1 /*
2 ** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3 ** Copyright (C) [dates of first publication] Silicon Graphics, Inc.
4 ** All Rights Reserved.
5 **
6 ** Permission is hereby granted, free of charge, to any person obtaining a copy
7 ** of this software and associated documentation files (the "Software"), to deal
8 ** in the Software without restriction, including without limitation the rights
9 ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
10 ** of the Software, and to permit persons to whom the Software is furnished to do so,
11 ** subject to the following conditions:
12 **
13 ** The above copyright notice including the dates of first publication and either this
14 ** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be
15 ** included in all copies or substantial portions of the Software.
16 **
17 ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
18 ** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
19 ** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC.
20 ** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
21 ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
22 ** OR OTHER DEALINGS IN THE SOFTWARE.
23 **
24 ** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not
25 ** be used in advertising or otherwise to promote the sale, use or other dealings in
26 ** this Software without prior written authorization from Silicon Graphics, Inc.
27 */
28 /*
29 ** Author: Eric Veach, July 1994.
30 */
31
32 #include <assert.h>
33 #include <stddef.h>
34 #include <setjmp.h> /* longjmp */
35
36 #include "mesh.h"
37 #include "geom.h"
38 #include "tess.h"
39 #include "dict.h"
40 #include "priorityq.h"
41 #include "bucketalloc.h"
42 #include "sweep.h"
43
44 #define TRUE 1
45 #define FALSE 0
46
47 #ifdef FOR_TRITE_TEST_PROGRAM
48 extern void DebugEvent( TESStesselator *tess );
49 #else
50 #define DebugEvent( tess )
51 #endif
52
53 /*
54 * Invariants for the Edge Dictionary.
55 * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
56 * at any valid location of the sweep event
57 * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
58 * share a common endpoint
59 * - for each e, e->Dst has been processed, but not e->Org
60 * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org)
61 * where "event" is the current sweep line event.
62 * - no edge e has zero length
63 *
64 * Invariants for the Mesh (the processed portion).
65 * - the portion of the mesh left of the sweep line is a planar graph,
66 * ie. there is *some* way to embed it in the plane
67 * - no processed edge has zero length
68 * - no two processed vertices have identical coordinates
69 * - each "inside" region is monotone, ie. can be broken into two chains
70 * of monotonically increasing vertices according to VertLeq(v1,v2)
71 * - a non-invariant: these chains may intersect (very slightly)
72 *
73 * Invariants for the Sweep.
74 * - if none of the edges incident to the event vertex have an activeRegion
75 * (ie. none of these edges are in the edge dictionary), then the vertex
76 * has only right-going edges.
77 * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
78 * by ConnectRightVertex), then it is the only right-going edge from
79 * its associated vertex. (This says that these edges exist only
80 * when it is necessary.)
81 */
82
83 #define MAX(x,y) ((x) >= (y) ? (x) : (y))
84 #define MIN(x,y) ((x) <= (y) ? (x) : (y))
85
86 /* When we merge two edges into one, we need to compute the combined
87 * winding of the new edge.
88 */
89 #define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \
90 eDst->Sym->winding += eSrc->Sym->winding)
91
92 static void SweepEvent( TESStesselator *tess, TESSvertex *vEvent );
93 static void WalkDirtyRegions( TESStesselator *tess, ActiveRegion *regUp );
94 static int CheckForRightSplice( TESStesselator *tess, ActiveRegion *regUp );
95
EdgeLeq(TESStesselator * tess,ActiveRegion * reg1,ActiveRegion * reg2)96 static int EdgeLeq( TESStesselator *tess, ActiveRegion *reg1, ActiveRegion *reg2 )
97 /*
98 * Both edges must be directed from right to left (this is the canonical
99 * direction for the upper edge of each region).
100 *
101 * The strategy is to evaluate a "t" value for each edge at the
102 * current sweep line position, given by tess->event. The calculations
103 * are designed to be very stable, but of course they are not perfect.
104 *
105 * Special case: if both edge destinations are at the sweep event,
106 * we sort the edges by slope (they would otherwise compare equally).
107 */
108 {
109 TESSvertex *event = tess->event;
110 TESShalfEdge *e1, *e2;
111 TESSreal t1, t2;
112
113 e1 = reg1->eUp;
114 e2 = reg2->eUp;
115
116 if( e1->Dst == event ) {
117 if( e2->Dst == event ) {
118 /* Two edges right of the sweep line which meet at the sweep event.
119 * Sort them by slope.
120 */
121 if( VertLeq( e1->Org, e2->Org )) {
122 return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
123 }
124 return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
125 }
126 return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
127 }
128 if( e2->Dst == event ) {
129 return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
130 }
131
132 /* General case - compute signed distance *from* e1, e2 to event */
133 t1 = EdgeEval( e1->Dst, event, e1->Org );
134 t2 = EdgeEval( e2->Dst, event, e2->Org );
135 return (t1 >= t2);
136 }
137
138
DeleteRegion(TESStesselator * tess,ActiveRegion * reg)139 static void DeleteRegion( TESStesselator *tess, ActiveRegion *reg )
140 {
141 if( reg->fixUpperEdge ) {
142 /* It was created with zero winding number, so it better be
143 * deleted with zero winding number (ie. it better not get merged
144 * with a real edge).
145 */
146 assert( reg->eUp->winding == 0 );
147 }
148 reg->eUp->activeRegion = NULL;
149 dictDelete( tess->dict, reg->nodeUp );
150 bucketFree( tess->regionPool, reg );
151 }
152
153
FixUpperEdge(TESStesselator * tess,ActiveRegion * reg,TESShalfEdge * newEdge)154 static int FixUpperEdge( TESStesselator *tess, ActiveRegion *reg, TESShalfEdge *newEdge )
155 /*
156 * Replace an upper edge which needs fixing (see ConnectRightVertex).
157 */
158 {
159 assert( reg->fixUpperEdge );
160 if ( !tessMeshDelete( tess->mesh, reg->eUp ) ) return 0;
161 reg->fixUpperEdge = FALSE;
162 reg->eUp = newEdge;
163 newEdge->activeRegion = reg;
164
165 return 1;
166 }
167
TopLeftRegion(TESStesselator * tess,ActiveRegion * reg)168 static ActiveRegion *TopLeftRegion( TESStesselator *tess, ActiveRegion *reg )
169 {
170 TESSvertex *org = reg->eUp->Org;
171 TESShalfEdge *e;
172
173 /* Find the region above the uppermost edge with the same origin */
174 do {
175 reg = RegionAbove( reg );
176 } while( reg->eUp->Org == org );
177
178 /* If the edge above was a temporary edge introduced by ConnectRightVertex,
179 * now is the time to fix it.
180 */
181 if( reg->fixUpperEdge ) {
182 e = tessMeshConnect( tess->mesh, RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext );
183 if (e == NULL) return NULL;
184 if ( !FixUpperEdge( tess, reg, e ) ) return NULL;
185 reg = RegionAbove( reg );
186 }
187 return reg;
188 }
189
TopRightRegion(ActiveRegion * reg)190 static ActiveRegion *TopRightRegion( ActiveRegion *reg )
191 {
192 TESSvertex *dst = reg->eUp->Dst;
193
194 /* Find the region above the uppermost edge with the same destination */
195 do {
196 reg = RegionAbove( reg );
197 } while( reg->eUp->Dst == dst );
198 return reg;
199 }
200
AddRegionBelow(TESStesselator * tess,ActiveRegion * regAbove,TESShalfEdge * eNewUp)201 static ActiveRegion *AddRegionBelow( TESStesselator *tess,
202 ActiveRegion *regAbove,
203 TESShalfEdge *eNewUp )
204 /*
205 * Add a new active region to the sweep line, *somewhere* below "regAbove"
206 * (according to where the new edge belongs in the sweep-line dictionary).
207 * The upper edge of the new region will be "eNewUp".
208 * Winding number and "inside" flag are not updated.
209 */
210 {
211 ActiveRegion *regNew = (ActiveRegion *)bucketAlloc( tess->regionPool );
212 if (regNew == NULL) longjmp(tess->env,1);
213
214 regNew->eUp = eNewUp;
215 regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew );
216 if (regNew->nodeUp == NULL) longjmp(tess->env,1);
217 regNew->fixUpperEdge = FALSE;
218 regNew->sentinel = FALSE;
219 regNew->dirty = FALSE;
220
221 eNewUp->activeRegion = regNew;
222 return regNew;
223 }
224
IsWindingInside(TESStesselator * tess,int n)225 static int IsWindingInside( TESStesselator *tess, int n )
226 {
227 switch( tess->windingRule ) {
228 case TESS_WINDING_ODD:
229 return (n & 1);
230 case TESS_WINDING_NONZERO:
231 return (n != 0);
232 case TESS_WINDING_POSITIVE:
233 return (n > 0);
234 case TESS_WINDING_NEGATIVE:
235 return (n < 0);
236 case TESS_WINDING_ABS_GEQ_TWO:
237 return (n >= 2) || (n <= -2);
238 }
239 /*LINTED*/
240 assert( FALSE );
241 /*NOTREACHED*/
242
243 return( FALSE );
244 }
245
246
ComputeWinding(TESStesselator * tess,ActiveRegion * reg)247 static void ComputeWinding( TESStesselator *tess, ActiveRegion *reg )
248 {
249 reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding;
250 reg->inside = IsWindingInside( tess, reg->windingNumber );
251 }
252
253
FinishRegion(TESStesselator * tess,ActiveRegion * reg)254 static void FinishRegion( TESStesselator *tess, ActiveRegion *reg )
255 /*
256 * Delete a region from the sweep line. This happens when the upper
257 * and lower chains of a region meet (at a vertex on the sweep line).
258 * The "inside" flag is copied to the appropriate mesh face (we could
259 * not do this before -- since the structure of the mesh is always
260 * changing, this face may not have even existed until now).
261 */
262 {
263 TESShalfEdge *e = reg->eUp;
264 TESSface *f = e->Lface;
265
266 f->inside = reg->inside;
267 f->anEdge = e; /* optimization for tessMeshTessellateMonoRegion() */
268 DeleteRegion( tess, reg );
269 }
270
271
FinishLeftRegions(TESStesselator * tess,ActiveRegion * regFirst,ActiveRegion * regLast)272 static TESShalfEdge *FinishLeftRegions( TESStesselator *tess,
273 ActiveRegion *regFirst, ActiveRegion *regLast )
274 /*
275 * We are given a vertex with one or more left-going edges. All affected
276 * edges should be in the edge dictionary. Starting at regFirst->eUp,
277 * we walk down deleting all regions where both edges have the same
278 * origin vOrg. At the same time we copy the "inside" flag from the
279 * active region to the face, since at this point each face will belong
280 * to at most one region (this was not necessarily true until this point
281 * in the sweep). The walk stops at the region above regLast; if regLast
282 * is NULL we walk as far as possible. At the same time we relink the
283 * mesh if necessary, so that the ordering of edges around vOrg is the
284 * same as in the dictionary.
285 */
286 {
287 ActiveRegion *reg, *regPrev;
288 TESShalfEdge *e, *ePrev;
289
290 regPrev = regFirst;
291 ePrev = regFirst->eUp;
292 while( regPrev != regLast ) {
293 regPrev->fixUpperEdge = FALSE; /* placement was OK */
294 reg = RegionBelow( regPrev );
295 e = reg->eUp;
296 if( e->Org != ePrev->Org ) {
297 if( ! reg->fixUpperEdge ) {
298 /* Remove the last left-going edge. Even though there are no further
299 * edges in the dictionary with this origin, there may be further
300 * such edges in the mesh (if we are adding left edges to a vertex
301 * that has already been processed). Thus it is important to call
302 * FinishRegion rather than just DeleteRegion.
303 */
304 FinishRegion( tess, regPrev );
305 break;
306 }
307 /* If the edge below was a temporary edge introduced by
308 * ConnectRightVertex, now is the time to fix it.
309 */
310 e = tessMeshConnect( tess->mesh, ePrev->Lprev, e->Sym );
311 if (e == NULL) longjmp(tess->env,1);
312 if ( !FixUpperEdge( tess, reg, e ) ) longjmp(tess->env,1);
313 }
314
315 /* Relink edges so that ePrev->Onext == e */
316 if( ePrev->Onext != e ) {
317 if ( !tessMeshSplice( tess->mesh, e->Oprev, e ) ) longjmp(tess->env,1);
318 if ( !tessMeshSplice( tess->mesh, ePrev, e ) ) longjmp(tess->env,1);
319 }
320 FinishRegion( tess, regPrev ); /* may change reg->eUp */
321 ePrev = reg->eUp;
322 regPrev = reg;
323 }
324 return ePrev;
325 }
326
327
AddRightEdges(TESStesselator * tess,ActiveRegion * regUp,TESShalfEdge * eFirst,TESShalfEdge * eLast,TESShalfEdge * eTopLeft,int cleanUp)328 static void AddRightEdges( TESStesselator *tess, ActiveRegion *regUp,
329 TESShalfEdge *eFirst, TESShalfEdge *eLast, TESShalfEdge *eTopLeft,
330 int cleanUp )
331 /*
332 * Purpose: insert right-going edges into the edge dictionary, and update
333 * winding numbers and mesh connectivity appropriately. All right-going
334 * edges share a common origin vOrg. Edges are inserted CCW starting at
335 * eFirst; the last edge inserted is eLast->Oprev. If vOrg has any
336 * left-going edges already processed, then eTopLeft must be the edge
337 * such that an imaginary upward vertical segment from vOrg would be
338 * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
339 * should be NULL.
340 */
341 {
342 ActiveRegion *reg, *regPrev;
343 TESShalfEdge *e, *ePrev;
344 int firstTime = TRUE;
345
346 /* Insert the new right-going edges in the dictionary */
347 e = eFirst;
348 do {
349 assert( VertLeq( e->Org, e->Dst ));
350 AddRegionBelow( tess, regUp, e->Sym );
351 e = e->Onext;
352 } while ( e != eLast );
353
354 /* Walk *all* right-going edges from e->Org, in the dictionary order,
355 * updating the winding numbers of each region, and re-linking the mesh
356 * edges to match the dictionary ordering (if necessary).
357 */
358 if( eTopLeft == NULL ) {
359 eTopLeft = RegionBelow( regUp )->eUp->Rprev;
360 }
361 regPrev = regUp;
362 ePrev = eTopLeft;
363 for( ;; ) {
364 reg = RegionBelow( regPrev );
365 e = reg->eUp->Sym;
366 if( e->Org != ePrev->Org ) break;
367
368 if( e->Onext != ePrev ) {
369 /* Unlink e from its current position, and relink below ePrev */
370 if ( !tessMeshSplice( tess->mesh, e->Oprev, e ) ) longjmp(tess->env,1);
371 if ( !tessMeshSplice( tess->mesh, ePrev->Oprev, e ) ) longjmp(tess->env,1);
372 }
373 /* Compute the winding number and "inside" flag for the new regions */
374 reg->windingNumber = regPrev->windingNumber - e->winding;
375 reg->inside = IsWindingInside( tess, reg->windingNumber );
376
377 /* Check for two outgoing edges with same slope -- process these
378 * before any intersection tests (see example in tessComputeInterior).
379 */
380 regPrev->dirty = TRUE;
381 if( ! firstTime && CheckForRightSplice( tess, regPrev )) {
382 AddWinding( e, ePrev );
383 DeleteRegion( tess, regPrev );
384 if ( !tessMeshDelete( tess->mesh, ePrev ) ) longjmp(tess->env,1);
385 }
386 firstTime = FALSE;
387 regPrev = reg;
388 ePrev = e;
389 }
390 regPrev->dirty = TRUE;
391 assert( regPrev->windingNumber - e->winding == reg->windingNumber );
392
393 if( cleanUp ) {
394 /* Check for intersections between newly adjacent edges. */
395 WalkDirtyRegions( tess, regPrev );
396 }
397 }
398
399
SpliceMergeVertices(TESStesselator * tess,TESShalfEdge * e1,TESShalfEdge * e2)400 static void SpliceMergeVertices( TESStesselator *tess, TESShalfEdge *e1,
401 TESShalfEdge *e2 )
402 /*
403 * Two vertices with idential coordinates are combined into one.
404 * e1->Org is kept, while e2->Org is discarded.
405 */
406 {
407 if ( !tessMeshSplice( tess->mesh, e1, e2 ) ) longjmp(tess->env,1);
408 }
409
VertexWeights(TESSvertex * isect,TESSvertex * org,TESSvertex * dst,TESSreal * weights)410 static void VertexWeights( TESSvertex *isect, TESSvertex *org, TESSvertex *dst,
411 TESSreal *weights )
412 /*
413 * Find some weights which describe how the intersection vertex is
414 * a linear combination of "org" and "dest". Each of the two edges
415 * which generated "isect" is allocated 50% of the weight; each edge
416 * splits the weight between its org and dst according to the
417 * relative distance to "isect".
418 */
419 {
420 TESSreal t1 = VertL1dist( org, isect );
421 TESSreal t2 = VertL1dist( dst, isect );
422
423 weights[0] = (TESSreal)0.5 * t2 / (t1 + t2);
424 weights[1] = (TESSreal)0.5 * t1 / (t1 + t2);
425 isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0];
426 isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1];
427 isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2];
428 }
429
430
GetIntersectData(TESStesselator * tess,TESSvertex * isect,TESSvertex * orgUp,TESSvertex * dstUp,TESSvertex * orgLo,TESSvertex * dstLo)431 static void GetIntersectData( TESStesselator *tess, TESSvertex *isect,
432 TESSvertex *orgUp, TESSvertex *dstUp,
433 TESSvertex *orgLo, TESSvertex *dstLo )
434 /*
435 * We've computed a new intersection point, now we need a "data" pointer
436 * from the user so that we can refer to this new vertex in the
437 * rendering callbacks.
438 */
439 {
440 TESSreal weights[4];
441 TESS_NOTUSED( tess );
442
443 isect->coords[0] = isect->coords[1] = isect->coords[2] = 0;
444 isect->idx = TESS_UNDEF;
445 VertexWeights( isect, orgUp, dstUp, &weights[0] );
446 VertexWeights( isect, orgLo, dstLo, &weights[2] );
447 }
448
CheckForRightSplice(TESStesselator * tess,ActiveRegion * regUp)449 static int CheckForRightSplice( TESStesselator *tess, ActiveRegion *regUp )
450 /*
451 * Check the upper and lower edge of "regUp", to make sure that the
452 * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
453 * origin is leftmost).
454 *
455 * The main purpose is to splice right-going edges with the same
456 * dest vertex and nearly identical slopes (ie. we can't distinguish
457 * the slopes numerically). However the splicing can also help us
458 * to recover from numerical errors. For example, suppose at one
459 * point we checked eUp and eLo, and decided that eUp->Org is barely
460 * above eLo. Then later, we split eLo into two edges (eg. from
461 * a splice operation like this one). This can change the result of
462 * our test so that now eUp->Org is incident to eLo, or barely below it.
463 * We must correct this condition to maintain the dictionary invariants.
464 *
465 * One possibility is to check these edges for intersection again
466 * (ie. CheckForIntersect). This is what we do if possible. However
467 * CheckForIntersect requires that tess->event lies between eUp and eLo,
468 * so that it has something to fall back on when the intersection
469 * calculation gives us an unusable answer. So, for those cases where
470 * we can't check for intersection, this routine fixes the problem
471 * by just splicing the offending vertex into the other edge.
472 * This is a guaranteed solution, no matter how degenerate things get.
473 * Basically this is a combinatorial solution to a numerical problem.
474 */
475 {
476 ActiveRegion *regLo = RegionBelow(regUp);
477 TESShalfEdge *eUp = regUp->eUp;
478 TESShalfEdge *eLo = regLo->eUp;
479
480 if( VertLeq( eUp->Org, eLo->Org )) {
481 if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE;
482
483 /* eUp->Org appears to be below eLo */
484 if( ! VertEq( eUp->Org, eLo->Org )) {
485 /* Splice eUp->Org into eLo */
486 if ( tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1);
487 if ( !tessMeshSplice( tess->mesh, eUp, eLo->Oprev ) ) longjmp(tess->env,1);
488 regUp->dirty = regLo->dirty = TRUE;
489
490 } else if( eUp->Org != eLo->Org ) {
491 /* merge the two vertices, discarding eUp->Org */
492 pqDelete( tess->pq, eUp->Org->pqHandle );
493 SpliceMergeVertices( tess, eLo->Oprev, eUp );
494 }
495 } else {
496 if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE;
497
498 /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
499 RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
500 if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1);
501 if ( !tessMeshSplice( tess->mesh, eLo->Oprev, eUp ) ) longjmp(tess->env,1);
502 }
503 return TRUE;
504 }
505
CheckForLeftSplice(TESStesselator * tess,ActiveRegion * regUp)506 static int CheckForLeftSplice( TESStesselator *tess, ActiveRegion *regUp )
507 /*
508 * Check the upper and lower edge of "regUp", to make sure that the
509 * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
510 * destination is rightmost).
511 *
512 * Theoretically, this should always be true. However, splitting an edge
513 * into two pieces can change the results of previous tests. For example,
514 * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
515 * is barely above eLo. Then later, we split eLo into two edges (eg. from
516 * a splice operation like this one). This can change the result of
517 * the test so that now eUp->Dst is incident to eLo, or barely below it.
518 * We must correct this condition to maintain the dictionary invariants
519 * (otherwise new edges might get inserted in the wrong place in the
520 * dictionary, and bad stuff will happen).
521 *
522 * We fix the problem by just splicing the offending vertex into the
523 * other edge.
524 */
525 {
526 ActiveRegion *regLo = RegionBelow(regUp);
527 TESShalfEdge *eUp = regUp->eUp;
528 TESShalfEdge *eLo = regLo->eUp;
529 TESShalfEdge *e;
530
531 assert( ! VertEq( eUp->Dst, eLo->Dst ));
532
533 if( VertLeq( eUp->Dst, eLo->Dst )) {
534 if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE;
535
536 /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
537 RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
538 e = tessMeshSplitEdge( tess->mesh, eUp );
539 if (e == NULL) longjmp(tess->env,1);
540 if ( !tessMeshSplice( tess->mesh, eLo->Sym, e ) ) longjmp(tess->env,1);
541 e->Lface->inside = regUp->inside;
542 } else {
543 if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE;
544
545 /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
546 regUp->dirty = regLo->dirty = TRUE;
547 e = tessMeshSplitEdge( tess->mesh, eLo );
548 if (e == NULL) longjmp(tess->env,1);
549 if ( !tessMeshSplice( tess->mesh, eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
550 e->Rface->inside = regUp->inside;
551 }
552 return TRUE;
553 }
554
555
CheckForIntersect(TESStesselator * tess,ActiveRegion * regUp)556 static int CheckForIntersect( TESStesselator *tess, ActiveRegion *regUp )
557 /*
558 * Check the upper and lower edges of the given region to see if
559 * they intersect. If so, create the intersection and add it
560 * to the data structures.
561 *
562 * Returns TRUE if adding the new intersection resulted in a recursive
563 * call to AddRightEdges(); in this case all "dirty" regions have been
564 * checked for intersections, and possibly regUp has been deleted.
565 */
566 {
567 ActiveRegion *regLo = RegionBelow(regUp);
568 TESShalfEdge *eUp = regUp->eUp;
569 TESShalfEdge *eLo = regLo->eUp;
570 TESSvertex *orgUp = eUp->Org;
571 TESSvertex *orgLo = eLo->Org;
572 TESSvertex *dstUp = eUp->Dst;
573 TESSvertex *dstLo = eLo->Dst;
574 TESSreal tMinUp, tMaxLo;
575 TESSvertex isect, *orgMin;
576 TESShalfEdge *e;
577
578 assert( ! VertEq( dstLo, dstUp ));
579 assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
580 assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
581 assert( orgUp != tess->event && orgLo != tess->event );
582 assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );
583
584 if( orgUp == orgLo ) return FALSE; /* right endpoints are the same */
585
586 tMinUp = MIN( orgUp->t, dstUp->t );
587 tMaxLo = MAX( orgLo->t, dstLo->t );
588 if( tMinUp > tMaxLo ) return FALSE; /* t ranges do not overlap */
589
590 if( VertLeq( orgUp, orgLo )) {
591 if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE;
592 } else {
593 if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE;
594 }
595
596 /* At this point the edges intersect, at least marginally */
597 DebugEvent( tess );
598
599 tesedgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
600 /* The following properties are guaranteed: */
601 assert( MIN( orgUp->t, dstUp->t ) <= isect.t );
602 assert( isect.t <= MAX( orgLo->t, dstLo->t ));
603 assert( MIN( dstLo->s, dstUp->s ) <= isect.s );
604 assert( isect.s <= MAX( orgLo->s, orgUp->s ));
605
606 if( VertLeq( &isect, tess->event )) {
607 /* The intersection point lies slightly to the left of the sweep line,
608 * so move it until it''s slightly to the right of the sweep line.
609 * (If we had perfect numerical precision, this would never happen
610 * in the first place). The easiest and safest thing to do is
611 * replace the intersection by tess->event.
612 */
613 isect.s = tess->event->s;
614 isect.t = tess->event->t;
615 }
616 /* Similarly, if the computed intersection lies to the right of the
617 * rightmost origin (which should rarely happen), it can cause
618 * unbelievable inefficiency on sufficiently degenerate inputs.
619 * (If you have the test program, try running test54.d with the
620 * "X zoom" option turned on).
621 */
622 orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
623 if( VertLeq( orgMin, &isect )) {
624 isect.s = orgMin->s;
625 isect.t = orgMin->t;
626 }
627
628 if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
629 /* Easy case -- intersection at one of the right endpoints */
630 (void) CheckForRightSplice( tess, regUp );
631 return FALSE;
632 }
633
634 if( (! VertEq( dstUp, tess->event )
635 && EdgeSign( dstUp, tess->event, &isect ) >= 0)
636 || (! VertEq( dstLo, tess->event )
637 && EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
638 {
639 /* Very unusual -- the new upper or lower edge would pass on the
640 * wrong side of the sweep event, or through it. This can happen
641 * due to very small numerical errors in the intersection calculation.
642 */
643 if( dstLo == tess->event ) {
644 /* Splice dstLo into eUp, and process the new region(s) */
645 if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1);
646 if ( !tessMeshSplice( tess->mesh, eLo->Sym, eUp ) ) longjmp(tess->env,1);
647 regUp = TopLeftRegion( tess, regUp );
648 if (regUp == NULL) longjmp(tess->env,1);
649 eUp = RegionBelow(regUp)->eUp;
650 FinishLeftRegions( tess, RegionBelow(regUp), regLo );
651 AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE );
652 return TRUE;
653 }
654 if( dstUp == tess->event ) {
655 /* Splice dstUp into eLo, and process the new region(s) */
656 if (tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1);
657 if ( !tessMeshSplice( tess->mesh, eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1);
658 regLo = regUp;
659 regUp = TopRightRegion( regUp );
660 e = RegionBelow(regUp)->eUp->Rprev;
661 regLo->eUp = eLo->Oprev;
662 eLo = FinishLeftRegions( tess, regLo, NULL );
663 AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE );
664 return TRUE;
665 }
666 /* Special case: called from ConnectRightVertex. If either
667 * edge passes on the wrong side of tess->event, split it
668 * (and wait for ConnectRightVertex to splice it appropriately).
669 */
670 if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
671 RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
672 if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1);
673 eUp->Org->s = tess->event->s;
674 eUp->Org->t = tess->event->t;
675 }
676 if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
677 regUp->dirty = regLo->dirty = TRUE;
678 if (tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1);
679 eLo->Org->s = tess->event->s;
680 eLo->Org->t = tess->event->t;
681 }
682 /* leave the rest for ConnectRightVertex */
683 return FALSE;
684 }
685
686 /* General case -- split both edges, splice into new vertex.
687 * When we do the splice operation, the order of the arguments is
688 * arbitrary as far as correctness goes. However, when the operation
689 * creates a new face, the work done is proportional to the size of
690 * the new face. We expect the faces in the processed part of
691 * the mesh (ie. eUp->Lface) to be smaller than the faces in the
692 * unprocessed original contours (which will be eLo->Oprev->Lface).
693 */
694 if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1);
695 if (tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1);
696 if ( !tessMeshSplice( tess->mesh, eLo->Oprev, eUp ) ) longjmp(tess->env,1);
697 eUp->Org->s = isect.s;
698 eUp->Org->t = isect.t;
699 eUp->Org->pqHandle = pqInsert( &tess->alloc, tess->pq, eUp->Org );
700 if (eUp->Org->pqHandle == INV_HANDLE) {
701 pqDeletePriorityQ( &tess->alloc, tess->pq );
702 tess->pq = NULL;
703 longjmp(tess->env,1);
704 }
705 GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
706 RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE;
707 return FALSE;
708 }
709
WalkDirtyRegions(TESStesselator * tess,ActiveRegion * regUp)710 static void WalkDirtyRegions( TESStesselator *tess, ActiveRegion *regUp )
711 /*
712 * When the upper or lower edge of any region changes, the region is
713 * marked "dirty". This routine walks through all the dirty regions
714 * and makes sure that the dictionary invariants are satisfied
715 * (see the comments at the beginning of this file). Of course
716 * new dirty regions can be created as we make changes to restore
717 * the invariants.
718 */
719 {
720 ActiveRegion *regLo = RegionBelow(regUp);
721 TESShalfEdge *eUp, *eLo;
722
723 for( ;; ) {
724 /* Find the lowest dirty region (we walk from the bottom up). */
725 while( regLo->dirty ) {
726 regUp = regLo;
727 regLo = RegionBelow(regLo);
728 }
729 if( ! regUp->dirty ) {
730 regLo = regUp;
731 regUp = RegionAbove( regUp );
732 if( regUp == NULL || ! regUp->dirty ) {
733 /* We've walked all the dirty regions */
734 return;
735 }
736 }
737 regUp->dirty = FALSE;
738 eUp = regUp->eUp;
739 eLo = regLo->eUp;
740
741 if( eUp->Dst != eLo->Dst ) {
742 /* Check that the edge ordering is obeyed at the Dst vertices. */
743 if( CheckForLeftSplice( tess, regUp )) {
744
745 /* If the upper or lower edge was marked fixUpperEdge, then
746 * we no longer need it (since these edges are needed only for
747 * vertices which otherwise have no right-going edges).
748 */
749 if( regLo->fixUpperEdge ) {
750 DeleteRegion( tess, regLo );
751 if ( !tessMeshDelete( tess->mesh, eLo ) ) longjmp(tess->env,1);
752 regLo = RegionBelow( regUp );
753 eLo = regLo->eUp;
754 } else if( regUp->fixUpperEdge ) {
755 DeleteRegion( tess, regUp );
756 if ( !tessMeshDelete( tess->mesh, eUp ) ) longjmp(tess->env,1);
757 regUp = RegionAbove( regLo );
758 eUp = regUp->eUp;
759 }
760 }
761 }
762 if( eUp->Org != eLo->Org ) {
763 if( eUp->Dst != eLo->Dst
764 && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge
765 && (eUp->Dst == tess->event || eLo->Dst == tess->event) )
766 {
767 /* When all else fails in CheckForIntersect(), it uses tess->event
768 * as the intersection location. To make this possible, it requires
769 * that tess->event lie between the upper and lower edges, and also
770 * that neither of these is marked fixUpperEdge (since in the worst
771 * case it might splice one of these edges into tess->event, and
772 * violate the invariant that fixable edges are the only right-going
773 * edge from their associated vertex).
774 */
775 if( CheckForIntersect( tess, regUp )) {
776 /* WalkDirtyRegions() was called recursively; we're done */
777 return;
778 }
779 } else {
780 /* Even though we can't use CheckForIntersect(), the Org vertices
781 * may violate the dictionary edge ordering. Check and correct this.
782 */
783 (void) CheckForRightSplice( tess, regUp );
784 }
785 }
786 if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) {
787 /* A degenerate loop consisting of only two edges -- delete it. */
788 AddWinding( eLo, eUp );
789 DeleteRegion( tess, regUp );
790 if ( !tessMeshDelete( tess->mesh, eUp ) ) longjmp(tess->env,1);
791 regUp = RegionAbove( regLo );
792 }
793 }
794 }
795
796
ConnectRightVertex(TESStesselator * tess,ActiveRegion * regUp,TESShalfEdge * eBottomLeft)797 static void ConnectRightVertex( TESStesselator *tess, ActiveRegion *regUp,
798 TESShalfEdge *eBottomLeft )
799 /*
800 * Purpose: connect a "right" vertex vEvent (one where all edges go left)
801 * to the unprocessed portion of the mesh. Since there are no right-going
802 * edges, two regions (one above vEvent and one below) are being merged
803 * into one. "regUp" is the upper of these two regions.
804 *
805 * There are two reasons for doing this (adding a right-going edge):
806 * - if the two regions being merged are "inside", we must add an edge
807 * to keep them separated (the combined region would not be monotone).
808 * - in any case, we must leave some record of vEvent in the dictionary,
809 * so that we can merge vEvent with features that we have not seen yet.
810 * For example, maybe there is a vertical edge which passes just to
811 * the right of vEvent; we would like to splice vEvent into this edge.
812 *
813 * However, we don't want to connect vEvent to just any vertex. We don''t
814 * want the new edge to cross any other edges; otherwise we will create
815 * intersection vertices even when the input data had no self-intersections.
816 * (This is a bad thing; if the user's input data has no intersections,
817 * we don't want to generate any false intersections ourselves.)
818 *
819 * Our eventual goal is to connect vEvent to the leftmost unprocessed
820 * vertex of the combined region (the union of regUp and regLo).
821 * But because of unseen vertices with all right-going edges, and also
822 * new vertices which may be created by edge intersections, we don''t
823 * know where that leftmost unprocessed vertex is. In the meantime, we
824 * connect vEvent to the closest vertex of either chain, and mark the region
825 * as "fixUpperEdge". This flag says to delete and reconnect this edge
826 * to the next processed vertex on the boundary of the combined region.
827 * Quite possibly the vertex we connected to will turn out to be the
828 * closest one, in which case we won''t need to make any changes.
829 */
830 {
831 TESShalfEdge *eNew;
832 TESShalfEdge *eTopLeft = eBottomLeft->Onext;
833 ActiveRegion *regLo = RegionBelow(regUp);
834 TESShalfEdge *eUp = regUp->eUp;
835 TESShalfEdge *eLo = regLo->eUp;
836 int degenerate = FALSE;
837
838 if( eUp->Dst != eLo->Dst ) {
839 (void) CheckForIntersect( tess, regUp );
840 }
841
842 /* Possible new degeneracies: upper or lower edge of regUp may pass
843 * through vEvent, or may coincide with new intersection vertex
844 */
845 if( VertEq( eUp->Org, tess->event )) {
846 if ( !tessMeshSplice( tess->mesh, eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1);
847 regUp = TopLeftRegion( tess, regUp );
848 if (regUp == NULL) longjmp(tess->env,1);
849 eTopLeft = RegionBelow( regUp )->eUp;
850 FinishLeftRegions( tess, RegionBelow(regUp), regLo );
851 degenerate = TRUE;
852 }
853 if( VertEq( eLo->Org, tess->event )) {
854 if ( !tessMeshSplice( tess->mesh, eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1);
855 eBottomLeft = FinishLeftRegions( tess, regLo, NULL );
856 degenerate = TRUE;
857 }
858 if( degenerate ) {
859 AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
860 return;
861 }
862
863 /* Non-degenerate situation -- need to add a temporary, fixable edge.
864 * Connect to the closer of eLo->Org, eUp->Org.
865 */
866 if( VertLeq( eLo->Org, eUp->Org )) {
867 eNew = eLo->Oprev;
868 } else {
869 eNew = eUp;
870 }
871 eNew = tessMeshConnect( tess->mesh, eBottomLeft->Lprev, eNew );
872 if (eNew == NULL) longjmp(tess->env,1);
873
874 /* Prevent cleanup, otherwise eNew might disappear before we've even
875 * had a chance to mark it as a temporary edge.
876 */
877 AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, FALSE );
878 eNew->Sym->activeRegion->fixUpperEdge = TRUE;
879 WalkDirtyRegions( tess, regUp );
880 }
881
882 /* Because vertices at exactly the same location are merged together
883 * before we process the sweep event, some degenerate cases can't occur.
884 * However if someone eventually makes the modifications required to
885 * merge features which are close together, the cases below marked
886 * TOLERANCE_NONZERO will be useful. They were debugged before the
887 * code to merge identical vertices in the main loop was added.
888 */
889 #define TOLERANCE_NONZERO FALSE
890
ConnectLeftDegenerate(TESStesselator * tess,ActiveRegion * regUp,TESSvertex * vEvent)891 static void ConnectLeftDegenerate( TESStesselator *tess,
892 ActiveRegion *regUp, TESSvertex *vEvent )
893 /*
894 * The event vertex lies exacty on an already-processed edge or vertex.
895 * Adding the new vertex involves splicing it into the already-processed
896 * part of the mesh.
897 */
898 {
899 TESShalfEdge *e, *eTopLeft, *eTopRight, *eLast;
900 ActiveRegion *reg;
901
902 e = regUp->eUp;
903 if( VertEq( e->Org, vEvent )) {
904 /* e->Org is an unprocessed vertex - just combine them, and wait
905 * for e->Org to be pulled from the queue
906 */
907 assert( TOLERANCE_NONZERO );
908 SpliceMergeVertices( tess, e, vEvent->anEdge );
909 return;
910 }
911
912 if( ! VertEq( e->Dst, vEvent )) {
913 /* General case -- splice vEvent into edge e which passes through it */
914 if (tessMeshSplitEdge( tess->mesh, e->Sym ) == NULL) longjmp(tess->env,1);
915 if( regUp->fixUpperEdge ) {
916 /* This edge was fixable -- delete unused portion of original edge */
917 if ( !tessMeshDelete( tess->mesh, e->Onext ) ) longjmp(tess->env,1);
918 regUp->fixUpperEdge = FALSE;
919 }
920 if ( !tessMeshSplice( tess->mesh, vEvent->anEdge, e ) ) longjmp(tess->env,1);
921 SweepEvent( tess, vEvent ); /* recurse */
922 return;
923 }
924
925 /* vEvent coincides with e->Dst, which has already been processed.
926 * Splice in the additional right-going edges.
927 */
928 assert( TOLERANCE_NONZERO );
929 regUp = TopRightRegion( regUp );
930 reg = RegionBelow( regUp );
931 eTopRight = reg->eUp->Sym;
932 eTopLeft = eLast = eTopRight->Onext;
933 if( reg->fixUpperEdge ) {
934 /* Here e->Dst has only a single fixable edge going right.
935 * We can delete it since now we have some real right-going edges.
936 */
937 assert( eTopLeft != eTopRight ); /* there are some left edges too */
938 DeleteRegion( tess, reg );
939 if ( !tessMeshDelete( tess->mesh, eTopRight ) ) longjmp(tess->env,1);
940 eTopRight = eTopLeft->Oprev;
941 }
942 if ( !tessMeshSplice( tess->mesh, vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
943 if( ! EdgeGoesLeft( eTopLeft )) {
944 /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
945 eTopLeft = NULL;
946 }
947 AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE );
948 }
949
950
ConnectLeftVertex(TESStesselator * tess,TESSvertex * vEvent)951 static void ConnectLeftVertex( TESStesselator *tess, TESSvertex *vEvent )
952 /*
953 * Purpose: connect a "left" vertex (one where both edges go right)
954 * to the processed portion of the mesh. Let R be the active region
955 * containing vEvent, and let U and L be the upper and lower edge
956 * chains of R. There are two possibilities:
957 *
958 * - the normal case: split R into two regions, by connecting vEvent to
959 * the rightmost vertex of U or L lying to the left of the sweep line
960 *
961 * - the degenerate case: if vEvent is close enough to U or L, we
962 * merge vEvent into that edge chain. The subcases are:
963 * - merging with the rightmost vertex of U or L
964 * - merging with the active edge of U or L
965 * - merging with an already-processed portion of U or L
966 */
967 {
968 ActiveRegion *regUp, *regLo, *reg;
969 TESShalfEdge *eUp, *eLo, *eNew;
970 ActiveRegion tmp;
971
972 /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */
973
974 /* Get a pointer to the active region containing vEvent */
975 tmp.eUp = vEvent->anEdge->Sym;
976 /* __GL_DICTLISTKEY */ /* tessDictListSearch */
977 regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp ));
978 regLo = RegionBelow( regUp );
979 if( !regLo ) {
980 // This may happen if the input polygon is coplanar.
981 return;
982 }
983 eUp = regUp->eUp;
984 eLo = regLo->eUp;
985
986 /* Try merging with U or L first */
987 if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) {
988 ConnectLeftDegenerate( tess, regUp, vEvent );
989 return;
990 }
991
992 /* Connect vEvent to rightmost processed vertex of either chain.
993 * e->Dst is the vertex that we will connect to vEvent.
994 */
995 reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo;
996
997 if( regUp->inside || reg->fixUpperEdge) {
998 if( reg == regUp ) {
999 eNew = tessMeshConnect( tess->mesh, vEvent->anEdge->Sym, eUp->Lnext );
1000 if (eNew == NULL) longjmp(tess->env,1);
1001 } else {
1002 TESShalfEdge *tempHalfEdge= tessMeshConnect( tess->mesh, eLo->Dnext, vEvent->anEdge);
1003 if (tempHalfEdge == NULL) longjmp(tess->env,1);
1004
1005 eNew = tempHalfEdge->Sym;
1006 }
1007 if( reg->fixUpperEdge ) {
1008 if ( !FixUpperEdge( tess, reg, eNew ) ) longjmp(tess->env,1);
1009 } else {
1010 ComputeWinding( tess, AddRegionBelow( tess, regUp, eNew ));
1011 }
1012 SweepEvent( tess, vEvent );
1013 } else {
1014 /* The new vertex is in a region which does not belong to the polygon.
1015 * We don''t need to connect this vertex to the rest of the mesh.
1016 */
1017 AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TRUE );
1018 }
1019 }
1020
1021
SweepEvent(TESStesselator * tess,TESSvertex * vEvent)1022 static void SweepEvent( TESStesselator *tess, TESSvertex *vEvent )
1023 /*
1024 * Does everything necessary when the sweep line crosses a vertex.
1025 * Updates the mesh and the edge dictionary.
1026 */
1027 {
1028 ActiveRegion *regUp, *reg;
1029 TESShalfEdge *e, *eTopLeft, *eBottomLeft;
1030
1031 tess->event = vEvent; /* for access in EdgeLeq() */
1032 DebugEvent( tess );
1033
1034 /* Check if this vertex is the right endpoint of an edge that is
1035 * already in the dictionary. In this case we don't need to waste
1036 * time searching for the location to insert new edges.
1037 */
1038 e = vEvent->anEdge;
1039 while( e->activeRegion == NULL ) {
1040 e = e->Onext;
1041 if( e == vEvent->anEdge ) {
1042 /* All edges go right -- not incident to any processed edges */
1043 ConnectLeftVertex( tess, vEvent );
1044 return;
1045 }
1046 }
1047
1048 /* Processing consists of two phases: first we "finish" all the
1049 * active regions where both the upper and lower edges terminate
1050 * at vEvent (ie. vEvent is closing off these regions).
1051 * We mark these faces "inside" or "outside" the polygon according
1052 * to their winding number, and delete the edges from the dictionary.
1053 * This takes care of all the left-going edges from vEvent.
1054 */
1055 regUp = TopLeftRegion( tess, e->activeRegion );
1056 if (regUp == NULL) longjmp(tess->env,1);
1057 reg = RegionBelow( regUp );
1058 eTopLeft = reg->eUp;
1059 eBottomLeft = FinishLeftRegions( tess, reg, NULL );
1060
1061 /* Next we process all the right-going edges from vEvent. This
1062 * involves adding the edges to the dictionary, and creating the
1063 * associated "active regions" which record information about the
1064 * regions between adjacent dictionary edges.
1065 */
1066 if( eBottomLeft->Onext == eTopLeft ) {
1067 /* No right-going edges -- add a temporary "fixable" edge */
1068 ConnectRightVertex( tess, regUp, eBottomLeft );
1069 } else {
1070 AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
1071 }
1072 }
1073
1074
1075 /* Make the sentinel coordinates big enough that they will never be
1076 * merged with real input features.
1077 */
1078
AddSentinel(TESStesselator * tess,TESSreal smin,TESSreal smax,TESSreal t)1079 static void AddSentinel( TESStesselator *tess, TESSreal smin, TESSreal smax, TESSreal t )
1080 /*
1081 * We add two sentinel edges above and below all other edges,
1082 * to avoid special cases at the top and bottom.
1083 */
1084 {
1085 TESShalfEdge *e;
1086 ActiveRegion *reg = (ActiveRegion *)bucketAlloc( tess->regionPool );
1087 if (reg == NULL) longjmp(tess->env,1);
1088
1089 e = tessMeshMakeEdge( tess->mesh );
1090 if (e == NULL) longjmp(tess->env,1);
1091
1092 e->Org->s = smax;
1093 e->Org->t = t;
1094 e->Dst->s = smin;
1095 e->Dst->t = t;
1096 tess->event = e->Dst; /* initialize it */
1097
1098 reg->eUp = e;
1099 reg->windingNumber = 0;
1100 reg->inside = FALSE;
1101 reg->fixUpperEdge = FALSE;
1102 reg->sentinel = TRUE;
1103 reg->dirty = FALSE;
1104 reg->nodeUp = dictInsert( tess->dict, reg );
1105 if (reg->nodeUp == NULL) longjmp(tess->env,1);
1106 }
1107
1108
InitEdgeDict(TESStesselator * tess)1109 static void InitEdgeDict( TESStesselator *tess )
1110 /*
1111 * We maintain an ordering of edge intersections with the sweep line.
1112 * This order is maintained in a dynamic dictionary.
1113 */
1114 {
1115 TESSreal w, h;
1116 TESSreal smin, smax, tmin, tmax;
1117
1118 tess->dict = dictNewDict( &tess->alloc, tess, (int (*)(void *, DictKey, DictKey)) EdgeLeq );
1119 if (tess->dict == NULL) longjmp(tess->env,1);
1120
1121 w = (tess->bmax[0] - tess->bmin[0]);
1122 h = (tess->bmax[1] - tess->bmin[1]);
1123
1124 /* If the bbox is empty, ensure that sentinels are not coincident by
1125 slightly enlarging it. To avoid floating point precision issues,
1126 make sure to enlarge by a minimal amount. */
1127 smin = tess->bmin[0] - (w > 0.01 ? w : 0.01);
1128 smax = tess->bmax[0] + (w > 0.01 ? w : 0.01);
1129 tmin = tess->bmin[1] - (h > 0.01 ? h : 0.01);
1130 tmax = tess->bmax[1] + (h > 0.01 ? h : 0.01);
1131
1132 AddSentinel( tess, smin, smax, tmin );
1133 AddSentinel( tess, smin, smax, tmax );
1134 }
1135
1136
DoneEdgeDict(TESStesselator * tess)1137 static void DoneEdgeDict( TESStesselator *tess )
1138 {
1139 ActiveRegion *reg;
1140 int fixedEdges = 0;
1141
1142 while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) {
1143 /*
1144 * At the end of all processing, the dictionary should contain
1145 * only the two sentinel edges, plus at most one "fixable" edge
1146 * created by ConnectRightVertex().
1147 */
1148 if( ! reg->sentinel ) {
1149 assert( reg->fixUpperEdge );
1150 assert( ++fixedEdges == 1 );
1151 }
1152 assert( reg->windingNumber == 0 );
1153 DeleteRegion( tess, reg );
1154 /* tessMeshDelete( reg->eUp );*/
1155 }
1156 dictDeleteDict( &tess->alloc, tess->dict );
1157 }
1158
1159
RemoveDegenerateEdges(TESStesselator * tess)1160 static void RemoveDegenerateEdges( TESStesselator *tess )
1161 /*
1162 * Remove zero-length edges, and contours with fewer than 3 vertices.
1163 */
1164 {
1165 TESShalfEdge *e, *eNext, *eLnext;
1166 TESShalfEdge *eHead = &tess->mesh->eHead;
1167
1168 /*LINTED*/
1169 for( e = eHead->next; e != eHead; e = eNext ) {
1170 eNext = e->next;
1171 eLnext = e->Lnext;
1172
1173 if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) {
1174 /* Zero-length edge, contour has at least 3 edges */
1175
1176 SpliceMergeVertices( tess, eLnext, e ); /* deletes e->Org */
1177 if ( !tessMeshDelete( tess->mesh, e ) ) longjmp(tess->env,1); /* e is a self-loop */
1178 e = eLnext;
1179 eLnext = e->Lnext;
1180 }
1181 if( eLnext->Lnext == e ) {
1182 /* Degenerate contour (one or two edges) */
1183
1184 if( eLnext != e ) {
1185 if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; }
1186 if ( !tessMeshDelete( tess->mesh, eLnext ) ) longjmp(tess->env,1);
1187 }
1188 if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; }
1189 if ( !tessMeshDelete( tess->mesh, e ) ) longjmp(tess->env,1);
1190 }
1191 }
1192 }
1193
InitPriorityQ(TESStesselator * tess)1194 static int InitPriorityQ( TESStesselator *tess )
1195 /*
1196 * Insert all vertices into the priority queue which determines the
1197 * order in which vertices cross the sweep line.
1198 */
1199 {
1200 PriorityQ *pq;
1201 TESSvertex *v, *vHead;
1202 int vertexCount = 0;
1203
1204 vHead = &tess->mesh->vHead;
1205 for( v = vHead->next; v != vHead; v = v->next ) {
1206 vertexCount++;
1207 }
1208 /* Make sure there is enough space for sentinels. */
1209 vertexCount += MAX( 8, tess->alloc.extraVertices );
1210
1211 pq = tess->pq = pqNewPriorityQ( &tess->alloc, vertexCount, (int (*)(PQkey, PQkey)) tesvertLeq );
1212 if (pq == NULL) return 0;
1213
1214 vHead = &tess->mesh->vHead;
1215 for( v = vHead->next; v != vHead; v = v->next ) {
1216 v->pqHandle = pqInsert( &tess->alloc, pq, v );
1217 if (v->pqHandle == INV_HANDLE)
1218 break;
1219 }
1220 if (v != vHead || !pqInit( &tess->alloc, pq ) ) {
1221 pqDeletePriorityQ( &tess->alloc, tess->pq );
1222 tess->pq = NULL;
1223 return 0;
1224 }
1225
1226 return 1;
1227 }
1228
1229
DonePriorityQ(TESStesselator * tess)1230 static void DonePriorityQ( TESStesselator *tess )
1231 {
1232 pqDeletePriorityQ( &tess->alloc, tess->pq );
1233 }
1234
1235
RemoveDegenerateFaces(TESStesselator * tess,TESSmesh * mesh)1236 static int RemoveDegenerateFaces( TESStesselator *tess, TESSmesh *mesh )
1237 /*
1238 * Delete any degenerate faces with only two edges. WalkDirtyRegions()
1239 * will catch almost all of these, but it won't catch degenerate faces
1240 * produced by splice operations on already-processed edges.
1241 * The two places this can happen are in FinishLeftRegions(), when
1242 * we splice in a "temporary" edge produced by ConnectRightVertex(),
1243 * and in CheckForLeftSplice(), where we splice already-processed
1244 * edges to ensure that our dictionary invariants are not violated
1245 * by numerical errors.
1246 *
1247 * In both these cases it is *very* dangerous to delete the offending
1248 * edge at the time, since one of the routines further up the stack
1249 * will sometimes be keeping a pointer to that edge.
1250 */
1251 {
1252 TESSface *f, *fNext;
1253 TESShalfEdge *e;
1254
1255 /*LINTED*/
1256 for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) {
1257 fNext = f->next;
1258 e = f->anEdge;
1259 assert( e->Lnext != e );
1260
1261 if( e->Lnext->Lnext == e ) {
1262 /* A face with only two edges */
1263 AddWinding( e->Onext, e );
1264 if ( !tessMeshDelete( tess->mesh, e ) ) return 0;
1265 }
1266 }
1267 return 1;
1268 }
1269
tessComputeInterior(TESStesselator * tess)1270 int tessComputeInterior( TESStesselator *tess )
1271 /*
1272 * tessComputeInterior( tess ) computes the planar arrangement specified
1273 * by the given contours, and further subdivides this arrangement
1274 * into regions. Each region is marked "inside" if it belongs
1275 * to the polygon, according to the rule given by tess->windingRule.
1276 * Each interior region is guaranteed be monotone.
1277 */
1278 {
1279 TESSvertex *v, *vNext;
1280
1281 /* Each vertex defines an event for our sweep line. Start by inserting
1282 * all the vertices in a priority queue. Events are processed in
1283 * lexicographic order, ie.
1284 *
1285 * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
1286 */
1287 RemoveDegenerateEdges( tess );
1288 if ( !InitPriorityQ( tess ) ) return 0; /* if error */
1289 InitEdgeDict( tess );
1290
1291 while( (v = (TESSvertex *)pqExtractMin( tess->pq )) != NULL ) {
1292 for( ;; ) {
1293 vNext = (TESSvertex *)pqMinimum( tess->pq );
1294 if( vNext == NULL || ! VertEq( vNext, v )) break;
1295
1296 /* Merge together all vertices at exactly the same location.
1297 * This is more efficient than processing them one at a time,
1298 * simplifies the code (see ConnectLeftDegenerate), and is also
1299 * important for correct handling of certain degenerate cases.
1300 * For example, suppose there are two identical edges A and B
1301 * that belong to different contours (so without this code they would
1302 * be processed by separate sweep events). Suppose another edge C
1303 * crosses A and B from above. When A is processed, we split it
1304 * at its intersection point with C. However this also splits C,
1305 * so when we insert B we may compute a slightly different
1306 * intersection point. This might leave two edges with a small
1307 * gap between them. This kind of error is especially obvious
1308 * when using boundary extraction (TESS_BOUNDARY_ONLY).
1309 */
1310 vNext = (TESSvertex *)pqExtractMin( tess->pq );
1311 SpliceMergeVertices( tess, v->anEdge, vNext->anEdge );
1312 }
1313 SweepEvent( tess, v );
1314 }
1315
1316 /* Set tess->event for debugging purposes */
1317 tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org;
1318 DebugEvent( tess );
1319 DoneEdgeDict( tess );
1320 DonePriorityQ( tess );
1321
1322 if ( !RemoveDegenerateFaces( tess, tess->mesh ) ) return 0;
1323 tessMeshCheckMesh( tess->mesh );
1324
1325 return 1;
1326 }
1327