1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package internal
6
7// An extFloat represents an extended floating-point number, with more
8// precision than a float64. It does not try to save bits: the
9// number represented by the structure is mant*(2^exp), with a negative
10// sign if neg is true.
11type extFloat struct {
12	mant uint64
13	exp  int
14	neg  bool
15}
16
17// Powers of ten taken from double-conversion library.
18// http://code.google.com/p/double-conversion/
19const (
20	firstPowerOfTen = -348
21	stepPowerOfTen  = 8
22)
23
24var smallPowersOfTen = [...]extFloat{
25	{1 << 63, -63, false},        // 1
26	{0xa << 60, -60, false},      // 1e1
27	{0x64 << 57, -57, false},     // 1e2
28	{0x3e8 << 54, -54, false},    // 1e3
29	{0x2710 << 50, -50, false},   // 1e4
30	{0x186a0 << 47, -47, false},  // 1e5
31	{0xf4240 << 44, -44, false},  // 1e6
32	{0x989680 << 40, -40, false}, // 1e7
33}
34
35var powersOfTen = [...]extFloat{
36	{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
37	{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
38	{0x8b16fb203055ac76, -1166, false}, // 10^-332
39	{0xcf42894a5dce35ea, -1140, false}, // 10^-324
40	{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
41	{0xe61acf033d1a45df, -1087, false}, // 10^-308
42	{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
43	{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
44	{0xbe5691ef416bd60c, -1007, false}, // 10^-284
45	{0x8dd01fad907ffc3c, -980, false},  // 10^-276
46	{0xd3515c2831559a83, -954, false},  // 10^-268
47	{0x9d71ac8fada6c9b5, -927, false},  // 10^-260
48	{0xea9c227723ee8bcb, -901, false},  // 10^-252
49	{0xaecc49914078536d, -874, false},  // 10^-244
50	{0x823c12795db6ce57, -847, false},  // 10^-236
51	{0xc21094364dfb5637, -821, false},  // 10^-228
52	{0x9096ea6f3848984f, -794, false},  // 10^-220
53	{0xd77485cb25823ac7, -768, false},  // 10^-212
54	{0xa086cfcd97bf97f4, -741, false},  // 10^-204
55	{0xef340a98172aace5, -715, false},  // 10^-196
56	{0xb23867fb2a35b28e, -688, false},  // 10^-188
57	{0x84c8d4dfd2c63f3b, -661, false},  // 10^-180
58	{0xc5dd44271ad3cdba, -635, false},  // 10^-172
59	{0x936b9fcebb25c996, -608, false},  // 10^-164
60	{0xdbac6c247d62a584, -582, false},  // 10^-156
61	{0xa3ab66580d5fdaf6, -555, false},  // 10^-148
62	{0xf3e2f893dec3f126, -529, false},  // 10^-140
63	{0xb5b5ada8aaff80b8, -502, false},  // 10^-132
64	{0x87625f056c7c4a8b, -475, false},  // 10^-124
65	{0xc9bcff6034c13053, -449, false},  // 10^-116
66	{0x964e858c91ba2655, -422, false},  // 10^-108
67	{0xdff9772470297ebd, -396, false},  // 10^-100
68	{0xa6dfbd9fb8e5b88f, -369, false},  // 10^-92
69	{0xf8a95fcf88747d94, -343, false},  // 10^-84
70	{0xb94470938fa89bcf, -316, false},  // 10^-76
71	{0x8a08f0f8bf0f156b, -289, false},  // 10^-68
72	{0xcdb02555653131b6, -263, false},  // 10^-60
73	{0x993fe2c6d07b7fac, -236, false},  // 10^-52
74	{0xe45c10c42a2b3b06, -210, false},  // 10^-44
75	{0xaa242499697392d3, -183, false},  // 10^-36
76	{0xfd87b5f28300ca0e, -157, false},  // 10^-28
77	{0xbce5086492111aeb, -130, false},  // 10^-20
78	{0x8cbccc096f5088cc, -103, false},  // 10^-12
79	{0xd1b71758e219652c, -77, false},   // 10^-4
80	{0x9c40000000000000, -50, false},   // 10^4
81	{0xe8d4a51000000000, -24, false},   // 10^12
82	{0xad78ebc5ac620000, 3, false},     // 10^20
83	{0x813f3978f8940984, 30, false},    // 10^28
84	{0xc097ce7bc90715b3, 56, false},    // 10^36
85	{0x8f7e32ce7bea5c70, 83, false},    // 10^44
86	{0xd5d238a4abe98068, 109, false},   // 10^52
87	{0x9f4f2726179a2245, 136, false},   // 10^60
88	{0xed63a231d4c4fb27, 162, false},   // 10^68
89	{0xb0de65388cc8ada8, 189, false},   // 10^76
90	{0x83c7088e1aab65db, 216, false},   // 10^84
91	{0xc45d1df942711d9a, 242, false},   // 10^92
92	{0x924d692ca61be758, 269, false},   // 10^100
93	{0xda01ee641a708dea, 295, false},   // 10^108
94	{0xa26da3999aef774a, 322, false},   // 10^116
95	{0xf209787bb47d6b85, 348, false},   // 10^124
96	{0xb454e4a179dd1877, 375, false},   // 10^132
97	{0x865b86925b9bc5c2, 402, false},   // 10^140
98	{0xc83553c5c8965d3d, 428, false},   // 10^148
99	{0x952ab45cfa97a0b3, 455, false},   // 10^156
100	{0xde469fbd99a05fe3, 481, false},   // 10^164
101	{0xa59bc234db398c25, 508, false},   // 10^172
102	{0xf6c69a72a3989f5c, 534, false},   // 10^180
103	{0xb7dcbf5354e9bece, 561, false},   // 10^188
104	{0x88fcf317f22241e2, 588, false},   // 10^196
105	{0xcc20ce9bd35c78a5, 614, false},   // 10^204
106	{0x98165af37b2153df, 641, false},   // 10^212
107	{0xe2a0b5dc971f303a, 667, false},   // 10^220
108	{0xa8d9d1535ce3b396, 694, false},   // 10^228
109	{0xfb9b7cd9a4a7443c, 720, false},   // 10^236
110	{0xbb764c4ca7a44410, 747, false},   // 10^244
111	{0x8bab8eefb6409c1a, 774, false},   // 10^252
112	{0xd01fef10a657842c, 800, false},   // 10^260
113	{0x9b10a4e5e9913129, 827, false},   // 10^268
114	{0xe7109bfba19c0c9d, 853, false},   // 10^276
115	{0xac2820d9623bf429, 880, false},   // 10^284
116	{0x80444b5e7aa7cf85, 907, false},   // 10^292
117	{0xbf21e44003acdd2d, 933, false},   // 10^300
118	{0x8e679c2f5e44ff8f, 960, false},   // 10^308
119	{0xd433179d9c8cb841, 986, false},   // 10^316
120	{0x9e19db92b4e31ba9, 1013, false},  // 10^324
121	{0xeb96bf6ebadf77d9, 1039, false},  // 10^332
122	{0xaf87023b9bf0ee6b, 1066, false},  // 10^340
123}
124
125// floatBits returns the bits of the float64 that best approximates
126// the extFloat passed as receiver. Overflow is set to true if
127// the resulting float64 is ±Inf.
128func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
129	f.Normalize()
130
131	exp := f.exp + 63
132
133	// Exponent too small.
134	if exp < flt.bias+1 {
135		n := flt.bias + 1 - exp
136		f.mant >>= uint(n)
137		exp += n
138	}
139
140	// Extract 1+flt.mantbits bits from the 64-bit mantissa.
141	mant := f.mant >> (63 - flt.mantbits)
142	if f.mant&(1<<(62-flt.mantbits)) != 0 {
143		// Round up.
144		mant += 1
145	}
146
147	// Rounding might have added a bit; shift down.
148	if mant == 2<<flt.mantbits {
149		mant >>= 1
150		exp++
151	}
152
153	// Infinities.
154	if exp-flt.bias >= 1<<flt.expbits-1 {
155		// ±Inf
156		mant = 0
157		exp = 1<<flt.expbits - 1 + flt.bias
158		overflow = true
159	} else if mant&(1<<flt.mantbits) == 0 {
160		// Denormalized?
161		exp = flt.bias
162	}
163	// Assemble bits.
164	bits = mant & (uint64(1)<<flt.mantbits - 1)
165	bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
166	if f.neg {
167		bits |= 1 << (flt.mantbits + flt.expbits)
168	}
169	return
170}
171
172// AssignComputeBounds sets f to the floating point value
173// defined by mant, exp and precision given by flt. It returns
174// lower, upper such that any number in the closed interval
175// [lower, upper] is converted back to the same floating point number.
176func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
177	f.mant = mant
178	f.exp = exp - int(flt.mantbits)
179	f.neg = neg
180	if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
181		// An exact integer
182		f.mant >>= uint(-f.exp)
183		f.exp = 0
184		return *f, *f
185	}
186	expBiased := exp - flt.bias
187
188	upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
189	if mant != 1<<flt.mantbits || expBiased == 1 {
190		lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
191	} else {
192		lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
193	}
194	return
195}
196
197// Normalize normalizes f so that the highest bit of the mantissa is
198// set, and returns the number by which the mantissa was left-shifted.
199func (f *extFloat) Normalize() (shift uint) {
200	mant, exp := f.mant, f.exp
201	if mant == 0 {
202		return 0
203	}
204	if mant>>(64-32) == 0 {
205		mant <<= 32
206		exp -= 32
207	}
208	if mant>>(64-16) == 0 {
209		mant <<= 16
210		exp -= 16
211	}
212	if mant>>(64-8) == 0 {
213		mant <<= 8
214		exp -= 8
215	}
216	if mant>>(64-4) == 0 {
217		mant <<= 4
218		exp -= 4
219	}
220	if mant>>(64-2) == 0 {
221		mant <<= 2
222		exp -= 2
223	}
224	if mant>>(64-1) == 0 {
225		mant <<= 1
226		exp -= 1
227	}
228	shift = uint(f.exp - exp)
229	f.mant, f.exp = mant, exp
230	return
231}
232
233// Multiply sets f to the product f*g: the result is correctly rounded,
234// but not normalized.
235func (f *extFloat) Multiply(g extFloat) {
236	fhi, flo := f.mant>>32, uint64(uint32(f.mant))
237	ghi, glo := g.mant>>32, uint64(uint32(g.mant))
238
239	// Cross products.
240	cross1 := fhi * glo
241	cross2 := flo * ghi
242
243	// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
244	f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
245	rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
246	// Round up.
247	rem += (1 << 31)
248
249	f.mant += (rem >> 32)
250	f.exp = f.exp + g.exp + 64
251}
252
253var uint64pow10 = [...]uint64{
254	1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
255	1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
256}
257
258// AssignDecimal sets f to an approximate value mantissa*10^exp. It
259// returns true if the value represented by f is guaranteed to be the
260// best approximation of d after being rounded to a float64 or
261// float32 depending on flt.
262func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
263	const uint64digits = 19
264	const errorscale = 8
265	errors := 0 // An upper bound for error, computed in errorscale*ulp.
266	if trunc {
267		// the decimal number was truncated.
268		errors += errorscale / 2
269	}
270
271	f.mant = mantissa
272	f.exp = 0
273	f.neg = neg
274
275	// Multiply by powers of ten.
276	i := (exp10 - firstPowerOfTen) / stepPowerOfTen
277	if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
278		return false
279	}
280	adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
281
282	// We multiply by exp%step
283	if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
284		// We can multiply the mantissa exactly.
285		f.mant *= uint64pow10[adjExp]
286		f.Normalize()
287	} else {
288		f.Normalize()
289		f.Multiply(smallPowersOfTen[adjExp])
290		errors += errorscale / 2
291	}
292
293	// We multiply by 10 to the exp - exp%step.
294	f.Multiply(powersOfTen[i])
295	if errors > 0 {
296		errors += 1
297	}
298	errors += errorscale / 2
299
300	// Normalize
301	shift := f.Normalize()
302	errors <<= shift
303
304	// Now f is a good approximation of the decimal.
305	// Check whether the error is too large: that is, if the mantissa
306	// is perturbated by the error, the resulting float64 will change.
307	// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
308	//
309	// In many cases the approximation will be good enough.
310	denormalExp := flt.bias - 63
311	var extrabits uint
312	if f.exp <= denormalExp {
313		// f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
314		extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
315	} else {
316		extrabits = uint(63 - flt.mantbits)
317	}
318
319	halfway := uint64(1) << (extrabits - 1)
320	mant_extra := f.mant & (1<<extrabits - 1)
321
322	// Do a signed comparison here! If the error estimate could make
323	// the mantissa round differently for the conversion to double,
324	// then we can't give a definite answer.
325	if int64(halfway)-int64(errors) < int64(mant_extra) &&
326		int64(mant_extra) < int64(halfway)+int64(errors) {
327		return false
328	}
329	return true
330}
331
332// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
333// f by an approximate power of ten 10^-exp, and returns exp10, so
334// that f*10^exp10 has the same value as the old f, up to an ulp,
335// as well as the index of 10^-exp in the powersOfTen table.
336func (f *extFloat) frexp10() (exp10, index int) {
337	// The constants expMin and expMax constrain the final value of the
338	// binary exponent of f. We want a small integral part in the result
339	// because finding digits of an integer requires divisions, whereas
340	// digits of the fractional part can be found by repeatedly multiplying
341	// by 10.
342	const expMin = -60
343	const expMax = -32
344	// Find power of ten such that x * 10^n has a binary exponent
345	// between expMin and expMax.
346	approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
347	i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
348Loop:
349	for {
350		exp := f.exp + powersOfTen[i].exp + 64
351		switch {
352		case exp < expMin:
353			i++
354		case exp > expMax:
355			i--
356		default:
357			break Loop
358		}
359	}
360	// Apply the desired decimal shift on f. It will have exponent
361	// in the desired range. This is multiplication by 10^-exp10.
362	f.Multiply(powersOfTen[i])
363
364	return -(firstPowerOfTen + i*stepPowerOfTen), i
365}
366
367// frexp10Many applies a common shift by a power of ten to a, b, c.
368func frexp10Many(a, b, c *extFloat) (exp10 int) {
369	exp10, i := c.frexp10()
370	a.Multiply(powersOfTen[i])
371	b.Multiply(powersOfTen[i])
372	return
373}
374
375// FixedDecimal stores in d the first n significant digits
376// of the decimal representation of f. It returns false
377// if it cannot be sure of the answer.
378func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
379	if f.mant == 0 {
380		d.nd = 0
381		d.dp = 0
382		d.neg = f.neg
383		return true
384	}
385	if n == 0 {
386		panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
387	}
388	// Multiply by an appropriate power of ten to have a reasonable
389	// number to process.
390	f.Normalize()
391	exp10, _ := f.frexp10()
392
393	shift := uint(-f.exp)
394	integer := uint32(f.mant >> shift)
395	fraction := f.mant - (uint64(integer) << shift)
396	ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
397
398	// Write exactly n digits to d.
399	needed := n        // how many digits are left to write.
400	integerDigits := 0 // the number of decimal digits of integer.
401	pow10 := uint64(1) // the power of ten by which f was scaled.
402	for i, pow := 0, uint64(1); i < 20; i++ {
403		if pow > uint64(integer) {
404			integerDigits = i
405			break
406		}
407		pow *= 10
408	}
409	rest := integer
410	if integerDigits > needed {
411		// the integral part is already large, trim the last digits.
412		pow10 = uint64pow10[integerDigits-needed]
413		integer /= uint32(pow10)
414		rest -= integer * uint32(pow10)
415	} else {
416		rest = 0
417	}
418
419	// Write the digits of integer: the digits of rest are omitted.
420	var buf [32]byte
421	pos := len(buf)
422	for v := integer; v > 0; {
423		v1 := v / 10
424		v -= 10 * v1
425		pos--
426		buf[pos] = byte(v + '0')
427		v = v1
428	}
429	for i := pos; i < len(buf); i++ {
430		d.d[i-pos] = buf[i]
431	}
432	nd := len(buf) - pos
433	d.nd = nd
434	d.dp = integerDigits + exp10
435	needed -= nd
436
437	if needed > 0 {
438		if rest != 0 || pow10 != 1 {
439			panic("strconv: internal error, rest != 0 but needed > 0")
440		}
441		// Emit digits for the fractional part. Each time, 10*fraction
442		// fits in a uint64 without overflow.
443		for needed > 0 {
444			fraction *= 10
445			ε *= 10 // the uncertainty scales as we multiply by ten.
446			if 2*ε > 1<<shift {
447				// the error is so large it could modify which digit to write, abort.
448				return false
449			}
450			digit := fraction >> shift
451			d.d[nd] = byte(digit + '0')
452			fraction -= digit << shift
453			nd++
454			needed--
455		}
456		d.nd = nd
457	}
458
459	// We have written a truncation of f (a numerator / 10^d.dp). The remaining part
460	// can be interpreted as a small number (< 1) to be added to the last digit of the
461	// numerator.
462	//
463	// If rest > 0, the amount is:
464	//    (rest<<shift | fraction) / (pow10 << shift)
465	//    fraction being known with a ±ε uncertainty.
466	//    The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
467	//
468	// If rest = 0, pow10 == 1 and the amount is
469	//    fraction / (1 << shift)
470	//    fraction being known with a ±ε uncertainty.
471	//
472	// We pass this information to the rounding routine for adjustment.
473
474	ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
475	if !ok {
476		return false
477	}
478	// Trim trailing zeros.
479	for i := d.nd - 1; i >= 0; i-- {
480		if d.d[i] != '0' {
481			d.nd = i + 1
482			break
483		}
484	}
485	return true
486}
487
488// adjustLastDigitFixed assumes d contains the representation of the integral part
489// of some number, whose fractional part is num / (den << shift). The numerator
490// num is only known up to an uncertainty of size ε, assumed to be less than
491// (den << shift)/2.
492//
493// It will increase the last digit by one to account for correct rounding, typically
494// when the fractional part is greater than 1/2, and will return false if ε is such
495// that no correct answer can be given.
496func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
497	if num > den<<shift {
498		panic("strconv: num > den<<shift in adjustLastDigitFixed")
499	}
500	if 2*ε > den<<shift {
501		panic("strconv: ε > (den<<shift)/2")
502	}
503	if 2*(num+ε) < den<<shift {
504		return true
505	}
506	if 2*(num-ε) > den<<shift {
507		// increment d by 1.
508		i := d.nd - 1
509		for ; i >= 0; i-- {
510			if d.d[i] == '9' {
511				d.nd--
512			} else {
513				break
514			}
515		}
516		if i < 0 {
517			d.d[0] = '1'
518			d.nd = 1
519			d.dp++
520		} else {
521			d.d[i]++
522		}
523		return true
524	}
525	return false
526}
527
528// ShortestDecimal stores in d the shortest decimal representation of f
529// which belongs to the open interval (lower, upper), where f is supposed
530// to lie. It returns false whenever the result is unsure. The implementation
531// uses the Grisu3 algorithm.
532func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
533	if f.mant == 0 {
534		d.nd = 0
535		d.dp = 0
536		d.neg = f.neg
537		return true
538	}
539	if f.exp == 0 && *lower == *f && *lower == *upper {
540		// an exact integer.
541		var buf [24]byte
542		n := len(buf) - 1
543		for v := f.mant; v > 0; {
544			v1 := v / 10
545			v -= 10 * v1
546			buf[n] = byte(v + '0')
547			n--
548			v = v1
549		}
550		nd := len(buf) - n - 1
551		for i := 0; i < nd; i++ {
552			d.d[i] = buf[n+1+i]
553		}
554		d.nd, d.dp = nd, nd
555		for d.nd > 0 && d.d[d.nd-1] == '0' {
556			d.nd--
557		}
558		if d.nd == 0 {
559			d.dp = 0
560		}
561		d.neg = f.neg
562		return true
563	}
564	upper.Normalize()
565	// Uniformize exponents.
566	if f.exp > upper.exp {
567		f.mant <<= uint(f.exp - upper.exp)
568		f.exp = upper.exp
569	}
570	if lower.exp > upper.exp {
571		lower.mant <<= uint(lower.exp - upper.exp)
572		lower.exp = upper.exp
573	}
574
575	exp10 := frexp10Many(lower, f, upper)
576	// Take a safety margin due to rounding in frexp10Many, but we lose precision.
577	upper.mant++
578	lower.mant--
579
580	// The shortest representation of f is either rounded up or down, but
581	// in any case, it is a truncation of upper.
582	shift := uint(-upper.exp)
583	integer := uint32(upper.mant >> shift)
584	fraction := upper.mant - (uint64(integer) << shift)
585
586	// How far we can go down from upper until the result is wrong.
587	allowance := upper.mant - lower.mant
588	// How far we should go to get a very precise result.
589	targetDiff := upper.mant - f.mant
590
591	// Count integral digits: there are at most 10.
592	var integerDigits int
593	for i, pow := 0, uint64(1); i < 20; i++ {
594		if pow > uint64(integer) {
595			integerDigits = i
596			break
597		}
598		pow *= 10
599	}
600	for i := 0; i < integerDigits; i++ {
601		pow := uint64pow10[integerDigits-i-1]
602		digit := integer / uint32(pow)
603		d.d[i] = byte(digit + '0')
604		integer -= digit * uint32(pow)
605		// evaluate whether we should stop.
606		if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
607			d.nd = i + 1
608			d.dp = integerDigits + exp10
609			d.neg = f.neg
610			// Sometimes allowance is so large the last digit might need to be
611			// decremented to get closer to f.
612			return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
613		}
614	}
615	d.nd = integerDigits
616	d.dp = d.nd + exp10
617	d.neg = f.neg
618
619	// Compute digits of the fractional part. At each step fraction does not
620	// overflow. The choice of minExp implies that fraction is less than 2^60.
621	var digit int
622	multiplier := uint64(1)
623	for {
624		fraction *= 10
625		multiplier *= 10
626		digit = int(fraction >> shift)
627		d.d[d.nd] = byte(digit + '0')
628		d.nd++
629		fraction -= uint64(digit) << shift
630		if fraction < allowance*multiplier {
631			// We are in the admissible range. Note that if allowance is about to
632			// overflow, that is, allowance > 2^64/10, the condition is automatically
633			// true due to the limited range of fraction.
634			return adjustLastDigit(d,
635				fraction, targetDiff*multiplier, allowance*multiplier,
636				1<<shift, multiplier*2)
637		}
638	}
639}
640
641// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
642// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
643// It assumes that a decimal digit is worth ulpDecimal*ε, and that
644// all data is known with a error estimate of ulpBinary*ε.
645func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
646	if ulpDecimal < 2*ulpBinary {
647		// Approximation is too wide.
648		return false
649	}
650	for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
651		d.d[d.nd-1]--
652		currentDiff += ulpDecimal
653	}
654	if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
655		// we have two choices, and don't know what to do.
656		return false
657	}
658	if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
659		// we went too far
660		return false
661	}
662	if d.nd == 1 && d.d[0] == '0' {
663		// the number has actually reached zero.
664		d.nd = 0
665		d.dp = 0
666	}
667	return true
668}
669