1 /*
2  *  The RSA public-key cryptosystem
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6  *
7  *  This file is provided under the Apache License 2.0, or the
8  *  GNU General Public License v2.0 or later.
9  *
10  *  **********
11  *  Apache License 2.0:
12  *
13  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
14  *  not use this file except in compliance with the License.
15  *  You may obtain a copy of the License at
16  *
17  *  http://www.apache.org/licenses/LICENSE-2.0
18  *
19  *  Unless required by applicable law or agreed to in writing, software
20  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
21  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22  *  See the License for the specific language governing permissions and
23  *  limitations under the License.
24  *
25  *  **********
26  *
27  *  **********
28  *  GNU General Public License v2.0 or later:
29  *
30  *  This program is free software; you can redistribute it and/or modify
31  *  it under the terms of the GNU General Public License as published by
32  *  the Free Software Foundation; either version 2 of the License, or
33  *  (at your option) any later version.
34  *
35  *  This program is distributed in the hope that it will be useful,
36  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
37  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
38  *  GNU General Public License for more details.
39  *
40  *  You should have received a copy of the GNU General Public License along
41  *  with this program; if not, write to the Free Software Foundation, Inc.,
42  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
43  *
44  *  **********
45  */
46 
47 /*
48  *  The following sources were referenced in the design of this implementation
49  *  of the RSA algorithm:
50  *
51  *  [1] A method for obtaining digital signatures and public-key cryptosystems
52  *      R Rivest, A Shamir, and L Adleman
53  *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
54  *
55  *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
56  *      Menezes, van Oorschot and Vanstone
57  *
58  *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
59  *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
60  *      Stefan Mangard
61  *      https://arxiv.org/abs/1702.08719v2
62  *
63  */
64 
65 #if !defined(MBEDTLS_CONFIG_FILE)
66 #include "mbedtls/config.h"
67 #else
68 #include MBEDTLS_CONFIG_FILE
69 #endif
70 
71 #if defined(MBEDTLS_RSA_C)
72 
73 #include "mbedtls/rsa.h"
74 #include "mbedtls/rsa_internal.h"
75 #include "mbedtls/oid.h"
76 
77 #include <string.h>
78 
79 #if defined(MBEDTLS_PKCS1_V21)
80 #include "mbedtls/md.h"
81 #endif
82 
83 #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
84 #include <stdlib.h>
85 #endif
86 
87 #if defined(MBEDTLS_PLATFORM_C)
88 #include "mbedtls/platform.h"
89 #else
90 #include <stdio.h>
91 #define mbedtls_printf printf
92 #define mbedtls_calloc calloc
93 #define mbedtls_free   free
94 #endif
95 
96 #if !defined(MBEDTLS_RSA_ALT)
97 
98 /* Implementation that should never be optimized out by the compiler */
mbedtls_zeroize(void * v,size_t n)99 static void mbedtls_zeroize( void *v, size_t n ) {
100     volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0;
101 }
102 
103 #if defined(MBEDTLS_PKCS1_V15)
104 /* constant-time buffer comparison */
mbedtls_safer_memcmp(const void * a,const void * b,size_t n)105 static inline int mbedtls_safer_memcmp( const void *a, const void *b, size_t n )
106 {
107     size_t i;
108     const unsigned char *A = (const unsigned char *) a;
109     const unsigned char *B = (const unsigned char *) b;
110     unsigned char diff = 0;
111 
112     for( i = 0; i < n; i++ )
113         diff |= A[i] ^ B[i];
114 
115     return( diff );
116 }
117 #endif /* MBEDTLS_PKCS1_V15 */
118 
mbedtls_rsa_import(mbedtls_rsa_context * ctx,const mbedtls_mpi * N,const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * E)119 int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
120                         const mbedtls_mpi *N,
121                         const mbedtls_mpi *P, const mbedtls_mpi *Q,
122                         const mbedtls_mpi *D, const mbedtls_mpi *E )
123 {
124     int ret;
125 
126     if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->N, N ) ) != 0 ) ||
127         ( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->P, P ) ) != 0 ) ||
128         ( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->Q, Q ) ) != 0 ) ||
129         ( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->D, D ) ) != 0 ) ||
130         ( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->E, E ) ) != 0 ) )
131     {
132         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
133     }
134 
135     if( N != NULL )
136         ctx->len = mbedtls_mpi_size( &ctx->N );
137 
138     return( 0 );
139 }
140 
mbedtls_rsa_import_raw(mbedtls_rsa_context * ctx,unsigned char const * N,size_t N_len,unsigned char const * P,size_t P_len,unsigned char const * Q,size_t Q_len,unsigned char const * D,size_t D_len,unsigned char const * E,size_t E_len)141 int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
142                             unsigned char const *N, size_t N_len,
143                             unsigned char const *P, size_t P_len,
144                             unsigned char const *Q, size_t Q_len,
145                             unsigned char const *D, size_t D_len,
146                             unsigned char const *E, size_t E_len )
147 {
148     int ret = 0;
149 
150     if( N != NULL )
151     {
152         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
153         ctx->len = mbedtls_mpi_size( &ctx->N );
154     }
155 
156     if( P != NULL )
157         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
158 
159     if( Q != NULL )
160         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
161 
162     if( D != NULL )
163         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
164 
165     if( E != NULL )
166         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
167 
168 cleanup:
169 
170     if( ret != 0 )
171         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
172 
173     return( 0 );
174 }
175 
176 /*
177  * Checks whether the context fields are set in such a way
178  * that the RSA primitives will be able to execute without error.
179  * It does *not* make guarantees for consistency of the parameters.
180  */
rsa_check_context(mbedtls_rsa_context const * ctx,int is_priv,int blinding_needed)181 static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
182                               int blinding_needed )
183 {
184 #if !defined(MBEDTLS_RSA_NO_CRT)
185     /* blinding_needed is only used for NO_CRT to decide whether
186      * P,Q need to be present or not. */
187     ((void) blinding_needed);
188 #endif
189 
190     if( ctx->len != mbedtls_mpi_size( &ctx->N ) ||
191         ctx->len > MBEDTLS_MPI_MAX_SIZE )
192     {
193         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
194     }
195 
196     /*
197      * 1. Modular exponentiation needs positive, odd moduli.
198      */
199 
200     /* Modular exponentiation wrt. N is always used for
201      * RSA public key operations. */
202     if( mbedtls_mpi_cmp_int( &ctx->N, 0 ) <= 0 ||
203         mbedtls_mpi_get_bit( &ctx->N, 0 ) == 0  )
204     {
205         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
206     }
207 
208 #if !defined(MBEDTLS_RSA_NO_CRT)
209     /* Modular exponentiation for P and Q is only
210      * used for private key operations and if CRT
211      * is used. */
212     if( is_priv &&
213         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
214           mbedtls_mpi_get_bit( &ctx->P, 0 ) == 0 ||
215           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ||
216           mbedtls_mpi_get_bit( &ctx->Q, 0 ) == 0  ) )
217     {
218         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
219     }
220 #endif /* !MBEDTLS_RSA_NO_CRT */
221 
222     /*
223      * 2. Exponents must be positive
224      */
225 
226     /* Always need E for public key operations */
227     if( mbedtls_mpi_cmp_int( &ctx->E, 0 ) <= 0 )
228         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
229 
230 #if defined(MBEDTLS_RSA_NO_CRT)
231     /* For private key operations, use D or DP & DQ
232      * as (unblinded) exponents. */
233     if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 )
234         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
235 #else
236     if( is_priv &&
237         ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) <= 0 ||
238           mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) <= 0  ) )
239     {
240         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
241     }
242 #endif /* MBEDTLS_RSA_NO_CRT */
243 
244     /* Blinding shouldn't make exponents negative either,
245      * so check that P, Q >= 1 if that hasn't yet been
246      * done as part of 1. */
247 #if defined(MBEDTLS_RSA_NO_CRT)
248     if( is_priv && blinding_needed &&
249         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
250           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) )
251     {
252         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
253     }
254 #endif
255 
256     /* It wouldn't lead to an error if it wasn't satisfied,
257      * but check for QP >= 1 nonetheless. */
258 #if !defined(MBEDTLS_RSA_NO_CRT)
259     if( is_priv &&
260         mbedtls_mpi_cmp_int( &ctx->QP, 0 ) <= 0 )
261     {
262         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
263     }
264 #endif
265 
266     return( 0 );
267 }
268 
mbedtls_rsa_complete(mbedtls_rsa_context * ctx)269 int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
270 {
271     int ret = 0;
272 
273     const int have_N = ( mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 );
274     const int have_P = ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 );
275     const int have_Q = ( mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 );
276     const int have_D = ( mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 );
277     const int have_E = ( mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0 );
278 
279 #if !defined(MBEDTLS_RSA_NO_CRT)
280     const int have_DP = ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) != 0 );
281     const int have_DQ = ( mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) != 0 );
282     const int have_QP = ( mbedtls_mpi_cmp_int( &ctx->QP, 0 ) != 0 );
283 #endif
284 
285     /*
286      * Check whether provided parameters are enough
287      * to deduce all others. The following incomplete
288      * parameter sets for private keys are supported:
289      *
290      * (1) P, Q missing.
291      * (2) D and potentially N missing.
292      *
293      */
294 
295     const int n_missing  =              have_P &&  have_Q &&  have_D && have_E;
296     const int pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
297     const int d_missing  =              have_P &&  have_Q && !have_D && have_E;
298     const int is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
299 
300     /* These three alternatives are mutually exclusive */
301     const int is_priv = n_missing || pq_missing || d_missing;
302 
303     if( !is_priv && !is_pub )
304         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
305 
306     /*
307      * Step 1: Deduce N if P, Q are provided.
308      */
309 
310     if( !have_N && have_P && have_Q )
311     {
312         if( ( ret = mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P,
313                                          &ctx->Q ) ) != 0 )
314         {
315             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
316         }
317 
318         ctx->len = mbedtls_mpi_size( &ctx->N );
319     }
320 
321     /*
322      * Step 2: Deduce and verify all remaining core parameters.
323      */
324 
325     if( pq_missing )
326     {
327         ret = mbedtls_rsa_deduce_primes( &ctx->N, &ctx->E, &ctx->D,
328                                          &ctx->P, &ctx->Q );
329         if( ret != 0 )
330             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
331 
332     }
333     else if( d_missing )
334     {
335         if( ( ret = mbedtls_rsa_deduce_private_exponent( &ctx->P,
336                                                          &ctx->Q,
337                                                          &ctx->E,
338                                                          &ctx->D ) ) != 0 )
339         {
340             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
341         }
342     }
343 
344     /*
345      * Step 3: Deduce all additional parameters specific
346      *         to our current RSA implementation.
347      */
348 
349 #if !defined(MBEDTLS_RSA_NO_CRT)
350     if( is_priv && ! ( have_DP && have_DQ && have_QP ) )
351     {
352         ret = mbedtls_rsa_deduce_crt( &ctx->P,  &ctx->Q,  &ctx->D,
353                                       &ctx->DP, &ctx->DQ, &ctx->QP );
354         if( ret != 0 )
355             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
356     }
357 #endif /* MBEDTLS_RSA_NO_CRT */
358 
359     /*
360      * Step 3: Basic sanity checks
361      */
362 
363     return( rsa_check_context( ctx, is_priv, 1 ) );
364 }
365 
mbedtls_rsa_export_raw(const mbedtls_rsa_context * ctx,unsigned char * N,size_t N_len,unsigned char * P,size_t P_len,unsigned char * Q,size_t Q_len,unsigned char * D,size_t D_len,unsigned char * E,size_t E_len)366 int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
367                             unsigned char *N, size_t N_len,
368                             unsigned char *P, size_t P_len,
369                             unsigned char *Q, size_t Q_len,
370                             unsigned char *D, size_t D_len,
371                             unsigned char *E, size_t E_len )
372 {
373     int ret = 0;
374 
375     /* Check if key is private or public */
376     const int is_priv =
377         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
378         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
379         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
380         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
381         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
382 
383     if( !is_priv )
384     {
385         /* If we're trying to export private parameters for a public key,
386          * something must be wrong. */
387         if( P != NULL || Q != NULL || D != NULL )
388             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
389 
390     }
391 
392     if( N != NULL )
393         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
394 
395     if( P != NULL )
396         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
397 
398     if( Q != NULL )
399         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
400 
401     if( D != NULL )
402         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
403 
404     if( E != NULL )
405         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
406 
407 cleanup:
408 
409     return( ret );
410 }
411 
mbedtls_rsa_export(const mbedtls_rsa_context * ctx,mbedtls_mpi * N,mbedtls_mpi * P,mbedtls_mpi * Q,mbedtls_mpi * D,mbedtls_mpi * E)412 int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
413                         mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
414                         mbedtls_mpi *D, mbedtls_mpi *E )
415 {
416     int ret;
417 
418     /* Check if key is private or public */
419     int is_priv =
420         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
421         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
422         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
423         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
424         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
425 
426     if( !is_priv )
427     {
428         /* If we're trying to export private parameters for a public key,
429          * something must be wrong. */
430         if( P != NULL || Q != NULL || D != NULL )
431             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
432 
433     }
434 
435     /* Export all requested core parameters. */
436 
437     if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->N ) ) != 0 ) ||
438         ( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->P ) ) != 0 ) ||
439         ( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->Q ) ) != 0 ) ||
440         ( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->D ) ) != 0 ) ||
441         ( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->E ) ) != 0 ) )
442     {
443         return( ret );
444     }
445 
446     return( 0 );
447 }
448 
449 /*
450  * Export CRT parameters
451  * This must also be implemented if CRT is not used, for being able to
452  * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
453  * can be used in this case.
454  */
mbedtls_rsa_export_crt(const mbedtls_rsa_context * ctx,mbedtls_mpi * DP,mbedtls_mpi * DQ,mbedtls_mpi * QP)455 int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
456                             mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
457 {
458     int ret;
459 
460     /* Check if key is private or public */
461     int is_priv =
462         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
463         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
464         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
465         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
466         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
467 
468     if( !is_priv )
469         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
470 
471 #if !defined(MBEDTLS_RSA_NO_CRT)
472     /* Export all requested blinding parameters. */
473     if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->DP ) ) != 0 ) ||
474         ( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->DQ ) ) != 0 ) ||
475         ( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->QP ) ) != 0 ) )
476     {
477         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
478     }
479 #else
480     if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
481                                         DP, DQ, QP ) ) != 0 )
482     {
483         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
484     }
485 #endif
486 
487     return( 0 );
488 }
489 
490 /*
491  * Initialize an RSA context
492  */
mbedtls_rsa_init(mbedtls_rsa_context * ctx,int padding,int hash_id)493 void mbedtls_rsa_init( mbedtls_rsa_context *ctx,
494                int padding,
495                int hash_id )
496 {
497     memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
498 
499     mbedtls_rsa_set_padding( ctx, padding, hash_id );
500 
501 #if defined(MBEDTLS_THREADING_C)
502     /* Set ctx->ver to nonzero to indicate that the mutex has been
503      * initialized and will need to be freed. */
504     ctx->ver = 1;
505     mbedtls_mutex_init( &ctx->mutex );
506 #endif
507 }
508 
509 /*
510  * Set padding for an existing RSA context
511  */
mbedtls_rsa_set_padding(mbedtls_rsa_context * ctx,int padding,int hash_id)512 void mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding, int hash_id )
513 {
514     ctx->padding = padding;
515     ctx->hash_id = hash_id;
516 }
517 
518 /*
519  * Get length in bytes of RSA modulus
520  */
521 
mbedtls_rsa_get_len(const mbedtls_rsa_context * ctx)522 size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
523 {
524     return( ctx->len );
525 }
526 
527 
528 #if defined(MBEDTLS_GENPRIME)
529 
530 /*
531  * Generate an RSA keypair
532  */
mbedtls_rsa_gen_key(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,unsigned int nbits,int exponent)533 int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
534                  int (*f_rng)(void *, unsigned char *, size_t),
535                  void *p_rng,
536                  unsigned int nbits, int exponent )
537 {
538     int ret;
539     mbedtls_mpi H, G;
540 
541     mbedtls_mpi_init( &H );
542     mbedtls_mpi_init( &G );
543 
544     if( f_rng == NULL || nbits < 128 || exponent < 3 || nbits % 2 != 0 )
545     {
546         ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
547         goto cleanup;
548     }
549 
550     /*
551      * find primes P and Q with Q < P so that:
552      * GCD( E, (P-1)*(Q-1) ) == 1
553      */
554     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
555 
556     do
557     {
558         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1, 0,
559                                                 f_rng, p_rng ) );
560 
561         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1, 0,
562                                                 f_rng, p_rng ) );
563 
564         if( mbedtls_mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
565             continue;
566 
567         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
568         if( mbedtls_mpi_bitlen( &ctx->N ) != nbits )
569             continue;
570 
571         if( mbedtls_mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
572             mbedtls_mpi_swap( &ctx->P, &ctx->Q );
573 
574         /* Temporarily replace P,Q by P-1, Q-1 */
575         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
576         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
577         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
578         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H  ) );
579     }
580     while( mbedtls_mpi_cmp_int( &G, 1 ) != 0 );
581 
582     /* Restore P,Q */
583     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P,  &ctx->P, 1 ) );
584     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q,  &ctx->Q, 1 ) );
585 
586     ctx->len = mbedtls_mpi_size( &ctx->N );
587 
588     /*
589      * D  = E^-1 mod ((P-1)*(Q-1))
590      * DP = D mod (P - 1)
591      * DQ = D mod (Q - 1)
592      * QP = Q^-1 mod P
593      */
594 
595     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &H  ) );
596 
597 #if !defined(MBEDTLS_RSA_NO_CRT)
598     MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
599                                              &ctx->DP, &ctx->DQ, &ctx->QP ) );
600 #endif /* MBEDTLS_RSA_NO_CRT */
601 
602     /* Double-check */
603     MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
604 
605 cleanup:
606 
607     mbedtls_mpi_free( &H );
608     mbedtls_mpi_free( &G );
609 
610     if( ret != 0 )
611     {
612         mbedtls_rsa_free( ctx );
613         if( ( -ret & ~0x7f ) == 0 )
614             ret = MBEDTLS_ERR_RSA_KEY_GEN_FAILED + ret;
615         return( ret );
616     }
617 
618     return( 0 );
619 }
620 
621 #endif /* MBEDTLS_GENPRIME */
622 
623 /*
624  * Check a public RSA key
625  */
mbedtls_rsa_check_pubkey(const mbedtls_rsa_context * ctx)626 int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
627 {
628     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) != 0 )
629         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
630 
631     if( mbedtls_mpi_bitlen( &ctx->N ) < 128 )
632     {
633         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
634     }
635 
636     if( mbedtls_mpi_get_bit( &ctx->E, 0 ) == 0 ||
637         mbedtls_mpi_bitlen( &ctx->E )     < 2  ||
638         mbedtls_mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
639     {
640         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
641     }
642 
643     return( 0 );
644 }
645 
646 /*
647  * Check for the consistency of all fields in an RSA private key context
648  */
mbedtls_rsa_check_privkey(const mbedtls_rsa_context * ctx)649 int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
650 {
651     if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
652         rsa_check_context( ctx, 1 /* private */, 1 /* blinding */ ) != 0 )
653     {
654         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
655     }
656 
657     if( mbedtls_rsa_validate_params( &ctx->N, &ctx->P, &ctx->Q,
658                                      &ctx->D, &ctx->E, NULL, NULL ) != 0 )
659     {
660         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
661     }
662 
663 #if !defined(MBEDTLS_RSA_NO_CRT)
664     else if( mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
665                                        &ctx->DP, &ctx->DQ, &ctx->QP ) != 0 )
666     {
667         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
668     }
669 #endif
670 
671     return( 0 );
672 }
673 
674 /*
675  * Check if contexts holding a public and private key match
676  */
mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context * pub,const mbedtls_rsa_context * prv)677 int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
678                                 const mbedtls_rsa_context *prv )
679 {
680     if( mbedtls_rsa_check_pubkey( pub )  != 0 ||
681         mbedtls_rsa_check_privkey( prv ) != 0 )
682     {
683         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
684     }
685 
686     if( mbedtls_mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
687         mbedtls_mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
688     {
689         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
690     }
691 
692     return( 0 );
693 }
694 
695 /*
696  * Do an RSA public key operation
697  */
mbedtls_rsa_public(mbedtls_rsa_context * ctx,const unsigned char * input,unsigned char * output)698 int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
699                 const unsigned char *input,
700                 unsigned char *output )
701 {
702     int ret;
703     size_t olen;
704     mbedtls_mpi T;
705 
706     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) )
707         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
708 
709     mbedtls_mpi_init( &T );
710 
711 #if defined(MBEDTLS_THREADING_C)
712     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
713         return( ret );
714 #endif
715 
716     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
717 
718     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
719     {
720         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
721         goto cleanup;
722     }
723 
724     olen = ctx->len;
725     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
726     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
727 
728 cleanup:
729 #if defined(MBEDTLS_THREADING_C)
730     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
731         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
732 #endif
733 
734     mbedtls_mpi_free( &T );
735 
736     if( ret != 0 )
737         return( MBEDTLS_ERR_RSA_PUBLIC_FAILED + ret );
738 
739     return( 0 );
740 }
741 
742 /*
743  * Generate or update blinding values, see section 10 of:
744  *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
745  *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
746  *  Berlin Heidelberg, 1996. p. 104-113.
747  */
rsa_prepare_blinding(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)748 static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
749                  int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
750 {
751     int ret, count = 0;
752     mbedtls_mpi R;
753 
754     mbedtls_mpi_init( &R );
755 
756     if( ctx->Vf.p != NULL )
757     {
758         /* We already have blinding values, just update them by squaring */
759         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
760         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
761         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
762         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
763 
764         goto cleanup;
765     }
766 
767     /* Unblinding value: Vf = random number, invertible mod N */
768     do {
769         if( count++ > 10 )
770         {
771             ret = MBEDTLS_ERR_RSA_RNG_FAILED;
772             goto cleanup;
773         }
774 
775         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
776 
777         /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
778         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, ctx->len - 1, f_rng, p_rng ) );
779         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vf, &R ) );
780         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
781 
782         /* At this point, Vi is invertible mod N if and only if both Vf and R
783          * are invertible mod N. If one of them isn't, we don't need to know
784          * which one, we just loop and choose new values for both of them.
785          * (Each iteration succeeds with overwhelming probability.) */
786         ret = mbedtls_mpi_inv_mod( &ctx->Vi, &ctx->Vi, &ctx->N );
787         if( ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
788             goto cleanup;
789 
790     } while( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
791 
792     /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
793     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &R ) );
794     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
795 
796     /* Blinding value: Vi = Vf^(-e) mod N
797      * (Vi already contains Vf^-1 at this point) */
798     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
799 
800 
801 cleanup:
802     mbedtls_mpi_free( &R );
803 
804     return( ret );
805 }
806 
807 /*
808  * Exponent blinding supposed to prevent side-channel attacks using multiple
809  * traces of measurements to recover the RSA key. The more collisions are there,
810  * the more bits of the key can be recovered. See [3].
811  *
812  * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
813  * observations on avarage.
814  *
815  * For example with 28 byte blinding to achieve 2 collisions the adversary has
816  * to make 2^112 observations on avarage.
817  *
818  * (With the currently (as of 2017 April) known best algorithms breaking 2048
819  * bit RSA requires approximately as much time as trying out 2^112 random keys.
820  * Thus in this sense with 28 byte blinding the security is not reduced by
821  * side-channel attacks like the one in [3])
822  *
823  * This countermeasure does not help if the key recovery is possible with a
824  * single trace.
825  */
826 #define RSA_EXPONENT_BLINDING 28
827 
828 /*
829  * Do an RSA private key operation
830  */
mbedtls_rsa_private(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * input,unsigned char * output)831 int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
832                  int (*f_rng)(void *, unsigned char *, size_t),
833                  void *p_rng,
834                  const unsigned char *input,
835                  unsigned char *output )
836 {
837     int ret;
838     size_t olen;
839 
840     /* Temporary holding the result */
841     mbedtls_mpi T;
842 
843     /* Temporaries holding P-1, Q-1 and the
844      * exponent blinding factor, respectively. */
845     mbedtls_mpi P1, Q1, R;
846 
847 #if !defined(MBEDTLS_RSA_NO_CRT)
848     /* Temporaries holding the results mod p resp. mod q. */
849     mbedtls_mpi TP, TQ;
850 
851     /* Temporaries holding the blinded exponents for
852      * the mod p resp. mod q computation (if used). */
853     mbedtls_mpi DP_blind, DQ_blind;
854 
855     /* Pointers to actual exponents to be used - either the unblinded
856      * or the blinded ones, depending on the presence of a PRNG. */
857     mbedtls_mpi *DP = &ctx->DP;
858     mbedtls_mpi *DQ = &ctx->DQ;
859 #else
860     /* Temporary holding the blinded exponent (if used). */
861     mbedtls_mpi D_blind;
862 
863     /* Pointer to actual exponent to be used - either the unblinded
864      * or the blinded one, depending on the presence of a PRNG. */
865     mbedtls_mpi *D = &ctx->D;
866 #endif /* MBEDTLS_RSA_NO_CRT */
867 
868     /* Temporaries holding the initial input and the double
869      * checked result; should be the same in the end. */
870     mbedtls_mpi I, C;
871 
872     if( rsa_check_context( ctx, 1             /* private key checks */,
873                                 f_rng != NULL /* blinding y/n       */ ) != 0 )
874     {
875         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
876     }
877 
878 #if defined(MBEDTLS_THREADING_C)
879     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
880         return( ret );
881 #endif
882 
883     /* MPI Initialization */
884     mbedtls_mpi_init( &T );
885 
886     mbedtls_mpi_init( &P1 );
887     mbedtls_mpi_init( &Q1 );
888     mbedtls_mpi_init( &R );
889 
890     if( f_rng != NULL )
891     {
892 #if defined(MBEDTLS_RSA_NO_CRT)
893         mbedtls_mpi_init( &D_blind );
894 #else
895         mbedtls_mpi_init( &DP_blind );
896         mbedtls_mpi_init( &DQ_blind );
897 #endif
898     }
899 
900 #if !defined(MBEDTLS_RSA_NO_CRT)
901     mbedtls_mpi_init( &TP ); mbedtls_mpi_init( &TQ );
902 #endif
903 
904     mbedtls_mpi_init( &I );
905     mbedtls_mpi_init( &C );
906 
907     /* End of MPI initialization */
908 
909     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
910     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
911     {
912         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
913         goto cleanup;
914     }
915 
916     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) );
917 
918     if( f_rng != NULL )
919     {
920         /*
921          * Blinding
922          * T = T * Vi mod N
923          */
924         MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
925         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
926         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
927 
928         /*
929          * Exponent blinding
930          */
931         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
932         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
933 
934 #if defined(MBEDTLS_RSA_NO_CRT)
935         /*
936          * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
937          */
938         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
939                          f_rng, p_rng ) );
940         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
941         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
942         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
943 
944         D = &D_blind;
945 #else
946         /*
947          * DP_blind = ( P - 1 ) * R + DP
948          */
949         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
950                          f_rng, p_rng ) );
951         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
952         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
953                     &ctx->DP ) );
954 
955         DP = &DP_blind;
956 
957         /*
958          * DQ_blind = ( Q - 1 ) * R + DQ
959          */
960         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
961                          f_rng, p_rng ) );
962         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
963         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
964                     &ctx->DQ ) );
965 
966         DQ = &DQ_blind;
967 #endif /* MBEDTLS_RSA_NO_CRT */
968     }
969 
970 #if defined(MBEDTLS_RSA_NO_CRT)
971     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
972 #else
973     /*
974      * Faster decryption using the CRT
975      *
976      * TP = input ^ dP mod P
977      * TQ = input ^ dQ mod Q
978      */
979 
980     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) );
981     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) );
982 
983     /*
984      * T = (TP - TQ) * (Q^-1 mod P) mod P
985      */
986     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) );
987     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) );
988     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) );
989 
990     /*
991      * T = TQ + T * Q
992      */
993     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) );
994     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) );
995 #endif /* MBEDTLS_RSA_NO_CRT */
996 
997     if( f_rng != NULL )
998     {
999         /*
1000          * Unblind
1001          * T = T * Vf mod N
1002          */
1003         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) );
1004         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
1005     }
1006 
1007     /* Verify the result to prevent glitching attacks. */
1008     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &C, &T, &ctx->E,
1009                                           &ctx->N, &ctx->RN ) );
1010     if( mbedtls_mpi_cmp_mpi( &C, &I ) != 0 )
1011     {
1012         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1013         goto cleanup;
1014     }
1015 
1016     olen = ctx->len;
1017     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
1018 
1019 cleanup:
1020 #if defined(MBEDTLS_THREADING_C)
1021     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
1022         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1023 #endif
1024 
1025     mbedtls_mpi_free( &P1 );
1026     mbedtls_mpi_free( &Q1 );
1027     mbedtls_mpi_free( &R );
1028 
1029     if( f_rng != NULL )
1030     {
1031 #if defined(MBEDTLS_RSA_NO_CRT)
1032         mbedtls_mpi_free( &D_blind );
1033 #else
1034         mbedtls_mpi_free( &DP_blind );
1035         mbedtls_mpi_free( &DQ_blind );
1036 #endif
1037     }
1038 
1039     mbedtls_mpi_free( &T );
1040 
1041 #if !defined(MBEDTLS_RSA_NO_CRT)
1042     mbedtls_mpi_free( &TP ); mbedtls_mpi_free( &TQ );
1043 #endif
1044 
1045     mbedtls_mpi_free( &C );
1046     mbedtls_mpi_free( &I );
1047 
1048     if( ret != 0 )
1049         return( MBEDTLS_ERR_RSA_PRIVATE_FAILED + ret );
1050 
1051     return( 0 );
1052 }
1053 
1054 #if defined(MBEDTLS_PKCS1_V21)
1055 /**
1056  * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1057  *
1058  * \param dst       buffer to mask
1059  * \param dlen      length of destination buffer
1060  * \param src       source of the mask generation
1061  * \param slen      length of the source buffer
1062  * \param md_ctx    message digest context to use
1063  */
mgf_mask(unsigned char * dst,size_t dlen,unsigned char * src,size_t slen,mbedtls_md_context_t * md_ctx)1064 static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
1065                       size_t slen, mbedtls_md_context_t *md_ctx )
1066 {
1067     unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1068     unsigned char counter[4];
1069     unsigned char *p;
1070     unsigned int hlen;
1071     size_t i, use_len;
1072     int ret = 0;
1073 
1074     memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
1075     memset( counter, 0, 4 );
1076 
1077     hlen = mbedtls_md_get_size( md_ctx->md_info );
1078 
1079     /* Generate and apply dbMask */
1080     p = dst;
1081 
1082     while( dlen > 0 )
1083     {
1084         use_len = hlen;
1085         if( dlen < hlen )
1086             use_len = dlen;
1087 
1088         if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 )
1089             goto exit;
1090         if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 )
1091             goto exit;
1092         if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 )
1093             goto exit;
1094         if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 )
1095             goto exit;
1096 
1097         for( i = 0; i < use_len; ++i )
1098             *p++ ^= mask[i];
1099 
1100         counter[3]++;
1101 
1102         dlen -= use_len;
1103     }
1104 
1105 exit:
1106     mbedtls_zeroize( mask, sizeof( mask ) );
1107 
1108     return( ret );
1109 }
1110 #endif /* MBEDTLS_PKCS1_V21 */
1111 
1112 #if defined(MBEDTLS_PKCS1_V21)
1113 /*
1114  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1115  */
mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,const unsigned char * label,size_t label_len,size_t ilen,const unsigned char * input,unsigned char * output)1116 int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
1117                             int (*f_rng)(void *, unsigned char *, size_t),
1118                             void *p_rng,
1119                             int mode,
1120                             const unsigned char *label, size_t label_len,
1121                             size_t ilen,
1122                             const unsigned char *input,
1123                             unsigned char *output )
1124 {
1125     size_t olen;
1126     int ret;
1127     unsigned char *p = output;
1128     unsigned int hlen;
1129     const mbedtls_md_info_t *md_info;
1130     mbedtls_md_context_t md_ctx;
1131 
1132     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1133         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1134 
1135     if( f_rng == NULL )
1136         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1137 
1138     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1139     if( md_info == NULL )
1140         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1141 
1142     olen = ctx->len;
1143     hlen = mbedtls_md_get_size( md_info );
1144 
1145     /* first comparison checks for overflow */
1146     if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
1147         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1148 
1149     memset( output, 0, olen );
1150 
1151     *p++ = 0;
1152 
1153     /* Generate a random octet string seed */
1154     if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
1155         return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1156 
1157     p += hlen;
1158 
1159     /* Construct DB */
1160     if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 )
1161         return( ret );
1162     p += hlen;
1163     p += olen - 2 * hlen - 2 - ilen;
1164     *p++ = 1;
1165     memcpy( p, input, ilen );
1166 
1167     mbedtls_md_init( &md_ctx );
1168     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1169         goto exit;
1170 
1171     /* maskedDB: Apply dbMask to DB */
1172     if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1173                           &md_ctx ) ) != 0 )
1174         goto exit;
1175 
1176     /* maskedSeed: Apply seedMask to seed */
1177     if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1178                           &md_ctx ) ) != 0 )
1179         goto exit;
1180 
1181 exit:
1182     mbedtls_md_free( &md_ctx );
1183 
1184     if( ret != 0 )
1185         return( ret );
1186 
1187     return( ( mode == MBEDTLS_RSA_PUBLIC )
1188             ? mbedtls_rsa_public(  ctx, output, output )
1189             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1190 }
1191 #endif /* MBEDTLS_PKCS1_V21 */
1192 
1193 #if defined(MBEDTLS_PKCS1_V15)
1194 /*
1195  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1196  */
mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t ilen,const unsigned char * input,unsigned char * output)1197 int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
1198                                  int (*f_rng)(void *, unsigned char *, size_t),
1199                                  void *p_rng,
1200                                  int mode, size_t ilen,
1201                                  const unsigned char *input,
1202                                  unsigned char *output )
1203 {
1204     size_t nb_pad, olen;
1205     int ret;
1206     unsigned char *p = output;
1207 
1208     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1209         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1210 
1211     // We don't check p_rng because it won't be dereferenced here
1212     if( f_rng == NULL || input == NULL || output == NULL )
1213         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1214 
1215     olen = ctx->len;
1216 
1217     /* first comparison checks for overflow */
1218     if( ilen + 11 < ilen || olen < ilen + 11 )
1219         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1220 
1221     nb_pad = olen - 3 - ilen;
1222 
1223     *p++ = 0;
1224     if( mode == MBEDTLS_RSA_PUBLIC )
1225     {
1226         *p++ = MBEDTLS_RSA_CRYPT;
1227 
1228         while( nb_pad-- > 0 )
1229         {
1230             int rng_dl = 100;
1231 
1232             do {
1233                 ret = f_rng( p_rng, p, 1 );
1234             } while( *p == 0 && --rng_dl && ret == 0 );
1235 
1236             /* Check if RNG failed to generate data */
1237             if( rng_dl == 0 || ret != 0 )
1238                 return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1239 
1240             p++;
1241         }
1242     }
1243     else
1244     {
1245         *p++ = MBEDTLS_RSA_SIGN;
1246 
1247         while( nb_pad-- > 0 )
1248             *p++ = 0xFF;
1249     }
1250 
1251     *p++ = 0;
1252     memcpy( p, input, ilen );
1253 
1254     return( ( mode == MBEDTLS_RSA_PUBLIC )
1255             ? mbedtls_rsa_public(  ctx, output, output )
1256             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1257 }
1258 #endif /* MBEDTLS_PKCS1_V15 */
1259 
1260 /*
1261  * Add the message padding, then do an RSA operation
1262  */
mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t ilen,const unsigned char * input,unsigned char * output)1263 int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
1264                        int (*f_rng)(void *, unsigned char *, size_t),
1265                        void *p_rng,
1266                        int mode, size_t ilen,
1267                        const unsigned char *input,
1268                        unsigned char *output )
1269 {
1270     switch( ctx->padding )
1271     {
1272 #if defined(MBEDTLS_PKCS1_V15)
1273         case MBEDTLS_RSA_PKCS_V15:
1274             return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
1275                                                 input, output );
1276 #endif
1277 
1278 #if defined(MBEDTLS_PKCS1_V21)
1279         case MBEDTLS_RSA_PKCS_V21:
1280             return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1281                                            ilen, input, output );
1282 #endif
1283 
1284         default:
1285             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1286     }
1287 }
1288 
1289 #if defined(MBEDTLS_PKCS1_V21)
1290 /*
1291  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1292  */
mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,const unsigned char * label,size_t label_len,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1293 int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
1294                             int (*f_rng)(void *, unsigned char *, size_t),
1295                             void *p_rng,
1296                             int mode,
1297                             const unsigned char *label, size_t label_len,
1298                             size_t *olen,
1299                             const unsigned char *input,
1300                             unsigned char *output,
1301                             size_t output_max_len )
1302 {
1303     int ret;
1304     size_t ilen, i, pad_len;
1305     unsigned char *p, bad, pad_done;
1306     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1307     unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1308     unsigned int hlen;
1309     const mbedtls_md_info_t *md_info;
1310     mbedtls_md_context_t md_ctx;
1311 
1312     /*
1313      * Parameters sanity checks
1314      */
1315     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1316         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1317 
1318     ilen = ctx->len;
1319 
1320     if( ilen < 16 || ilen > sizeof( buf ) )
1321         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1322 
1323     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1324     if( md_info == NULL )
1325         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1326 
1327     hlen = mbedtls_md_get_size( md_info );
1328 
1329     // checking for integer underflow
1330     if( 2 * hlen + 2 > ilen )
1331         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1332 
1333     /*
1334      * RSA operation
1335      */
1336     ret = ( mode == MBEDTLS_RSA_PUBLIC )
1337           ? mbedtls_rsa_public(  ctx, input, buf )
1338           : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1339 
1340     if( ret != 0 )
1341         goto cleanup;
1342 
1343     /*
1344      * Unmask data and generate lHash
1345      */
1346     mbedtls_md_init( &md_ctx );
1347     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1348     {
1349         mbedtls_md_free( &md_ctx );
1350         goto cleanup;
1351     }
1352 
1353     /* seed: Apply seedMask to maskedSeed */
1354     if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1355                           &md_ctx ) ) != 0 ||
1356     /* DB: Apply dbMask to maskedDB */
1357         ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1358                           &md_ctx ) ) != 0 )
1359     {
1360         mbedtls_md_free( &md_ctx );
1361         goto cleanup;
1362     }
1363 
1364     mbedtls_md_free( &md_ctx );
1365 
1366     /* Generate lHash */
1367     if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 )
1368         goto cleanup;
1369 
1370     /*
1371      * Check contents, in "constant-time"
1372      */
1373     p = buf;
1374     bad = 0;
1375 
1376     bad |= *p++; /* First byte must be 0 */
1377 
1378     p += hlen; /* Skip seed */
1379 
1380     /* Check lHash */
1381     for( i = 0; i < hlen; i++ )
1382         bad |= lhash[i] ^ *p++;
1383 
1384     /* Get zero-padding len, but always read till end of buffer
1385      * (minus one, for the 01 byte) */
1386     pad_len = 0;
1387     pad_done = 0;
1388     for( i = 0; i < ilen - 2 * hlen - 2; i++ )
1389     {
1390         pad_done |= p[i];
1391         pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1392     }
1393 
1394     p += pad_len;
1395     bad |= *p++ ^ 0x01;
1396 
1397     /*
1398      * The only information "leaked" is whether the padding was correct or not
1399      * (eg, no data is copied if it was not correct). This meets the
1400      * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
1401      * the different error conditions.
1402      */
1403     if( bad != 0 )
1404     {
1405         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
1406         goto cleanup;
1407     }
1408 
1409     if( ilen - ( p - buf ) > output_max_len )
1410     {
1411         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
1412         goto cleanup;
1413     }
1414 
1415     *olen = ilen - (p - buf);
1416     memcpy( output, p, *olen );
1417     ret = 0;
1418 
1419 cleanup:
1420     mbedtls_zeroize( buf, sizeof( buf ) );
1421     mbedtls_zeroize( lhash, sizeof( lhash ) );
1422 
1423     return( ret );
1424 }
1425 #endif /* MBEDTLS_PKCS1_V21 */
1426 
1427 #if defined(MBEDTLS_PKCS1_V15)
1428 /** Turn zero-or-nonzero into zero-or-all-bits-one, without branches.
1429  *
1430  * \param value     The value to analyze.
1431  * \return          Zero if \p value is zero, otherwise all-bits-one.
1432  */
all_or_nothing_int(unsigned value)1433 static unsigned all_or_nothing_int( unsigned value )
1434 {
1435     /* MSVC has a warning about unary minus on unsigned, but this is
1436      * well-defined and precisely what we want to do here */
1437 #if defined(_MSC_VER)
1438 #pragma warning( push )
1439 #pragma warning( disable : 4146 )
1440 #endif
1441     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
1442 #if defined(_MSC_VER)
1443 #pragma warning( pop )
1444 #endif
1445 }
1446 
1447 /** Check whether a size is out of bounds, without branches.
1448  *
1449  * This is equivalent to `size > max`, but is likely to be compiled to
1450  * to code using bitwise operation rather than a branch.
1451  *
1452  * \param size      Size to check.
1453  * \param max       Maximum desired value for \p size.
1454  * \return          \c 0 if `size <= max`.
1455  * \return          \c 1 if `size > max`.
1456  */
size_greater_than(size_t size,size_t max)1457 static unsigned size_greater_than( size_t size, size_t max )
1458 {
1459     /* Return the sign bit (1 for negative) of (max - size). */
1460     return( ( max - size ) >> ( sizeof( size_t ) * 8 - 1 ) );
1461 }
1462 
1463 /** Choose between two integer values, without branches.
1464  *
1465  * This is equivalent to `cond ? if1 : if0`, but is likely to be compiled
1466  * to code using bitwise operation rather than a branch.
1467  *
1468  * \param cond      Condition to test.
1469  * \param if1       Value to use if \p cond is nonzero.
1470  * \param if0       Value to use if \p cond is zero.
1471  * \return          \c if1 if \p cond is nonzero, otherwise \c if0.
1472  */
if_int(unsigned cond,unsigned if1,unsigned if0)1473 static unsigned if_int( unsigned cond, unsigned if1, unsigned if0 )
1474 {
1475     unsigned mask = all_or_nothing_int( cond );
1476     return( ( mask & if1 ) | (~mask & if0 ) );
1477 }
1478 
1479 /** Shift some data towards the left inside a buffer without leaking
1480  * the length of the data through side channels.
1481  *
1482  * `mem_move_to_left(start, total, offset)` is functionally equivalent to
1483  * ```
1484  * memmove(start, start + offset, total - offset);
1485  * memset(start + offset, 0, total - offset);
1486  * ```
1487  * but it strives to use a memory access pattern (and thus total timing)
1488  * that does not depend on \p offset. This timing independence comes at
1489  * the expense of performance.
1490  *
1491  * \param start     Pointer to the start of the buffer.
1492  * \param total     Total size of the buffer.
1493  * \param offset    Offset from which to copy \p total - \p offset bytes.
1494  */
mem_move_to_left(void * start,size_t total,size_t offset)1495 static void mem_move_to_left( void *start,
1496                               size_t total,
1497                               size_t offset )
1498 {
1499     volatile unsigned char *buf = start;
1500     size_t i, n;
1501     if( total == 0 )
1502         return;
1503     for( i = 0; i < total; i++ )
1504     {
1505         unsigned no_op = size_greater_than( total - offset, i );
1506         /* The first `total - offset` passes are a no-op. The last
1507          * `offset` passes shift the data one byte to the left and
1508          * zero out the last byte. */
1509         for( n = 0; n < total - 1; n++ )
1510         {
1511             unsigned char current = buf[n];
1512             unsigned char next = buf[n+1];
1513             buf[n] = if_int( no_op, current, next );
1514         }
1515         buf[total-1] = if_int( no_op, buf[total-1], 0 );
1516     }
1517 }
1518 
1519 /*
1520  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
1521  */
mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1522 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
1523                                  int (*f_rng)(void *, unsigned char *, size_t),
1524                                  void *p_rng,
1525                                  int mode, size_t *olen,
1526                                  const unsigned char *input,
1527                                  unsigned char *output,
1528                                  size_t output_max_len )
1529 {
1530     int ret;
1531     size_t ilen = ctx->len;
1532     size_t i;
1533     size_t plaintext_max_size = ( output_max_len > ilen - 11 ?
1534                                   ilen - 11 :
1535                                   output_max_len );
1536     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1537     /* The following variables take sensitive values: their value must
1538      * not leak into the observable behavior of the function other than
1539      * the designated outputs (output, olen, return value). Otherwise
1540      * this would open the execution of the function to
1541      * side-channel-based variants of the Bleichenbacher padding oracle
1542      * attack. Potential side channels include overall timing, memory
1543      * access patterns (especially visible to an adversary who has access
1544      * to a shared memory cache), and branches (especially visible to
1545      * an adversary who has access to a shared code cache or to a shared
1546      * branch predictor). */
1547     size_t pad_count = 0;
1548     unsigned bad = 0;
1549     unsigned char pad_done = 0;
1550     size_t plaintext_size = 0;
1551     unsigned output_too_large;
1552 
1553     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1554         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1555 
1556     if( ilen < 16 || ilen > sizeof( buf ) )
1557         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1558 
1559     ret = ( mode == MBEDTLS_RSA_PUBLIC )
1560           ? mbedtls_rsa_public(  ctx, input, buf )
1561           : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1562 
1563     if( ret != 0 )
1564         goto cleanup;
1565 
1566     /* Check and get padding length in constant time and constant
1567      * memory trace. The first byte must be 0. */
1568     bad |= buf[0];
1569 
1570     if( mode == MBEDTLS_RSA_PRIVATE )
1571     {
1572         /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
1573          * where PS must be at least 8 nonzero bytes. */
1574         bad |= buf[1] ^ MBEDTLS_RSA_CRYPT;
1575 
1576         /* Read the whole buffer. Set pad_done to nonzero if we find
1577          * the 0x00 byte and remember the padding length in pad_count. */
1578         for( i = 2; i < ilen; i++ )
1579         {
1580             pad_done  |= ((buf[i] | (unsigned char)-buf[i]) >> 7) ^ 1;
1581             pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1582         }
1583     }
1584     else
1585     {
1586         /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
1587          * where PS must be at least 8 bytes with the value 0xFF. */
1588         bad |= buf[1] ^ MBEDTLS_RSA_SIGN;
1589 
1590         /* Read the whole buffer. Set pad_done to nonzero if we find
1591          * the 0x00 byte and remember the padding length in pad_count.
1592          * If there's a non-0xff byte in the padding, the padding is bad. */
1593         for( i = 2; i < ilen; i++ )
1594         {
1595             pad_done |= if_int( buf[i], 0, 1 );
1596             pad_count += if_int( pad_done, 0, 1 );
1597             bad |= if_int( pad_done, 0, buf[i] ^ 0xFF );
1598         }
1599     }
1600 
1601     /* If pad_done is still zero, there's no data, only unfinished padding. */
1602     bad |= if_int( pad_done, 0, 1 );
1603 
1604     /* There must be at least 8 bytes of padding. */
1605     bad |= size_greater_than( 8, pad_count );
1606 
1607     /* If the padding is valid, set plaintext_size to the number of
1608      * remaining bytes after stripping the padding. If the padding
1609      * is invalid, avoid leaking this fact through the size of the
1610      * output: use the maximum message size that fits in the output
1611      * buffer. Do it without branches to avoid leaking the padding
1612      * validity through timing. RSA keys are small enough that all the
1613      * size_t values involved fit in unsigned int. */
1614     plaintext_size = if_int( bad,
1615                              (unsigned) plaintext_max_size,
1616                              (unsigned) ( ilen - pad_count - 3 ) );
1617 
1618     /* Set output_too_large to 0 if the plaintext fits in the output
1619      * buffer and to 1 otherwise. */
1620     output_too_large = size_greater_than( plaintext_size,
1621                                           plaintext_max_size );
1622 
1623     /* Set ret without branches to avoid timing attacks. Return:
1624      * - INVALID_PADDING if the padding is bad (bad != 0).
1625      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
1626      *   plaintext does not fit in the output buffer.
1627      * - 0 if the padding is correct. */
1628     ret = - (int) if_int( bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
1629                   if_int( output_too_large, - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
1630                           0 ) );
1631 
1632     /* If the padding is bad or the plaintext is too large, zero the
1633      * data that we're about to copy to the output buffer.
1634      * We need to copy the same amount of data
1635      * from the same buffer whether the padding is good or not to
1636      * avoid leaking the padding validity through overall timing or
1637      * through memory or cache access patterns. */
1638     bad = all_or_nothing_int( bad | output_too_large );
1639     for( i = 11; i < ilen; i++ )
1640         buf[i] &= ~bad;
1641 
1642     /* If the plaintext is too large, truncate it to the buffer size.
1643      * Copy anyway to avoid revealing the length through timing, because
1644      * revealing the length is as bad as revealing the padding validity
1645      * for a Bleichenbacher attack. */
1646     plaintext_size = if_int( output_too_large,
1647                              (unsigned) plaintext_max_size,
1648                              (unsigned) plaintext_size );
1649 
1650     /* Move the plaintext to the leftmost position where it can start in
1651      * the working buffer, i.e. make it start plaintext_max_size from
1652      * the end of the buffer. Do this with a memory access trace that
1653      * does not depend on the plaintext size. After this move, the
1654      * starting location of the plaintext is no longer sensitive
1655      * information. */
1656     mem_move_to_left( buf + ilen - plaintext_max_size,
1657                       plaintext_max_size,
1658                       plaintext_max_size - plaintext_size );
1659 
1660     /* Finally copy the decrypted plaintext plus trailing zeros
1661      * into the output buffer. */
1662     memcpy( output, buf + ilen - plaintext_max_size, plaintext_max_size );
1663 
1664     /* Report the amount of data we copied to the output buffer. In case
1665      * of errors (bad padding or output too large), the value of *olen
1666      * when this function returns is not specified. Making it equivalent
1667      * to the good case limits the risks of leaking the padding validity. */
1668     *olen = plaintext_size;
1669 
1670 cleanup:
1671     mbedtls_zeroize( buf, sizeof( buf ) );
1672 
1673     return( ret );
1674 }
1675 #endif /* MBEDTLS_PKCS1_V15 */
1676 
1677 /*
1678  * Do an RSA operation, then remove the message padding
1679  */
mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1680 int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
1681                        int (*f_rng)(void *, unsigned char *, size_t),
1682                        void *p_rng,
1683                        int mode, size_t *olen,
1684                        const unsigned char *input,
1685                        unsigned char *output,
1686                        size_t output_max_len)
1687 {
1688     switch( ctx->padding )
1689     {
1690 #if defined(MBEDTLS_PKCS1_V15)
1691         case MBEDTLS_RSA_PKCS_V15:
1692             return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
1693                                                 input, output, output_max_len );
1694 #endif
1695 
1696 #if defined(MBEDTLS_PKCS1_V21)
1697         case MBEDTLS_RSA_PKCS_V21:
1698             return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1699                                            olen, input, output,
1700                                            output_max_len );
1701 #endif
1702 
1703         default:
1704             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1705     }
1706 }
1707 
1708 #if defined(MBEDTLS_PKCS1_V21)
1709 /*
1710  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
1711  */
mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1712 int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1713                          int (*f_rng)(void *, unsigned char *, size_t),
1714                          void *p_rng,
1715                          int mode,
1716                          mbedtls_md_type_t md_alg,
1717                          unsigned int hashlen,
1718                          const unsigned char *hash,
1719                          unsigned char *sig )
1720 {
1721     size_t olen;
1722     unsigned char *p = sig;
1723     unsigned char salt[MBEDTLS_MD_MAX_SIZE];
1724     unsigned int slen, hlen, offset = 0;
1725     int ret;
1726     size_t msb;
1727     const mbedtls_md_info_t *md_info;
1728     mbedtls_md_context_t md_ctx;
1729 
1730     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1731         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1732 
1733     if( f_rng == NULL )
1734         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1735 
1736     olen = ctx->len;
1737 
1738     if( md_alg != MBEDTLS_MD_NONE )
1739     {
1740         /* Gather length of hash to sign */
1741         md_info = mbedtls_md_info_from_type( md_alg );
1742         if( md_info == NULL )
1743             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1744 
1745         hashlen = mbedtls_md_get_size( md_info );
1746     }
1747 
1748     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1749     if( md_info == NULL )
1750         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1751 
1752     hlen = mbedtls_md_get_size( md_info );
1753     slen = hlen;
1754 
1755     if( olen < hlen + slen + 2 )
1756         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1757 
1758     memset( sig, 0, olen );
1759 
1760     /* Generate salt of length slen */
1761     if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
1762         return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1763 
1764     /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
1765     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1766     p += olen - hlen * 2 - 2;
1767     *p++ = 0x01;
1768     memcpy( p, salt, slen );
1769     p += slen;
1770 
1771     mbedtls_md_init( &md_ctx );
1772     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1773         goto exit;
1774 
1775     /* Generate H = Hash( M' ) */
1776     if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 )
1777         goto exit;
1778     if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 )
1779         goto exit;
1780     if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 )
1781         goto exit;
1782     if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 )
1783         goto exit;
1784     if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 )
1785         goto exit;
1786 
1787     /* Compensate for boundary condition when applying mask */
1788     if( msb % 8 == 0 )
1789         offset = 1;
1790 
1791     /* maskedDB: Apply dbMask to DB */
1792     if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen,
1793                           &md_ctx ) ) != 0 )
1794         goto exit;
1795 
1796     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1797     sig[0] &= 0xFF >> ( olen * 8 - msb );
1798 
1799     p += hlen;
1800     *p++ = 0xBC;
1801 
1802     mbedtls_zeroize( salt, sizeof( salt ) );
1803 
1804 exit:
1805     mbedtls_md_free( &md_ctx );
1806 
1807     if( ret != 0 )
1808         return( ret );
1809 
1810     return( ( mode == MBEDTLS_RSA_PUBLIC )
1811             ? mbedtls_rsa_public(  ctx, sig, sig )
1812             : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ) );
1813 }
1814 #endif /* MBEDTLS_PKCS1_V21 */
1815 
1816 #if defined(MBEDTLS_PKCS1_V15)
1817 /*
1818  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
1819  */
1820 
1821 /* Construct a PKCS v1.5 encoding of a hashed message
1822  *
1823  * This is used both for signature generation and verification.
1824  *
1825  * Parameters:
1826  * - md_alg:  Identifies the hash algorithm used to generate the given hash;
1827  *            MBEDTLS_MD_NONE if raw data is signed.
1828  * - hashlen: Length of hash in case hashlen is MBEDTLS_MD_NONE.
1829  * - hash:    Buffer containing the hashed message or the raw data.
1830  * - dst_len: Length of the encoded message.
1831  * - dst:     Buffer to hold the encoded message.
1832  *
1833  * Assumptions:
1834  * - hash has size hashlen if md_alg == MBEDTLS_MD_NONE.
1835  * - hash has size corresponding to md_alg if md_alg != MBEDTLS_MD_NONE.
1836  * - dst points to a buffer of size at least dst_len.
1837  *
1838  */
rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,size_t dst_len,unsigned char * dst)1839 static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg,
1840                                         unsigned int hashlen,
1841                                         const unsigned char *hash,
1842                                         size_t dst_len,
1843                                         unsigned char *dst )
1844 {
1845     size_t oid_size  = 0;
1846     size_t nb_pad    = dst_len;
1847     unsigned char *p = dst;
1848     const char *oid  = NULL;
1849 
1850     /* Are we signing hashed or raw data? */
1851     if( md_alg != MBEDTLS_MD_NONE )
1852     {
1853         const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
1854         if( md_info == NULL )
1855             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1856 
1857         if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
1858             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1859 
1860         hashlen = mbedtls_md_get_size( md_info );
1861 
1862         /* Double-check that 8 + hashlen + oid_size can be used as a
1863          * 1-byte ASN.1 length encoding and that there's no overflow. */
1864         if( 8 + hashlen + oid_size  >= 0x80         ||
1865             10 + hashlen            <  hashlen      ||
1866             10 + hashlen + oid_size <  10 + hashlen )
1867             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1868 
1869         /*
1870          * Static bounds check:
1871          * - Need 10 bytes for five tag-length pairs.
1872          *   (Insist on 1-byte length encodings to protect against variants of
1873          *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
1874          * - Need hashlen bytes for hash
1875          * - Need oid_size bytes for hash alg OID.
1876          */
1877         if( nb_pad < 10 + hashlen + oid_size )
1878             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1879         nb_pad -= 10 + hashlen + oid_size;
1880     }
1881     else
1882     {
1883         if( nb_pad < hashlen )
1884             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1885 
1886         nb_pad -= hashlen;
1887     }
1888 
1889     /* Need space for signature header and padding delimiter (3 bytes),
1890      * and 8 bytes for the minimal padding */
1891     if( nb_pad < 3 + 8 )
1892         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1893     nb_pad -= 3;
1894 
1895     /* Now nb_pad is the amount of memory to be filled
1896      * with padding, and at least 8 bytes long. */
1897 
1898     /* Write signature header and padding */
1899     *p++ = 0;
1900     *p++ = MBEDTLS_RSA_SIGN;
1901     memset( p, 0xFF, nb_pad );
1902     p += nb_pad;
1903     *p++ = 0;
1904 
1905     /* Are we signing raw data? */
1906     if( md_alg == MBEDTLS_MD_NONE )
1907     {
1908         memcpy( p, hash, hashlen );
1909         return( 0 );
1910     }
1911 
1912     /* Signing hashed data, add corresponding ASN.1 structure
1913      *
1914      * DigestInfo ::= SEQUENCE {
1915      *   digestAlgorithm DigestAlgorithmIdentifier,
1916      *   digest Digest }
1917      * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
1918      * Digest ::= OCTET STRING
1919      *
1920      * Schematic:
1921      * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
1922      *                                 TAG-NULL + LEN [ NULL ] ]
1923      *                 TAG-OCTET + LEN [ HASH ] ]
1924      */
1925     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1926     *p++ = (unsigned char)( 0x08 + oid_size + hashlen );
1927     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1928     *p++ = (unsigned char)( 0x04 + oid_size );
1929     *p++ = MBEDTLS_ASN1_OID;
1930     *p++ = (unsigned char) oid_size;
1931     memcpy( p, oid, oid_size );
1932     p += oid_size;
1933     *p++ = MBEDTLS_ASN1_NULL;
1934     *p++ = 0x00;
1935     *p++ = MBEDTLS_ASN1_OCTET_STRING;
1936     *p++ = (unsigned char) hashlen;
1937     memcpy( p, hash, hashlen );
1938     p += hashlen;
1939 
1940     /* Just a sanity-check, should be automatic
1941      * after the initial bounds check. */
1942     if( p != dst + dst_len )
1943     {
1944         mbedtls_zeroize( dst, dst_len );
1945         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1946     }
1947 
1948     return( 0 );
1949 }
1950 
1951 /*
1952  * Do an RSA operation to sign the message digest
1953  */
mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1954 int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
1955                                int (*f_rng)(void *, unsigned char *, size_t),
1956                                void *p_rng,
1957                                int mode,
1958                                mbedtls_md_type_t md_alg,
1959                                unsigned int hashlen,
1960                                const unsigned char *hash,
1961                                unsigned char *sig )
1962 {
1963     int ret;
1964     unsigned char *sig_try = NULL, *verif = NULL;
1965 
1966     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1967         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1968 
1969     /*
1970      * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
1971      */
1972 
1973     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash,
1974                                              ctx->len, sig ) ) != 0 )
1975         return( ret );
1976 
1977     /*
1978      * Call respective RSA primitive
1979      */
1980 
1981     if( mode == MBEDTLS_RSA_PUBLIC )
1982     {
1983         /* Skip verification on a public key operation */
1984         return( mbedtls_rsa_public( ctx, sig, sig ) );
1985     }
1986 
1987     /* Private key operation
1988      *
1989      * In order to prevent Lenstra's attack, make the signature in a
1990      * temporary buffer and check it before returning it.
1991      */
1992 
1993     sig_try = mbedtls_calloc( 1, ctx->len );
1994     if( sig_try == NULL )
1995         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1996 
1997     verif = mbedtls_calloc( 1, ctx->len );
1998     if( verif == NULL )
1999     {
2000         mbedtls_free( sig_try );
2001         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
2002     }
2003 
2004     MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
2005     MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
2006 
2007     if( mbedtls_safer_memcmp( verif, sig, ctx->len ) != 0 )
2008     {
2009         ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
2010         goto cleanup;
2011     }
2012 
2013     memcpy( sig, sig_try, ctx->len );
2014 
2015 cleanup:
2016     mbedtls_free( sig_try );
2017     mbedtls_free( verif );
2018 
2019     return( ret );
2020 }
2021 #endif /* MBEDTLS_PKCS1_V15 */
2022 
2023 /*
2024  * Do an RSA operation to sign the message digest
2025  */
mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2026 int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
2027                     int (*f_rng)(void *, unsigned char *, size_t),
2028                     void *p_rng,
2029                     int mode,
2030                     mbedtls_md_type_t md_alg,
2031                     unsigned int hashlen,
2032                     const unsigned char *hash,
2033                     unsigned char *sig )
2034 {
2035     switch( ctx->padding )
2036     {
2037 #if defined(MBEDTLS_PKCS1_V15)
2038         case MBEDTLS_RSA_PKCS_V15:
2039             return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg,
2040                                               hashlen, hash, sig );
2041 #endif
2042 
2043 #if defined(MBEDTLS_PKCS1_V21)
2044         case MBEDTLS_RSA_PKCS_V21:
2045             return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
2046                                         hashlen, hash, sig );
2047 #endif
2048 
2049         default:
2050             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2051     }
2052 }
2053 
2054 #if defined(MBEDTLS_PKCS1_V21)
2055 /*
2056  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2057  */
mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,mbedtls_md_type_t mgf1_hash_id,int expected_salt_len,const unsigned char * sig)2058 int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
2059                                int (*f_rng)(void *, unsigned char *, size_t),
2060                                void *p_rng,
2061                                int mode,
2062                                mbedtls_md_type_t md_alg,
2063                                unsigned int hashlen,
2064                                const unsigned char *hash,
2065                                mbedtls_md_type_t mgf1_hash_id,
2066                                int expected_salt_len,
2067                                const unsigned char *sig )
2068 {
2069     int ret;
2070     size_t siglen;
2071     unsigned char *p;
2072     unsigned char *hash_start;
2073     unsigned char result[MBEDTLS_MD_MAX_SIZE];
2074     unsigned char zeros[8];
2075     unsigned int hlen;
2076     size_t observed_salt_len, msb;
2077     const mbedtls_md_info_t *md_info;
2078     mbedtls_md_context_t md_ctx;
2079     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
2080 
2081     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
2082         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2083 
2084     siglen = ctx->len;
2085 
2086     if( siglen < 16 || siglen > sizeof( buf ) )
2087         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2088 
2089     ret = ( mode == MBEDTLS_RSA_PUBLIC )
2090           ? mbedtls_rsa_public(  ctx, sig, buf )
2091           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );
2092 
2093     if( ret != 0 )
2094         return( ret );
2095 
2096     p = buf;
2097 
2098     if( buf[siglen - 1] != 0xBC )
2099         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2100 
2101     if( md_alg != MBEDTLS_MD_NONE )
2102     {
2103         /* Gather length of hash to sign */
2104         md_info = mbedtls_md_info_from_type( md_alg );
2105         if( md_info == NULL )
2106             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2107 
2108         hashlen = mbedtls_md_get_size( md_info );
2109     }
2110 
2111     md_info = mbedtls_md_info_from_type( mgf1_hash_id );
2112     if( md_info == NULL )
2113         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2114 
2115     hlen = mbedtls_md_get_size( md_info );
2116 
2117     memset( zeros, 0, 8 );
2118 
2119     /*
2120      * Note: EMSA-PSS verification is over the length of N - 1 bits
2121      */
2122     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
2123 
2124     if( buf[0] >> ( 8 - siglen * 8 + msb ) )
2125         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2126 
2127     /* Compensate for boundary condition when applying mask */
2128     if( msb % 8 == 0 )
2129     {
2130         p++;
2131         siglen -= 1;
2132     }
2133 
2134     if( siglen < hlen + 2 )
2135         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2136     hash_start = p + siglen - hlen - 1;
2137 
2138     mbedtls_md_init( &md_ctx );
2139     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2140         goto exit;
2141 
2142     ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx );
2143     if( ret != 0 )
2144         goto exit;
2145 
2146     buf[0] &= 0xFF >> ( siglen * 8 - msb );
2147 
2148     while( p < hash_start - 1 && *p == 0 )
2149         p++;
2150 
2151     if( *p++ != 0x01 )
2152     {
2153         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2154         goto exit;
2155     }
2156 
2157     observed_salt_len = hash_start - p;
2158 
2159     if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2160         observed_salt_len != (size_t) expected_salt_len )
2161     {
2162         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2163         goto exit;
2164     }
2165 
2166     /*
2167      * Generate H = Hash( M' )
2168      */
2169     ret = mbedtls_md_starts( &md_ctx );
2170     if ( ret != 0 )
2171         goto exit;
2172     ret = mbedtls_md_update( &md_ctx, zeros, 8 );
2173     if ( ret != 0 )
2174         goto exit;
2175     ret = mbedtls_md_update( &md_ctx, hash, hashlen );
2176     if ( ret != 0 )
2177         goto exit;
2178     ret = mbedtls_md_update( &md_ctx, p, observed_salt_len );
2179     if ( ret != 0 )
2180         goto exit;
2181     ret = mbedtls_md_finish( &md_ctx, result );
2182     if ( ret != 0 )
2183         goto exit;
2184 
2185     if( memcmp( hash_start, result, hlen ) != 0 )
2186     {
2187         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2188         goto exit;
2189     }
2190 
2191 exit:
2192     mbedtls_md_free( &md_ctx );
2193 
2194     return( ret );
2195 }
2196 
2197 /*
2198  * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2199  */
mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2200 int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
2201                            int (*f_rng)(void *, unsigned char *, size_t),
2202                            void *p_rng,
2203                            int mode,
2204                            mbedtls_md_type_t md_alg,
2205                            unsigned int hashlen,
2206                            const unsigned char *hash,
2207                            const unsigned char *sig )
2208 {
2209     mbedtls_md_type_t mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
2210                              ? (mbedtls_md_type_t) ctx->hash_id
2211                              : md_alg;
2212 
2213     return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, f_rng, p_rng, mode,
2214                                        md_alg, hashlen, hash,
2215                                        mgf1_hash_id, MBEDTLS_RSA_SALT_LEN_ANY,
2216                                        sig ) );
2217 
2218 }
2219 #endif /* MBEDTLS_PKCS1_V21 */
2220 
2221 #if defined(MBEDTLS_PKCS1_V15)
2222 /*
2223  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2224  */
mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2225 int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
2226                                  int (*f_rng)(void *, unsigned char *, size_t),
2227                                  void *p_rng,
2228                                  int mode,
2229                                  mbedtls_md_type_t md_alg,
2230                                  unsigned int hashlen,
2231                                  const unsigned char *hash,
2232                                  const unsigned char *sig )
2233 {
2234     int ret = 0;
2235     const size_t sig_len = ctx->len;
2236     unsigned char *encoded = NULL, *encoded_expected = NULL;
2237 
2238     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
2239         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2240 
2241     /*
2242      * Prepare expected PKCS1 v1.5 encoding of hash.
2243      */
2244 
2245     if( ( encoded          = mbedtls_calloc( 1, sig_len ) ) == NULL ||
2246         ( encoded_expected = mbedtls_calloc( 1, sig_len ) ) == NULL )
2247     {
2248         ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2249         goto cleanup;
2250     }
2251 
2252     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, sig_len,
2253                                              encoded_expected ) ) != 0 )
2254         goto cleanup;
2255 
2256     /*
2257      * Apply RSA primitive to get what should be PKCS1 encoded hash.
2258      */
2259 
2260     ret = ( mode == MBEDTLS_RSA_PUBLIC )
2261           ? mbedtls_rsa_public(  ctx, sig, encoded )
2262           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, encoded );
2263     if( ret != 0 )
2264         goto cleanup;
2265 
2266     /*
2267      * Compare
2268      */
2269 
2270     if( ( ret = mbedtls_safer_memcmp( encoded, encoded_expected,
2271                                       sig_len ) ) != 0 )
2272     {
2273         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2274         goto cleanup;
2275     }
2276 
2277 cleanup:
2278 
2279     if( encoded != NULL )
2280     {
2281         mbedtls_zeroize( encoded, sig_len );
2282         mbedtls_free( encoded );
2283     }
2284 
2285     if( encoded_expected != NULL )
2286     {
2287         mbedtls_zeroize( encoded_expected, sig_len );
2288         mbedtls_free( encoded_expected );
2289     }
2290 
2291     return( ret );
2292 }
2293 #endif /* MBEDTLS_PKCS1_V15 */
2294 
2295 /*
2296  * Do an RSA operation and check the message digest
2297  */
mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2298 int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
2299                       int (*f_rng)(void *, unsigned char *, size_t),
2300                       void *p_rng,
2301                       int mode,
2302                       mbedtls_md_type_t md_alg,
2303                       unsigned int hashlen,
2304                       const unsigned char *hash,
2305                       const unsigned char *sig )
2306 {
2307     switch( ctx->padding )
2308     {
2309 #if defined(MBEDTLS_PKCS1_V15)
2310         case MBEDTLS_RSA_PKCS_V15:
2311             return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg,
2312                                                 hashlen, hash, sig );
2313 #endif
2314 
2315 #if defined(MBEDTLS_PKCS1_V21)
2316         case MBEDTLS_RSA_PKCS_V21:
2317             return mbedtls_rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg,
2318                                           hashlen, hash, sig );
2319 #endif
2320 
2321         default:
2322             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2323     }
2324 }
2325 
2326 /*
2327  * Copy the components of an RSA key
2328  */
mbedtls_rsa_copy(mbedtls_rsa_context * dst,const mbedtls_rsa_context * src)2329 int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
2330 {
2331     int ret;
2332 
2333     dst->len = src->len;
2334 
2335     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
2336     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
2337 
2338     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
2339     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
2340     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
2341 
2342 #if !defined(MBEDTLS_RSA_NO_CRT)
2343     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
2344     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
2345     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
2346     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
2347     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
2348 #endif
2349 
2350     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
2351 
2352     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
2353     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
2354 
2355     dst->padding = src->padding;
2356     dst->hash_id = src->hash_id;
2357 
2358 cleanup:
2359     if( ret != 0 )
2360         mbedtls_rsa_free( dst );
2361 
2362     return( ret );
2363 }
2364 
2365 /*
2366  * Free the components of an RSA key
2367  */
mbedtls_rsa_free(mbedtls_rsa_context * ctx)2368 void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
2369 {
2370     mbedtls_mpi_free( &ctx->Vi ); mbedtls_mpi_free( &ctx->Vf );
2371     mbedtls_mpi_free( &ctx->RN ); mbedtls_mpi_free( &ctx->D  );
2372     mbedtls_mpi_free( &ctx->Q  ); mbedtls_mpi_free( &ctx->P  );
2373     mbedtls_mpi_free( &ctx->E  ); mbedtls_mpi_free( &ctx->N  );
2374 
2375 #if !defined(MBEDTLS_RSA_NO_CRT)
2376     mbedtls_mpi_free( &ctx->RQ ); mbedtls_mpi_free( &ctx->RP );
2377     mbedtls_mpi_free( &ctx->QP ); mbedtls_mpi_free( &ctx->DQ );
2378     mbedtls_mpi_free( &ctx->DP );
2379 #endif /* MBEDTLS_RSA_NO_CRT */
2380 
2381 #if defined(MBEDTLS_THREADING_C)
2382     /* Free the mutex, but only if it hasn't been freed already. */
2383     if( ctx->ver != 0 )
2384     {
2385         mbedtls_mutex_free( &ctx->mutex );
2386         ctx->ver = 0;
2387     }
2388 #endif
2389 }
2390 
2391 #endif /* !MBEDTLS_RSA_ALT */
2392 
2393 #if defined(MBEDTLS_SELF_TEST)
2394 
2395 #include "mbedtls/sha1.h"
2396 
2397 /*
2398  * Example RSA-1024 keypair, for test purposes
2399  */
2400 #define KEY_LEN 128
2401 
2402 #define RSA_N   "9292758453063D803DD603D5E777D788" \
2403                 "8ED1D5BF35786190FA2F23EBC0848AEA" \
2404                 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2405                 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2406                 "93A89813FBF3C4F8066D2D800F7C38A8" \
2407                 "1AE31942917403FF4946B0A83D3D3E05" \
2408                 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2409                 "5E94BB77B07507233A0BC7BAC8F90F79"
2410 
2411 #define RSA_E   "10001"
2412 
2413 #define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
2414                 "66CA472BC44D253102F8B4A9D3BFA750" \
2415                 "91386C0077937FE33FA3252D28855837" \
2416                 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2417                 "DF79C5CE07EE72C7F123142198164234" \
2418                 "CABB724CF78B8173B9F880FC86322407" \
2419                 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2420                 "071513A1E85B5DFA031F21ECAE91A34D"
2421 
2422 #define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2423                 "2C01CAD19EA484A87EA4377637E75500" \
2424                 "FCB2005C5C7DD6EC4AC023CDA285D796" \
2425                 "C3D9E75E1EFC42488BB4F1D13AC30A57"
2426 
2427 #define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
2428                 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2429                 "910E4168387E3C30AA1E00C339A79508" \
2430                 "8452DD96A9A5EA5D9DCA68DA636032AF"
2431 
2432 #define PT_LEN  24
2433 #define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2434                 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2435 
2436 #if defined(MBEDTLS_PKCS1_V15)
myrand(void * rng_state,unsigned char * output,size_t len)2437 static int myrand( void *rng_state, unsigned char *output, size_t len )
2438 {
2439 #if !defined(__OpenBSD__) && !defined(__NetBSD__)
2440     size_t i;
2441 
2442     if( rng_state != NULL )
2443         rng_state  = NULL;
2444 
2445     for( i = 0; i < len; ++i )
2446         output[i] = rand();
2447 #else
2448     if( rng_state != NULL )
2449         rng_state = NULL;
2450 
2451     arc4random_buf( output, len );
2452 #endif /* !OpenBSD && !NetBSD */
2453 
2454     return( 0 );
2455 }
2456 #endif /* MBEDTLS_PKCS1_V15 */
2457 
2458 /*
2459  * Checkup routine
2460  */
mbedtls_rsa_self_test(int verbose)2461 int mbedtls_rsa_self_test( int verbose )
2462 {
2463     int ret = 0;
2464 #if defined(MBEDTLS_PKCS1_V15)
2465     size_t len;
2466     mbedtls_rsa_context rsa;
2467     unsigned char rsa_plaintext[PT_LEN];
2468     unsigned char rsa_decrypted[PT_LEN];
2469     unsigned char rsa_ciphertext[KEY_LEN];
2470 #if defined(MBEDTLS_SHA1_C)
2471     unsigned char sha1sum[20];
2472 #endif
2473 
2474     mbedtls_mpi K;
2475 
2476     mbedtls_mpi_init( &K );
2477     mbedtls_rsa_init( &rsa, MBEDTLS_RSA_PKCS_V15, 0 );
2478 
2479     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N  ) );
2480     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
2481     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P  ) );
2482     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
2483     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q  ) );
2484     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
2485     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D  ) );
2486     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
2487     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E  ) );
2488     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
2489 
2490     MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) );
2491 
2492     if( verbose != 0 )
2493         mbedtls_printf( "  RSA key validation: " );
2494 
2495     if( mbedtls_rsa_check_pubkey(  &rsa ) != 0 ||
2496         mbedtls_rsa_check_privkey( &rsa ) != 0 )
2497     {
2498         if( verbose != 0 )
2499             mbedtls_printf( "failed\n" );
2500 
2501         ret = 1;
2502         goto cleanup;
2503     }
2504 
2505     if( verbose != 0 )
2506         mbedtls_printf( "passed\n  PKCS#1 encryption : " );
2507 
2508     memcpy( rsa_plaintext, RSA_PT, PT_LEN );
2509 
2510     if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PUBLIC,
2511                                    PT_LEN, rsa_plaintext,
2512                                    rsa_ciphertext ) != 0 )
2513     {
2514         if( verbose != 0 )
2515             mbedtls_printf( "failed\n" );
2516 
2517         ret = 1;
2518         goto cleanup;
2519     }
2520 
2521     if( verbose != 0 )
2522         mbedtls_printf( "passed\n  PKCS#1 decryption : " );
2523 
2524     if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PRIVATE,
2525                                    &len, rsa_ciphertext, rsa_decrypted,
2526                                    sizeof(rsa_decrypted) ) != 0 )
2527     {
2528         if( verbose != 0 )
2529             mbedtls_printf( "failed\n" );
2530 
2531         ret = 1;
2532         goto cleanup;
2533     }
2534 
2535     if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
2536     {
2537         if( verbose != 0 )
2538             mbedtls_printf( "failed\n" );
2539 
2540         ret = 1;
2541         goto cleanup;
2542     }
2543 
2544     if( verbose != 0 )
2545         mbedtls_printf( "passed\n" );
2546 
2547 #if defined(MBEDTLS_SHA1_C)
2548     if( verbose != 0 )
2549         mbedtls_printf( "  PKCS#1 data sign  : " );
2550 
2551     if( mbedtls_sha1_ret( rsa_plaintext, PT_LEN, sha1sum ) != 0 )
2552     {
2553         if( verbose != 0 )
2554             mbedtls_printf( "failed\n" );
2555 
2556         return( 1 );
2557     }
2558 
2559     if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL,
2560                                 MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1, 0,
2561                                 sha1sum, rsa_ciphertext ) != 0 )
2562     {
2563         if( verbose != 0 )
2564             mbedtls_printf( "failed\n" );
2565 
2566         ret = 1;
2567         goto cleanup;
2568     }
2569 
2570     if( verbose != 0 )
2571         mbedtls_printf( "passed\n  PKCS#1 sig. verify: " );
2572 
2573     if( mbedtls_rsa_pkcs1_verify( &rsa, NULL, NULL,
2574                                   MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1, 0,
2575                                   sha1sum, rsa_ciphertext ) != 0 )
2576     {
2577         if( verbose != 0 )
2578             mbedtls_printf( "failed\n" );
2579 
2580         ret = 1;
2581         goto cleanup;
2582     }
2583 
2584     if( verbose != 0 )
2585         mbedtls_printf( "passed\n" );
2586 #endif /* MBEDTLS_SHA1_C */
2587 
2588     if( verbose != 0 )
2589         mbedtls_printf( "\n" );
2590 
2591 cleanup:
2592     mbedtls_mpi_free( &K );
2593     mbedtls_rsa_free( &rsa );
2594 #else /* MBEDTLS_PKCS1_V15 */
2595     ((void) verbose);
2596 #endif /* MBEDTLS_PKCS1_V15 */
2597     return( ret );
2598 }
2599 
2600 #endif /* MBEDTLS_SELF_TEST */
2601 
2602 #endif /* MBEDTLS_RSA_C */
2603