1 #include <stdio.h>
2 
3 #include "lfsr.h"
4 #include "../compiler/compiler.h"
5 
6 /*
7  * LFSR taps retrieved from:
8  * http://home1.gte.net/res0658s/electronics/LFSRtaps.html
9  *
10  * The memory overhead of the following tap table should be relatively small,
11  * no more than 400 bytes.
12  */
13 static uint8_t lfsr_taps[64][FIO_MAX_TAPS] =
14 {
15 	{0}, {0}, {0},		//LFSRs with less that 3-bits cannot exist
16 	{3, 2},			//Tap position for 3-bit LFSR
17 	{4, 3},			//Tap position for 4-bit LFSR
18 	{5, 3},			//Tap position for 5-bit LFSR
19 	{6, 5},			//Tap position for 6-bit LFSR
20 	{7, 6},			//Tap position for 7-bit LFSR
21 	{8, 6, 5 ,4},		//Tap position for 8-bit LFSR
22 	{9, 5},			//Tap position for 9-bit LFSR
23 	{10, 7},		//Tap position for 10-bit LFSR
24 	{11, 9},		//Tap position for 11-bit LFSR
25 	{12, 6, 4, 1},		//Tap position for 12-bit LFSR
26 	{13, 4, 3, 1},		//Tap position for 13-bit LFSR
27 	{14, 5, 3, 1},		//Tap position for 14-bit LFSR
28 	{15, 14},		//Tap position for 15-bit LFSR
29 	{16, 15, 13, 4},	//Tap position for 16-bit LFSR
30 	{17, 14},		//Tap position for 17-bit LFSR
31 	{18, 11},		//Tap position for 18-bit LFSR
32 	{19, 6, 2, 1},		//Tap position for 19-bit LFSR
33 	{20, 17},		//Tap position for 20-bit LFSR
34 	{21, 19},		//Tap position for 21-bit LFSR
35 	{22, 21},		//Tap position for 22-bit LFSR
36 	{23, 18},		//Tap position for 23-bit LFSR
37 	{24, 23, 22, 17},	//Tap position for 24-bit LFSR
38 	{25, 22},		//Tap position for 25-bit LFSR
39 	{26, 6, 2, 1},		//Tap position for 26-bit LFSR
40 	{27, 5, 2, 1},		//Tap position for 27-bit LFSR
41 	{28, 25},		//Tap position for 28-bit LFSR
42 	{29, 27},		//Tap position for 29-bit LFSR
43 	{30, 6, 4, 1},		//Tap position for 30-bit LFSR
44 	{31, 28},		//Tap position for 31-bit LFSR
45 	{32, 31, 29, 1},	//Tap position for 32-bit LFSR
46 	{33, 20},		//Tap position for 33-bit LFSR
47 	{34, 27, 2, 1},		//Tap position for 34-bit LFSR
48 	{35, 33},		//Tap position for 35-bit LFSR
49 	{36, 25},		//Tap position for 36-bit LFSR
50 	{37, 5, 4, 3, 2, 1},	//Tap position for 37-bit LFSR
51 	{38, 6, 5, 1},		//Tap position for 38-bit LFSR
52 	{39, 35},		//Tap position for 39-bit LFSR
53 	{40, 38, 21, 19},	//Tap position for 40-bit LFSR
54 	{41, 38},		//Tap position for 41-bit LFSR
55 	{42, 41, 20, 19},	//Tap position for 42-bit LFSR
56 	{43, 42, 38, 37},	//Tap position for 43-bit LFSR
57 	{44, 43, 18, 17},	//Tap position for 44-bit LFSR
58 	{45, 44, 42, 41},	//Tap position for 45-bit LFSR
59 	{46, 45, 26, 25},	//Tap position for 46-bit LFSR
60 	{47, 42},		//Tap position for 47-bit LFSR
61 	{48, 47, 21, 20},	//Tap position for 48-bit LFSR
62 	{49, 40},		//Tap position for 49-bit LFSR
63 	{50, 49, 24, 23},	//Tap position for 50-bit LFSR
64 	{51, 50, 36, 35},	//Tap position for 51-bit LFSR
65 	{52, 49},		//Tap position for 52-bit LFSR
66 	{53, 52, 38, 37},	//Tap position for 53-bit LFSR
67 	{54, 53, 18, 17},	//Tap position for 54-bit LFSR
68 	{55, 31},		//Tap position for 55-bit LFSR
69 	{56, 55, 35, 34},	//Tap position for 56-bit LFSR
70 	{57, 50},		//Tap position for 57-bit LFSR
71 	{58, 39},		//Tap position for 58-bit LFSR
72 	{59, 58, 38, 37},	//Tap position for 59-bit LFSR
73 	{60, 59},		//Tap position for 60-bit LFSR
74 	{61, 60, 46, 45},	//Tap position for 61-bit LFSR
75 	{62, 61, 6, 5},		//Tap position for 62-bit LFSR
76 	{63, 62},		//Tap position for 63-bit LFSR
77 };
78 
79 #define __LFSR_NEXT(__fl, __v)						\
80 	__v = ((__v >> 1) | __fl->cached_bit) ^			\
81 			(((__v & 1ULL) - 1ULL) & __fl->xormask);
82 
__lfsr_next(struct fio_lfsr * fl,unsigned int spin)83 static inline void __lfsr_next(struct fio_lfsr *fl, unsigned int spin)
84 {
85 	/*
86 	 * This should be O(1) since most compilers will create a jump table for
87 	 * this switch.
88 	 */
89 	switch (spin) {
90 		case 15: __LFSR_NEXT(fl, fl->last_val);
91 		fallthrough;
92 		case 14: __LFSR_NEXT(fl, fl->last_val);
93 		fallthrough;
94 		case 13: __LFSR_NEXT(fl, fl->last_val);
95 		fallthrough;
96 		case 12: __LFSR_NEXT(fl, fl->last_val);
97 		fallthrough;
98 		case 11: __LFSR_NEXT(fl, fl->last_val);
99 		fallthrough;
100 		case 10: __LFSR_NEXT(fl, fl->last_val);
101 		fallthrough;
102 		case  9: __LFSR_NEXT(fl, fl->last_val);
103 		fallthrough;
104 		case  8: __LFSR_NEXT(fl, fl->last_val);
105 		fallthrough;
106 		case  7: __LFSR_NEXT(fl, fl->last_val);
107 		fallthrough;
108 		case  6: __LFSR_NEXT(fl, fl->last_val);
109 		fallthrough;
110 		case  5: __LFSR_NEXT(fl, fl->last_val);
111 		fallthrough;
112 		case  4: __LFSR_NEXT(fl, fl->last_val);
113 		fallthrough;
114 		case  3: __LFSR_NEXT(fl, fl->last_val);
115 		fallthrough;
116 		case  2: __LFSR_NEXT(fl, fl->last_val);
117 		fallthrough;
118 		case  1: __LFSR_NEXT(fl, fl->last_val);
119 		fallthrough;
120 		case  0: __LFSR_NEXT(fl, fl->last_val);
121 		fallthrough;
122 		default: break;
123 	}
124 }
125 
126 /*
127  * lfsr_next does the following:
128  *
129  * a. Return if the number of max values has been exceeded.
130  * b. Check if we have a spin value that produces a repeating subsequence.
131  *    This is previously calculated in `prepare_spin` and cycle_length should
132  *    be > 0. If we do have such a spin:
133  *
134  *    i. Decrement the calculated cycle.
135  *    ii. If it reaches zero, add "+1" to the spin and reset the cycle_length
136  *        (we have it cached in the struct fio_lfsr)
137  *
138  *    In either case, continue with the calculation of the next value.
139  * c. Check if the calculated value exceeds the desirable range. In this case,
140  *    go back to b, else return.
141  */
lfsr_next(struct fio_lfsr * fl,uint64_t * off)142 int lfsr_next(struct fio_lfsr *fl, uint64_t *off)
143 {
144 	if (fl->num_vals++ > fl->max_val)
145 		return 1;
146 
147 	do {
148 		if (fl->cycle_length && !--fl->cycle_length) {
149 			__lfsr_next(fl, fl->spin + 1);
150 			fl->cycle_length = fl->cached_cycle_length;
151 		} else
152 			__lfsr_next(fl, fl->spin);
153 	} while (fio_unlikely(fl->last_val > fl->max_val));
154 
155 	*off = fl->last_val;
156 	return 0;
157 }
158 
lfsr_create_xormask(uint8_t * taps)159 static uint64_t lfsr_create_xormask(uint8_t *taps)
160 {
161 	int i;
162 	uint64_t xormask = 0;
163 
164 	for(i = 0; i < FIO_MAX_TAPS && taps[i] != 0; i++)
165 		xormask |= 1ULL << (taps[i] - 1);
166 
167 	return xormask;
168 }
169 
find_lfsr(uint64_t size)170 static uint8_t *find_lfsr(uint64_t size)
171 {
172 	int i;
173 
174 	/*
175 	 * For an LFSR, there is always a prohibited state (all ones).
176 	 * Thus, if we need to find the proper LFSR for our size, we must
177 	 * take that into account.
178 	 */
179 	for (i = 3; i < 64; i++)
180 		if ((1ULL << i) > size)
181 			return lfsr_taps[i];
182 
183 	return NULL;
184 }
185 
186 /*
187  * It is well-known that all maximal n-bit LFSRs will start repeating
188  * themselves after their 2^n iteration. The introduction of spins however, is
189  * possible to create a repetition of a sub-sequence before we hit that mark.
190  * This happens if:
191  *
192  * [1]: ((2^n - 1) * i) % (spin + 1) == 0,
193  * where "n" is LFSR's bits and "i" any number within the range [1,spin]
194  *
195  * It is important to know beforehand if a spin can cause a repetition of a
196  * sub-sequence (cycle) and its length. However, calculating (2^n - 1) * i may
197  * produce a buffer overflow for "n" close to 64, so we expand the above to:
198  *
199  * [2]: (2^n - 1) -> (x * (spin + 1) + y), where x >= 0 and 0 <= y <= spin
200  *
201  * Thus, [1] is equivalent to (y * i) % (spin + 1) == 0;
202  * Also, the cycle's length will be (x * i) + (y * i) / (spin + 1)
203  */
prepare_spin(struct fio_lfsr * fl,unsigned int spin)204 static int prepare_spin(struct fio_lfsr *fl, unsigned int spin)
205 {
206 	uint64_t max = (fl->cached_bit << 1) - 1;
207 	uint64_t x, y;
208 	int i;
209 
210 	if (spin > 15)
211 		return 1;
212 
213 	x = max / (spin + 1);
214 	y = max % (spin + 1);
215 	fl->cycle_length = 0;	/* No cycle occurs, other than the expected */
216 	fl->spin = spin;
217 
218 	for (i = 1; i <= spin; i++) {
219 		if ((y * i) % (spin + 1) == 0) {
220 			fl->cycle_length = (x * i) + (y * i) / (spin + 1);
221 			break;
222 		}
223 	}
224 	fl->cached_cycle_length = fl->cycle_length;
225 
226 	/*
227 	 * Increment cycle length for the first time only since the stored value
228 	 * will not be printed otherwise.
229 	 */
230 	fl->cycle_length++;
231 
232 	return 0;
233 }
234 
lfsr_reset(struct fio_lfsr * fl,uint64_t seed)235 int lfsr_reset(struct fio_lfsr *fl, uint64_t seed)
236 {
237 	uint64_t bitmask = (fl->cached_bit << 1) - 1;
238 
239 	fl->num_vals = 0;
240 	fl->last_val = seed & bitmask;
241 
242 	/* All-ones state is illegal for XNOR LFSRs */
243 	if (fl->last_val == bitmask)
244 		return 1;
245 
246 	return 0;
247 }
248 
lfsr_init(struct fio_lfsr * fl,uint64_t nums,uint64_t seed,unsigned int spin)249 int lfsr_init(struct fio_lfsr *fl, uint64_t nums, uint64_t seed,
250 	      unsigned int spin)
251 {
252 	uint8_t *taps;
253 
254 	taps = find_lfsr(nums);
255 	if (!taps)
256 		return 1;
257 
258 	fl->max_val = nums - 1;
259 	fl->xormask = lfsr_create_xormask(taps);
260 	fl->cached_bit = 1ULL << (taps[0] - 1);
261 
262 	if (prepare_spin(fl, spin))
263 		return 1;
264 
265 	if (lfsr_reset(fl, seed))
266 		return 1;
267 
268 	return 0;
269 }
270