1 /*
2  * Copyright (C) 2008 Apple Inc. All rights reserved.
3  *
4  * Based on Abstract AVL Tree Template v1.5 by Walt Karas
5  * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1.  Redistributions of source code must retain the above copyright
12  *     notice, this list of conditions and the following disclaimer.
13  * 2.  Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
17  *     its contributors may be used to endorse or promote products derived
18  *     from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
21  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23  * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
24  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #ifndef AVL_TREE_H_
33 #define AVL_TREE_H_
34 
35 #include "Assertions.h"
36 
37 namespace WTF {
38 
39 // Here is the reference class for BSet.
40 //
41 // class BSet
42 //   {
43 //   public:
44 //
45 //     class ANY_bitref
46 //       {
47 //       public:
48 //         operator bool ();
49 //         void operator = (bool b);
50 //       };
51 //
52 //     // Does not have to initialize bits.
53 //     BSet();
54 //
55 //     // Must return a valid value for index when 0 <= index < maxDepth
56 //     ANY_bitref operator [] (unsigned index);
57 //
58 //     // Set all bits to 1.
59 //     void set();
60 //
61 //     // Set all bits to 0.
62 //     void reset();
63 //   };
64 
65 template<unsigned maxDepth>
66 class AVLTreeDefaultBSet {
67 public:
68     bool& operator[](unsigned i) { ASSERT(i < maxDepth); return m_data[i]; }
set()69     void set() { for (unsigned i = 0; i < maxDepth; ++i) m_data[i] = true; }
reset()70     void reset() { for (unsigned i = 0; i < maxDepth; ++i) m_data[i] = false; }
71 
72 private:
73     bool m_data[maxDepth];
74 };
75 
76 // How to determine maxDepth:
77 // d  Minimum number of nodes
78 // 2  2
79 // 3  4
80 // 4  7
81 // 5  12
82 // 6  20
83 // 7  33
84 // 8  54
85 // 9  88
86 // 10 143
87 // 11 232
88 // 12 376
89 // 13 609
90 // 14 986
91 // 15 1,596
92 // 16 2,583
93 // 17 4,180
94 // 18 6,764
95 // 19 10,945
96 // 20 17,710
97 // 21 28,656
98 // 22 46,367
99 // 23 75,024
100 // 24 121,392
101 // 25 196,417
102 // 26 317,810
103 // 27 514,228
104 // 28 832,039
105 // 29 1,346,268
106 // 30 2,178,308
107 // 31 3,524,577
108 // 32 5,702,886
109 // 33 9,227,464
110 // 34 14,930,351
111 // 35 24,157,816
112 // 36 39,088,168
113 // 37 63,245,985
114 // 38 102,334,154
115 // 39 165,580,140
116 // 40 267,914,295
117 // 41 433,494,436
118 // 42 701,408,732
119 // 43 1,134,903,169
120 // 44 1,836,311,902
121 // 45 2,971,215,072
122 //
123 // E.g., if, in a particular instantiation, the maximum number of nodes in a tree instance is 1,000,000, the maximum depth should be 28.
124 // You pick 28 because MN(28) is 832,039, which is less than or equal to 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000.
125 
126 template <class Abstractor, unsigned maxDepth = 32, class BSet = AVLTreeDefaultBSet<maxDepth> >
127 class AVLTree {
128 public:
129 
130     typedef typename Abstractor::key key;
131     typedef typename Abstractor::handle handle;
132     typedef typename Abstractor::size size;
133 
134     enum SearchType {
135         EQUAL = 1,
136         LESS = 2,
137         GREATER = 4,
138         LESS_EQUAL = EQUAL | LESS,
139         GREATER_EQUAL = EQUAL | GREATER
140     };
141 
142 
abstractor()143     Abstractor& abstractor() { return abs; }
144 
145     inline handle insert(handle h);
146 
147     inline handle search(key k, SearchType st = EQUAL);
148     inline handle search_least();
149     inline handle search_greatest();
150 
151     inline handle remove(key k);
152 
153     inline handle subst(handle new_node);
154 
purge()155     void purge() { abs.root = null(); }
156 
is_empty()157     bool is_empty() { return abs.root == null(); }
158 
AVLTree()159     AVLTree() { abs.root = null(); }
160 
161     class Iterator {
162     public:
163 
164         // Initialize depth to invalid value, to indicate iterator is
165         // invalid.   (Depth is zero-base.)
Iterator()166         Iterator() { depth = ~0U; }
167 
168         void start_iter(AVLTree &tree, key k, SearchType st = EQUAL)
169         {
170             // Mask of high bit in an int.
171             const int MASK_HIGH_BIT = (int) ~ ((~ (unsigned) 0) >> 1);
172 
173             // Save the tree that we're going to iterate through in a
174             // member variable.
175             tree_ = &tree;
176 
177             int cmp, target_cmp;
178             handle h = tree_->abs.root;
179             unsigned d = 0;
180 
181             depth = ~0U;
182 
183             if (h == null())
184               // Tree is empty.
185               return;
186 
187             if (st & LESS)
188               // Key can be greater than key of starting node.
189               target_cmp = 1;
190             else if (st & GREATER)
191               // Key can be less than key of starting node.
192               target_cmp = -1;
193             else
194               // Key must be same as key of starting node.
195               target_cmp = 0;
196 
197             for (;;) {
198                 cmp = cmp_k_n(k, h);
199                 if (cmp == 0) {
200                     if (st & EQUAL) {
201                         // Equal node was sought and found as starting node.
202                         depth = d;
203                         break;
204                     }
205                     cmp = -target_cmp;
206                 } else if (target_cmp != 0) {
207                     if (!((cmp ^ target_cmp) & MASK_HIGH_BIT)) {
208                         // cmp and target_cmp are both negative or both positive.
209                         depth = d;
210                     }
211                 }
212                 h = cmp < 0 ? get_lt(h) : get_gt(h);
213                 if (h == null())
214                     break;
215                 branch[d] = cmp > 0;
216                 path_h[d++] = h;
217             }
218         }
219 
start_iter_least(AVLTree & tree)220         void start_iter_least(AVLTree &tree)
221         {
222             tree_ = &tree;
223 
224             handle h = tree_->abs.root;
225 
226             depth = ~0U;
227 
228             branch.reset();
229 
230             while (h != null()) {
231                 if (depth != ~0U)
232                     path_h[depth] = h;
233                 depth++;
234                 h = get_lt(h);
235             }
236         }
237 
start_iter_greatest(AVLTree & tree)238         void start_iter_greatest(AVLTree &tree)
239         {
240             tree_ = &tree;
241 
242             handle h = tree_->abs.root;
243 
244             depth = ~0U;
245 
246             branch.set();
247 
248             while (h != null()) {
249                 if (depth != ~0U)
250                     path_h[depth] = h;
251                 depth++;
252                 h = get_gt(h);
253             }
254         }
255 
256         handle operator*()
257         {
258             if (depth == ~0U)
259                 return null();
260 
261             return depth == 0 ? tree_->abs.root : path_h[depth - 1];
262         }
263 
264         void operator++()
265         {
266             if (depth != ~0U) {
267                 handle h = get_gt(**this);
268                 if (h == null()) {
269                     do {
270                         if (depth == 0) {
271                             depth = ~0U;
272                             break;
273                         }
274                         depth--;
275                     } while (branch[depth]);
276                 } else {
277                     branch[depth] = true;
278                     path_h[depth++] = h;
279                     for (;;) {
280                         h = get_lt(h);
281                         if (h == null())
282                             break;
283                         branch[depth] = false;
284                         path_h[depth++] = h;
285                     }
286                 }
287             }
288         }
289 
290         void operator--()
291         {
292             if (depth != ~0U) {
293                 handle h = get_lt(**this);
294                 if (h == null())
295                     do {
296                         if (depth == 0) {
297                             depth = ~0U;
298                             break;
299                         }
300                         depth--;
301                     } while (!branch[depth]);
302                 else {
303                     branch[depth] = false;
304                     path_h[depth++] = h;
305                     for (;;) {
306                         h = get_gt(h);
307                         if (h == null())
308                             break;
309                         branch[depth] = true;
310                         path_h[depth++] = h;
311                     }
312                 }
313             }
314         }
315 
316         void operator++(int) { ++(*this); }
317         void operator--(int) { --(*this); }
318 
319     protected:
320 
321         // Tree being iterated over.
322         AVLTree *tree_;
323 
324         // Records a path into the tree.  If branch[n] is true, indicates
325         // take greater branch from the nth node in the path, otherwise
326         // take the less branch.  branch[0] gives branch from root, and
327         // so on.
328         BSet branch;
329 
330         // Zero-based depth of path into tree.
331         unsigned depth;
332 
333         // Handles of nodes in path from root to current node (returned by *).
334         handle path_h[maxDepth - 1];
335 
cmp_k_n(key k,handle h)336         int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); }
cmp_n_n(handle h1,handle h2)337         int cmp_n_n(handle h1, handle h2) { return tree_->abs.compare_node_node(h1, h2); }
get_lt(handle h)338         handle get_lt(handle h) { return tree_->abs.get_less(h); }
get_gt(handle h)339         handle get_gt(handle h) { return tree_->abs.get_greater(h); }
null()340         handle null() { return tree_->abs.null(); }
341     };
342 
343     template<typename fwd_iter>
build(fwd_iter p,size num_nodes)344     bool build(fwd_iter p, size num_nodes)
345     {
346         if (num_nodes == 0) {
347             abs.root = null();
348             return true;
349         }
350 
351         // Gives path to subtree being built.  If branch[N] is false, branch
352         // less from the node at depth N, if true branch greater.
353         BSet branch;
354 
355         // If rem[N] is true, then for the current subtree at depth N, it's
356         // greater subtree has one more node than it's less subtree.
357         BSet rem;
358 
359             // Depth of root node of current subtree.
360         unsigned depth = 0;
361 
362             // Number of nodes in current subtree.
363         size num_sub = num_nodes;
364 
365         // The algorithm relies on a stack of nodes whose less subtree has
366         // been built, but whose right subtree has not yet been built.  The
367         // stack is implemented as linked list.  The nodes are linked
368         // together by having the "greater" handle of a node set to the
369         // next node in the list.  "less_parent" is the handle of the first
370         // node in the list.
371         handle less_parent = null();
372 
373         // h is root of current subtree, child is one of its children.
374         handle h, child;
375 
376         for (;;) {
377             while (num_sub > 2) {
378                 // Subtract one for root of subtree.
379                 num_sub--;
380                 rem[depth] = !!(num_sub & 1);
381                 branch[depth++] = false;
382                 num_sub >>= 1;
383             }
384 
385             if (num_sub == 2) {
386                 // Build a subtree with two nodes, slanting to greater.
387                 // I arbitrarily chose to always have the extra node in the
388                 // greater subtree when there is an odd number of nodes to
389                 // split between the two subtrees.
390 
391                 h = *p;
392                 p++;
393                 child = *p;
394                 p++;
395                 set_lt(child, null());
396                 set_gt(child, null());
397                 set_bf(child, 0);
398                 set_gt(h, child);
399                 set_lt(h, null());
400                 set_bf(h, 1);
401             } else { // num_sub == 1
402                 // Build a subtree with one node.
403 
404                 h = *p;
405                 p++;
406                 set_lt(h, null());
407                 set_gt(h, null());
408                 set_bf(h, 0);
409             }
410 
411             while (depth) {
412                 depth--;
413                 if (!branch[depth])
414                     // We've completed a less subtree.
415                     break;
416 
417                 // We've completed a greater subtree, so attach it to
418                 // its parent (that is less than it).  We pop the parent
419                 // off the stack of less parents.
420                 child = h;
421                 h = less_parent;
422                 less_parent = get_gt(h);
423                 set_gt(h, child);
424                 // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1
425                 num_sub <<= 1;
426                 num_sub += 1 - rem[depth];
427                 if (num_sub & (num_sub - 1))
428                     // num_sub is not a power of 2
429                     set_bf(h, 0);
430                 else
431                     // num_sub is a power of 2
432                     set_bf(h, 1);
433             }
434 
435             if (num_sub == num_nodes)
436                 // We've completed the full tree.
437                 break;
438 
439             // The subtree we've completed is the less subtree of the
440             // next node in the sequence.
441 
442             child = h;
443             h = *p;
444             p++;
445             set_lt(h, child);
446 
447             // Put h into stack of less parents.
448             set_gt(h, less_parent);
449             less_parent = h;
450 
451             // Proceed to creating greater than subtree of h.
452             branch[depth] = true;
453             num_sub += rem[depth++];
454 
455         } // end for (;;)
456 
457         abs.root = h;
458 
459         return true;
460     }
461 
462 protected:
463 
464     friend class Iterator;
465 
466     // Create a class whose sole purpose is to take advantage of
467     // the "empty member" optimization.
468     struct abs_plus_root : public Abstractor {
469         // The handle of the root element in the AVL tree.
470         handle root;
471     };
472 
473     abs_plus_root abs;
474 
475 
get_lt(handle h)476     handle get_lt(handle h) { return abs.get_less(h); }
set_lt(handle h,handle lh)477     void set_lt(handle h, handle lh) { abs.set_less(h, lh); }
478 
get_gt(handle h)479     handle get_gt(handle h) { return abs.get_greater(h); }
set_gt(handle h,handle gh)480     void set_gt(handle h, handle gh) { abs.set_greater(h, gh); }
481 
get_bf(handle h)482     int get_bf(handle h) { return abs.get_balance_factor(h); }
set_bf(handle h,int bf)483     void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); }
484 
cmp_k_n(key k,handle h)485     int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); }
cmp_n_n(handle h1,handle h2)486     int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); }
487 
null()488     handle null() { return abs.null(); }
489 
490 private:
491 
492     // Balances subtree, returns handle of root node of subtree
493     // after balancing.
balance(handle bal_h)494     handle balance(handle bal_h)
495     {
496         handle deep_h;
497 
498         // Either the "greater than" or the "less than" subtree of
499         // this node has to be 2 levels deeper (or else it wouldn't
500         // need balancing).
501 
502         if (get_bf(bal_h) > 0) {
503             // "Greater than" subtree is deeper.
504 
505             deep_h = get_gt(bal_h);
506 
507             if (get_bf(deep_h) < 0) {
508                 handle old_h = bal_h;
509                 bal_h = get_lt(deep_h);
510 
511                 set_gt(old_h, get_lt(bal_h));
512                 set_lt(deep_h, get_gt(bal_h));
513                 set_lt(bal_h, old_h);
514                 set_gt(bal_h, deep_h);
515 
516                 int bf = get_bf(bal_h);
517                 if (bf != 0) {
518                     if (bf > 0) {
519                         set_bf(old_h, -1);
520                         set_bf(deep_h, 0);
521                     } else {
522                         set_bf(deep_h, 1);
523                         set_bf(old_h, 0);
524                     }
525                     set_bf(bal_h, 0);
526                 } else {
527                     set_bf(old_h, 0);
528                     set_bf(deep_h, 0);
529                 }
530             } else {
531                 set_gt(bal_h, get_lt(deep_h));
532                 set_lt(deep_h, bal_h);
533                 if (get_bf(deep_h) == 0) {
534                     set_bf(deep_h, -1);
535                     set_bf(bal_h, 1);
536                 } else {
537                     set_bf(deep_h, 0);
538                     set_bf(bal_h, 0);
539                 }
540                 bal_h = deep_h;
541             }
542         } else {
543             // "Less than" subtree is deeper.
544 
545             deep_h = get_lt(bal_h);
546 
547             if (get_bf(deep_h) > 0) {
548                 handle old_h = bal_h;
549                 bal_h = get_gt(deep_h);
550                 set_lt(old_h, get_gt(bal_h));
551                 set_gt(deep_h, get_lt(bal_h));
552                 set_gt(bal_h, old_h);
553                 set_lt(bal_h, deep_h);
554 
555                 int bf = get_bf(bal_h);
556                 if (bf != 0) {
557                     if (bf < 0) {
558                         set_bf(old_h, 1);
559                         set_bf(deep_h, 0);
560                     } else {
561                         set_bf(deep_h, -1);
562                         set_bf(old_h, 0);
563                     }
564                     set_bf(bal_h, 0);
565                 } else {
566                     set_bf(old_h, 0);
567                     set_bf(deep_h, 0);
568                 }
569             } else {
570                 set_lt(bal_h, get_gt(deep_h));
571                 set_gt(deep_h, bal_h);
572                 if (get_bf(deep_h) == 0) {
573                     set_bf(deep_h, 1);
574                     set_bf(bal_h, -1);
575                 } else {
576                     set_bf(deep_h, 0);
577                     set_bf(bal_h, 0);
578                 }
579                 bal_h = deep_h;
580             }
581         }
582 
583         return bal_h;
584     }
585 
586 };
587 
588 template <class Abstractor, unsigned maxDepth, class BSet>
589 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
insert(handle h)590 AVLTree<Abstractor, maxDepth, BSet>::insert(handle h)
591 {
592     set_lt(h, null());
593     set_gt(h, null());
594     set_bf(h, 0);
595 
596     if (abs.root == null())
597         abs.root = h;
598     else {
599         // Last unbalanced node encountered in search for insertion point.
600         handle unbal = null();
601         // Parent of last unbalanced node.
602         handle parent_unbal = null();
603         // Balance factor of last unbalanced node.
604         int unbal_bf;
605 
606         // Zero-based depth in tree.
607         unsigned depth = 0, unbal_depth = 0;
608 
609         // Records a path into the tree.  If branch[n] is true, indicates
610         // take greater branch from the nth node in the path, otherwise
611         // take the less branch.  branch[0] gives branch from root, and
612         // so on.
613         BSet branch;
614 
615         handle hh = abs.root;
616         handle parent = null();
617         int cmp;
618 
619         do {
620             if (get_bf(hh) != 0) {
621                 unbal = hh;
622                 parent_unbal = parent;
623                 unbal_depth = depth;
624             }
625             cmp = cmp_n_n(h, hh);
626             if (cmp == 0)
627                 // Duplicate key.
628                 return hh;
629             parent = hh;
630             hh = cmp < 0 ? get_lt(hh) : get_gt(hh);
631             branch[depth++] = cmp > 0;
632         } while (hh != null());
633 
634         //  Add node to insert as leaf of tree.
635         if (cmp < 0)
636             set_lt(parent, h);
637         else
638             set_gt(parent, h);
639 
640         depth = unbal_depth;
641 
642         if (unbal == null())
643             hh = abs.root;
644         else {
645             cmp = branch[depth++] ? 1 : -1;
646             unbal_bf = get_bf(unbal);
647             if (cmp < 0)
648                 unbal_bf--;
649             else  // cmp > 0
650                 unbal_bf++;
651             hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal);
652             if ((unbal_bf != -2) && (unbal_bf != 2)) {
653                 // No rebalancing of tree is necessary.
654                 set_bf(unbal, unbal_bf);
655                 unbal = null();
656             }
657         }
658 
659         if (hh != null())
660             while (h != hh) {
661                 cmp = branch[depth++] ? 1 : -1;
662                 if (cmp < 0) {
663                     set_bf(hh, -1);
664                     hh = get_lt(hh);
665                 } else { // cmp > 0
666                     set_bf(hh, 1);
667                     hh = get_gt(hh);
668                 }
669             }
670 
671         if (unbal != null()) {
672             unbal = balance(unbal);
673             if (parent_unbal == null())
674                 abs.root = unbal;
675             else {
676                 depth = unbal_depth - 1;
677                 cmp = branch[depth] ? 1 : -1;
678                 if (cmp < 0)
679                     set_lt(parent_unbal, unbal);
680                 else  // cmp > 0
681                     set_gt(parent_unbal, unbal);
682             }
683         }
684     }
685 
686     return h;
687 }
688 
689 template <class Abstractor, unsigned maxDepth, class BSet>
690 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
search(key k,typename AVLTree<Abstractor,maxDepth,BSet>::SearchType st)691 AVLTree<Abstractor, maxDepth, BSet>::search(key k, typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st)
692 {
693     const int MASK_HIGH_BIT = (int) ~ ((~ (unsigned) 0) >> 1);
694 
695     int cmp, target_cmp;
696     handle match_h = null();
697     handle h = abs.root;
698 
699     if (st & LESS)
700         target_cmp = 1;
701     else if (st & GREATER)
702         target_cmp = -1;
703     else
704         target_cmp = 0;
705 
706     while (h != null()) {
707         cmp = cmp_k_n(k, h);
708         if (cmp == 0) {
709             if (st & EQUAL) {
710                 match_h = h;
711                 break;
712             }
713             cmp = -target_cmp;
714         } else if (target_cmp != 0)
715             if (!((cmp ^ target_cmp) & MASK_HIGH_BIT))
716                 // cmp and target_cmp are both positive or both negative.
717                 match_h = h;
718         h = cmp < 0 ? get_lt(h) : get_gt(h);
719     }
720 
721     return match_h;
722 }
723 
724 template <class Abstractor, unsigned maxDepth, class BSet>
725 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
search_least()726 AVLTree<Abstractor, maxDepth, BSet>::search_least()
727 {
728     handle h = abs.root, parent = null();
729 
730     while (h != null()) {
731         parent = h;
732         h = get_lt(h);
733     }
734 
735     return parent;
736 }
737 
738 template <class Abstractor, unsigned maxDepth, class BSet>
739 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
search_greatest()740 AVLTree<Abstractor, maxDepth, BSet>::search_greatest()
741 {
742     handle h = abs.root, parent = null();
743 
744     while (h != null()) {
745         parent = h;
746         h = get_gt(h);
747     }
748 
749     return parent;
750 }
751 
752 template <class Abstractor, unsigned maxDepth, class BSet>
753 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
remove(key k)754 AVLTree<Abstractor, maxDepth, BSet>::remove(key k)
755 {
756     // Zero-based depth in tree.
757     unsigned depth = 0, rm_depth;
758 
759     // Records a path into the tree.  If branch[n] is true, indicates
760     // take greater branch from the nth node in the path, otherwise
761     // take the less branch.  branch[0] gives branch from root, and
762     // so on.
763     BSet branch;
764 
765     handle h = abs.root;
766     handle parent = null(), child;
767     int cmp, cmp_shortened_sub_with_path = 0;
768 
769     for (;;) {
770         if (h == null())
771             // No node in tree with given key.
772             return null();
773         cmp = cmp_k_n(k, h);
774         if (cmp == 0)
775             // Found node to remove.
776             break;
777         parent = h;
778         h = cmp < 0 ? get_lt(h) : get_gt(h);
779         branch[depth++] = cmp > 0;
780         cmp_shortened_sub_with_path = cmp;
781     }
782     handle rm = h;
783     handle parent_rm = parent;
784     rm_depth = depth;
785 
786     // If the node to remove is not a leaf node, we need to get a
787     // leaf node, or a node with a single leaf as its child, to put
788     // in the place of the node to remove.  We will get the greatest
789     // node in the less subtree (of the node to remove), or the least
790     // node in the greater subtree.  We take the leaf node from the
791     // deeper subtree, if there is one.
792 
793     if (get_bf(h) < 0) {
794         child = get_lt(h);
795         branch[depth] = false;
796         cmp = -1;
797     } else {
798         child = get_gt(h);
799         branch[depth] = true;
800         cmp = 1;
801     }
802     depth++;
803 
804     if (child != null()) {
805         cmp = -cmp;
806         do {
807             parent = h;
808             h = child;
809             if (cmp < 0) {
810                 child = get_lt(h);
811                 branch[depth] = false;
812             } else {
813                 child = get_gt(h);
814                 branch[depth] = true;
815             }
816             depth++;
817         } while (child != null());
818 
819         if (parent == rm)
820             // Only went through do loop once.  Deleted node will be replaced
821             // in the tree structure by one of its immediate children.
822             cmp_shortened_sub_with_path = -cmp;
823         else
824             cmp_shortened_sub_with_path = cmp;
825 
826         // Get the handle of the opposite child, which may not be null.
827         child = cmp > 0 ? get_lt(h) : get_gt(h);
828     }
829 
830     if (parent == null())
831         // There were only 1 or 2 nodes in this tree.
832         abs.root = child;
833     else if (cmp_shortened_sub_with_path < 0)
834         set_lt(parent, child);
835     else
836         set_gt(parent, child);
837 
838     // "path" is the parent of the subtree being eliminated or reduced
839     // from a depth of 2 to 1.  If "path" is the node to be removed, we
840     // set path to the node we're about to poke into the position of the
841     // node to be removed.
842     handle path = parent == rm ? h : parent;
843 
844     if (h != rm) {
845         // Poke in the replacement for the node to be removed.
846         set_lt(h, get_lt(rm));
847         set_gt(h, get_gt(rm));
848         set_bf(h, get_bf(rm));
849         if (parent_rm == null())
850             abs.root = h;
851         else {
852             depth = rm_depth - 1;
853             if (branch[depth])
854                 set_gt(parent_rm, h);
855             else
856                 set_lt(parent_rm, h);
857         }
858     }
859 
860     if (path != null()) {
861         // Create a temporary linked list from the parent of the path node
862         // to the root node.
863         h = abs.root;
864         parent = null();
865         depth = 0;
866         while (h != path) {
867             if (branch[depth++]) {
868                 child = get_gt(h);
869                 set_gt(h, parent);
870             } else {
871                 child = get_lt(h);
872                 set_lt(h, parent);
873             }
874             parent = h;
875             h = child;
876         }
877 
878         // Climb from the path node to the root node using the linked
879         // list, restoring the tree structure and rebalancing as necessary.
880         bool reduced_depth = true;
881         int bf;
882         cmp = cmp_shortened_sub_with_path;
883         for (;;) {
884             if (reduced_depth) {
885                 bf = get_bf(h);
886                 if (cmp < 0)
887                     bf++;
888                 else  // cmp > 0
889                     bf--;
890                 if ((bf == -2) || (bf == 2)) {
891                     h = balance(h);
892                     bf = get_bf(h);
893                 } else
894                     set_bf(h, bf);
895                 reduced_depth = (bf == 0);
896             }
897             if (parent == null())
898                 break;
899             child = h;
900             h = parent;
901             cmp = branch[--depth] ? 1 : -1;
902             if (cmp < 0)    {
903                 parent = get_lt(h);
904                 set_lt(h, child);
905             } else {
906                 parent = get_gt(h);
907                 set_gt(h, child);
908             }
909         }
910         abs.root = h;
911     }
912 
913     return rm;
914 }
915 
916 template <class Abstractor, unsigned maxDepth, class BSet>
917 inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
subst(handle new_node)918 AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node)
919 {
920     handle h = abs.root;
921     handle parent = null();
922     int cmp, last_cmp;
923 
924     /* Search for node already in tree with same key. */
925     for (;;) {
926         if (h == null())
927             /* No node in tree with same key as new node. */
928             return null();
929         cmp = cmp_n_n(new_node, h);
930         if (cmp == 0)
931             /* Found the node to substitute new one for. */
932             break;
933         last_cmp = cmp;
934         parent = h;
935         h = cmp < 0 ? get_lt(h) : get_gt(h);
936     }
937 
938     /* Copy tree housekeeping fields from node in tree to new node. */
939     set_lt(new_node, get_lt(h));
940     set_gt(new_node, get_gt(h));
941     set_bf(new_node, get_bf(h));
942 
943     if (parent == null())
944         /* New node is also new root. */
945         abs.root = new_node;
946     else {
947         /* Make parent point to new node. */
948         if (last_cmp < 0)
949             set_lt(parent, new_node);
950         else
951             set_gt(parent, new_node);
952     }
953 
954     return h;
955 }
956 
957 }
958 
959 #endif
960