
246         if ( pcm_val > CLIP ) pcm_val = CLIP;		/* clip the magnitude */
247 	pcm_val += (BIAS >> 2);
248 
249 	/* Convert the scaled magnitude to segment number. */
250 	seg = search(pcm_val, seg_uend, 8);
251 
252 	/*
253 	 * Combine the sign, segment, quantization bits;
254 	 * and complement the code word.
255 	 */
256 	if (seg >= 8)		/* out of range, return maximum value. */
257 		return (unsigned char) (0x7F ^ mask);
258 	else {
259 		uval = (unsigned char) (seg << 4) | ((pcm_val >> (seg + 1)) & 0xF);
260 		return (uval ^ mask);
261 	}
262 
263 }
264 
265 /*
266  * Snack_Mulaw2Lin() - Convert a u-law value to 16-bit linear PCM
267  *
268  * First, a biased linear code is derived from the code word. An unbiased
269  * output can then be obtained by subtracting 33 from the biased code.
270  *
271  * Note that this function expects to be passed the complement of the
272  * original code word. This is in keeping with ISDN conventions.
273  */
274 short
Snack_Mulaw2Lin(unsigned char u_val)275 Snack_Mulaw2Lin(
276 	unsigned char	u_val)
277 {
278 	short		t;
279 
280 	/* Complement to obtain normal u-law value. */
281 	u_val = ~u_val;
282 
283 	/*
284 	 * Extract and bias the quantization bits. Then
285 	 * shift up by the segment number and subtract out the bias.
286 	 */
287 	t = ((u_val & QUANT_MASK) << 3) + BIAS;
288 	t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;
289 
290 	return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));
291 }
292 
293 /* A-law to u-law conversion */
294 unsigned char
alaw2ulaw(unsigned char aval)295 alaw2ulaw(
296 	unsigned char	aval)
297 {
298 	aval &= 0xff;
299 	return (unsigned char) ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) :
300 	    (0x7F ^ _a2u[aval ^ 0x55]));
301 }
302 
303 /* u-law to A-law conversion */
304 unsigned char
ulaw2alaw(unsigned char uval)305 ulaw2alaw(
306 	unsigned char	uval)
307 {
308 	uval &= 0xff;
309 	return (unsigned char) ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) :
310 	    (unsigned char) (0x55 ^ (_u2a[0x7F ^ uval] - 1)));
311 }
312 
313