1 /*
2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator. The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
6 **
7 ** The author of this program disclaims copyright.
8 */
9 #include <stdio.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <stdlib.h>
14 #include <assert.h>
15
16 #ifndef __WIN32__
17 # if defined(_WIN32) || defined(WIN32)
18 # define __WIN32__
19 # endif
20 #endif
21
22 #ifdef __WIN32__
23 extern int access();
24 #else
25 #include <unistd.h>
26 #endif
27
28 /* #define PRIVATE static */
29 #define PRIVATE
30
31 #ifdef TEST
32 #define MAXRHS 5 /* Set low to exercise exception code */
33 #else
34 #define MAXRHS 1000
35 #endif
36
37 static int showPrecedenceConflict = 0;
38 static const char **made_files = NULL;
39 static int made_files_count = 0;
40 static int successful_exit = 0;
LemonAtExit(void)41 static void LemonAtExit(void)
42 {
43 /* if we failed, delete (most) files we made, to unconfuse build tools. */
44 int i;
45 for (i = 0; i < made_files_count; i++) {
46 if (!successful_exit) {
47 remove(made_files[i]);
48 }
49 }
50 free(made_files);
51 made_files_count = 0;
52 made_files = NULL;
53 }
54
55 static char *msort(char*,char**,int(*)(const char*,const char*));
56
57 /*
58 ** Compilers are getting increasingly pedantic about type conversions
59 ** as C evolves ever closer to Ada.... To work around the latest problems
60 ** we have to define the following variant of strlen().
61 */
62 #define lemonStrlen(X) ((int)strlen(X))
63
64 /* a few forward declarations... */
65 struct rule;
66 struct lemon;
67 struct action;
68
69 static struct action *Action_new(void);
70 static struct action *Action_sort(struct action *);
71
72 /********** From the file "build.h" ************************************/
73 void FindRulePrecedences();
74 void FindFirstSets();
75 void FindStates();
76 void FindLinks();
77 void FindFollowSets();
78 void FindActions();
79
80 /********* From the file "configlist.h" *********************************/
81 void Configlist_init(void);
82 struct config *Configlist_add(struct rule *, int);
83 struct config *Configlist_addbasis(struct rule *, int);
84 void Configlist_closure(struct lemon *);
85 void Configlist_sort(void);
86 void Configlist_sortbasis(void);
87 struct config *Configlist_return(void);
88 struct config *Configlist_basis(void);
89 void Configlist_eat(struct config *);
90 void Configlist_reset(void);
91
92 /********* From the file "error.h" ***************************************/
93 void ErrorMsg(const char *, int,const char *, ...);
94
95 /****** From the file "option.h" ******************************************/
96 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
97 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
98 struct s_options {
99 enum option_type type;
100 const char *label;
101 char *arg;
102 const char *message;
103 };
104 int OptInit(char**,struct s_options*,FILE*);
105 int OptNArgs(void);
106 char *OptArg(int);
107 void OptErr(int);
108 void OptPrint(void);
109
110 /******** From the file "parse.h" *****************************************/
111 void Parse(struct lemon *lemp);
112
113 /********* From the file "plink.h" ***************************************/
114 struct plink *Plink_new(void);
115 void Plink_add(struct plink **, struct config *);
116 void Plink_copy(struct plink **, struct plink *);
117 void Plink_delete(struct plink *);
118
119 /********** From the file "report.h" *************************************/
120 void Reprint(struct lemon *);
121 void ReportOutput(struct lemon *);
122 void ReportTable(struct lemon *, int);
123 void ReportHeader(struct lemon *);
124 void CompressTables(struct lemon *);
125 void ResortStates(struct lemon *);
126
127 /********** From the file "set.h" ****************************************/
128 void SetSize(int); /* All sets will be of size N */
129 char *SetNew(void); /* A new set for element 0..N */
130 void SetFree(char*); /* Deallocate a set */
131
132 char *SetNew(void); /* A new set for element 0..N */
133 int SetAdd(char*,int); /* Add element to a set */
134 int SetUnion(char *,char *); /* A <- A U B, thru element N */
135 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
136
137 /********** From the file "struct.h" *************************************/
138 /*
139 ** Principal data structures for the LEMON parser generator.
140 */
141
142 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
143
144 /* Symbols (terminals and nonterminals) of the grammar are stored
145 ** in the following: */
146 enum symbol_type {
147 TERMINAL,
148 NONTERMINAL,
149 MULTITERMINAL
150 };
151 enum e_assoc {
152 LEFT,
153 RIGHT,
154 NONE,
155 UNK
156 };
157 struct symbol {
158 const char *name; /* Name of the symbol */
159 int index; /* Index number for this symbol */
160 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
161 struct rule *rule; /* Linked list of rules of this (if an NT) */
162 struct symbol *fallback; /* fallback token in case this token doesn't parse */
163 int prec; /* Precedence if defined (-1 otherwise) */
164 enum e_assoc assoc; /* Associativity if precedence is defined */
165 char *firstset; /* First-set for all rules of this symbol */
166 Boolean lambda; /* True if NT and can generate an empty string */
167 int useCnt; /* Number of times used */
168 char *destructor; /* Code which executes whenever this symbol is
169 ** popped from the stack during error processing */
170 int destLineno; /* Line number for start of destructor */
171 char *datatype; /* The data type of information held by this
172 ** object. Only used if type==NONTERMINAL */
173 int dtnum; /* The data type number. In the parser, the value
174 ** stack is a union. The .yy%d element of this
175 ** union is the correct data type for this object */
176 /* The following fields are used by MULTITERMINALs only */
177 int nsubsym; /* Number of constituent symbols in the MULTI */
178 struct symbol **subsym; /* Array of constituent symbols */
179 };
180
181 /* Each production rule in the grammar is stored in the following
182 ** structure. */
183 struct rule {
184 struct symbol *lhs; /* Left-hand side of the rule */
185 const char *lhsalias; /* Alias for the LHS (NULL if none) */
186 int lhsStart; /* True if left-hand side is the start symbol */
187 int ruleline; /* Line number for the rule */
188 int nrhs; /* Number of RHS symbols */
189 struct symbol **rhs; /* The RHS symbols */
190 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
191 int line; /* Line number at which code begins */
192 const char *code; /* The code executed when this rule is reduced */
193 struct symbol *precsym; /* Precedence symbol for this rule */
194 int index; /* An index number for this rule */
195 Boolean canReduce; /* True if this rule is ever reduced */
196 struct rule *nextlhs; /* Next rule with the same LHS */
197 struct rule *next; /* Next rule in the global list */
198 };
199
200 /* A configuration is a production rule of the grammar together with
201 ** a mark (dot) showing how much of that rule has been processed so far.
202 ** Configurations also contain a follow-set which is a list of terminal
203 ** symbols which are allowed to immediately follow the end of the rule.
204 ** Every configuration is recorded as an instance of the following: */
205 enum cfgstatus {
206 COMPLETE,
207 INCOMPLETE
208 };
209 struct config {
210 struct rule *rp; /* The rule upon which the configuration is based */
211 int dot; /* The parse point */
212 char *fws; /* Follow-set for this configuration only */
213 struct plink *fplp; /* Follow-set forward propagation links */
214 struct plink *bplp; /* Follow-set backwards propagation links */
215 struct state *stp; /* Pointer to state which contains this */
216 enum cfgstatus status; /* used during followset and shift computations */
217 struct config *next; /* Next configuration in the state */
218 struct config *bp; /* The next basis configuration */
219 };
220
221 enum e_action {
222 SHIFT,
223 ACCEPT,
224 REDUCE,
225 ERROR,
226 SSCONFLICT, /* A shift/shift conflict */
227 SRCONFLICT, /* Was a reduce, but part of a conflict */
228 RRCONFLICT, /* Was a reduce, but part of a conflict */
229 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
230 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
231 NOT_USED /* Deleted by compression */
232 };
233
234 /* Every shift or reduce operation is stored as one of the following */
235 struct action {
236 struct symbol *sp; /* The look-ahead symbol */
237 enum e_action type;
238 union {
239 struct state *stp; /* The new state, if a shift */
240 struct rule *rp; /* The rule, if a reduce */
241 } x;
242 struct action *next; /* Next action for this state */
243 struct action *collide; /* Next action with the same hash */
244 };
245
246 /* Each state of the generated parser's finite state machine
247 ** is encoded as an instance of the following structure. */
248 struct state {
249 struct config *bp; /* The basis configurations for this state */
250 struct config *cfp; /* All configurations in this set */
251 int statenum; /* Sequential number for this state */
252 struct action *ap; /* Array of actions for this state */
253 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
254 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
255 int iDflt; /* Default action */
256 };
257 #define NO_OFFSET (-2147483647)
258
259 /* A followset propagation link indicates that the contents of one
260 ** configuration followset should be propagated to another whenever
261 ** the first changes. */
262 struct plink {
263 struct config *cfp; /* The configuration to which linked */
264 struct plink *next; /* The next propagate link */
265 };
266
267 /* The state vector for the entire parser generator is recorded as
268 ** follows. (LEMON uses no global variables and makes little use of
269 ** static variables. Fields in the following structure can be thought
270 ** of as begin global variables in the program.) */
271 struct lemon {
272 struct state **sorted; /* Table of states sorted by state number */
273 struct rule *rule; /* List of all rules */
274 int nstate; /* Number of states */
275 int nrule; /* Number of rules */
276 int nsymbol; /* Number of terminal and nonterminal symbols */
277 int nterminal; /* Number of terminal symbols */
278 struct symbol **symbols; /* Sorted array of pointers to symbols */
279 int errorcnt; /* Number of errors */
280 struct symbol *errsym; /* The error symbol */
281 struct symbol *wildcard; /* Token that matches anything */
282 char *name; /* Name of the generated parser */
283 char *arg; /* Declaration of the 3th argument to parser */
284 char *tokentype; /* Type of terminal symbols in the parser stack */
285 char *vartype; /* The default type of non-terminal symbols */
286 char *start; /* Name of the start symbol for the grammar */
287 char *stacksize; /* Size of the parser stack */
288 char *include; /* Code to put at the start of the C file */
289 char *error; /* Code to execute when an error is seen */
290 char *overflow; /* Code to execute on a stack overflow */
291 char *failure; /* Code to execute on parser failure */
292 char *accept; /* Code to execute when the parser excepts */
293 char *extracode; /* Code appended to the generated file */
294 char *tokendest; /* Code to execute to destroy token data */
295 char *vardest; /* Code for the default non-terminal destructor */
296 char *filename; /* Name of the input file */
297 char *outname; /* Name of the current output file */
298 char *tokenprefix; /* A prefix added to token names in the .h file */
299 int nconflict; /* Number of parsing conflicts */
300 int tablesize; /* Size of the parse tables */
301 int basisflag; /* Print only basis configurations */
302 int has_fallback; /* True if any %fallback is seen in the grammar */
303 int nolinenosflag; /* True if #line statements should not be printed */
304 char *argv0; /* Name of the program */
305 };
306
307 #define MemoryCheck(X) if((X)==0){ \
308 extern void memory_error(); \
309 memory_error(); \
310 }
311
312 /**************** From the file "table.h" *********************************/
313 /*
314 ** All code in this file has been automatically generated
315 ** from a specification in the file
316 ** "table.q"
317 ** by the associative array code building program "aagen".
318 ** Do not edit this file! Instead, edit the specification
319 ** file, then rerun aagen.
320 */
321 /*
322 ** Code for processing tables in the LEMON parser generator.
323 */
324 /* Routines for handling a strings */
325
326 const char *Strsafe(const char *);
327
328 void Strsafe_init(void);
329 int Strsafe_insert(const char *);
330 const char *Strsafe_find(const char *);
331
332 /* Routines for handling symbols of the grammar */
333
334 struct symbol *Symbol_new(const char *);
335 int Symbolcmpp(const void *, const void *);
336 void Symbol_init(void);
337 int Symbol_insert(struct symbol *, const char *);
338 struct symbol *Symbol_find(const char *);
339 struct symbol *Symbol_Nth(int);
340 int Symbol_count(void);
341 struct symbol **Symbol_arrayof(void);
342
343 /* Routines to manage the state table */
344
345 int Configcmp(const char *, const char *);
346 struct state *State_new(void);
347 void State_init(void);
348 int State_insert(struct state *, struct config *);
349 struct state *State_find(struct config *);
350 struct state **State_arrayof(/* */);
351
352 /* Routines used for efficiency in Configlist_add */
353
354 void Configtable_init(void);
355 int Configtable_insert(struct config *);
356 struct config *Configtable_find(struct config *);
357 void Configtable_clear(int(*)(struct config *));
358
359 /****************** From the file "action.c" *******************************/
360 /*
361 ** Routines processing parser actions in the LEMON parser generator.
362 */
363
364 /* Allocate a new parser action */
Action_new(void)365 static struct action *Action_new(void){
366 static struct action *freelist = 0;
367 struct action *newaction;
368
369 if( freelist==0 ){
370 int i;
371 int amt = 100;
372 freelist = (struct action *)calloc(amt, sizeof(struct action));
373 if( freelist==0 ){
374 fprintf(stderr,"Unable to allocate memory for a new parser action.");
375 exit(1);
376 }
377 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
378 freelist[amt-1].next = 0;
379 }
380 newaction = freelist;
381 freelist = freelist->next;
382 return newaction;
383 }
384
385 /* Compare two actions for sorting purposes. Return negative, zero, or
386 ** positive if the first action is less than, equal to, or greater than
387 ** the first
388 */
actioncmp(struct action * ap1,struct action * ap2)389 static int actioncmp(
390 struct action *ap1,
391 struct action *ap2
392 ){
393 int rc;
394 rc = ap1->sp->index - ap2->sp->index;
395 if( rc==0 ){
396 rc = (int)ap1->type - (int)ap2->type;
397 }
398 if( rc==0 && ap1->type==REDUCE ){
399 rc = ap1->x.rp->index - ap2->x.rp->index;
400 }
401 if( rc==0 ){
402 rc = (int) (ap2 - ap1);
403 }
404 return rc;
405 }
406
407 /* Sort parser actions */
Action_sort(struct action * ap)408 static struct action *Action_sort(
409 struct action *ap
410 ){
411 ap = (struct action *)msort((char *)ap,(char **)&ap->next,
412 (int(*)(const char*,const char*))actioncmp);
413 return ap;
414 }
415
Action_add(struct action ** app,enum e_action type,struct symbol * sp,char * arg)416 void Action_add(
417 struct action **app,
418 enum e_action type,
419 struct symbol *sp,
420 char *arg
421 ){
422 struct action *newaction;
423 newaction = Action_new();
424 newaction->next = *app;
425 *app = newaction;
426 newaction->type = type;
427 newaction->sp = sp;
428 if( type==SHIFT ){
429 newaction->x.stp = (struct state *)arg;
430 }else{
431 newaction->x.rp = (struct rule *)arg;
432 }
433 }
434 /********************** New code to implement the "acttab" module ***********/
435 /*
436 ** This module implements routines use to construct the yy_action[] table.
437 */
438
439 /*
440 ** The state of the yy_action table under construction is an instance of
441 ** the following structure.
442 **
443 ** The yy_action table maps the pair (state_number, lookahead) into an
444 ** action_number. The table is an array of integers pairs. The state_number
445 ** determines an initial offset into the yy_action array. The lookahead
446 ** value is then added to this initial offset to get an index X into the
447 ** yy_action array. If the aAction[X].lookahead equals the value of the
448 ** of the lookahead input, then the value of the action_number output is
449 ** aAction[X].action. If the lookaheads do not match then the
450 ** default action for the state_number is returned.
451 **
452 ** All actions associated with a single state_number are first entered
453 ** into aLookahead[] using multiple calls to acttab_action(). Then the
454 ** actions for that single state_number are placed into the aAction[]
455 ** array with a single call to acttab_insert(). The acttab_insert() call
456 ** also resets the aLookahead[] array in preparation for the next
457 ** state number.
458 */
459 struct lookahead_action {
460 int lookahead; /* Value of the lookahead token */
461 int action; /* Action to take on the given lookahead */
462 };
463 typedef struct acttab acttab;
464 struct acttab {
465 int nAction; /* Number of used slots in aAction[] */
466 int nActionAlloc; /* Slots allocated for aAction[] */
467 struct lookahead_action
468 *aAction, /* The yy_action[] table under construction */
469 *aLookahead; /* A single new transaction set */
470 int mnLookahead; /* Minimum aLookahead[].lookahead */
471 int mnAction; /* Action associated with mnLookahead */
472 int mxLookahead; /* Maximum aLookahead[].lookahead */
473 int nLookahead; /* Used slots in aLookahead[] */
474 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
475 };
476
477 /* Return the number of entries in the yy_action table */
478 #define acttab_size(X) ((X)->nAction)
479
480 /* The value for the N-th entry in yy_action */
481 #define acttab_yyaction(X,N) ((X)->aAction[N].action)
482
483 /* The value for the N-th entry in yy_lookahead */
484 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
485
486 /* Free all memory associated with the given acttab */
acttab_free(acttab * p)487 void acttab_free(acttab *p){
488 free( p->aAction );
489 free( p->aLookahead );
490 free( p );
491 }
492
493 /* Allocate a new acttab structure */
acttab_alloc(void)494 acttab *acttab_alloc(void){
495 acttab *p = (acttab *) calloc( 1, sizeof(*p) );
496 if( p==0 ){
497 fprintf(stderr,"Unable to allocate memory for a new acttab.");
498 exit(1);
499 }
500 memset(p, 0, sizeof(*p));
501 return p;
502 }
503
504 /* Add a new action to the current transaction set.
505 **
506 ** This routine is called once for each lookahead for a particular
507 ** state.
508 */
acttab_action(acttab * p,int lookahead,int action)509 void acttab_action(acttab *p, int lookahead, int action){
510 if( p->nLookahead>=p->nLookaheadAlloc ){
511 p->nLookaheadAlloc += 25;
512 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
513 sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
514 if( p->aLookahead==0 ){
515 fprintf(stderr,"malloc failed\n");
516 exit(1);
517 }
518 }
519 if( p->nLookahead==0 ){
520 p->mxLookahead = lookahead;
521 p->mnLookahead = lookahead;
522 p->mnAction = action;
523 }else{
524 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
525 if( p->mnLookahead>lookahead ){
526 p->mnLookahead = lookahead;
527 p->mnAction = action;
528 }
529 }
530 p->aLookahead[p->nLookahead].lookahead = lookahead;
531 p->aLookahead[p->nLookahead].action = action;
532 p->nLookahead++;
533 }
534
535 /*
536 ** Add the transaction set built up with prior calls to acttab_action()
537 ** into the current action table. Then reset the transaction set back
538 ** to an empty set in preparation for a new round of acttab_action() calls.
539 **
540 ** Return the offset into the action table of the new transaction.
541 */
acttab_insert(acttab * p)542 int acttab_insert(acttab *p){
543 int i, j, k, n;
544 assert( p->nLookahead>0 );
545
546 /* Make sure we have enough space to hold the expanded action table
547 ** in the worst case. The worst case occurs if the transaction set
548 ** must be appended to the current action table
549 */
550 n = p->mxLookahead + 1;
551 if( p->nAction + n >= p->nActionAlloc ){
552 int oldAlloc = p->nActionAlloc;
553 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
554 p->aAction = (struct lookahead_action *) realloc( p->aAction,
555 sizeof(p->aAction[0])*p->nActionAlloc);
556 if( p->aAction==0 ){
557 fprintf(stderr,"malloc failed\n");
558 exit(1);
559 }
560 for(i=oldAlloc; i<p->nActionAlloc; i++){
561 p->aAction[i].lookahead = -1;
562 p->aAction[i].action = -1;
563 }
564 }
565
566 /* Scan the existing action table looking for an offset that is a
567 ** duplicate of the current transaction set. Fall out of the loop
568 ** if and when the duplicate is found.
569 **
570 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
571 */
572 for(i=p->nAction-1; i>=0; i--){
573 if( p->aAction[i].lookahead==p->mnLookahead ){
574 /* All lookaheads and actions in the aLookahead[] transaction
575 ** must match against the candidate aAction[i] entry. */
576 if( p->aAction[i].action!=p->mnAction ) continue;
577 for(j=0; j<p->nLookahead; j++){
578 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
579 if( k<0 || k>=p->nAction ) break;
580 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
581 if( p->aLookahead[j].action!=p->aAction[k].action ) break;
582 }
583 if( j<p->nLookahead ) continue;
584
585 /* No possible lookahead value that is not in the aLookahead[]
586 ** transaction is allowed to match aAction[i] */
587 n = 0;
588 for(j=0; j<p->nAction; j++){
589 if( p->aAction[j].lookahead<0 ) continue;
590 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
591 }
592 if( n==p->nLookahead ){
593 break; /* An exact match is found at offset i */
594 }
595 }
596 }
597
598 /* If no existing offsets exactly match the current transaction, find an
599 ** an empty offset in the aAction[] table in which we can add the
600 ** aLookahead[] transaction.
601 */
602 if( i<0 ){
603 /* Look for holes in the aAction[] table that fit the current
604 ** aLookahead[] transaction. Leave i set to the offset of the hole.
605 ** If no holes are found, i is left at p->nAction, which means the
606 ** transaction will be appended. */
607 for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
608 if( p->aAction[i].lookahead<0 ){
609 for(j=0; j<p->nLookahead; j++){
610 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
611 if( k<0 ) break;
612 if( p->aAction[k].lookahead>=0 ) break;
613 }
614 if( j<p->nLookahead ) continue;
615 for(j=0; j<p->nAction; j++){
616 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
617 }
618 if( j==p->nAction ){
619 break; /* Fits in empty slots */
620 }
621 }
622 }
623 }
624 /* Insert transaction set at index i. */
625 for(j=0; j<p->nLookahead; j++){
626 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
627 p->aAction[k] = p->aLookahead[j];
628 if( k>=p->nAction ) p->nAction = k+1;
629 }
630 p->nLookahead = 0;
631
632 /* Return the offset that is added to the lookahead in order to get the
633 ** index into yy_action of the action */
634 return i - p->mnLookahead;
635 }
636
637 /********************** From the file "build.c" *****************************/
638 /*
639 ** Routines to construction the finite state machine for the LEMON
640 ** parser generator.
641 */
642
643 /* Find a precedence symbol of every rule in the grammar.
644 **
645 ** Those rules which have a precedence symbol coded in the input
646 ** grammar using the "[symbol]" construct will already have the
647 ** rp->precsym field filled. Other rules take as their precedence
648 ** symbol the first RHS symbol with a defined precedence. If there
649 ** are not RHS symbols with a defined precedence, the precedence
650 ** symbol field is left blank.
651 */
FindRulePrecedences(struct lemon * xp)652 void FindRulePrecedences(struct lemon *xp)
653 {
654 struct rule *rp;
655 for(rp=xp->rule; rp; rp=rp->next){
656 if( rp->precsym==0 ){
657 int i, j;
658 for(i=0; i<rp->nrhs && rp->precsym==0; i++){
659 struct symbol *sp = rp->rhs[i];
660 if( sp->type==MULTITERMINAL ){
661 for(j=0; j<sp->nsubsym; j++){
662 if( sp->subsym[j]->prec>=0 ){
663 rp->precsym = sp->subsym[j];
664 break;
665 }
666 }
667 }else if( sp->prec>=0 ){
668 rp->precsym = rp->rhs[i];
669 }
670 }
671 }
672 }
673 return;
674 }
675
676 /* Find all nonterminals which will generate the empty string.
677 ** Then go back and compute the first sets of every nonterminal.
678 ** The first set is the set of all terminal symbols which can begin
679 ** a string generated by that nonterminal.
680 */
FindFirstSets(struct lemon * lemp)681 void FindFirstSets(struct lemon *lemp)
682 {
683 int i, j;
684 struct rule *rp;
685 int progress;
686
687 for(i=0; i<lemp->nsymbol; i++){
688 lemp->symbols[i]->lambda = LEMON_FALSE;
689 }
690 for(i=lemp->nterminal; i<lemp->nsymbol; i++){
691 lemp->symbols[i]->firstset = SetNew();
692 }
693
694 /* First compute all lambdas */
695 do{
696 progress = 0;
697 for(rp=lemp->rule; rp; rp=rp->next){
698 if( rp->lhs->lambda ) continue;
699 for(i=0; i<rp->nrhs; i++){
700 struct symbol *sp = rp->rhs[i];
701 if( sp->type!=TERMINAL || sp->lambda==LEMON_FALSE ) break;
702 }
703 if( i==rp->nrhs ){
704 rp->lhs->lambda = LEMON_TRUE;
705 progress = 1;
706 }
707 }
708 }while( progress );
709
710 /* Now compute all first sets */
711 do{
712 struct symbol *s1, *s2;
713 progress = 0;
714 for(rp=lemp->rule; rp; rp=rp->next){
715 s1 = rp->lhs;
716 for(i=0; i<rp->nrhs; i++){
717 s2 = rp->rhs[i];
718 if( s2->type==TERMINAL ){
719 progress += SetAdd(s1->firstset,s2->index);
720 break;
721 }else if( s2->type==MULTITERMINAL ){
722 for(j=0; j<s2->nsubsym; j++){
723 progress += SetAdd(s1->firstset,s2->subsym[j]->index);
724 }
725 break;
726 }else if( s1==s2 ){
727 if( s1->lambda==LEMON_FALSE ) break;
728 }else{
729 progress += SetUnion(s1->firstset,s2->firstset);
730 if( s2->lambda==LEMON_FALSE ) break;
731 }
732 }
733 }
734 }while( progress );
735 return;
736 }
737
738 /* Compute all LR(0) states for the grammar. Links
739 ** are added to between some states so that the LR(1) follow sets
740 ** can be computed later.
741 */
742 PRIVATE struct state *getstate(struct lemon *); /* forward reference */
FindStates(struct lemon * lemp)743 void FindStates(struct lemon *lemp)
744 {
745 struct symbol *sp;
746 struct rule *rp;
747
748 Configlist_init();
749
750 /* Find the start symbol */
751 if( lemp->start ){
752 sp = Symbol_find(lemp->start);
753 if( sp==0 ){
754 ErrorMsg(lemp->filename,0,
755 "The specified start symbol \"%s\" is not \
756 in a nonterminal of the grammar. \"%s\" will be used as the start \
757 symbol instead.",lemp->start,lemp->rule->lhs->name);
758 lemp->errorcnt++;
759 sp = lemp->rule->lhs;
760 }
761 }else{
762 sp = lemp->rule->lhs;
763 }
764
765 /* Make sure the start symbol doesn't occur on the right-hand side of
766 ** any rule. Report an error if it does. (YACC would generate a new
767 ** start symbol in this case.) */
768 for(rp=lemp->rule; rp; rp=rp->next){
769 int i;
770 for(i=0; i<rp->nrhs; i++){
771 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
772 ErrorMsg(lemp->filename,0,
773 "The start symbol \"%s\" occurs on the \
774 right-hand side of a rule. This will result in a parser which \
775 does not work properly.",sp->name);
776 lemp->errorcnt++;
777 }
778 }
779 }
780
781 /* The basis configuration set for the first state
782 ** is all rules which have the start symbol as their
783 ** left-hand side */
784 for(rp=sp->rule; rp; rp=rp->nextlhs){
785 struct config *newcfp;
786 rp->lhsStart = 1;
787 newcfp = Configlist_addbasis(rp,0);
788 SetAdd(newcfp->fws,0);
789 }
790
791 /* Compute the first state. All other states will be
792 ** computed automatically during the computation of the first one.
793 ** The returned pointer to the first state is not used. */
794 (void)getstate(lemp);
795 return;
796 }
797
798 /* Return a pointer to a state which is described by the configuration
799 ** list which has been built from calls to Configlist_add.
800 */
801 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
getstate(struct lemon * lemp)802 PRIVATE struct state *getstate(struct lemon *lemp)
803 {
804 struct config *cfp, *bp;
805 struct state *stp;
806
807 /* Extract the sorted basis of the new state. The basis was constructed
808 ** by prior calls to "Configlist_addbasis()". */
809 Configlist_sortbasis();
810 bp = Configlist_basis();
811
812 /* Get a state with the same basis */
813 stp = State_find(bp);
814 if( stp ){
815 /* A state with the same basis already exists! Copy all the follow-set
816 ** propagation links from the state under construction into the
817 ** preexisting state, then return a pointer to the preexisting state */
818 struct config *x, *y;
819 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
820 Plink_copy(&y->bplp,x->bplp);
821 Plink_delete(x->fplp);
822 x->fplp = x->bplp = 0;
823 }
824 cfp = Configlist_return();
825 Configlist_eat(cfp);
826 }else{
827 /* This really is a new state. Construct all the details */
828 Configlist_closure(lemp); /* Compute the configuration closure */
829 Configlist_sort(); /* Sort the configuration closure */
830 cfp = Configlist_return(); /* Get a pointer to the config list */
831 stp = State_new(); /* A new state structure */
832 MemoryCheck(stp);
833 stp->bp = bp; /* Remember the configuration basis */
834 stp->cfp = cfp; /* Remember the configuration closure */
835 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
836 stp->ap = 0; /* No actions, yet. */
837 State_insert(stp,stp->bp); /* Add to the state table */
838 buildshifts(lemp,stp); /* Recursively compute successor states */
839 }
840 return stp;
841 }
842
843 /*
844 ** Return true if two symbols are the same.
845 */
same_symbol(struct symbol * a,struct symbol * b)846 int same_symbol(struct symbol *a, struct symbol *b)
847 {
848 int i;
849 if( a==b ) return 1;
850 if( a->type!=MULTITERMINAL ) return 0;
851 if( b->type!=MULTITERMINAL ) return 0;
852 if( a->nsubsym!=b->nsubsym ) return 0;
853 for(i=0; i<a->nsubsym; i++){
854 if( a->subsym[i]!=b->subsym[i] ) return 0;
855 }
856 return 1;
857 }
858
859 /* Construct all successor states to the given state. A "successor"
860 ** state is any state which can be reached by a shift action.
861 */
buildshifts(struct lemon * lemp,struct state * stp)862 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
863 {
864 struct config *cfp; /* For looping thru the config closure of "stp" */
865 struct config *bcfp; /* For the inner loop on config closure of "stp" */
866 struct config *newcfg; /* */
867 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
868 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
869 struct state *newstp; /* A pointer to a successor state */
870
871 /* Each configuration becomes complete after it contibutes to a successor
872 ** state. Initially, all configurations are incomplete */
873 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
874
875 /* Loop through all configurations of the state "stp" */
876 for(cfp=stp->cfp; cfp; cfp=cfp->next){
877 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
878 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
879 Configlist_reset(); /* Reset the new config set */
880 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
881
882 /* For every configuration in the state "stp" which has the symbol "sp"
883 ** following its dot, add the same configuration to the basis set under
884 ** construction but with the dot shifted one symbol to the right. */
885 for(bcfp=cfp; bcfp; bcfp=bcfp->next){
886 if( bcfp->status==COMPLETE ) continue; /* Already used */
887 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
888 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
889 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
890 bcfp->status = COMPLETE; /* Mark this config as used */
891 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
892 Plink_add(&newcfg->bplp,bcfp);
893 }
894
895 /* Get a pointer to the state described by the basis configuration set
896 ** constructed in the preceding loop */
897 newstp = getstate(lemp);
898
899 /* The state "newstp" is reached from the state "stp" by a shift action
900 ** on the symbol "sp" */
901 if( sp->type==MULTITERMINAL ){
902 int i;
903 for(i=0; i<sp->nsubsym; i++){
904 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
905 }
906 }else{
907 Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
908 }
909 }
910 }
911
912 /*
913 ** Construct the propagation links
914 */
FindLinks(struct lemon * lemp)915 void FindLinks(struct lemon *lemp)
916 {
917 int i;
918 struct config *cfp, *other;
919 struct state *stp;
920 struct plink *plp;
921
922 /* Housekeeping detail:
923 ** Add to every propagate link a pointer back to the state to
924 ** which the link is attached. */
925 for(i=0; i<lemp->nstate; i++){
926 stp = lemp->sorted[i];
927 for(cfp=stp->cfp; cfp; cfp=cfp->next){
928 cfp->stp = stp;
929 }
930 }
931
932 /* Convert all backlinks into forward links. Only the forward
933 ** links are used in the follow-set computation. */
934 for(i=0; i<lemp->nstate; i++){
935 stp = lemp->sorted[i];
936 for(cfp=stp->cfp; cfp; cfp=cfp->next){
937 for(plp=cfp->bplp; plp; plp=plp->next){
938 other = plp->cfp;
939 Plink_add(&other->fplp,cfp);
940 }
941 }
942 }
943 }
944
945 /* Compute all followsets.
946 **
947 ** A followset is the set of all symbols which can come immediately
948 ** after a configuration.
949 */
FindFollowSets(struct lemon * lemp)950 void FindFollowSets(struct lemon *lemp)
951 {
952 int i;
953 struct config *cfp;
954 struct plink *plp;
955 int progress;
956 int change;
957
958 for(i=0; i<lemp->nstate; i++){
959 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
960 cfp->status = INCOMPLETE;
961 }
962 }
963
964 do{
965 progress = 0;
966 for(i=0; i<lemp->nstate; i++){
967 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
968 if( cfp->status==COMPLETE ) continue;
969 for(plp=cfp->fplp; plp; plp=plp->next){
970 change = SetUnion(plp->cfp->fws,cfp->fws);
971 if( change ){
972 plp->cfp->status = INCOMPLETE;
973 progress = 1;
974 }
975 }
976 cfp->status = COMPLETE;
977 }
978 }
979 }while( progress );
980 }
981
982 static int resolve_conflict(struct action *,struct action *, struct symbol *);
983
984 /* Compute the reduce actions, and resolve conflicts.
985 */
FindActions(struct lemon * lemp)986 void FindActions(struct lemon *lemp)
987 {
988 int i,j;
989 struct config *cfp;
990 struct state *stp;
991 struct symbol *sp;
992 struct rule *rp;
993
994 /* Add all of the reduce actions
995 ** A reduce action is added for each element of the followset of
996 ** a configuration which has its dot at the extreme right.
997 */
998 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
999 stp = lemp->sorted[i];
1000 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
1001 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
1002 for(j=0; j<lemp->nterminal; j++){
1003 if( SetFind(cfp->fws,j) ){
1004 /* Add a reduce action to the state "stp" which will reduce by the
1005 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1006 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
1007 }
1008 }
1009 }
1010 }
1011 }
1012
1013 /* Add the accepting token */
1014 if( lemp->start ){
1015 sp = Symbol_find(lemp->start);
1016 if( sp==0 ) sp = lemp->rule->lhs;
1017 }else{
1018 sp = lemp->rule->lhs;
1019 }
1020 /* Add to the first state (which is always the starting state of the
1021 ** finite state machine) an action to ACCEPT if the lookahead is the
1022 ** start nonterminal. */
1023 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
1024
1025 /* Resolve conflicts */
1026 for(i=0; i<lemp->nstate; i++){
1027 struct action *ap, *nap;
1028 struct state *stp;
1029 stp = lemp->sorted[i];
1030 /* assert( stp->ap ); */
1031 stp->ap = Action_sort(stp->ap);
1032 for(ap=stp->ap; ap && ap->next; ap=ap->next){
1033 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
1034 /* The two actions "ap" and "nap" have the same lookahead.
1035 ** Figure out which one should be used */
1036 lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
1037 }
1038 }
1039 }
1040
1041 /* Report an error for each rule that can never be reduced. */
1042 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
1043 for(i=0; i<lemp->nstate; i++){
1044 struct action *ap;
1045 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
1046 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
1047 }
1048 }
1049 for(rp=lemp->rule; rp; rp=rp->next){
1050 if( rp->canReduce ) continue;
1051 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
1052 lemp->errorcnt++;
1053 }
1054 }
1055
1056 /* Resolve a conflict between the two given actions. If the
1057 ** conflict can't be resolved, return non-zero.
1058 **
1059 ** NO LONGER TRUE:
1060 ** To resolve a conflict, first look to see if either action
1061 ** is on an error rule. In that case, take the action which
1062 ** is not associated with the error rule. If neither or both
1063 ** actions are associated with an error rule, then try to
1064 ** use precedence to resolve the conflict.
1065 **
1066 ** If either action is a SHIFT, then it must be apx. This
1067 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1068 */
resolve_conflict(struct action * apx,struct action * apy,struct symbol * errsym)1069 static int resolve_conflict(
1070 struct action *apx,
1071 struct action *apy,
1072 struct symbol *errsym /* The error symbol (if defined. NULL otherwise) */
1073 ){
1074 struct symbol *spx, *spy;
1075 int errcnt = 0;
1076 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
1077 if( apx->type==SHIFT && apy->type==SHIFT ){
1078 apy->type = SSCONFLICT;
1079 errcnt++;
1080 }
1081 if( apx->type==SHIFT && apy->type==REDUCE ){
1082 spx = apx->sp;
1083 spy = apy->x.rp->precsym;
1084 if( spy==0 || spx->prec<0 || spy->prec<0 ){
1085 /* Not enough precedence information. */
1086 apy->type = SRCONFLICT;
1087 errcnt++;
1088 }else if( spx->prec>spy->prec ){ /* higher precedence wins */
1089 apy->type = RD_RESOLVED;
1090 }else if( spx->prec<spy->prec ){
1091 apx->type = SH_RESOLVED;
1092 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1093 apy->type = RD_RESOLVED; /* associativity */
1094 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
1095 apx->type = SH_RESOLVED;
1096 }else{
1097 assert( spx->prec==spy->prec && spx->assoc==NONE );
1098 apy->type = SRCONFLICT;
1099 errcnt++;
1100 }
1101 }else if( apx->type==REDUCE && apy->type==REDUCE ){
1102 spx = apx->x.rp->precsym;
1103 spy = apy->x.rp->precsym;
1104 if( spx==0 || spy==0 || spx->prec<0 ||
1105 spy->prec<0 || spx->prec==spy->prec ){
1106 apy->type = RRCONFLICT;
1107 errcnt++;
1108 }else if( spx->prec>spy->prec ){
1109 apy->type = RD_RESOLVED;
1110 }else if( spx->prec<spy->prec ){
1111 apx->type = RD_RESOLVED;
1112 }
1113 }else{
1114 assert(
1115 apx->type==SH_RESOLVED ||
1116 apx->type==RD_RESOLVED ||
1117 apx->type==SSCONFLICT ||
1118 apx->type==SRCONFLICT ||
1119 apx->type==RRCONFLICT ||
1120 apy->type==SH_RESOLVED ||
1121 apy->type==RD_RESOLVED ||
1122 apy->type==SSCONFLICT ||
1123 apy->type==SRCONFLICT ||
1124 apy->type==RRCONFLICT
1125 );
1126 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1127 ** REDUCEs on the list. If we reach this point it must be because
1128 ** the parser conflict had already been resolved. */
1129 }
1130 return errcnt;
1131 }
1132 /********************* From the file "configlist.c" *************************/
1133 /*
1134 ** Routines to processing a configuration list and building a state
1135 ** in the LEMON parser generator.
1136 */
1137
1138 static struct config *freelist = 0; /* List of free configurations */
1139 static struct config *current = 0; /* Top of list of configurations */
1140 static struct config **currentend = 0; /* Last on list of configs */
1141 static struct config *basis = 0; /* Top of list of basis configs */
1142 static struct config **basisend = 0; /* End of list of basis configs */
1143
1144 /* Return a pointer to a new configuration */
newconfig()1145 PRIVATE struct config *newconfig(){
1146 struct config *newcfg;
1147 if( freelist==0 ){
1148 int i;
1149 int amt = 3;
1150 freelist = (struct config *)calloc( amt, sizeof(struct config) );
1151 if( freelist==0 ){
1152 fprintf(stderr,"Unable to allocate memory for a new configuration.");
1153 exit(1);
1154 }
1155 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
1156 freelist[amt-1].next = 0;
1157 }
1158 newcfg = freelist;
1159 freelist = freelist->next;
1160 return newcfg;
1161 }
1162
1163 /* The configuration "old" is no longer used */
deleteconfig(struct config * old)1164 PRIVATE void deleteconfig(struct config *old)
1165 {
1166 old->next = freelist;
1167 freelist = old;
1168 }
1169
1170 /* Initialized the configuration list builder */
Configlist_init()1171 void Configlist_init(){
1172 current = 0;
1173 currentend = ¤t;
1174 basis = 0;
1175 basisend = &basis;
1176 Configtable_init();
1177 return;
1178 }
1179
1180 /* Initialized the configuration list builder */
Configlist_reset()1181 void Configlist_reset(){
1182 current = 0;
1183 currentend = ¤t;
1184 basis = 0;
1185 basisend = &basis;
1186 Configtable_clear(0);
1187 return;
1188 }
1189
1190 /* Add another configuration to the configuration list */
Configlist_add(struct rule * rp,int dot)1191 struct config *Configlist_add(
1192 struct rule *rp, /* The rule */
1193 int dot /* Index into the RHS of the rule where the dot goes */
1194 ){
1195 struct config *cfp, model;
1196
1197 assert( currentend!=0 );
1198 model.rp = rp;
1199 model.dot = dot;
1200 cfp = Configtable_find(&model);
1201 if( cfp==0 ){
1202 cfp = newconfig();
1203 cfp->rp = rp;
1204 cfp->dot = dot;
1205 cfp->fws = SetNew();
1206 cfp->stp = 0;
1207 cfp->fplp = cfp->bplp = 0;
1208 cfp->next = 0;
1209 cfp->bp = 0;
1210 *currentend = cfp;
1211 currentend = &cfp->next;
1212 Configtable_insert(cfp);
1213 }
1214 return cfp;
1215 }
1216
1217 /* Add a basis configuration to the configuration list */
Configlist_addbasis(struct rule * rp,int dot)1218 struct config *Configlist_addbasis(struct rule *rp, int dot)
1219 {
1220 struct config *cfp, model;
1221
1222 assert( basisend!=0 );
1223 assert( currentend!=0 );
1224 model.rp = rp;
1225 model.dot = dot;
1226 cfp = Configtable_find(&model);
1227 if( cfp==0 ){
1228 cfp = newconfig();
1229 cfp->rp = rp;
1230 cfp->dot = dot;
1231 cfp->fws = SetNew();
1232 cfp->stp = 0;
1233 cfp->fplp = cfp->bplp = 0;
1234 cfp->next = 0;
1235 cfp->bp = 0;
1236 *currentend = cfp;
1237 currentend = &cfp->next;
1238 *basisend = cfp;
1239 basisend = &cfp->bp;
1240 Configtable_insert(cfp);
1241 }
1242 return cfp;
1243 }
1244
1245 /* Compute the closure of the configuration list */
Configlist_closure(struct lemon * lemp)1246 void Configlist_closure(struct lemon *lemp)
1247 {
1248 struct config *cfp, *newcfp;
1249 struct rule *rp, *newrp;
1250 struct symbol *sp, *xsp;
1251 int i, dot;
1252
1253 assert( currentend!=0 );
1254 for(cfp=current; cfp; cfp=cfp->next){
1255 rp = cfp->rp;
1256 dot = cfp->dot;
1257 if( dot>=rp->nrhs ) continue;
1258 sp = rp->rhs[dot];
1259 if( sp->type==NONTERMINAL ){
1260 if( sp->rule==0 && sp!=lemp->errsym ){
1261 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1262 sp->name);
1263 lemp->errorcnt++;
1264 }
1265 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1266 newcfp = Configlist_add(newrp,0);
1267 for(i=dot+1; i<rp->nrhs; i++){
1268 xsp = rp->rhs[i];
1269 if( xsp->type==TERMINAL ){
1270 SetAdd(newcfp->fws,xsp->index);
1271 break;
1272 }else if( xsp->type==MULTITERMINAL ){
1273 int k;
1274 for(k=0; k<xsp->nsubsym; k++){
1275 SetAdd(newcfp->fws, xsp->subsym[k]->index);
1276 }
1277 break;
1278 }else{
1279 SetUnion(newcfp->fws,xsp->firstset);
1280 if( xsp->lambda==LEMON_FALSE ) break;
1281 }
1282 }
1283 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1284 }
1285 }
1286 }
1287 return;
1288 }
1289
1290 /* Sort the configuration list */
Configlist_sort()1291 void Configlist_sort(){
1292 current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
1293 currentend = 0;
1294 return;
1295 }
1296
1297 /* Sort the basis configuration list */
Configlist_sortbasis()1298 void Configlist_sortbasis(){
1299 basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
1300 basisend = 0;
1301 return;
1302 }
1303
1304 /* Return a pointer to the head of the configuration list and
1305 ** reset the list */
Configlist_return()1306 struct config *Configlist_return(){
1307 struct config *old;
1308 old = current;
1309 current = 0;
1310 currentend = 0;
1311 return old;
1312 }
1313
1314 /* Return a pointer to the head of the configuration list and
1315 ** reset the list */
Configlist_basis()1316 struct config *Configlist_basis(){
1317 struct config *old;
1318 old = basis;
1319 basis = 0;
1320 basisend = 0;
1321 return old;
1322 }
1323
1324 /* Free all elements of the given configuration list */
Configlist_eat(struct config * cfp)1325 void Configlist_eat(struct config *cfp)
1326 {
1327 struct config *nextcfp;
1328 for(; cfp; cfp=nextcfp){
1329 nextcfp = cfp->next;
1330 assert( cfp->fplp==0 );
1331 assert( cfp->bplp==0 );
1332 if( cfp->fws ) SetFree(cfp->fws);
1333 deleteconfig(cfp);
1334 }
1335 return;
1336 }
1337 /***************** From the file "error.c" *********************************/
1338 /*
1339 ** Code for printing error message.
1340 */
1341
ErrorMsg(const char * filename,int lineno,const char * format,...)1342 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1343 va_list ap;
1344 fprintf(stderr, "%s:%d: ", filename, lineno);
1345 va_start(ap, format);
1346 vfprintf(stderr,format,ap);
1347 va_end(ap);
1348 fprintf(stderr, "\n");
1349 }
1350 /**************** From the file "main.c" ************************************/
1351 /*
1352 ** Main program file for the LEMON parser generator.
1353 */
1354
1355 /* Report an out-of-memory condition and abort. This function
1356 ** is used mostly by the "MemoryCheck" macro in struct.h
1357 */
memory_error()1358 void memory_error(){
1359 fprintf(stderr,"Out of memory. Aborting...\n");
1360 exit(1);
1361 }
1362
1363 static int nDefine = 0; /* Number of -D options on the command line */
1364 static char **azDefine = 0; /* Name of the -D macros */
1365
1366 /* This routine is called with the argument to each -D command-line option.
1367 ** Add the macro defined to the azDefine array.
1368 */
handle_D_option(char * z)1369 static void handle_D_option(char *z){
1370 char **paz;
1371 nDefine++;
1372 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
1373 if( azDefine==0 ){
1374 fprintf(stderr,"out of memory\n");
1375 exit(1);
1376 }
1377 paz = &azDefine[nDefine-1];
1378 *paz = (char *) malloc( lemonStrlen(z)+1 );
1379 if( *paz==0 ){
1380 fprintf(stderr,"out of memory\n");
1381 exit(1);
1382 }
1383 strcpy(*paz, z);
1384 for(z=*paz; *z && *z!='='; z++){}
1385 *z = 0;
1386 }
1387
1388 static char *user_templatename = NULL;
handle_T_option(char * z)1389 static void handle_T_option(char *z){
1390 user_templatename = (char *) malloc( lemonStrlen(z)+1 );
1391 if( user_templatename==0 ){
1392 memory_error();
1393 }
1394 strcpy(user_templatename, z);
1395 }
1396
1397 int local_out_dir = 0;
1398
1399 /* The main program. Parse the command line and do it... */
main(int argc,char ** argv)1400 int main(int argc, char **argv)
1401 {
1402 static int version = 0;
1403 static int rpflag = 0;
1404 static int basisflag = 0;
1405 static int compress = 0;
1406 static int quiet = 0;
1407 static int statistics = 0;
1408 static int mhflag = 0;
1409 static int nolinenosflag = 0;
1410 static int noResort = 0;
1411 static struct s_options options[] = {
1412 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1413 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1414 {OPT_FLAG, "d", (char*)&local_out_dir, "Output files in the current directory."},
1415 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
1416 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
1417 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1418 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
1419 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
1420 {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
1421 "Show conflicts resolved by precedence rules"},
1422 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1423 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
1424 {OPT_FLAG, "s", (char*)&statistics,
1425 "Print parser stats to standard output."},
1426 {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1427 {OPT_FLAG,0,0,0}
1428 };
1429 int i;
1430 int exitcode;
1431 struct lemon lem;
1432
1433 /*atexit(LemonAtExit);*/
1434
1435 OptInit(argv,options,stderr);
1436 if( version ){
1437 printf("Lemon version 1.0\n");
1438 exit(0);
1439 }
1440 if( OptNArgs()!=1 ){
1441 fprintf(stderr,"Exactly one filename argument is required.\n");
1442 exit(1);
1443 }
1444 memset(&lem, 0, sizeof(lem));
1445 lem.errorcnt = 0;
1446
1447 /* Initialize the machine */
1448 Strsafe_init();
1449 Symbol_init();
1450 State_init();
1451 lem.argv0 = argv[0];
1452 lem.filename = OptArg(0);
1453 lem.basisflag = basisflag;
1454 lem.nolinenosflag = nolinenosflag;
1455 Symbol_new("$");
1456 lem.errsym = Symbol_new("error");
1457 lem.errsym->useCnt = 0;
1458
1459 /* Parse the input file */
1460 Parse(&lem);
1461 if( lem.errorcnt ) exit(lem.errorcnt);
1462 if( lem.nrule==0 ){
1463 fprintf(stderr,"Empty grammar.\n");
1464 exit(1);
1465 }
1466
1467 /* Count and index the symbols of the grammar */
1468 lem.nsymbol = Symbol_count();
1469 Symbol_new("{default}");
1470 lem.symbols = Symbol_arrayof();
1471 for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1472 qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*), Symbolcmpp);
1473 for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1474 for(i=1; isupper(lem.symbols[i]->name[0]); i++);
1475 lem.nterminal = i;
1476
1477 /* Generate a reprint of the grammar, if requested on the command line */
1478 if( rpflag ){
1479 Reprint(&lem);
1480 }else{
1481 /* Initialize the size for all follow and first sets */
1482 SetSize(lem.nterminal+1);
1483
1484 /* Find the precedence for every production rule (that has one) */
1485 FindRulePrecedences(&lem);
1486
1487 /* Compute the lambda-nonterminals and the first-sets for every
1488 ** nonterminal */
1489 FindFirstSets(&lem);
1490
1491 /* Compute all LR(0) states. Also record follow-set propagation
1492 ** links so that the follow-set can be computed later */
1493 lem.nstate = 0;
1494 FindStates(&lem);
1495 lem.sorted = State_arrayof();
1496
1497 /* Tie up loose ends on the propagation links */
1498 FindLinks(&lem);
1499
1500 /* Compute the follow set of every reducible configuration */
1501 FindFollowSets(&lem);
1502
1503 /* Compute the action tables */
1504 FindActions(&lem);
1505
1506 /* Compress the action tables */
1507 if( compress==0 ) CompressTables(&lem);
1508
1509 /* Reorder and renumber the states so that states with fewer choices
1510 ** occur at the end. This is an optimization that helps make the
1511 ** generated parser tables smaller. */
1512 if( noResort==0 ) ResortStates(&lem);
1513
1514 /* Generate a report of the parser generated. (the "y.output" file) */
1515 if( !quiet ) ReportOutput(&lem);
1516
1517 /* Generate the source code for the parser */
1518 ReportTable(&lem, mhflag);
1519
1520 /* Produce a header file for use by the scanner. (This step is
1521 ** omitted if the "-m" option is used because makeheaders will
1522 ** generate the file for us.) */
1523 if( !mhflag ) ReportHeader(&lem);
1524 }
1525 if( statistics ){
1526 printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
1527 lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
1528 printf(" %d states, %d parser table entries, %d conflicts\n",
1529 lem.nstate, lem.tablesize, lem.nconflict);
1530 }
1531 if( lem.nconflict > 0 ){
1532 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1533 }
1534
1535 /* return 0 on success, 1 on failure. */
1536 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
1537 successful_exit = (exitcode == 0);
1538 exit(exitcode);
1539 return (exitcode);
1540 }
1541 /******************** From the file "msort.c" *******************************/
1542 /*
1543 ** A generic merge-sort program.
1544 **
1545 ** USAGE:
1546 ** Let "ptr" be a pointer to some structure which is at the head of
1547 ** a null-terminated list. Then to sort the list call:
1548 **
1549 ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1550 **
1551 ** In the above, "cmpfnc" is a pointer to a function which compares
1552 ** two instances of the structure and returns an integer, as in
1553 ** strcmp. The second argument is a pointer to the pointer to the
1554 ** second element of the linked list. This address is used to compute
1555 ** the offset to the "next" field within the structure. The offset to
1556 ** the "next" field must be constant for all structures in the list.
1557 **
1558 ** The function returns a new pointer which is the head of the list
1559 ** after sorting.
1560 **
1561 ** ALGORITHM:
1562 ** Merge-sort.
1563 */
1564
1565 /*
1566 ** Return a pointer to the next structure in the linked list.
1567 */
1568 #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
1569
1570 /*
1571 ** Inputs:
1572 ** a: A sorted, null-terminated linked list. (May be null).
1573 ** b: A sorted, null-terminated linked list. (May be null).
1574 ** cmp: A pointer to the comparison function.
1575 ** offset: Offset in the structure to the "next" field.
1576 **
1577 ** Return Value:
1578 ** A pointer to the head of a sorted list containing the elements
1579 ** of both a and b.
1580 **
1581 ** Side effects:
1582 ** The "next" pointers for elements in the lists a and b are
1583 ** changed.
1584 */
merge(char * a,char * b,int (* cmp)(const char *,const char *),int offset)1585 static char *merge(
1586 char *a,
1587 char *b,
1588 int (*cmp)(const char*,const char*),
1589 int offset
1590 ){
1591 char *ptr, *head;
1592
1593 if( a==0 ){
1594 head = b;
1595 }else if( b==0 ){
1596 head = a;
1597 }else{
1598 if( (*cmp)(a,b)<=0 ){
1599 ptr = a;
1600 a = NEXT(a);
1601 }else{
1602 ptr = b;
1603 b = NEXT(b);
1604 }
1605 head = ptr;
1606 while( a && b ){
1607 if( (*cmp)(a,b)<=0 ){
1608 NEXT(ptr) = a;
1609 ptr = a;
1610 a = NEXT(a);
1611 }else{
1612 NEXT(ptr) = b;
1613 ptr = b;
1614 b = NEXT(b);
1615 }
1616 }
1617 if( a ) NEXT(ptr) = a;
1618 else NEXT(ptr) = b;
1619 }
1620 return head;
1621 }
1622
1623 /*
1624 ** Inputs:
1625 ** list: Pointer to a singly-linked list of structures.
1626 ** next: Pointer to pointer to the second element of the list.
1627 ** cmp: A comparison function.
1628 **
1629 ** Return Value:
1630 ** A pointer to the head of a sorted list containing the elements
1631 ** orginally in list.
1632 **
1633 ** Side effects:
1634 ** The "next" pointers for elements in list are changed.
1635 */
1636 #define LISTSIZE 30
msort(char * list,char ** next,int (* cmp)(const char *,const char *))1637 static char *msort(
1638 char *list,
1639 char **next,
1640 int (*cmp)(const char*,const char*)
1641 ){
1642 unsigned long offset;
1643 char *ep;
1644 char *set[LISTSIZE];
1645 int i;
1646 offset = (unsigned long)next - (unsigned long)list;
1647 for(i=0; i<LISTSIZE; i++) set[i] = 0;
1648 while( list ){
1649 ep = list;
1650 list = NEXT(list);
1651 NEXT(ep) = 0;
1652 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1653 ep = merge(ep,set[i],cmp,offset);
1654 set[i] = 0;
1655 }
1656 set[i] = ep;
1657 }
1658 ep = 0;
1659 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
1660 return ep;
1661 }
1662 /************************ From the file "option.c" **************************/
1663 static char **argv;
1664 static struct s_options *op;
1665 static FILE *errstream;
1666
1667 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1668
1669 /*
1670 ** Print the command line with a carrot pointing to the k-th character
1671 ** of the n-th field.
1672 */
errline(int n,int k,FILE * err)1673 static void errline(int n, int k, FILE *err)
1674 {
1675 int spcnt, i;
1676 if( argv[0] ) fprintf(err,"%s",argv[0]);
1677 spcnt = lemonStrlen(argv[0]) + 1;
1678 for(i=1; i<n && argv[i]; i++){
1679 fprintf(err," %s",argv[i]);
1680 spcnt += lemonStrlen(argv[i])+1;
1681 }
1682 spcnt += k;
1683 for(; argv[i]; i++) fprintf(err," %s",argv[i]);
1684 if( spcnt<20 ){
1685 fprintf(err,"\n%*s^-- here\n",spcnt,"");
1686 }else{
1687 fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1688 }
1689 }
1690
1691 /*
1692 ** Return the index of the N-th non-switch argument. Return -1
1693 ** if N is out of range.
1694 */
argindex(int n)1695 static int argindex(int n)
1696 {
1697 int i;
1698 int dashdash = 0;
1699 if( argv!=0 && *argv!=0 ){
1700 for(i=1; argv[i]; i++){
1701 if( dashdash || !ISOPT(argv[i]) ){
1702 if( n==0 ) return i;
1703 n--;
1704 }
1705 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1706 }
1707 }
1708 return -1;
1709 }
1710
1711 static char emsg[] = "Command line syntax error: ";
1712
1713 /*
1714 ** Process a flag command line argument.
1715 */
handleflags(int i,FILE * err)1716 static int handleflags(int i, FILE *err)
1717 {
1718 int v;
1719 int errcnt = 0;
1720 int j;
1721 for(j=0; op[j].label; j++){
1722 if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
1723 }
1724 v = argv[i][0]=='-' ? 1 : 0;
1725 if( op[j].label==0 ){
1726 if( err ){
1727 fprintf(err,"%sundefined option.\n",emsg);
1728 errline(i,1,err);
1729 }
1730 errcnt++;
1731 }else if( op[j].type==OPT_FLAG ){
1732 *((int*)op[j].arg) = v;
1733 }else if( op[j].type==OPT_FFLAG ){
1734 (*(void(*)(int))(op[j].arg))(v);
1735 }else if( op[j].type==OPT_FSTR ){
1736 (*(void(*)(char *))(op[j].arg))(&argv[i][2]);
1737 }else{
1738 if( err ){
1739 fprintf(err,"%smissing argument on switch.\n",emsg);
1740 errline(i,1,err);
1741 }
1742 errcnt++;
1743 }
1744 return errcnt;
1745 }
1746
1747 /*
1748 ** Process a command line switch which has an argument.
1749 */
handleswitch(int i,FILE * err)1750 static int handleswitch(int i, FILE *err)
1751 {
1752 int lv = 0;
1753 double dv = 0.0;
1754 char *sv = 0, *end;
1755 char *cp;
1756 int j;
1757 int errcnt = 0;
1758 cp = strchr(argv[i],'=');
1759 assert( cp!=0 );
1760 *cp = 0;
1761 for(j=0; op[j].label; j++){
1762 if( strcmp(argv[i],op[j].label)==0 ) break;
1763 }
1764 *cp = '=';
1765 if( op[j].label==0 ){
1766 if( err ){
1767 fprintf(err,"%sundefined option.\n",emsg);
1768 errline(i,0,err);
1769 }
1770 errcnt++;
1771 }else{
1772 cp++;
1773 switch( op[j].type ){
1774 case OPT_FLAG:
1775 case OPT_FFLAG:
1776 if( err ){
1777 fprintf(err,"%soption requires an argument.\n",emsg);
1778 errline(i,0,err);
1779 }
1780 errcnt++;
1781 break;
1782 case OPT_DBL:
1783 case OPT_FDBL:
1784 dv = strtod(cp,&end);
1785 if( *end ){
1786 if( err ){
1787 fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
1788 errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1789 }
1790 errcnt++;
1791 }
1792 break;
1793 case OPT_INT:
1794 case OPT_FINT:
1795 lv = strtol(cp,&end,0);
1796 if( *end ){
1797 if( err ){
1798 fprintf(err,"%sillegal character in integer argument.\n",emsg);
1799 errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1800 }
1801 errcnt++;
1802 }
1803 break;
1804 case OPT_STR:
1805 case OPT_FSTR:
1806 sv = cp;
1807 break;
1808 }
1809 switch( op[j].type ){
1810 case OPT_FLAG:
1811 case OPT_FFLAG:
1812 break;
1813 case OPT_DBL:
1814 *(double*)(op[j].arg) = dv;
1815 break;
1816 case OPT_FDBL:
1817 (*(void(*)(double))(op[j].arg))(dv);
1818 break;
1819 case OPT_INT:
1820 *(int*)(op[j].arg) = lv;
1821 break;
1822 case OPT_FINT:
1823 (*(void(*)(int))(op[j].arg))((int)lv);
1824 break;
1825 case OPT_STR:
1826 *(char**)(op[j].arg) = sv;
1827 break;
1828 case OPT_FSTR:
1829 (*(void(*)(char *))(op[j].arg))(sv);
1830 break;
1831 }
1832 }
1833 return errcnt;
1834 }
1835
OptInit(char ** a,struct s_options * o,FILE * err)1836 int OptInit(char **a, struct s_options *o, FILE *err)
1837 {
1838 int errcnt = 0;
1839 argv = a;
1840 op = o;
1841 errstream = err;
1842 if( argv && *argv && op ){
1843 int i;
1844 for(i=1; argv[i]; i++){
1845 if( argv[i][0]=='+' || argv[i][0]=='-' ){
1846 errcnt += handleflags(i,err);
1847 }else if( strchr(argv[i],'=') ){
1848 errcnt += handleswitch(i,err);
1849 }
1850 }
1851 }
1852 if( errcnt>0 ){
1853 fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
1854 OptPrint();
1855 exit(1);
1856 }
1857 return 0;
1858 }
1859
OptNArgs()1860 int OptNArgs(){
1861 int cnt = 0;
1862 int dashdash = 0;
1863 int i;
1864 if( argv!=0 && argv[0]!=0 ){
1865 for(i=1; argv[i]; i++){
1866 if( dashdash || !ISOPT(argv[i]) ) cnt++;
1867 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1868 }
1869 }
1870 return cnt;
1871 }
1872
OptArg(int n)1873 char *OptArg(int n)
1874 {
1875 int i;
1876 i = argindex(n);
1877 return i>=0 ? argv[i] : 0;
1878 }
1879
OptErr(int n)1880 void OptErr(int n)
1881 {
1882 int i;
1883 i = argindex(n);
1884 if( i>=0 ) errline(i,0,errstream);
1885 }
1886
OptPrint()1887 void OptPrint(){
1888 int i;
1889 int max, len;
1890 max = 0;
1891 for(i=0; op[i].label; i++){
1892 len = lemonStrlen(op[i].label) + 1;
1893 switch( op[i].type ){
1894 case OPT_FLAG:
1895 case OPT_FFLAG:
1896 break;
1897 case OPT_INT:
1898 case OPT_FINT:
1899 len += 9; /* length of "<integer>" */
1900 break;
1901 case OPT_DBL:
1902 case OPT_FDBL:
1903 len += 6; /* length of "<real>" */
1904 break;
1905 case OPT_STR:
1906 case OPT_FSTR:
1907 len += 8; /* length of "<string>" */
1908 break;
1909 }
1910 if( len>max ) max = len;
1911 }
1912 for(i=0; op[i].label; i++){
1913 switch( op[i].type ){
1914 case OPT_FLAG:
1915 case OPT_FFLAG:
1916 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
1917 break;
1918 case OPT_INT:
1919 case OPT_FINT:
1920 fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
1921 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
1922 break;
1923 case OPT_DBL:
1924 case OPT_FDBL:
1925 fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
1926 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
1927 break;
1928 case OPT_STR:
1929 case OPT_FSTR:
1930 fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
1931 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
1932 break;
1933 }
1934 }
1935 }
1936 /*********************** From the file "parse.c" ****************************/
1937 /*
1938 ** Input file parser for the LEMON parser generator.
1939 */
1940
1941 /* The state of the parser */
1942 enum e_state {
1943 INITIALIZE,
1944 WAITING_FOR_DECL_OR_RULE,
1945 WAITING_FOR_DECL_KEYWORD,
1946 WAITING_FOR_DECL_ARG,
1947 WAITING_FOR_PRECEDENCE_SYMBOL,
1948 WAITING_FOR_ARROW,
1949 IN_RHS,
1950 LHS_ALIAS_1,
1951 LHS_ALIAS_2,
1952 LHS_ALIAS_3,
1953 RHS_ALIAS_1,
1954 RHS_ALIAS_2,
1955 PRECEDENCE_MARK_1,
1956 PRECEDENCE_MARK_2,
1957 RESYNC_AFTER_RULE_ERROR,
1958 RESYNC_AFTER_DECL_ERROR,
1959 WAITING_FOR_DESTRUCTOR_SYMBOL,
1960 WAITING_FOR_DATATYPE_SYMBOL,
1961 WAITING_FOR_FALLBACK_ID,
1962 WAITING_FOR_WILDCARD_ID
1963 };
1964 struct pstate {
1965 char *filename; /* Name of the input file */
1966 int tokenlineno; /* Linenumber at which current token starts */
1967 int errorcnt; /* Number of errors so far */
1968 char *tokenstart; /* Text of current token */
1969 struct lemon *gp; /* Global state vector */
1970 enum e_state state; /* The state of the parser */
1971 struct symbol *fallback; /* The fallback token */
1972 struct symbol *lhs; /* Left-hand side of current rule */
1973 const char *lhsalias; /* Alias for the LHS */
1974 int nrhs; /* Number of right-hand side symbols seen */
1975 struct symbol *rhs[MAXRHS]; /* RHS symbols */
1976 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
1977 struct rule *prevrule; /* Previous rule parsed */
1978 const char *declkeyword; /* Keyword of a declaration */
1979 char **declargslot; /* Where the declaration argument should be put */
1980 int insertLineMacro; /* Add #line before declaration insert */
1981 int *decllinenoslot; /* Where to write declaration line number */
1982 enum e_assoc declassoc; /* Assign this association to decl arguments */
1983 int preccounter; /* Assign this precedence to decl arguments */
1984 struct rule *firstrule; /* Pointer to first rule in the grammar */
1985 struct rule *lastrule; /* Pointer to the most recently parsed rule */
1986 };
1987
1988 /* Parse a single token */
parseonetoken(struct pstate * psp)1989 static void parseonetoken(struct pstate *psp)
1990 {
1991 const char *x;
1992 x = Strsafe(psp->tokenstart); /* Save the token permanently */
1993 #if 0
1994 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
1995 x,psp->state);
1996 #endif
1997 switch( psp->state ){
1998 case INITIALIZE:
1999 psp->prevrule = 0;
2000 psp->preccounter = 0;
2001 psp->firstrule = psp->lastrule = 0;
2002 psp->gp->nrule = 0;
2003 /* Fall thru to next case */
2004 case WAITING_FOR_DECL_OR_RULE:
2005 if( x[0]=='%' ){
2006 psp->state = WAITING_FOR_DECL_KEYWORD;
2007 }else if( islower(x[0]) ){
2008 psp->lhs = Symbol_new(x);
2009 psp->nrhs = 0;
2010 psp->lhsalias = 0;
2011 psp->state = WAITING_FOR_ARROW;
2012 }else if( x[0]=='{' ){
2013 if( psp->prevrule==0 ){
2014 ErrorMsg(psp->filename,psp->tokenlineno,
2015 "There is no prior rule opon which to attach the code \
2016 fragment which begins on this line.");
2017 psp->errorcnt++;
2018 }else if( psp->prevrule->code!=0 ){
2019 ErrorMsg(psp->filename,psp->tokenlineno,
2020 "Code fragment beginning on this line is not the first \
2021 to follow the previous rule.");
2022 psp->errorcnt++;
2023 }else{
2024 psp->prevrule->line = psp->tokenlineno;
2025 psp->prevrule->code = &x[1];
2026 }
2027 }else if( x[0]=='[' ){
2028 psp->state = PRECEDENCE_MARK_1;
2029 }else{
2030 ErrorMsg(psp->filename,psp->tokenlineno,
2031 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2032 x);
2033 psp->errorcnt++;
2034 }
2035 break;
2036 case PRECEDENCE_MARK_1:
2037 if( !isupper(x[0]) ){
2038 ErrorMsg(psp->filename,psp->tokenlineno,
2039 "The precedence symbol must be a terminal.");
2040 psp->errorcnt++;
2041 }else if( psp->prevrule==0 ){
2042 ErrorMsg(psp->filename,psp->tokenlineno,
2043 "There is no prior rule to assign precedence \"[%s]\".",x);
2044 psp->errorcnt++;
2045 }else if( psp->prevrule->precsym!=0 ){
2046 ErrorMsg(psp->filename,psp->tokenlineno,
2047 "Precedence mark on this line is not the first \
2048 to follow the previous rule.");
2049 psp->errorcnt++;
2050 }else{
2051 psp->prevrule->precsym = Symbol_new(x);
2052 }
2053 psp->state = PRECEDENCE_MARK_2;
2054 break;
2055 case PRECEDENCE_MARK_2:
2056 if( x[0]!=']' ){
2057 ErrorMsg(psp->filename,psp->tokenlineno,
2058 "Missing \"]\" on precedence mark.");
2059 psp->errorcnt++;
2060 }
2061 psp->state = WAITING_FOR_DECL_OR_RULE;
2062 break;
2063 case WAITING_FOR_ARROW:
2064 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2065 psp->state = IN_RHS;
2066 }else if( x[0]=='(' ){
2067 psp->state = LHS_ALIAS_1;
2068 }else{
2069 ErrorMsg(psp->filename,psp->tokenlineno,
2070 "Expected to see a \":\" following the LHS symbol \"%s\".",
2071 psp->lhs->name);
2072 psp->errorcnt++;
2073 psp->state = RESYNC_AFTER_RULE_ERROR;
2074 }
2075 break;
2076 case LHS_ALIAS_1:
2077 if( isalpha(x[0]) ){
2078 psp->lhsalias = x;
2079 psp->state = LHS_ALIAS_2;
2080 }else{
2081 ErrorMsg(psp->filename,psp->tokenlineno,
2082 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2083 x,psp->lhs->name);
2084 psp->errorcnt++;
2085 psp->state = RESYNC_AFTER_RULE_ERROR;
2086 }
2087 break;
2088 case LHS_ALIAS_2:
2089 if( x[0]==')' ){
2090 psp->state = LHS_ALIAS_3;
2091 }else{
2092 ErrorMsg(psp->filename,psp->tokenlineno,
2093 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2094 psp->errorcnt++;
2095 psp->state = RESYNC_AFTER_RULE_ERROR;
2096 }
2097 break;
2098 case LHS_ALIAS_3:
2099 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2100 psp->state = IN_RHS;
2101 }else{
2102 ErrorMsg(psp->filename,psp->tokenlineno,
2103 "Missing \"->\" following: \"%s(%s)\".",
2104 psp->lhs->name,psp->lhsalias);
2105 psp->errorcnt++;
2106 psp->state = RESYNC_AFTER_RULE_ERROR;
2107 }
2108 break;
2109 case IN_RHS:
2110 if( x[0]=='.' ){
2111 struct rule *rp;
2112 rp = (struct rule *)calloc( sizeof(struct rule) +
2113 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
2114 if( rp==0 ){
2115 ErrorMsg(psp->filename,psp->tokenlineno,
2116 "Can't allocate enough memory for this rule.");
2117 psp->errorcnt++;
2118 psp->prevrule = 0;
2119 }else{
2120 int i;
2121 rp->ruleline = psp->tokenlineno;
2122 rp->rhs = (struct symbol**)&rp[1];
2123 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
2124 for(i=0; i<psp->nrhs; i++){
2125 rp->rhs[i] = psp->rhs[i];
2126 rp->rhsalias[i] = psp->alias[i];
2127 }
2128 rp->lhs = psp->lhs;
2129 rp->lhsalias = psp->lhsalias;
2130 rp->nrhs = psp->nrhs;
2131 rp->code = 0;
2132 rp->precsym = 0;
2133 rp->index = psp->gp->nrule++;
2134 rp->nextlhs = rp->lhs->rule;
2135 rp->lhs->rule = rp;
2136 rp->next = 0;
2137 if( psp->firstrule==0 ){
2138 psp->firstrule = psp->lastrule = rp;
2139 }else{
2140 psp->lastrule->next = rp;
2141 psp->lastrule = rp;
2142 }
2143 psp->prevrule = rp;
2144 }
2145 psp->state = WAITING_FOR_DECL_OR_RULE;
2146 }else if( isalpha(x[0]) ){
2147 if( psp->nrhs>=MAXRHS ){
2148 ErrorMsg(psp->filename,psp->tokenlineno,
2149 "Too many symbols on RHS of rule beginning at \"%s\".",
2150 x);
2151 psp->errorcnt++;
2152 psp->state = RESYNC_AFTER_RULE_ERROR;
2153 }else{
2154 psp->rhs[psp->nrhs] = Symbol_new(x);
2155 psp->alias[psp->nrhs] = 0;
2156 psp->nrhs++;
2157 }
2158 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
2159 struct symbol *msp = psp->rhs[psp->nrhs-1];
2160 if( msp->type!=MULTITERMINAL ){
2161 struct symbol *origsp = msp;
2162 msp = (struct symbol *) calloc(1,sizeof(*msp));
2163 memset(msp, 0, sizeof(*msp));
2164 msp->type = MULTITERMINAL;
2165 msp->nsubsym = 1;
2166 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
2167 msp->subsym[0] = origsp;
2168 msp->name = origsp->name;
2169 psp->rhs[psp->nrhs-1] = msp;
2170 }
2171 msp->nsubsym++;
2172 msp->subsym = (struct symbol **) realloc(msp->subsym,
2173 sizeof(struct symbol*)*msp->nsubsym);
2174 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
2175 if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
2176 ErrorMsg(psp->filename,psp->tokenlineno,
2177 "Cannot form a compound containing a non-terminal");
2178 psp->errorcnt++;
2179 }
2180 }else if( x[0]=='(' && psp->nrhs>0 ){
2181 psp->state = RHS_ALIAS_1;
2182 }else{
2183 ErrorMsg(psp->filename,psp->tokenlineno,
2184 "Illegal character on RHS of rule: \"%s\".",x);
2185 psp->errorcnt++;
2186 psp->state = RESYNC_AFTER_RULE_ERROR;
2187 }
2188 break;
2189 case RHS_ALIAS_1:
2190 if( isalpha(x[0]) ){
2191 psp->alias[psp->nrhs-1] = x;
2192 psp->state = RHS_ALIAS_2;
2193 }else{
2194 ErrorMsg(psp->filename,psp->tokenlineno,
2195 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2196 x,psp->rhs[psp->nrhs-1]->name);
2197 psp->errorcnt++;
2198 psp->state = RESYNC_AFTER_RULE_ERROR;
2199 }
2200 break;
2201 case RHS_ALIAS_2:
2202 if( x[0]==')' ){
2203 psp->state = IN_RHS;
2204 }else{
2205 ErrorMsg(psp->filename,psp->tokenlineno,
2206 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2207 psp->errorcnt++;
2208 psp->state = RESYNC_AFTER_RULE_ERROR;
2209 }
2210 break;
2211 case WAITING_FOR_DECL_KEYWORD:
2212 if( isalpha(x[0]) ){
2213 psp->declkeyword = x;
2214 psp->declargslot = 0;
2215 psp->decllinenoslot = 0;
2216 psp->insertLineMacro = 1;
2217 psp->state = WAITING_FOR_DECL_ARG;
2218 if( strcmp(x,"name")==0 ){
2219 psp->declargslot = &(psp->gp->name);
2220 psp->insertLineMacro = 0;
2221 }else if( strcmp(x,"include")==0 ){
2222 psp->declargslot = &(psp->gp->include);
2223 }else if( strcmp(x,"code")==0 ){
2224 psp->declargslot = &(psp->gp->extracode);
2225 }else if( strcmp(x,"token_destructor")==0 ){
2226 psp->declargslot = &psp->gp->tokendest;
2227 }else if( strcmp(x,"default_destructor")==0 ){
2228 psp->declargslot = &psp->gp->vardest;
2229 }else if( strcmp(x,"token_prefix")==0 ){
2230 psp->declargslot = &psp->gp->tokenprefix;
2231 psp->insertLineMacro = 0;
2232 }else if( strcmp(x,"syntax_error")==0 ){
2233 psp->declargslot = &(psp->gp->error);
2234 }else if( strcmp(x,"parse_accept")==0 ){
2235 psp->declargslot = &(psp->gp->accept);
2236 }else if( strcmp(x,"parse_failure")==0 ){
2237 psp->declargslot = &(psp->gp->failure);
2238 }else if( strcmp(x,"stack_overflow")==0 ){
2239 psp->declargslot = &(psp->gp->overflow);
2240 }else if( strcmp(x,"extra_argument")==0 ){
2241 psp->declargslot = &(psp->gp->arg);
2242 psp->insertLineMacro = 0;
2243 }else if( strcmp(x,"token_type")==0 ){
2244 psp->declargslot = &(psp->gp->tokentype);
2245 psp->insertLineMacro = 0;
2246 }else if( strcmp(x,"default_type")==0 ){
2247 psp->declargslot = &(psp->gp->vartype);
2248 psp->insertLineMacro = 0;
2249 }else if( strcmp(x,"stack_size")==0 ){
2250 psp->declargslot = &(psp->gp->stacksize);
2251 psp->insertLineMacro = 0;
2252 }else if( strcmp(x,"start_symbol")==0 ){
2253 psp->declargslot = &(psp->gp->start);
2254 psp->insertLineMacro = 0;
2255 }else if( strcmp(x,"left")==0 ){
2256 psp->preccounter++;
2257 psp->declassoc = LEFT;
2258 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2259 }else if( strcmp(x,"right")==0 ){
2260 psp->preccounter++;
2261 psp->declassoc = RIGHT;
2262 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2263 }else if( strcmp(x,"nonassoc")==0 ){
2264 psp->preccounter++;
2265 psp->declassoc = NONE;
2266 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2267 }else if( strcmp(x,"destructor")==0 ){
2268 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2269 }else if( strcmp(x,"type")==0 ){
2270 psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2271 }else if( strcmp(x,"fallback")==0 ){
2272 psp->fallback = 0;
2273 psp->state = WAITING_FOR_FALLBACK_ID;
2274 }else if( strcmp(x,"wildcard")==0 ){
2275 psp->state = WAITING_FOR_WILDCARD_ID;
2276 }else{
2277 ErrorMsg(psp->filename,psp->tokenlineno,
2278 "Unknown declaration keyword: \"%%%s\".",x);
2279 psp->errorcnt++;
2280 psp->state = RESYNC_AFTER_DECL_ERROR;
2281 }
2282 }else{
2283 ErrorMsg(psp->filename,psp->tokenlineno,
2284 "Illegal declaration keyword: \"%s\".",x);
2285 psp->errorcnt++;
2286 psp->state = RESYNC_AFTER_DECL_ERROR;
2287 }
2288 break;
2289 case WAITING_FOR_DESTRUCTOR_SYMBOL:
2290 if( !isalpha(x[0]) ){
2291 ErrorMsg(psp->filename,psp->tokenlineno,
2292 "Symbol name missing after %%destructor keyword");
2293 psp->errorcnt++;
2294 psp->state = RESYNC_AFTER_DECL_ERROR;
2295 }else{
2296 struct symbol *sp = Symbol_new(x);
2297 psp->declargslot = &sp->destructor;
2298 psp->decllinenoslot = &sp->destLineno;
2299 psp->insertLineMacro = 1;
2300 psp->state = WAITING_FOR_DECL_ARG;
2301 }
2302 break;
2303 case WAITING_FOR_DATATYPE_SYMBOL:
2304 if( !isalpha(x[0]) ){
2305 ErrorMsg(psp->filename,psp->tokenlineno,
2306 "Symbol name missing after %%type keyword");
2307 psp->errorcnt++;
2308 psp->state = RESYNC_AFTER_DECL_ERROR;
2309 }else{
2310 struct symbol *sp = Symbol_find(x);
2311 if((sp) && (sp->datatype)){
2312 ErrorMsg(psp->filename,psp->tokenlineno,
2313 "Symbol %%type \"%s\" already defined", x);
2314 psp->errorcnt++;
2315 psp->state = RESYNC_AFTER_DECL_ERROR;
2316 }else{
2317 if (!sp){
2318 sp = Symbol_new(x);
2319 }
2320 psp->declargslot = &sp->datatype;
2321 psp->insertLineMacro = 0;
2322 psp->state = WAITING_FOR_DECL_ARG;
2323 }
2324 }
2325 break;
2326 case WAITING_FOR_PRECEDENCE_SYMBOL:
2327 if( x[0]=='.' ){
2328 psp->state = WAITING_FOR_DECL_OR_RULE;
2329 }else if( isupper(x[0]) ){
2330 struct symbol *sp;
2331 sp = Symbol_new(x);
2332 if( sp->prec>=0 ){
2333 ErrorMsg(psp->filename,psp->tokenlineno,
2334 "Symbol \"%s\" has already be given a precedence.",x);
2335 psp->errorcnt++;
2336 }else{
2337 sp->prec = psp->preccounter;
2338 sp->assoc = psp->declassoc;
2339 }
2340 }else{
2341 ErrorMsg(psp->filename,psp->tokenlineno,
2342 "Can't assign a precedence to \"%s\".",x);
2343 psp->errorcnt++;
2344 }
2345 break;
2346 case WAITING_FOR_DECL_ARG:
2347 if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){
2348 const char *zOld, *zNew;
2349 char *zBuf, *z;
2350 int nOld, n, nLine, nNew, nBack;
2351 int addLineMacro;
2352 char zLine[50];
2353 zNew = x;
2354 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
2355 nNew = lemonStrlen(zNew);
2356 if( *psp->declargslot ){
2357 zOld = *psp->declargslot;
2358 }else{
2359 zOld = "";
2360 }
2361 nOld = lemonStrlen(zOld);
2362 n = nOld + nNew + 20;
2363 addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
2364 (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
2365 if( addLineMacro ){
2366 for(z=psp->filename, nBack=0; *z; z++){
2367 if( *z=='\\' ) nBack++;
2368 }
2369 sprintf(zLine, "#line %d ", psp->tokenlineno);
2370 nLine = lemonStrlen(zLine);
2371 n += nLine + lemonStrlen(psp->filename) + nBack;
2372 }
2373 *psp->declargslot = (char *) realloc(*psp->declargslot, n);
2374 zBuf = *psp->declargslot + nOld;
2375 if( addLineMacro ){
2376 if( nOld && zBuf[-1]!='\n' ){
2377 *(zBuf++) = '\n';
2378 }
2379 memcpy(zBuf, zLine, nLine);
2380 zBuf += nLine;
2381 *(zBuf++) = '"';
2382 for(z=psp->filename; *z; z++){
2383 if( *z=='\\' ){
2384 *(zBuf++) = '\\';
2385 }
2386 *(zBuf++) = *z;
2387 }
2388 *(zBuf++) = '"';
2389 *(zBuf++) = '\n';
2390 }
2391 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
2392 psp->decllinenoslot[0] = psp->tokenlineno;
2393 }
2394 memcpy(zBuf, zNew, nNew);
2395 zBuf += nNew;
2396 *zBuf = 0;
2397 psp->state = WAITING_FOR_DECL_OR_RULE;
2398 }else{
2399 ErrorMsg(psp->filename,psp->tokenlineno,
2400 "Illegal argument to %%%s: %s",psp->declkeyword,x);
2401 psp->errorcnt++;
2402 psp->state = RESYNC_AFTER_DECL_ERROR;
2403 }
2404 break;
2405 case WAITING_FOR_FALLBACK_ID:
2406 if( x[0]=='.' ){
2407 psp->state = WAITING_FOR_DECL_OR_RULE;
2408 }else if( !isupper(x[0]) ){
2409 ErrorMsg(psp->filename, psp->tokenlineno,
2410 "%%fallback argument \"%s\" should be a token", x);
2411 psp->errorcnt++;
2412 }else{
2413 struct symbol *sp = Symbol_new(x);
2414 if( psp->fallback==0 ){
2415 psp->fallback = sp;
2416 }else if( sp->fallback ){
2417 ErrorMsg(psp->filename, psp->tokenlineno,
2418 "More than one fallback assigned to token %s", x);
2419 psp->errorcnt++;
2420 }else{
2421 sp->fallback = psp->fallback;
2422 psp->gp->has_fallback = 1;
2423 }
2424 }
2425 break;
2426 case WAITING_FOR_WILDCARD_ID:
2427 if( x[0]=='.' ){
2428 psp->state = WAITING_FOR_DECL_OR_RULE;
2429 }else if( !isupper(x[0]) ){
2430 ErrorMsg(psp->filename, psp->tokenlineno,
2431 "%%wildcard argument \"%s\" should be a token", x);
2432 psp->errorcnt++;
2433 }else{
2434 struct symbol *sp = Symbol_new(x);
2435 if( psp->gp->wildcard==0 ){
2436 psp->gp->wildcard = sp;
2437 }else{
2438 ErrorMsg(psp->filename, psp->tokenlineno,
2439 "Extra wildcard to token: %s", x);
2440 psp->errorcnt++;
2441 }
2442 }
2443 break;
2444 case RESYNC_AFTER_RULE_ERROR:
2445 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2446 ** break; */
2447 case RESYNC_AFTER_DECL_ERROR:
2448 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2449 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2450 break;
2451 }
2452 }
2453
2454 /* Run the preprocessor over the input file text. The global variables
2455 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2456 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2457 ** comments them out. Text in between is also commented out as appropriate.
2458 */
preprocess_input(char * z)2459 static void preprocess_input(char *z){
2460 int i, j, k, n;
2461 int exclude = 0;
2462 int start = 0;
2463 int lineno = 1;
2464 int start_lineno = 1;
2465 for(i=0; z[i]; i++){
2466 if( z[i]=='\n' ) lineno++;
2467 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
2468 if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
2469 if( exclude ){
2470 exclude--;
2471 if( exclude==0 ){
2472 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2473 }
2474 }
2475 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2476 }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
2477 || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
2478 if( exclude ){
2479 exclude++;
2480 }else{
2481 for(j=i+7; isspace(z[j]); j++){}
2482 for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
2483 exclude = 1;
2484 for(k=0; k<nDefine; k++){
2485 if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
2486 exclude = 0;
2487 break;
2488 }
2489 }
2490 if( z[i+3]=='n' ) exclude = !exclude;
2491 if( exclude ){
2492 start = i;
2493 start_lineno = lineno;
2494 }
2495 }
2496 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2497 }
2498 }
2499 if( exclude ){
2500 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
2501 exit(1);
2502 }
2503 }
2504
2505 /* In spite of its name, this function is really a scanner. It read
2506 ** in the entire input file (all at once) then tokenizes it. Each
2507 ** token is passed to the function "parseonetoken" which builds all
2508 ** the appropriate data structures in the global state vector "gp".
2509 */
Parse(struct lemon * gp)2510 void Parse(struct lemon *gp)
2511 {
2512 struct pstate ps;
2513 FILE *fp;
2514 char *filebuf;
2515 int filesize;
2516 int lineno;
2517 int c;
2518 char *cp, *nextcp;
2519 int startline = 0;
2520
2521 memset(&ps, '\0', sizeof(ps));
2522 ps.gp = gp;
2523 ps.filename = gp->filename;
2524 ps.errorcnt = 0;
2525 ps.state = INITIALIZE;
2526
2527 /* Begin by reading the input file */
2528 fp = fopen(ps.filename,"rb");
2529 if( fp==0 ){
2530 ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2531 gp->errorcnt++;
2532 return;
2533 }
2534 fseek(fp,0,2);
2535 filesize = ftell(fp);
2536 rewind(fp);
2537 filebuf = (char *)malloc( filesize+1 );
2538 if( filebuf==0 ){
2539 ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
2540 filesize+1);
2541 gp->errorcnt++;
2542 return;
2543 }
2544 if( fread(filebuf,1,filesize,fp)!=filesize ){
2545 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2546 filesize);
2547 free(filebuf);
2548 gp->errorcnt++;
2549 return;
2550 }
2551 fclose(fp);
2552 filebuf[filesize] = 0;
2553
2554 /* Make an initial pass through the file to handle %ifdef and %ifndef */
2555 preprocess_input(filebuf);
2556
2557 /* Now scan the text of the input file */
2558 lineno = 1;
2559 for(cp=filebuf; (c= *cp)!=0; ){
2560 if( c=='\n' ) lineno++; /* Keep track of the line number */
2561 if( isspace(c) ){ cp++; continue; } /* Skip all white space */
2562 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
2563 cp+=2;
2564 while( (c= *cp)!=0 && c!='\n' ) cp++;
2565 continue;
2566 }
2567 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
2568 cp+=2;
2569 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
2570 if( c=='\n' ) lineno++;
2571 cp++;
2572 }
2573 if( c ) cp++;
2574 continue;
2575 }
2576 ps.tokenstart = cp; /* Mark the beginning of the token */
2577 ps.tokenlineno = lineno; /* Linenumber on which token begins */
2578 if( c=='\"' ){ /* String literals */
2579 cp++;
2580 while( (c= *cp)!=0 && c!='\"' ){
2581 if( c=='\n' ) lineno++;
2582 cp++;
2583 }
2584 if( c==0 ){
2585 ErrorMsg(ps.filename,startline,
2586 "String starting on this line is not terminated before the end of the file.");
2587 ps.errorcnt++;
2588 nextcp = cp;
2589 }else{
2590 nextcp = cp+1;
2591 }
2592 }else if( c=='{' ){ /* A block of C code */
2593 int level;
2594 cp++;
2595 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
2596 if( c=='\n' ) lineno++;
2597 else if( c=='{' ) level++;
2598 else if( c=='}' ) level--;
2599 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
2600 int prevc;
2601 cp = &cp[2];
2602 prevc = 0;
2603 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
2604 if( c=='\n' ) lineno++;
2605 prevc = c;
2606 cp++;
2607 }
2608 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
2609 cp = &cp[2];
2610 while( (c= *cp)!=0 && c!='\n' ) cp++;
2611 if( c ) lineno++;
2612 }else if( c=='\'' || c=='\"' ){ /* String a character literals */
2613 int startchar, prevc;
2614 startchar = c;
2615 prevc = 0;
2616 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
2617 if( c=='\n' ) lineno++;
2618 if( prevc=='\\' ) prevc = 0;
2619 else prevc = c;
2620 }
2621 }
2622 }
2623 if( c==0 ){
2624 ErrorMsg(ps.filename,ps.tokenlineno,
2625 "C code starting on this line is not terminated before the end of the file.");
2626 ps.errorcnt++;
2627 nextcp = cp;
2628 }else{
2629 nextcp = cp+1;
2630 }
2631 }else if( isalnum(c) ){ /* Identifiers */
2632 while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2633 nextcp = cp;
2634 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
2635 cp += 3;
2636 nextcp = cp;
2637 }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
2638 cp += 2;
2639 while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2640 nextcp = cp;
2641 }else{ /* All other (one character) operators */
2642 cp++;
2643 nextcp = cp;
2644 }
2645 c = *cp;
2646 *cp = 0; /* Null terminate the token */
2647 parseonetoken(&ps); /* Parse the token */
2648 *cp = c; /* Restore the buffer */
2649 cp = nextcp;
2650 }
2651 free(filebuf); /* Release the buffer after parsing */
2652 gp->rule = ps.firstrule;
2653 gp->errorcnt = ps.errorcnt;
2654 }
2655 /*************************** From the file "plink.c" *********************/
2656 /*
2657 ** Routines processing configuration follow-set propagation links
2658 ** in the LEMON parser generator.
2659 */
2660 static struct plink *plink_freelist = 0;
2661
2662 /* Allocate a new plink */
Plink_new()2663 struct plink *Plink_new(){
2664 struct plink *newlink;
2665
2666 if( plink_freelist==0 ){
2667 int i;
2668 int amt = 100;
2669 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
2670 if( plink_freelist==0 ){
2671 fprintf(stderr,
2672 "Unable to allocate memory for a new follow-set propagation link.\n");
2673 exit(1);
2674 }
2675 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
2676 plink_freelist[amt-1].next = 0;
2677 }
2678 newlink = plink_freelist;
2679 plink_freelist = plink_freelist->next;
2680 return newlink;
2681 }
2682
2683 /* Add a plink to a plink list */
Plink_add(struct plink ** plpp,struct config * cfp)2684 void Plink_add(struct plink **plpp, struct config *cfp)
2685 {
2686 struct plink *newlink;
2687 newlink = Plink_new();
2688 newlink->next = *plpp;
2689 *plpp = newlink;
2690 newlink->cfp = cfp;
2691 }
2692
2693 /* Transfer every plink on the list "from" to the list "to" */
Plink_copy(struct plink ** to,struct plink * from)2694 void Plink_copy(struct plink **to, struct plink *from)
2695 {
2696 struct plink *nextpl;
2697 while( from ){
2698 nextpl = from->next;
2699 from->next = *to;
2700 *to = from;
2701 from = nextpl;
2702 }
2703 }
2704
2705 /* Delete every plink on the list */
Plink_delete(struct plink * plp)2706 void Plink_delete(struct plink *plp)
2707 {
2708 struct plink *nextpl;
2709
2710 while( plp ){
2711 nextpl = plp->next;
2712 plp->next = plink_freelist;
2713 plink_freelist = plp;
2714 plp = nextpl;
2715 }
2716 }
2717 /*********************** From the file "report.c" **************************/
2718 /*
2719 ** Procedures for generating reports and tables in the LEMON parser generator.
2720 */
2721
2722 /* Generate a filename with the given suffix. Space to hold the
2723 ** name comes from malloc() and must be freed by the calling
2724 ** function.
2725 */
file_makename(struct lemon * lemp,const char * suffix)2726 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
2727 {
2728 char *name;
2729 char *cp;
2730 char *filename;
2731
2732 filename = lemp->filename;
2733 if (local_out_dir) {
2734 char *ptr;
2735 #ifdef __WIN32__
2736 for (ptr = lemp->filename + strlen (lemp->filename) - 1; (ptr > lemp->filename) && (*ptr != '\\'); ptr--);
2737 #else
2738 for (ptr = lemp->filename + strlen (lemp->filename) - 1; (ptr > lemp->filename) && (*ptr != '/'); ptr--);
2739 #endif
2740 if (ptr > lemp->filename)
2741 filename = ptr + 1;
2742 }
2743
2744 name = (char*)malloc( lemonStrlen(filename) + lemonStrlen(suffix) + 5 );
2745 if( name==0 ){
2746 fprintf(stderr,"Can't allocate space for a filename.\n");
2747 exit(1);
2748 }
2749 strcpy(name,filename);
2750 cp = strrchr(name,'.');
2751 if( cp ) *cp = 0;
2752 strcat(name,suffix);
2753 return name;
2754 }
2755
2756 /* Open a file with a name based on the name of the input file,
2757 ** but with a different (specified) suffix, and return a pointer
2758 ** to the stream */
file_open(struct lemon * lemp,const char * suffix,const char * mode)2759 PRIVATE FILE *file_open(
2760 struct lemon *lemp,
2761 const char *suffix,
2762 const char *mode
2763 ){
2764 FILE *fp;
2765
2766 if( lemp->outname ) free(lemp->outname);
2767 lemp->outname = file_makename(lemp, suffix);
2768 fp = fopen(lemp->outname,mode);
2769 if( fp==0 && *mode=='w' ){
2770 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
2771 lemp->errorcnt++;
2772 return 0;
2773 }
2774
2775 /* Add files we create to a list, so we can delete them if we fail. This
2776 ** is to keep makefiles from getting confused. We don't include .out files,
2777 ** though: this is debug information, and you don't want it deleted if there
2778 ** was an error you need to track down.
2779 */
2780 if(( *mode=='w' ) && (strcmp(suffix, ".out") != 0)){
2781 const char **ptr = (const char **)
2782 realloc(made_files, sizeof (const char **) * (made_files_count + 1));
2783 const char *fname = Strsafe(lemp->outname);
2784 if ((ptr == NULL) || (fname == NULL)) {
2785 free(ptr);
2786 memory_error();
2787 }
2788 made_files = ptr;
2789 made_files[made_files_count++] = fname;
2790 }
2791 return fp;
2792 }
2793
2794 /* Duplicate the input file without comments and without actions
2795 ** on rules */
Reprint(struct lemon * lemp)2796 void Reprint(struct lemon *lemp)
2797 {
2798 struct rule *rp;
2799 struct symbol *sp;
2800 int i, j, maxlen, len, ncolumns, skip;
2801 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
2802 maxlen = 10;
2803 for(i=0; i<lemp->nsymbol; i++){
2804 sp = lemp->symbols[i];
2805 len = lemonStrlen(sp->name);
2806 if( len>maxlen ) maxlen = len;
2807 }
2808 ncolumns = 76/(maxlen+5);
2809 if( ncolumns<1 ) ncolumns = 1;
2810 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
2811 for(i=0; i<skip; i++){
2812 printf("//");
2813 for(j=i; j<lemp->nsymbol; j+=skip){
2814 sp = lemp->symbols[j];
2815 assert( sp->index==j );
2816 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
2817 }
2818 printf("\n");
2819 }
2820 for(rp=lemp->rule; rp; rp=rp->next){
2821 printf("%s",rp->lhs->name);
2822 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
2823 printf(" ::=");
2824 for(i=0; i<rp->nrhs; i++){
2825 sp = rp->rhs[i];
2826 printf(" %s", sp->name);
2827 if( sp->type==MULTITERMINAL ){
2828 for(j=1; j<sp->nsubsym; j++){
2829 printf("|%s", sp->subsym[j]->name);
2830 }
2831 }
2832 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
2833 }
2834 printf(".");
2835 if( rp->precsym ) printf(" [%s]",rp->precsym->name);
2836 /* if( rp->code ) printf("\n %s",rp->code); */
2837 printf("\n");
2838 }
2839 }
2840
ConfigPrint(FILE * fp,struct config * cfp)2841 void ConfigPrint(FILE *fp, struct config *cfp)
2842 {
2843 struct rule *rp;
2844 struct symbol *sp;
2845 int i, j;
2846 rp = cfp->rp;
2847 fprintf(fp,"%s ::=",rp->lhs->name);
2848 for(i=0; i<=rp->nrhs; i++){
2849 if( i==cfp->dot ) fprintf(fp," *");
2850 if( i==rp->nrhs ) break;
2851 sp = rp->rhs[i];
2852 fprintf(fp," %s", sp->name);
2853 if( sp->type==MULTITERMINAL ){
2854 for(j=1; j<sp->nsubsym; j++){
2855 fprintf(fp,"|%s",sp->subsym[j]->name);
2856 }
2857 }
2858 }
2859 }
2860
2861 /* #define TEST */
2862 #if 0
2863 /* Print a set */
2864 PRIVATE void SetPrint(out,set,lemp)
2865 FILE *out;
2866 char *set;
2867 struct lemon *lemp;
2868 {
2869 int i;
2870 char *spacer;
2871 spacer = "";
2872 fprintf(out,"%12s[","");
2873 for(i=0; i<lemp->nterminal; i++){
2874 if( SetFind(set,i) ){
2875 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
2876 spacer = " ";
2877 }
2878 }
2879 fprintf(out,"]\n");
2880 }
2881
2882 /* Print a plink chain */
2883 PRIVATE void PlinkPrint(out,plp,tag)
2884 FILE *out;
2885 struct plink *plp;
2886 char *tag;
2887 {
2888 while( plp ){
2889 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
2890 ConfigPrint(out,plp->cfp);
2891 fprintf(out,"\n");
2892 plp = plp->next;
2893 }
2894 }
2895 #endif
2896
2897 /* Print an action to the given file descriptor. Return FALSE if
2898 ** nothing was actually printed.
2899 */
PrintAction(struct action * ap,FILE * fp,int indent)2900 int PrintAction(struct action *ap, FILE *fp, int indent){
2901 int result = 1;
2902 switch( ap->type ){
2903 case SHIFT:
2904 fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum);
2905 break;
2906 case REDUCE:
2907 fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
2908 break;
2909 case ACCEPT:
2910 fprintf(fp,"%*s accept",indent,ap->sp->name);
2911 break;
2912 case ERROR:
2913 fprintf(fp,"%*s error",indent,ap->sp->name);
2914 break;
2915 case SRCONFLICT:
2916 case RRCONFLICT:
2917 fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
2918 indent,ap->sp->name,ap->x.rp->index);
2919 break;
2920 case SSCONFLICT:
2921 fprintf(fp,"%*s shift %-3d ** Parsing conflict **",
2922 indent,ap->sp->name,ap->x.stp->statenum);
2923 break;
2924 case SH_RESOLVED:
2925 if( showPrecedenceConflict ){
2926 fprintf(fp,"%*s shift %-3d -- dropped by precedence",
2927 indent,ap->sp->name,ap->x.stp->statenum);
2928 }else{
2929 result = 0;
2930 }
2931 break;
2932 case RD_RESOLVED:
2933 if( showPrecedenceConflict ){
2934 fprintf(fp,"%*s reduce %-3d -- dropped by precedence",
2935 indent,ap->sp->name,ap->x.rp->index);
2936 }else{
2937 result = 0;
2938 }
2939 break;
2940 case NOT_USED:
2941 result = 0;
2942 break;
2943 }
2944 return result;
2945 }
2946
2947 /* Generate the "y.output" log file */
ReportOutput(struct lemon * lemp)2948 void ReportOutput(struct lemon *lemp)
2949 {
2950 int i;
2951 struct state *stp;
2952 struct config *cfp;
2953 struct action *ap;
2954 FILE *fp;
2955
2956 fp = file_open(lemp,".out","wb");
2957 if( fp==0 ) return;
2958 for(i=0; i<lemp->nstate; i++){
2959 stp = lemp->sorted[i];
2960 fprintf(fp,"State %d:\n",stp->statenum);
2961 if( lemp->basisflag ) cfp=stp->bp;
2962 else cfp=stp->cfp;
2963 while( cfp ){
2964 char buf[20];
2965 if( cfp->dot==cfp->rp->nrhs ){
2966 sprintf(buf,"(%d)",cfp->rp->index);
2967 fprintf(fp," %5s ",buf);
2968 }else{
2969 fprintf(fp," ");
2970 }
2971 ConfigPrint(fp,cfp);
2972 fprintf(fp,"\n");
2973 #if 0
2974 SetPrint(fp,cfp->fws,lemp);
2975 PlinkPrint(fp,cfp->fplp,"To ");
2976 PlinkPrint(fp,cfp->bplp,"From");
2977 #endif
2978 if( lemp->basisflag ) cfp=cfp->bp;
2979 else cfp=cfp->next;
2980 }
2981 fprintf(fp,"\n");
2982 for(ap=stp->ap; ap; ap=ap->next){
2983 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
2984 }
2985 fprintf(fp,"\n");
2986 }
2987 fprintf(fp, "----------------------------------------------------\n");
2988 fprintf(fp, "Symbols:\n");
2989 for(i=0; i<lemp->nsymbol; i++){
2990 int j;
2991 struct symbol *sp;
2992
2993 sp = lemp->symbols[i];
2994 fprintf(fp, " %3d: %s", i, sp->name);
2995 if( sp->type==NONTERMINAL ){
2996 fprintf(fp, ":");
2997 if( sp->lambda ){
2998 fprintf(fp, " <lambda>");
2999 }
3000 for(j=0; j<lemp->nterminal; j++){
3001 if( sp->firstset && SetFind(sp->firstset, j) ){
3002 fprintf(fp, " %s", lemp->symbols[j]->name);
3003 }
3004 }
3005 }
3006 fprintf(fp, "\n");
3007 }
3008 fclose(fp);
3009 return;
3010 }
3011
3012 /* Search for the file "name" which is in the same directory as
3013 ** the exacutable */
pathsearch(char * argv0,char * name,int modemask)3014 PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
3015 {
3016 const char *pathlist;
3017 char *pathbufptr;
3018 char *pathbuf;
3019 char *path,*cp;
3020 char c;
3021
3022 #ifdef __WIN32__
3023 cp = strrchr(argv0,'\\');
3024 #else
3025 cp = strrchr(argv0,'/');
3026 #endif
3027 if( cp ){
3028 c = *cp;
3029 *cp = 0;
3030 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
3031 if( path ) sprintf(path,"%s/%s",argv0,name);
3032 *cp = c;
3033 }else{
3034 pathlist = getenv("PATH");
3035 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
3036 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
3037 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
3038 if( (pathbuf != 0) && (path!=0) ){
3039 pathbufptr = pathbuf;
3040 strcpy(pathbuf, pathlist);
3041 while( *pathbuf ){
3042 cp = strchr(pathbuf,':');
3043 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
3044 c = *cp;
3045 *cp = 0;
3046 sprintf(path,"%s/%s",pathbuf,name);
3047 *cp = c;
3048 if( c==0 ) pathbuf[0] = 0;
3049 else pathbuf = &cp[1];
3050 if( access(path,modemask)==0 ) break;
3051 }
3052 free(pathbufptr);
3053 }
3054 }
3055 return path;
3056 }
3057
3058 /* Given an action, compute the integer value for that action
3059 ** which is to be put in the action table of the generated machine.
3060 ** Return negative if no action should be generated.
3061 */
compute_action(struct lemon * lemp,struct action * ap)3062 PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
3063 {
3064 int act;
3065 switch( ap->type ){
3066 case SHIFT: act = ap->x.stp->statenum; break;
3067 case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
3068 case ERROR: act = lemp->nstate + lemp->nrule; break;
3069 case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
3070 default: act = -1; break;
3071 }
3072 return act;
3073 }
3074
3075 #define LINESIZE 1000
3076 /* The next cluster of routines are for reading the template file
3077 ** and writing the results to the generated parser */
3078 /* The first function transfers data from "in" to "out" until
3079 ** a line is seen which begins with "%%". The line number is
3080 ** tracked.
3081 **
3082 ** if name!=0, then any word that begin with "Parse" is changed to
3083 ** begin with *name instead.
3084 */
tplt_xfer(char * name,FILE * in,FILE * out,int * lineno)3085 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
3086 {
3087 int i, iStart;
3088 char line[LINESIZE];
3089 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3090 (*lineno)++;
3091 iStart = 0;
3092 if( name ){
3093 for(i=0; line[i]; i++){
3094 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
3095 && (i==0 || !isalpha(line[i-1]))
3096 ){
3097 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
3098 fprintf(out,"%s",name);
3099 i += 4;
3100 iStart = i+1;
3101 }
3102 }
3103 }
3104 fprintf(out,"%s",&line[iStart]);
3105 }
3106 }
3107
3108 /* The next function finds the template file and opens it, returning
3109 ** a pointer to the opened file. */
tplt_open(struct lemon * lemp)3110 PRIVATE FILE *tplt_open(struct lemon *lemp)
3111 {
3112 static char templatename[] = "lempar.c";
3113 char buf[1000];
3114 FILE *in;
3115 char *tpltname;
3116 char *cp;
3117
3118 /* first, see if user specified a template filename on the command line. */
3119 if (user_templatename != 0) {
3120 if( access(user_templatename,004)==-1 ){
3121 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3122 user_templatename);
3123 lemp->errorcnt++;
3124 return 0;
3125 }
3126 in = fopen(user_templatename,"rb");
3127 if( in==0 ){
3128 fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename);
3129 lemp->errorcnt++;
3130 return 0;
3131 }
3132 return in;
3133 }
3134
3135 cp = strrchr(lemp->filename,'.');
3136 if( cp ){
3137 sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
3138 }else{
3139 sprintf(buf,"%s.lt",lemp->filename);
3140 }
3141 if( access(buf,004)==0 ){
3142 tpltname = buf;
3143 }else if( access(templatename,004)==0 ){
3144 tpltname = templatename;
3145 }else{
3146 tpltname = pathsearch(lemp->argv0,templatename,0);
3147 }
3148 if( tpltname==0 ){
3149 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3150 templatename);
3151 lemp->errorcnt++;
3152 return 0;
3153 }
3154 in = fopen(tpltname,"rb");
3155 if( in==0 ){
3156 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
3157 lemp->errorcnt++;
3158 return 0;
3159 }
3160 return in;
3161 }
3162
3163 /* Print a #line directive line to the output file. */
tplt_linedir(FILE * out,int lineno,char * filename)3164 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
3165 {
3166 fprintf(out,"#line %d \"",lineno);
3167 while( *filename ){
3168 if( *filename == '\\' ) putc('\\',out);
3169 putc(*filename,out);
3170 filename++;
3171 }
3172 fprintf(out,"\"\n");
3173 }
3174
3175 /* Print a string to the file and keep the linenumber up to date */
tplt_print(FILE * out,struct lemon * lemp,char * str,int * lineno)3176 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
3177 {
3178 if( str==0 ) return;
3179 while( *str ){
3180 putc(*str,out);
3181 if( *str=='\n' ) (*lineno)++;
3182 str++;
3183 }
3184 if( str[-1]!='\n' ){
3185 putc('\n',out);
3186 (*lineno)++;
3187 }
3188 if (!lemp->nolinenosflag) {
3189 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3190 }
3191 return;
3192 }
3193
3194 /*
3195 ** The following routine emits code for the destructor for the
3196 ** symbol sp
3197 */
emit_destructor_code(FILE * out,struct symbol * sp,struct lemon * lemp,int * lineno)3198 void emit_destructor_code(
3199 FILE *out,
3200 struct symbol *sp,
3201 struct lemon *lemp,
3202 int *lineno
3203 ){
3204 char *cp = 0;
3205
3206 if( sp->type==TERMINAL ){
3207 cp = lemp->tokendest;
3208 if( cp==0 ) return;
3209 fprintf(out,"{\n"); (*lineno)++;
3210 }else if( sp->destructor ){
3211 cp = sp->destructor;
3212 fprintf(out,"{\n"); (*lineno)++;
3213 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); }
3214 }else if( lemp->vardest ){
3215 cp = lemp->vardest;
3216 if( cp==0 ) return;
3217 fprintf(out,"{\n"); (*lineno)++;
3218 }else{
3219 assert( 0 ); /* Cannot happen */
3220 }
3221 for(; *cp; cp++){
3222 if( *cp=='$' && cp[1]=='$' ){
3223 fprintf(out,"(yypminor->yy%d)",sp->dtnum);
3224 cp++;
3225 continue;
3226 }
3227 if( *cp=='\n' ) (*lineno)++;
3228 fputc(*cp,out);
3229 }
3230 fprintf(out,"\n"); (*lineno)++;
3231 if (!lemp->nolinenosflag) {
3232 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3233 }
3234 fprintf(out,"}\n"); (*lineno)++;
3235 return;
3236 }
3237
3238 /*
3239 ** Return TRUE (non-zero) if the given symbol has a destructor.
3240 */
has_destructor(struct symbol * sp,struct lemon * lemp)3241 int has_destructor(struct symbol *sp, struct lemon *lemp)
3242 {
3243 int ret;
3244 if( sp->type==TERMINAL ){
3245 ret = lemp->tokendest!=0;
3246 }else{
3247 ret = lemp->vardest!=0 || sp->destructor!=0;
3248 }
3249 return ret;
3250 }
3251
3252 /*
3253 ** Append text to a dynamically allocated string. If zText is 0 then
3254 ** reset the string to be empty again. Always return the complete text
3255 ** of the string (which is overwritten with each call).
3256 **
3257 ** n bytes of zText are stored. If n==0 then all of zText up to the first
3258 ** \000 terminator is stored. zText can contain up to two instances of
3259 ** %d. The values of p1 and p2 are written into the first and second
3260 ** %d.
3261 **
3262 ** If n==-1, then the previous character is overwritten.
3263 */
append_str(const char * zText,int n,int p1,int p2)3264 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
3265 static char empty[1] = { 0 };
3266 static char *z = 0;
3267 static int alloced = 0;
3268 static int used = 0;
3269 int c;
3270 char zInt[40];
3271 if( zText==0 ){
3272 used = 0;
3273 return z;
3274 }
3275 if( n<=0 ){
3276 if( n<0 ){
3277 used += n;
3278 assert( used>=0 );
3279 }
3280 n = lemonStrlen(zText);
3281 }
3282 if( n+sizeof(zInt)*2+used >= alloced ){
3283 alloced = n + sizeof(zInt)*2 + used + 200;
3284 z = (char *) realloc(z, alloced);
3285 }
3286 if( z==0 ) return empty;
3287 while( n-- > 0 ){
3288 c = *(zText++);
3289 if( c=='%' && n>0 && zText[0]=='d' ){
3290 sprintf(zInt, "%d", p1);
3291 p1 = p2;
3292 strcpy(&z[used], zInt);
3293 used += lemonStrlen(&z[used]);
3294 zText++;
3295 n--;
3296 }else{
3297 z[used++] = c;
3298 }
3299 }
3300 z[used] = 0;
3301 return z;
3302 }
3303
3304 /*
3305 ** zCode is a string that is the action associated with a rule. Expand
3306 ** the symbols in this string so that the refer to elements of the parser
3307 ** stack.
3308 */
translate_code(struct lemon * lemp,struct rule * rp)3309 PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
3310 char *cp, *xp;
3311 int i;
3312 char lhsused = 0; /* True if the LHS element has been used */
3313 char used[MAXRHS]; /* True for each RHS element which is used */
3314
3315 for(i=0; i<rp->nrhs; i++) used[i] = 0;
3316 lhsused = 0;
3317
3318 if( rp->code==0 ){
3319 static char newlinestr[2] = { '\n', '\0' };
3320 rp->code = newlinestr;
3321 rp->line = rp->ruleline;
3322 }
3323
3324 append_str(0,0,0,0);
3325
3326 /* This const cast is wrong but harmless, if we're careful. */
3327 for(cp=(char *)rp->code; *cp; cp++){
3328 if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
3329 char saved;
3330 for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
3331 saved = *xp;
3332 *xp = 0;
3333 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
3334 append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
3335 cp = xp;
3336 lhsused = 1;
3337 }else{
3338 for(i=0; i<rp->nrhs; i++){
3339 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
3340 if( cp!=rp->code && cp[-1]=='@' ){
3341 /* If the argument is of the form @X then substituted
3342 ** the token number of X, not the value of X */
3343 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
3344 }else{
3345 struct symbol *sp = rp->rhs[i];
3346 int dtnum;
3347 if( sp->type==MULTITERMINAL ){
3348 dtnum = sp->subsym[0]->dtnum;
3349 }else{
3350 dtnum = sp->dtnum;
3351 }
3352 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
3353 }
3354 cp = xp;
3355 used[i] = 1;
3356 break;
3357 }
3358 }
3359 }
3360 *xp = saved;
3361 }
3362 append_str(cp, 1, 0, 0);
3363 } /* End loop */
3364
3365 /* Check to make sure the LHS has been used */
3366 if( rp->lhsalias && !lhsused ){
3367 ErrorMsg(lemp->filename,rp->ruleline,
3368 "Label \"%s\" for \"%s(%s)\" is never used.",
3369 rp->lhsalias,rp->lhs->name,rp->lhsalias);
3370 lemp->errorcnt++;
3371 }
3372
3373 /* Generate destructor code for RHS symbols which are not used in the
3374 ** reduce code */
3375 for(i=0; i<rp->nrhs; i++){
3376 if( rp->rhsalias[i] && !used[i] ){
3377 ErrorMsg(lemp->filename,rp->ruleline,
3378 "Label %s for \"%s(%s)\" is never used.",
3379 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
3380 lemp->errorcnt++;
3381 }else if( rp->rhsalias[i]==0 ){
3382 if( has_destructor(rp->rhs[i],lemp) ){
3383 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3384 rp->rhs[i]->index,i-rp->nrhs+1);
3385 }else{
3386 /* No destructor defined for this term */
3387 }
3388 }
3389 }
3390 if( rp->code ){
3391 cp = append_str(0,0,0,0);
3392 rp->code = Strsafe(cp?cp:"");
3393 }
3394 }
3395
3396 /*
3397 ** Generate code which executes when the rule "rp" is reduced. Write
3398 ** the code to "out". Make sure lineno stays up-to-date.
3399 */
emit_code(FILE * out,struct rule * rp,struct lemon * lemp,int * lineno)3400 PRIVATE void emit_code(
3401 FILE *out,
3402 struct rule *rp,
3403 struct lemon *lemp,
3404 int *lineno
3405 ){
3406 const char *cp;
3407
3408 /* Generate code to do the reduce action */
3409 if( rp->code ){
3410 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); }
3411 fprintf(out,"{%s",rp->code);
3412 for(cp=rp->code; *cp; cp++){
3413 if( *cp=='\n' ) (*lineno)++;
3414 } /* End loop */
3415 fprintf(out,"}\n"); (*lineno)++;
3416 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); }
3417 } /* End if( rp->code ) */
3418
3419 return;
3420 }
3421
3422 /*
3423 ** Print the definition of the union used for the parser's data stack.
3424 ** This union contains fields for every possible data type for tokens
3425 ** and nonterminals. In the process of computing and printing this
3426 ** union, also set the ".dtnum" field of every terminal and nonterminal
3427 ** symbol.
3428 */
print_stack_union(FILE * out,struct lemon * lemp,int * plineno,int mhflag)3429 void print_stack_union(
3430 FILE *out, /* The output stream */
3431 struct lemon *lemp, /* The main info structure for this parser */
3432 int *plineno, /* Pointer to the line number */
3433 int mhflag /* True if generating makeheaders output */
3434 ){
3435 int lineno = *plineno; /* The line number of the output */
3436 char **types; /* A hash table of datatypes */
3437 int arraysize; /* Size of the "types" array */
3438 int maxdtlength; /* Maximum length of any ".datatype" field. */
3439 char *stddt; /* Standardized name for a datatype */
3440 int i,j; /* Loop counters */
3441 int hash; /* For hashing the name of a type */
3442 const char *name; /* Name of the parser */
3443
3444 /* Allocate and initialize types[] and allocate stddt[] */
3445 arraysize = lemp->nsymbol * 2;
3446 types = (char**)calloc( arraysize, sizeof(char*) );
3447 for(i=0; i<arraysize; i++) types[i] = 0;
3448 maxdtlength = 0;
3449 if( lemp->vartype ){
3450 maxdtlength = lemonStrlen(lemp->vartype);
3451 }
3452 for(i=0; i<lemp->nsymbol; i++){
3453 int len;
3454 struct symbol *sp = lemp->symbols[i];
3455 if( sp->datatype==0 ) continue;
3456 len = lemonStrlen(sp->datatype);
3457 if( len>maxdtlength ) maxdtlength = len;
3458 }
3459 stddt = (char*)malloc( maxdtlength*2 + 1 );
3460 if( types==0 || stddt==0 ){
3461 fprintf(stderr,"Out of memory.\n");
3462 exit(1);
3463 }
3464
3465 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
3466 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
3467 ** used for terminal symbols. If there is no %default_type defined then
3468 ** 0 is also used as the .dtnum value for nonterminals which do not specify
3469 ** a datatype using the %type directive.
3470 */
3471 for(i=0; i<lemp->nsymbol; i++){
3472 struct symbol *sp = lemp->symbols[i];
3473 char *cp;
3474 if( sp==lemp->errsym ){
3475 sp->dtnum = arraysize+1;
3476 continue;
3477 }
3478 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
3479 sp->dtnum = 0;
3480 continue;
3481 }
3482 cp = sp->datatype;
3483 if( cp==0 ) cp = lemp->vartype;
3484 j = 0;
3485 while( isspace(*cp) ) cp++;
3486 while( *cp ) stddt[j++] = *cp++;
3487 while( j>0 && isspace(stddt[j-1]) ) j--;
3488 stddt[j] = 0;
3489 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
3490 sp->dtnum = 0;
3491 continue;
3492 }
3493 hash = 0;
3494 for(j=0; stddt[j]; j++){
3495 hash = hash*53 + stddt[j];
3496 }
3497 hash = (hash & 0x7fffffff)%arraysize;
3498 while( types[hash] ){
3499 if( strcmp(types[hash],stddt)==0 ){
3500 sp->dtnum = hash + 1;
3501 break;
3502 }
3503 hash++;
3504 if( hash>=arraysize ) hash = 0;
3505 }
3506 if( types[hash]==0 ){
3507 sp->dtnum = hash + 1;
3508 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
3509 if( types[hash]==0 ){
3510 fprintf(stderr,"Out of memory.\n");
3511 exit(1);
3512 }
3513 strcpy(types[hash],stddt);
3514 }
3515 }
3516
3517 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
3518 name = lemp->name ? lemp->name : "Parse";
3519 lineno = *plineno;
3520 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
3521 fprintf(out,"#define %sTOKENTYPE %s\n",name,
3522 lemp->tokentype?lemp->tokentype:"void*"); lineno++;
3523 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
3524 fprintf(out,"typedef union {\n"); lineno++;
3525 fprintf(out," int yyinit;\n"); lineno++;
3526 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
3527 for(i=0; i<arraysize; i++){
3528 if( types[i]==0 ) continue;
3529 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
3530 free(types[i]);
3531 }
3532 if( lemp->errsym->useCnt ){
3533 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
3534 }
3535 free(stddt);
3536 free(types);
3537 fprintf(out,"} YYMINORTYPE;\n"); lineno++;
3538 *plineno = lineno;
3539 }
3540
3541 /*
3542 ** Return the name of a C datatype able to represent values between
3543 ** lwr and upr, inclusive.
3544 */
minimum_size_type(int lwr,int upr)3545 static const char *minimum_size_type(int lwr, int upr){
3546 if( lwr>=0 ){
3547 if( upr<=255 ){
3548 return "unsigned char";
3549 }else if( upr<65535 ){
3550 return "unsigned short int";
3551 }else{
3552 return "unsigned int";
3553 }
3554 }else if( lwr>=-127 && upr<=127 ){
3555 return "signed char";
3556 }else if( lwr>=-32767 && upr<32767 ){
3557 return "short";
3558 }else{
3559 return "int";
3560 }
3561 }
3562
3563 /*
3564 ** Each state contains a set of token transaction and a set of
3565 ** nonterminal transactions. Each of these sets makes an instance
3566 ** of the following structure. An array of these structures is used
3567 ** to order the creation of entries in the yy_action[] table.
3568 */
3569 struct axset {
3570 struct state *stp; /* A pointer to a state */
3571 int isTkn; /* True to use tokens. False for non-terminals */
3572 int nAction; /* Number of actions */
3573 int iOrder; /* Original order of action sets */
3574 };
3575
3576 /*
3577 ** Compare to axset structures for sorting purposes
3578 */
axset_compare(const void * a,const void * b)3579 static int axset_compare(const void *a, const void *b){
3580 struct axset *p1 = (struct axset*)a;
3581 struct axset *p2 = (struct axset*)b;
3582 int c;
3583 c = p2->nAction - p1->nAction;
3584 if( c==0 ){
3585 c = p2->iOrder - p1->iOrder;
3586 }
3587 assert( c!=0 || p1==p2 );
3588 return c;
3589 }
3590
3591 /*
3592 ** Write text on "out" that describes the rule "rp".
3593 */
writeRuleText(FILE * out,struct rule * rp)3594 static void writeRuleText(FILE *out, struct rule *rp){
3595 int j;
3596 fprintf(out,"%s ::=", rp->lhs->name);
3597 for(j=0; j<rp->nrhs; j++){
3598 struct symbol *sp = rp->rhs[j];
3599 fprintf(out," %s", sp->name);
3600 if( sp->type==MULTITERMINAL ){
3601 int k;
3602 for(k=1; k<sp->nsubsym; k++){
3603 fprintf(out,"|%s",sp->subsym[k]->name);
3604 }
3605 }
3606 }
3607 }
3608
3609
3610 /* Generate C source code for the parser */
ReportTable(struct lemon * lemp,int mhflag)3611 void ReportTable(
3612 struct lemon *lemp,
3613 int mhflag /* Output in makeheaders format if true */
3614 ){
3615 FILE *out, *in;
3616 char line[LINESIZE];
3617 int lineno;
3618 struct state *stp;
3619 struct action *ap;
3620 struct rule *rp;
3621 struct acttab *pActtab;
3622 int i, j, n;
3623 const char *name;
3624 int mnTknOfst, mxTknOfst;
3625 int mnNtOfst, mxNtOfst;
3626 struct axset *ax;
3627
3628 in = tplt_open(lemp);
3629 if( in==0 ) return;
3630 out = file_open(lemp,".c","wb");
3631 if( out==0 ){
3632 fclose(in);
3633 return;
3634 }
3635 lineno = 1;
3636 tplt_xfer(lemp->name,in,out,&lineno);
3637
3638 /* Generate the include code, if any */
3639 tplt_print(out,lemp,lemp->include,&lineno);
3640 if( mhflag ){
3641 char *name = file_makename(lemp, ".h");
3642 fprintf(out,"#include \"%s\"\n", name); lineno++;
3643 free(name);
3644 }
3645 tplt_xfer(lemp->name,in,out,&lineno);
3646
3647 /* Generate #defines for all tokens */
3648 if( mhflag ){
3649 const char *prefix;
3650 fprintf(out,"#if INTERFACE\n"); lineno++;
3651 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3652 else prefix = "";
3653 for(i=1; i<lemp->nterminal; i++){
3654 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3655 lineno++;
3656 }
3657 fprintf(out,"#endif\n"); lineno++;
3658 }
3659 tplt_xfer(lemp->name,in,out,&lineno);
3660
3661 /* Generate the defines */
3662 fprintf(out,"#define YYCODETYPE %s\n",
3663 minimum_size_type(0, lemp->nsymbol+1)); lineno++;
3664 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
3665 fprintf(out,"#define YYACTIONTYPE %s\n",
3666 minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
3667 if( lemp->wildcard ){
3668 fprintf(out,"#define YYWILDCARD %d\n",
3669 lemp->wildcard->index); lineno++;
3670 }
3671 print_stack_union(out,lemp,&lineno,mhflag);
3672 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
3673 if( lemp->stacksize ){
3674 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
3675 }else{
3676 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
3677 }
3678 fprintf(out, "#endif\n"); lineno++;
3679 if( mhflag ){
3680 fprintf(out,"#if INTERFACE\n"); lineno++;
3681 }
3682 name = lemp->name ? lemp->name : "Parse";
3683 if( lemp->arg && lemp->arg[0] ){
3684 int i;
3685 i = lemonStrlen(lemp->arg);
3686 while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
3687 while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
3688 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
3689 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
3690 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
3691 name,lemp->arg,&lemp->arg[i]); lineno++;
3692 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
3693 name,&lemp->arg[i],&lemp->arg[i]); lineno++;
3694 }else{
3695 fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
3696 fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
3697 fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
3698 fprintf(out,"#define %sARG_STORE\n",name); lineno++;
3699 }
3700 if( mhflag ){
3701 fprintf(out,"#endif\n"); lineno++;
3702 }
3703 fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
3704 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
3705 if( lemp->errsym->useCnt ){
3706 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
3707 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
3708 }
3709 if( lemp->has_fallback ){
3710 fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
3711 }
3712 tplt_xfer(lemp->name,in,out,&lineno);
3713
3714 /* Generate the action table and its associates:
3715 **
3716 ** yy_action[] A single table containing all actions.
3717 ** yy_lookahead[] A table containing the lookahead for each entry in
3718 ** yy_action. Used to detect hash collisions.
3719 ** yy_shift_ofst[] For each state, the offset into yy_action for
3720 ** shifting terminals.
3721 ** yy_reduce_ofst[] For each state, the offset into yy_action for
3722 ** shifting non-terminals after a reduce.
3723 ** yy_default[] Default action for each state.
3724 */
3725
3726 /* Compute the actions on all states and count them up */
3727 ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0]));
3728 if( ax==0 ){
3729 fprintf(stderr,"malloc failed\n");
3730 exit(1);
3731 }
3732 for(i=0; i<lemp->nstate; i++){
3733 stp = lemp->sorted[i];
3734 ax[i*2].stp = stp;
3735 ax[i*2].isTkn = 1;
3736 ax[i*2].nAction = stp->nTknAct;
3737 ax[i*2+1].stp = stp;
3738 ax[i*2+1].isTkn = 0;
3739 ax[i*2+1].nAction = stp->nNtAct;
3740 }
3741 mxTknOfst = mnTknOfst = 0;
3742 mxNtOfst = mnNtOfst = 0;
3743
3744 /* Compute the action table. In order to try to keep the size of the
3745 ** action table to a minimum, the heuristic of placing the largest action
3746 ** sets first is used.
3747 */
3748 for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i;
3749 qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
3750 pActtab = acttab_alloc();
3751 for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
3752 stp = ax[i].stp;
3753 if( ax[i].isTkn ){
3754 for(ap=stp->ap; ap; ap=ap->next){
3755 int action;
3756 if( ap->sp->index>=lemp->nterminal ) continue;
3757 action = compute_action(lemp, ap);
3758 if( action<0 ) continue;
3759 acttab_action(pActtab, ap->sp->index, action);
3760 }
3761 stp->iTknOfst = acttab_insert(pActtab);
3762 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
3763 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
3764 }else{
3765 for(ap=stp->ap; ap; ap=ap->next){
3766 int action;
3767 if( ap->sp->index<lemp->nterminal ) continue;
3768 if( ap->sp->index==lemp->nsymbol ) continue;
3769 action = compute_action(lemp, ap);
3770 if( action<0 ) continue;
3771 acttab_action(pActtab, ap->sp->index, action);
3772 }
3773 stp->iNtOfst = acttab_insert(pActtab);
3774 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
3775 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
3776 }
3777 }
3778 free(ax);
3779
3780 /* Output the yy_action table */
3781 n = acttab_size(pActtab);
3782 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
3783 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
3784 for(i=j=0; i<n; i++){
3785 int action = acttab_yyaction(pActtab, i);
3786 if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
3787 if( j==0 ) fprintf(out," /* %5d */ ", i);
3788 fprintf(out, " %4d,", action);
3789 if( j==9 || i==n-1 ){
3790 fprintf(out, "\n"); lineno++;
3791 j = 0;
3792 }else{
3793 j++;
3794 }
3795 }
3796 fprintf(out, "};\n"); lineno++;
3797
3798 /* Output the yy_lookahead table */
3799 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
3800 for(i=j=0; i<n; i++){
3801 int la = acttab_yylookahead(pActtab, i);
3802 if( la<0 ) la = lemp->nsymbol;
3803 if( j==0 ) fprintf(out," /* %5d */ ", i);
3804 fprintf(out, " %4d,", la);
3805 if( j==9 || i==n-1 ){
3806 fprintf(out, "\n"); lineno++;
3807 j = 0;
3808 }else{
3809 j++;
3810 }
3811 }
3812 fprintf(out, "};\n"); lineno++;
3813
3814 /* Output the yy_shift_ofst[] table */
3815 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
3816 n = lemp->nstate;
3817 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
3818 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
3819 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++;
3820 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++;
3821 fprintf(out, "static const %s yy_shift_ofst[] = {\n",
3822 minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
3823 for(i=j=0; i<n; i++){
3824 int ofst;
3825 stp = lemp->sorted[i];
3826 ofst = stp->iTknOfst;
3827 if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
3828 if( j==0 ) fprintf(out," /* %5d */ ", i);
3829 fprintf(out, " %4d,", ofst);
3830 if( j==9 || i==n-1 ){
3831 fprintf(out, "\n"); lineno++;
3832 j = 0;
3833 }else{
3834 j++;
3835 }
3836 }
3837 fprintf(out, "};\n"); lineno++;
3838
3839 /* Output the yy_reduce_ofst[] table */
3840 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
3841 n = lemp->nstate;
3842 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
3843 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
3844 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++;
3845 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++;
3846 fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
3847 minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
3848 for(i=j=0; i<n; i++){
3849 int ofst;
3850 stp = lemp->sorted[i];
3851 ofst = stp->iNtOfst;
3852 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
3853 if( j==0 ) fprintf(out," /* %5d */ ", i);
3854 fprintf(out, " %4d,", ofst);
3855 if( j==9 || i==n-1 ){
3856 fprintf(out, "\n"); lineno++;
3857 j = 0;
3858 }else{
3859 j++;
3860 }
3861 }
3862 fprintf(out, "};\n"); lineno++;
3863
3864 /* Output the default action table */
3865 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
3866 n = lemp->nstate;
3867 for(i=j=0; i<n; i++){
3868 stp = lemp->sorted[i];
3869 if( j==0 ) fprintf(out," /* %5d */ ", i);
3870 fprintf(out, " %4d,", stp->iDflt);
3871 if( j==9 || i==n-1 ){
3872 fprintf(out, "\n"); lineno++;
3873 j = 0;
3874 }else{
3875 j++;
3876 }
3877 }
3878 fprintf(out, "};\n"); lineno++;
3879 tplt_xfer(lemp->name,in,out,&lineno);
3880
3881 /* Generate the table of fallback tokens.
3882 */
3883 if( lemp->has_fallback ){
3884 int mx = lemp->nterminal - 1;
3885 while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
3886 for(i=0; i<=mx; i++){
3887 struct symbol *p = lemp->symbols[i];
3888 if( p->fallback==0 ){
3889 fprintf(out, " 0, /* %10s => nothing */\n", p->name);
3890 }else{
3891 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
3892 p->name, p->fallback->name);
3893 }
3894 lineno++;
3895 }
3896 }
3897 tplt_xfer(lemp->name, in, out, &lineno);
3898
3899 /* Generate a table containing the symbolic name of every symbol
3900 */
3901 for(i=0; i<lemp->nsymbol; i++){
3902 sprintf(line,"\"%s\",",lemp->symbols[i]->name);
3903 fprintf(out," %-15s",line);
3904 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
3905 }
3906 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
3907 tplt_xfer(lemp->name,in,out,&lineno);
3908
3909 /* Generate a table containing a text string that describes every
3910 ** rule in the rule set of the grammar. This information is used
3911 ** when tracing REDUCE actions.
3912 */
3913 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
3914 assert( rp->index==i );
3915 fprintf(out," /* %3d */ \"", i);
3916 writeRuleText(out, rp);
3917 fprintf(out,"\",\n"); lineno++;
3918 }
3919 tplt_xfer(lemp->name,in,out,&lineno);
3920
3921 /* Generate code which executes every time a symbol is popped from
3922 ** the stack while processing errors or while destroying the parser.
3923 ** (In other words, generate the %destructor actions)
3924 */
3925 if( lemp->tokendest ){
3926 int once = 1;
3927 for(i=0; i<lemp->nsymbol; i++){
3928 struct symbol *sp = lemp->symbols[i];
3929 if( sp==0 || sp->type!=TERMINAL ) continue;
3930 if( once ){
3931 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
3932 once = 0;
3933 }
3934 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
3935 }
3936 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
3937 if( i<lemp->nsymbol ){
3938 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3939 fprintf(out," break;\n"); lineno++;
3940 }
3941 }
3942 if( lemp->vardest ){
3943 struct symbol *dflt_sp = 0;
3944 int once = 1;
3945 for(i=0; i<lemp->nsymbol; i++){
3946 struct symbol *sp = lemp->symbols[i];
3947 if( sp==0 || sp->type==TERMINAL ||
3948 sp->index<=0 || sp->destructor!=0 ) continue;
3949 if( once ){
3950 fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++;
3951 once = 0;
3952 }
3953 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
3954 dflt_sp = sp;
3955 }
3956 if( dflt_sp!=0 ){
3957 emit_destructor_code(out,dflt_sp,lemp,&lineno);
3958 }
3959 fprintf(out," break;\n"); lineno++;
3960 }
3961 for(i=0; i<lemp->nsymbol; i++){
3962 struct symbol *sp = lemp->symbols[i];
3963 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
3964 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
3965
3966 /* Combine duplicate destructors into a single case */
3967 for(j=i+1; j<lemp->nsymbol; j++){
3968 struct symbol *sp2 = lemp->symbols[j];
3969 if( sp2 && sp2->type!=TERMINAL && sp2->destructor
3970 && sp2->dtnum==sp->dtnum
3971 && strcmp(sp->destructor,sp2->destructor)==0 ){
3972 fprintf(out," case %d: /* %s */\n",
3973 sp2->index, sp2->name); lineno++;
3974 sp2->destructor = 0;
3975 }
3976 }
3977
3978 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3979 fprintf(out," break;\n"); lineno++;
3980 }
3981 tplt_xfer(lemp->name,in,out,&lineno);
3982
3983 /* Generate code which executes whenever the parser stack overflows */
3984 tplt_print(out,lemp,lemp->overflow,&lineno);
3985 tplt_xfer(lemp->name,in,out,&lineno);
3986
3987 /* Generate the table of rule information
3988 **
3989 ** Note: This code depends on the fact that rules are number
3990 ** sequentually beginning with 0.
3991 */
3992 for(rp=lemp->rule; rp; rp=rp->next){
3993 fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
3994 }
3995 tplt_xfer(lemp->name,in,out,&lineno);
3996
3997 /* Generate code which execution during each REDUCE action */
3998 for(rp=lemp->rule; rp; rp=rp->next){
3999 translate_code(lemp, rp);
4000 }
4001 /* First output rules other than the default: rule */
4002 for(rp=lemp->rule; rp; rp=rp->next){
4003 struct rule *rp2; /* Other rules with the same action */
4004 if( rp->code==0 ) continue;
4005 if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */
4006 fprintf(out," case %d: /* ", rp->index);
4007 writeRuleText(out, rp);
4008 fprintf(out, " */\n"); lineno++;
4009 for(rp2=rp->next; rp2; rp2=rp2->next){
4010 if( rp2->code==rp->code ){
4011 fprintf(out," case %d: /* ", rp2->index);
4012 writeRuleText(out, rp2);
4013 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++;
4014 rp2->code = 0;
4015 }
4016 }
4017 emit_code(out,rp,lemp,&lineno);
4018 fprintf(out," break;\n"); lineno++;
4019 rp->code = 0;
4020 }
4021 /* Finally, output the default: rule. We choose as the default: all
4022 ** empty actions. */
4023 fprintf(out," default:\n"); lineno++;
4024 for(rp=lemp->rule; rp; rp=rp->next){
4025 if( rp->code==0 ) continue;
4026 assert( rp->code[0]=='\n' && rp->code[1]==0 );
4027 fprintf(out," /* (%d) ", rp->index);
4028 writeRuleText(out, rp);
4029 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++;
4030 }
4031 fprintf(out," break;\n"); lineno++;
4032 tplt_xfer(lemp->name,in,out,&lineno);
4033
4034 /* Generate code which executes if a parse fails */
4035 tplt_print(out,lemp,lemp->failure,&lineno);
4036 tplt_xfer(lemp->name,in,out,&lineno);
4037
4038 /* Generate code which executes when a syntax error occurs */
4039 tplt_print(out,lemp,lemp->error,&lineno);
4040 tplt_xfer(lemp->name,in,out,&lineno);
4041
4042 /* Generate code which executes when the parser accepts its input */
4043 tplt_print(out,lemp,lemp->accept,&lineno);
4044 tplt_xfer(lemp->name,in,out,&lineno);
4045
4046 /* Append any addition code the user desires */
4047 tplt_print(out,lemp,lemp->extracode,&lineno);
4048
4049 fclose(in);
4050 fclose(out);
4051 return;
4052 }
4053
4054 /* Generate a header file for the parser */
ReportHeader(struct lemon * lemp)4055 void ReportHeader(struct lemon *lemp)
4056 {
4057 FILE *out, *in;
4058 const char *prefix;
4059 char line[LINESIZE];
4060 char pattern[LINESIZE];
4061 int i;
4062
4063 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4064 else prefix = "";
4065 in = file_open(lemp,".h","rb");
4066 if( in ){
4067 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
4068 sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4069 if( strcmp(line,pattern) ) break;
4070 }
4071 fclose(in);
4072 if( i==lemp->nterminal ){
4073 /* No change in the file. Don't rewrite it. */
4074 return;
4075 }
4076 }
4077 out = file_open(lemp,".h","wb");
4078 if( out ){
4079 for(i=1; i<lemp->nterminal; i++){
4080 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4081 }
4082 fclose(out);
4083 }
4084 return;
4085 }
4086
4087 /* Reduce the size of the action tables, if possible, by making use
4088 ** of defaults.
4089 **
4090 ** In this version, we take the most frequent REDUCE action and make
4091 ** it the default. Except, there is no default if the wildcard token
4092 ** is a possible look-ahead.
4093 */
CompressTables(struct lemon * lemp)4094 void CompressTables(struct lemon *lemp)
4095 {
4096 struct state *stp;
4097 struct action *ap, *ap2;
4098 struct rule *rp, *rp2, *rbest;
4099 int nbest, n;
4100 int i;
4101 int usesWildcard;
4102
4103 for(i=0; i<lemp->nstate; i++){
4104 stp = lemp->sorted[i];
4105 nbest = 0;
4106 rbest = 0;
4107 usesWildcard = 0;
4108
4109 for(ap=stp->ap; ap; ap=ap->next){
4110 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
4111 usesWildcard = 1;
4112 }
4113 if( ap->type!=REDUCE ) continue;
4114 rp = ap->x.rp;
4115 if( rp->lhsStart ) continue;
4116 if( rp==rbest ) continue;
4117 n = 1;
4118 for(ap2=ap->next; ap2; ap2=ap2->next){
4119 if( ap2->type!=REDUCE ) continue;
4120 rp2 = ap2->x.rp;
4121 if( rp2==rbest ) continue;
4122 if( rp2==rp ) n++;
4123 }
4124 if( n>nbest ){
4125 nbest = n;
4126 rbest = rp;
4127 }
4128 }
4129
4130 /* Do not make a default if the number of rules to default
4131 ** is not at least 1 or if the wildcard token is a possible
4132 ** lookahead.
4133 */
4134 if( nbest<1 || usesWildcard ) continue;
4135
4136
4137 /* Combine matching REDUCE actions into a single default */
4138 for(ap=stp->ap; ap; ap=ap->next){
4139 if( ap->type==REDUCE && ap->x.rp==rbest ) break;
4140 }
4141 assert( ap );
4142 ap->sp = Symbol_new("{default}");
4143 for(ap=ap->next; ap; ap=ap->next){
4144 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
4145 }
4146 stp->ap = Action_sort(stp->ap);
4147 }
4148 }
4149
4150
4151 /*
4152 ** Compare two states for sorting purposes. The smaller state is the
4153 ** one with the most non-terminal actions. If they have the same number
4154 ** of non-terminal actions, then the smaller is the one with the most
4155 ** token actions.
4156 */
stateResortCompare(const void * a,const void * b)4157 static int stateResortCompare(const void *a, const void *b){
4158 const struct state *pA = *(const struct state**)a;
4159 const struct state *pB = *(const struct state**)b;
4160 int n;
4161
4162 n = pB->nNtAct - pA->nNtAct;
4163 if( n==0 ){
4164 n = pB->nTknAct - pA->nTknAct;
4165 if( n==0 ){
4166 n = pB->statenum - pA->statenum;
4167 }
4168 }
4169 assert( n!=0 );
4170 return n;
4171 }
4172
4173
4174 /*
4175 ** Renumber and resort states so that states with fewer choices
4176 ** occur at the end. Except, keep state 0 as the first state.
4177 */
ResortStates(struct lemon * lemp)4178 void ResortStates(struct lemon *lemp)
4179 {
4180 int i;
4181 struct state *stp;
4182 struct action *ap;
4183
4184 for(i=0; i<lemp->nstate; i++){
4185 stp = lemp->sorted[i];
4186 stp->nTknAct = stp->nNtAct = 0;
4187 stp->iDflt = lemp->nstate + lemp->nrule;
4188 stp->iTknOfst = NO_OFFSET;
4189 stp->iNtOfst = NO_OFFSET;
4190 for(ap=stp->ap; ap; ap=ap->next){
4191 if( compute_action(lemp,ap)>=0 ){
4192 if( ap->sp->index<lemp->nterminal ){
4193 stp->nTknAct++;
4194 }else if( ap->sp->index<lemp->nsymbol ){
4195 stp->nNtAct++;
4196 }else{
4197 stp->iDflt = compute_action(lemp, ap);
4198 }
4199 }
4200 }
4201 }
4202 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
4203 stateResortCompare);
4204 for(i=0; i<lemp->nstate; i++){
4205 lemp->sorted[i]->statenum = i;
4206 }
4207 }
4208
4209
4210 /***************** From the file "set.c" ************************************/
4211 /*
4212 ** Set manipulation routines for the LEMON parser generator.
4213 */
4214
4215 static int size = 0;
4216
4217 /* Set the set size */
SetSize(int n)4218 void SetSize(int n)
4219 {
4220 size = n+1;
4221 }
4222
4223 /* Allocate a new set */
SetNew()4224 char *SetNew(){
4225 char *s;
4226 s = (char*)calloc( size, 1);
4227 if( s==0 ){
4228 extern void memory_error();
4229 memory_error();
4230 }
4231 return s;
4232 }
4233
4234 /* Deallocate a set */
SetFree(char * s)4235 void SetFree(char *s)
4236 {
4237 free(s);
4238 }
4239
4240 /* Add a new element to the set. Return TRUE if the element was added
4241 ** and FALSE if it was already there. */
SetAdd(char * s,int e)4242 int SetAdd(char *s, int e)
4243 {
4244 int rv;
4245 assert( e>=0 && e<size );
4246 rv = s[e];
4247 s[e] = 1;
4248 return !rv;
4249 }
4250
4251 /* Add every element of s2 to s1. Return TRUE if s1 changes. */
SetUnion(char * s1,char * s2)4252 int SetUnion(char *s1, char *s2)
4253 {
4254 int i, progress;
4255 progress = 0;
4256 for(i=0; i<size; i++){
4257 if( s2[i]==0 ) continue;
4258 if( s1[i]==0 ){
4259 progress = 1;
4260 s1[i] = 1;
4261 }
4262 }
4263 return progress;
4264 }
4265 /********************** From the file "table.c" ****************************/
4266 /*
4267 ** All code in this file has been automatically generated
4268 ** from a specification in the file
4269 ** "table.q"
4270 ** by the associative array code building program "aagen".
4271 ** Do not edit this file! Instead, edit the specification
4272 ** file, then rerun aagen.
4273 */
4274 /*
4275 ** Code for processing tables in the LEMON parser generator.
4276 */
4277
strhash(const char * x)4278 PRIVATE int strhash(const char *x)
4279 {
4280 int h = 0;
4281 while( *x) h = h*13 + *(x++);
4282 return h;
4283 }
4284
4285 /* Works like strdup, sort of. Save a string in malloced memory, but
4286 ** keep strings in a table so that the same string is not in more
4287 ** than one place.
4288 */
Strsafe(const char * y)4289 const char *Strsafe(const char *y)
4290 {
4291 const char *z;
4292 char *cpy;
4293
4294 if( y==0 ) return 0;
4295 z = Strsafe_find(y);
4296 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
4297 strcpy(cpy,y);
4298 z = cpy;
4299 Strsafe_insert(z);
4300 }
4301 MemoryCheck(z);
4302 return z;
4303 }
4304
4305 /* There is one instance of the following structure for each
4306 ** associative array of type "x1".
4307 */
4308 struct s_x1 {
4309 int size; /* The number of available slots. */
4310 /* Must be a power of 2 greater than or */
4311 /* equal to 1 */
4312 int count; /* Number of currently slots filled */
4313 struct s_x1node *tbl; /* The data stored here */
4314 struct s_x1node **ht; /* Hash table for lookups */
4315 };
4316
4317 /* There is one instance of this structure for every data element
4318 ** in an associative array of type "x1".
4319 */
4320 typedef struct s_x1node {
4321 const char *data; /* The data */
4322 struct s_x1node *next; /* Next entry with the same hash */
4323 struct s_x1node **from; /* Previous link */
4324 } x1node;
4325
4326 /* There is only one instance of the array, which is the following */
4327 static struct s_x1 *x1a;
4328
4329 /* Allocate a new associative array */
Strsafe_init()4330 void Strsafe_init(){
4331 if( x1a ) return;
4332 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
4333 if( x1a ){
4334 x1a->size = 1024;
4335 x1a->count = 0;
4336 x1a->tbl = (x1node*)malloc(
4337 (sizeof(x1node) + sizeof(x1node*))*1024 );
4338 if( x1a->tbl==0 ){
4339 free(x1a);
4340 x1a = 0;
4341 }else{
4342 int i;
4343 x1a->ht = (x1node**)&(x1a->tbl[1024]);
4344 for(i=0; i<1024; i++) x1a->ht[i] = 0;
4345 }
4346 }
4347 }
4348 /* Insert a new record into the array. Return TRUE if successful.
4349 ** Prior data with the same key is NOT overwritten */
Strsafe_insert(const char * data)4350 int Strsafe_insert(const char *data)
4351 {
4352 x1node *np;
4353 int h;
4354 int ph;
4355
4356 if( x1a==0 ) return 0;
4357 ph = strhash(data);
4358 h = ph & (x1a->size-1);
4359 np = x1a->ht[h];
4360 while( np ){
4361 if( strcmp(np->data,data)==0 ){
4362 /* An existing entry with the same key is found. */
4363 /* Fail because overwrite is not allows. */
4364 return 0;
4365 }
4366 np = np->next;
4367 }
4368 if( x1a->count>=x1a->size ){
4369 /* Need to make the hash table bigger */
4370 int i,size;
4371 struct s_x1 array;
4372 array.size = size = x1a->size*2;
4373 array.count = x1a->count;
4374 array.tbl = (x1node*)malloc(
4375 (sizeof(x1node) + sizeof(x1node*))*size );
4376 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4377 array.ht = (x1node**)&(array.tbl[size]);
4378 for(i=0; i<size; i++) array.ht[i] = 0;
4379 for(i=0; i<x1a->count; i++){
4380 x1node *oldnp, *newnp;
4381 oldnp = &(x1a->tbl[i]);
4382 h = strhash(oldnp->data) & (size-1);
4383 newnp = &(array.tbl[i]);
4384 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4385 newnp->next = array.ht[h];
4386 newnp->data = oldnp->data;
4387 newnp->from = &(array.ht[h]);
4388 array.ht[h] = newnp;
4389 }
4390 free(x1a->tbl);
4391 *x1a = array;
4392 }
4393 /* Insert the new data */
4394 h = ph & (x1a->size-1);
4395 np = &(x1a->tbl[x1a->count++]);
4396 np->data = data;
4397 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
4398 np->next = x1a->ht[h];
4399 x1a->ht[h] = np;
4400 np->from = &(x1a->ht[h]);
4401 return 1;
4402 }
4403
4404 /* Return a pointer to data assigned to the given key. Return NULL
4405 ** if no such key. */
Strsafe_find(const char * key)4406 const char *Strsafe_find(const char *key)
4407 {
4408 int h;
4409 x1node *np;
4410
4411 if( x1a==0 ) return 0;
4412 h = strhash(key) & (x1a->size-1);
4413 np = x1a->ht[h];
4414 while( np ){
4415 if( strcmp(np->data,key)==0 ) break;
4416 np = np->next;
4417 }
4418 return np ? np->data : 0;
4419 }
4420
4421 /* Return a pointer to the (terminal or nonterminal) symbol "x".
4422 ** Create a new symbol if this is the first time "x" has been seen.
4423 */
Symbol_new(const char * x)4424 struct symbol *Symbol_new(const char *x)
4425 {
4426 struct symbol *sp;
4427
4428 sp = Symbol_find(x);
4429 if( sp==0 ){
4430 sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
4431 MemoryCheck(sp);
4432 sp->name = Strsafe(x);
4433 sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
4434 sp->rule = 0;
4435 sp->fallback = 0;
4436 sp->prec = -1;
4437 sp->assoc = UNK;
4438 sp->firstset = 0;
4439 sp->lambda = LEMON_FALSE;
4440 sp->destructor = 0;
4441 sp->destLineno = 0;
4442 sp->datatype = 0;
4443 sp->useCnt = 0;
4444 Symbol_insert(sp,sp->name);
4445 }
4446 sp->useCnt++;
4447 return sp;
4448 }
4449
4450 /* Compare two symbols for working purposes
4451 **
4452 ** Symbols that begin with upper case letters (terminals or tokens)
4453 ** must sort before symbols that begin with lower case letters
4454 ** (non-terminals). Other than that, the order does not matter.
4455 **
4456 ** We find experimentally that leaving the symbols in their original
4457 ** order (the order they appeared in the grammar file) gives the
4458 ** smallest parser tables in SQLite.
4459 */
Symbolcmpp(const void * _a,const void * _b)4460 int Symbolcmpp(const void *_a, const void *_b)
4461 {
4462 const struct symbol **a = (const struct symbol **) _a;
4463 const struct symbol **b = (const struct symbol **) _b;
4464 int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
4465 int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
4466 assert( i1!=i2 || strcmp((**a).name,(**b).name)==0 );
4467 return i1-i2;
4468 }
4469
4470 /* There is one instance of the following structure for each
4471 ** associative array of type "x2".
4472 */
4473 struct s_x2 {
4474 int size; /* The number of available slots. */
4475 /* Must be a power of 2 greater than or */
4476 /* equal to 1 */
4477 int count; /* Number of currently slots filled */
4478 struct s_x2node *tbl; /* The data stored here */
4479 struct s_x2node **ht; /* Hash table for lookups */
4480 };
4481
4482 /* There is one instance of this structure for every data element
4483 ** in an associative array of type "x2".
4484 */
4485 typedef struct s_x2node {
4486 struct symbol *data; /* The data */
4487 const char *key; /* The key */
4488 struct s_x2node *next; /* Next entry with the same hash */
4489 struct s_x2node **from; /* Previous link */
4490 } x2node;
4491
4492 /* There is only one instance of the array, which is the following */
4493 static struct s_x2 *x2a;
4494
4495 /* Allocate a new associative array */
Symbol_init()4496 void Symbol_init(){
4497 if( x2a ) return;
4498 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
4499 if( x2a ){
4500 x2a->size = 128;
4501 x2a->count = 0;
4502 x2a->tbl = (x2node*)malloc(
4503 (sizeof(x2node) + sizeof(x2node*))*128 );
4504 if( x2a->tbl==0 ){
4505 free(x2a);
4506 x2a = 0;
4507 }else{
4508 int i;
4509 x2a->ht = (x2node**)&(x2a->tbl[128]);
4510 for(i=0; i<128; i++) x2a->ht[i] = 0;
4511 }
4512 }
4513 }
4514 /* Insert a new record into the array. Return TRUE if successful.
4515 ** Prior data with the same key is NOT overwritten */
Symbol_insert(struct symbol * data,const char * key)4516 int Symbol_insert(struct symbol *data, const char *key)
4517 {
4518 x2node *np;
4519 int h;
4520 int ph;
4521
4522 if( x2a==0 ) return 0;
4523 ph = strhash(key);
4524 h = ph & (x2a->size-1);
4525 np = x2a->ht[h];
4526 while( np ){
4527 if( strcmp(np->key,key)==0 ){
4528 /* An existing entry with the same key is found. */
4529 /* Fail because overwrite is not allows. */
4530 return 0;
4531 }
4532 np = np->next;
4533 }
4534 if( x2a->count>=x2a->size ){
4535 /* Need to make the hash table bigger */
4536 int i,size;
4537 struct s_x2 array;
4538 array.size = size = x2a->size*2;
4539 array.count = x2a->count;
4540 array.tbl = (x2node*)malloc(
4541 (sizeof(x2node) + sizeof(x2node*))*size );
4542 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4543 array.ht = (x2node**)&(array.tbl[size]);
4544 for(i=0; i<size; i++) array.ht[i] = 0;
4545 for(i=0; i<x2a->count; i++){
4546 x2node *oldnp, *newnp;
4547 oldnp = &(x2a->tbl[i]);
4548 h = strhash(oldnp->key) & (size-1);
4549 newnp = &(array.tbl[i]);
4550 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4551 newnp->next = array.ht[h];
4552 newnp->key = oldnp->key;
4553 newnp->data = oldnp->data;
4554 newnp->from = &(array.ht[h]);
4555 array.ht[h] = newnp;
4556 }
4557 free(x2a->tbl);
4558 *x2a = array;
4559 }
4560 /* Insert the new data */
4561 h = ph & (x2a->size-1);
4562 np = &(x2a->tbl[x2a->count++]);
4563 np->key = key;
4564 np->data = data;
4565 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
4566 np->next = x2a->ht[h];
4567 x2a->ht[h] = np;
4568 np->from = &(x2a->ht[h]);
4569 return 1;
4570 }
4571
4572 /* Return a pointer to data assigned to the given key. Return NULL
4573 ** if no such key. */
Symbol_find(const char * key)4574 struct symbol *Symbol_find(const char *key)
4575 {
4576 int h;
4577 x2node *np;
4578
4579 if( x2a==0 ) return 0;
4580 h = strhash(key) & (x2a->size-1);
4581 np = x2a->ht[h];
4582 while( np ){
4583 if( strcmp(np->key,key)==0 ) break;
4584 np = np->next;
4585 }
4586 return np ? np->data : 0;
4587 }
4588
4589 /* Return the n-th data. Return NULL if n is out of range. */
Symbol_Nth(int n)4590 struct symbol *Symbol_Nth(int n)
4591 {
4592 struct symbol *data;
4593 if( x2a && n>0 && n<=x2a->count ){
4594 data = x2a->tbl[n-1].data;
4595 }else{
4596 data = 0;
4597 }
4598 return data;
4599 }
4600
4601 /* Return the size of the array */
Symbol_count()4602 int Symbol_count()
4603 {
4604 return x2a ? x2a->count : 0;
4605 }
4606
4607 /* Return an array of pointers to all data in the table.
4608 ** The array is obtained from malloc. Return NULL if memory allocation
4609 ** problems, or if the array is empty. */
Symbol_arrayof()4610 struct symbol **Symbol_arrayof()
4611 {
4612 struct symbol **array;
4613 int i,size;
4614 if( x2a==0 ) return 0;
4615 size = x2a->count;
4616 array = (struct symbol **)calloc(size, sizeof(struct symbol *));
4617 if( array ){
4618 for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
4619 }
4620 return array;
4621 }
4622
4623 /* Compare two configurations */
Configcmp(const char * _a,const char * _b)4624 int Configcmp(const char *_a,const char *_b)
4625 {
4626 const struct config *a = (struct config *) _a;
4627 const struct config *b = (struct config *) _b;
4628 int x;
4629 x = a->rp->index - b->rp->index;
4630 if( x==0 ) x = a->dot - b->dot;
4631 return x;
4632 }
4633
4634 /* Compare two states */
statecmp(struct config * a,struct config * b)4635 PRIVATE int statecmp(struct config *a, struct config *b)
4636 {
4637 int rc;
4638 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
4639 rc = a->rp->index - b->rp->index;
4640 if( rc==0 ) rc = a->dot - b->dot;
4641 }
4642 if( rc==0 ){
4643 if( a ) rc = 1;
4644 if( b ) rc = -1;
4645 }
4646 return rc;
4647 }
4648
4649 /* Hash a state */
statehash(struct config * a)4650 PRIVATE int statehash(struct config *a)
4651 {
4652 int h=0;
4653 while( a ){
4654 h = h*571 + a->rp->index*37 + a->dot;
4655 a = a->bp;
4656 }
4657 return h;
4658 }
4659
4660 /* Allocate a new state structure */
State_new()4661 struct state *State_new()
4662 {
4663 struct state *newstate;
4664 newstate = (struct state *)calloc(1, sizeof(struct state) );
4665 MemoryCheck(newstate);
4666 return newstate;
4667 }
4668
4669 /* There is one instance of the following structure for each
4670 ** associative array of type "x3".
4671 */
4672 struct s_x3 {
4673 int size; /* The number of available slots. */
4674 /* Must be a power of 2 greater than or */
4675 /* equal to 1 */
4676 int count; /* Number of currently slots filled */
4677 struct s_x3node *tbl; /* The data stored here */
4678 struct s_x3node **ht; /* Hash table for lookups */
4679 };
4680
4681 /* There is one instance of this structure for every data element
4682 ** in an associative array of type "x3".
4683 */
4684 typedef struct s_x3node {
4685 struct state *data; /* The data */
4686 struct config *key; /* The key */
4687 struct s_x3node *next; /* Next entry with the same hash */
4688 struct s_x3node **from; /* Previous link */
4689 } x3node;
4690
4691 /* There is only one instance of the array, which is the following */
4692 static struct s_x3 *x3a;
4693
4694 /* Allocate a new associative array */
State_init()4695 void State_init(){
4696 if( x3a ) return;
4697 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
4698 if( x3a ){
4699 x3a->size = 128;
4700 x3a->count = 0;
4701 x3a->tbl = (x3node*)malloc(
4702 (sizeof(x3node) + sizeof(x3node*))*128 );
4703 if( x3a->tbl==0 ){
4704 free(x3a);
4705 x3a = 0;
4706 }else{
4707 int i;
4708 x3a->ht = (x3node**)&(x3a->tbl[128]);
4709 for(i=0; i<128; i++) x3a->ht[i] = 0;
4710 }
4711 }
4712 }
4713 /* Insert a new record into the array. Return TRUE if successful.
4714 ** Prior data with the same key is NOT overwritten */
State_insert(struct state * data,struct config * key)4715 int State_insert(struct state *data, struct config *key)
4716 {
4717 x3node *np;
4718 int h;
4719 int ph;
4720
4721 if( x3a==0 ) return 0;
4722 ph = statehash(key);
4723 h = ph & (x3a->size-1);
4724 np = x3a->ht[h];
4725 while( np ){
4726 if( statecmp(np->key,key)==0 ){
4727 /* An existing entry with the same key is found. */
4728 /* Fail because overwrite is not allows. */
4729 return 0;
4730 }
4731 np = np->next;
4732 }
4733 if( x3a->count>=x3a->size ){
4734 /* Need to make the hash table bigger */
4735 int i,size;
4736 struct s_x3 array;
4737 array.size = size = x3a->size*2;
4738 array.count = x3a->count;
4739 array.tbl = (x3node*)malloc(
4740 (sizeof(x3node) + sizeof(x3node*))*size );
4741 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4742 array.ht = (x3node**)&(array.tbl[size]);
4743 for(i=0; i<size; i++) array.ht[i] = 0;
4744 for(i=0; i<x3a->count; i++){
4745 x3node *oldnp, *newnp;
4746 oldnp = &(x3a->tbl[i]);
4747 h = statehash(oldnp->key) & (size-1);
4748 newnp = &(array.tbl[i]);
4749 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4750 newnp->next = array.ht[h];
4751 newnp->key = oldnp->key;
4752 newnp->data = oldnp->data;
4753 newnp->from = &(array.ht[h]);
4754 array.ht[h] = newnp;
4755 }
4756 free(x3a->tbl);
4757 *x3a = array;
4758 }
4759 /* Insert the new data */
4760 h = ph & (x3a->size-1);
4761 np = &(x3a->tbl[x3a->count++]);
4762 np->key = key;
4763 np->data = data;
4764 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
4765 np->next = x3a->ht[h];
4766 x3a->ht[h] = np;
4767 np->from = &(x3a->ht[h]);
4768 return 1;
4769 }
4770
4771 /* Return a pointer to data assigned to the given key. Return NULL
4772 ** if no such key. */
State_find(struct config * key)4773 struct state *State_find(struct config *key)
4774 {
4775 int h;
4776 x3node *np;
4777
4778 if( x3a==0 ) return 0;
4779 h = statehash(key) & (x3a->size-1);
4780 np = x3a->ht[h];
4781 while( np ){
4782 if( statecmp(np->key,key)==0 ) break;
4783 np = np->next;
4784 }
4785 return np ? np->data : 0;
4786 }
4787
4788 /* Return an array of pointers to all data in the table.
4789 ** The array is obtained from malloc. Return NULL if memory allocation
4790 ** problems, or if the array is empty. */
State_arrayof()4791 struct state **State_arrayof()
4792 {
4793 struct state **array;
4794 int i,size;
4795 if( x3a==0 ) return 0;
4796 size = x3a->count;
4797 array = (struct state **)malloc( sizeof(struct state *)*size );
4798 if( array ){
4799 for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
4800 }
4801 return array;
4802 }
4803
4804 /* Hash a configuration */
confighash(struct config * a)4805 PRIVATE int confighash(struct config *a)
4806 {
4807 int h=0;
4808 h = h*571 + a->rp->index*37 + a->dot;
4809 return h;
4810 }
4811
4812 /* There is one instance of the following structure for each
4813 ** associative array of type "x4".
4814 */
4815 struct s_x4 {
4816 int size; /* The number of available slots. */
4817 /* Must be a power of 2 greater than or */
4818 /* equal to 1 */
4819 int count; /* Number of currently slots filled */
4820 struct s_x4node *tbl; /* The data stored here */
4821 struct s_x4node **ht; /* Hash table for lookups */
4822 };
4823
4824 /* There is one instance of this structure for every data element
4825 ** in an associative array of type "x4".
4826 */
4827 typedef struct s_x4node {
4828 struct config *data; /* The data */
4829 struct s_x4node *next; /* Next entry with the same hash */
4830 struct s_x4node **from; /* Previous link */
4831 } x4node;
4832
4833 /* There is only one instance of the array, which is the following */
4834 static struct s_x4 *x4a;
4835
4836 /* Allocate a new associative array */
Configtable_init()4837 void Configtable_init(){
4838 if( x4a ) return;
4839 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
4840 if( x4a ){
4841 x4a->size = 64;
4842 x4a->count = 0;
4843 x4a->tbl = (x4node*)malloc(
4844 (sizeof(x4node) + sizeof(x4node*))*64 );
4845 if( x4a->tbl==0 ){
4846 free(x4a);
4847 x4a = 0;
4848 }else{
4849 int i;
4850 x4a->ht = (x4node**)&(x4a->tbl[64]);
4851 for(i=0; i<64; i++) x4a->ht[i] = 0;
4852 }
4853 }
4854 }
4855 /* Insert a new record into the array. Return TRUE if successful.
4856 ** Prior data with the same key is NOT overwritten */
Configtable_insert(struct config * data)4857 int Configtable_insert(struct config *data)
4858 {
4859 x4node *np;
4860 int h;
4861 int ph;
4862
4863 if( x4a==0 ) return 0;
4864 ph = confighash(data);
4865 h = ph & (x4a->size-1);
4866 np = x4a->ht[h];
4867 while( np ){
4868 if( Configcmp((const char *) np->data,(const char *) data)==0 ){
4869 /* An existing entry with the same key is found. */
4870 /* Fail because overwrite is not allows. */
4871 return 0;
4872 }
4873 np = np->next;
4874 }
4875 if( x4a->count>=x4a->size ){
4876 /* Need to make the hash table bigger */
4877 int i,size;
4878 struct s_x4 array;
4879 array.size = size = x4a->size*2;
4880 array.count = x4a->count;
4881 array.tbl = (x4node*)malloc(
4882 (sizeof(x4node) + sizeof(x4node*))*size );
4883 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4884 array.ht = (x4node**)&(array.tbl[size]);
4885 for(i=0; i<size; i++) array.ht[i] = 0;
4886 for(i=0; i<x4a->count; i++){
4887 x4node *oldnp, *newnp;
4888 oldnp = &(x4a->tbl[i]);
4889 h = confighash(oldnp->data) & (size-1);
4890 newnp = &(array.tbl[i]);
4891 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4892 newnp->next = array.ht[h];
4893 newnp->data = oldnp->data;
4894 newnp->from = &(array.ht[h]);
4895 array.ht[h] = newnp;
4896 }
4897 free(x4a->tbl);
4898 *x4a = array;
4899 }
4900 /* Insert the new data */
4901 h = ph & (x4a->size-1);
4902 np = &(x4a->tbl[x4a->count++]);
4903 np->data = data;
4904 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
4905 np->next = x4a->ht[h];
4906 x4a->ht[h] = np;
4907 np->from = &(x4a->ht[h]);
4908 return 1;
4909 }
4910
4911 /* Return a pointer to data assigned to the given key. Return NULL
4912 ** if no such key. */
Configtable_find(struct config * key)4913 struct config *Configtable_find(struct config *key)
4914 {
4915 int h;
4916 x4node *np;
4917
4918 if( x4a==0 ) return 0;
4919 h = confighash(key) & (x4a->size-1);
4920 np = x4a->ht[h];
4921 while( np ){
4922 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
4923 np = np->next;
4924 }
4925 return np ? np->data : 0;
4926 }
4927
4928 /* Remove all data from the table. Pass each data to the function "f"
4929 ** as it is removed. ("f" may be null to avoid this step.) */
Configtable_clear(int (* f)(struct config *))4930 void Configtable_clear(int(*f)(struct config *))
4931 {
4932 int i;
4933 if( x4a==0 || x4a->count==0 ) return;
4934 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
4935 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
4936 x4a->count = 0;
4937 return;
4938 }
4939