1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2  * vim: set ts=8 sts=4 et sw=4 tw=99:
3  * This Source Code Form is subject to the terms of the Mozilla Public
4  * License, v. 2.0. If a copy of the MPL was not distributed with this
5  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 
7 #ifndef js_UbiNode_h
8 #define js_UbiNode_h
9 
10 #include "mozilla/Alignment.h"
11 #include "mozilla/Assertions.h"
12 #include "mozilla/Attributes.h"
13 #include "mozilla/Maybe.h"
14 #include "mozilla/MemoryReporting.h"
15 #include "mozilla/Move.h"
16 #include "mozilla/RangedPtr.h"
17 #include "mozilla/TypeTraits.h"
18 #include "mozilla/UniquePtr.h"
19 #include "mozilla/Variant.h"
20 
21 #include "jspubtd.h"
22 
23 #include "js/GCAPI.h"
24 #include "js/HashTable.h"
25 #include "js/RootingAPI.h"
26 #include "js/TracingAPI.h"
27 #include "js/TypeDecls.h"
28 #include "js/Value.h"
29 #include "js/Vector.h"
30 
31 // JS::ubi::Node
32 //
33 // JS::ubi::Node is a pointer-like type designed for internal use by heap
34 // analysis tools. A ubi::Node can refer to:
35 //
36 // - a JS value, like a string, object, or symbol;
37 // - an internal SpiderMonkey structure, like a shape or a scope chain object
38 // - an instance of some embedding-provided type: in Firefox, an XPCOM
39 //   object, or an internal DOM node class instance
40 //
41 // A ubi::Node instance provides metadata about its referent, and can
42 // enumerate its referent's outgoing edges, so you can implement heap analysis
43 // algorithms that walk the graph - finding paths between objects, or
44 // computing heap dominator trees, say - using ubi::Node, while remaining
45 // ignorant of the details of the types you're operating on.
46 //
47 // Of course, when it comes to presenting the results in a developer-facing
48 // tool, you'll need to stop being ignorant of those details, because you have
49 // to discuss the ubi::Nodes' referents with the developer. Here, ubi::Node
50 // can hand you dynamically checked, properly typed pointers to the original
51 // objects via the as<T> method, or generate descriptions of the referent
52 // itself.
53 //
54 // ubi::Node instances are lightweight (two-word) value types. Instances:
55 // - compare equal if and only if they refer to the same object;
56 // - have hash values that respect their equality relation; and
57 // - have serializations that are only equal if the ubi::Nodes are equal.
58 //
59 // A ubi::Node is only valid for as long as its referent is alive; if its
60 // referent goes away, the ubi::Node becomes a dangling pointer. A ubi::Node
61 // that refers to a GC-managed object is not automatically a GC root; if the
62 // GC frees or relocates its referent, the ubi::Node becomes invalid. A
63 // ubi::Node that refers to a reference-counted object does not bump the
64 // reference count.
65 //
66 // ubi::Node values require no supporting data structures, making them
67 // feasible for use in memory-constrained devices --- ideally, the memory
68 // requirements of the algorithm which uses them will be the limiting factor,
69 // not the demands of ubi::Node itself.
70 //
71 // One can construct a ubi::Node value given a pointer to a type that ubi::Node
72 // supports. In the other direction, one can convert a ubi::Node back to a
73 // pointer; these downcasts are checked dynamically. In particular, one can
74 // convert a 'JSRuntime*' to a ubi::Node, yielding a node with an outgoing edge
75 // for every root registered with the runtime; starting from this, one can walk
76 // the entire heap. (Of course, one could also start traversal at any other kind
77 // of type to which one has a pointer.)
78 //
79 //
80 // Extending ubi::Node To Handle Your Embedding's Types
81 //
82 // To add support for a new ubi::Node referent type R, you must define a
83 // specialization of the ubi::Concrete template, ubi::Concrete<R>, which
84 // inherits from ubi::Base. ubi::Node itself uses the specialization for
85 // compile-time information (i.e. the checked conversions between R * and
86 // ubi::Node), and the inheritance for run-time dispatching.
87 //
88 //
89 // ubi::Node Exposes Implementation Details
90 //
91 // In many cases, a JavaScript developer's view of their data differs
92 // substantially from its actual implementation. For example, while the
93 // ECMAScript specification describes objects as maps from property names to
94 // sets of attributes (like ECMAScript's [[Value]]), in practice many objects
95 // have only a pointer to a shape, shared with other similar objects, and
96 // indexed slots that contain the [[Value]] attributes. As another example, a
97 // string produced by concatenating two other strings may sometimes be
98 // represented by a "rope", a structure that points to the two original
99 // strings.
100 //
101 // We intend to use ubi::Node to write tools that report memory usage, so it's
102 // important that ubi::Node accurately portray how much memory nodes consume.
103 // Thus, for example, when data that apparently belongs to multiple nodes is
104 // in fact shared in a common structure, ubi::Node's graph uses a separate
105 // node for that shared structure, and presents edges to it from the data's
106 // apparent owners. For example, ubi::Node exposes SpiderMonkey objects'
107 // shapes and base shapes, and exposes rope string and substring structure,
108 // because these optimizations become visible when a tool reports how much
109 // memory a structure consumes.
110 //
111 // However, fine granularity is not a goal. When a particular object is the
112 // exclusive owner of a separate block of memory, ubi::Node may present the
113 // object and its block as a single node, and add their sizes together when
114 // reporting the node's size, as there is no meaningful loss of data in this
115 // case. Thus, for example, a ubi::Node referring to a JavaScript object, when
116 // asked for the object's size in bytes, includes the object's slot and
117 // element arrays' sizes in the total. There is no separate ubi::Node value
118 // representing the slot and element arrays, since they are owned exclusively
119 // by the object.
120 //
121 //
122 // Presenting Analysis Results To JavaScript Developers
123 //
124 // If an analysis provides its results in terms of ubi::Node values, a user
125 // interface presenting those results will generally need to clean them up
126 // before they can be understood by JavaScript developers. For example,
127 // JavaScript developers should not need to understand shapes, only JavaScript
128 // objects. Similarly, they should not need to understand the distinction
129 // between DOM nodes and the JavaScript shadow objects that represent them.
130 //
131 //
132 // Rooting Restrictions
133 //
134 // At present there is no way to root ubi::Node instances, so instances can't be
135 // live across any operation that might GC. Analyses using ubi::Node must either
136 // run to completion and convert their results to some other rootable type, or
137 // save their intermediate state in some rooted structure if they must GC before
138 // they complete. (For algorithms like path-finding and dominator tree
139 // computation, we implement the algorithm avoiding any operation that could
140 // cause a GC --- and use AutoCheckCannotGC to verify this.)
141 //
142 // If this restriction prevents us from implementing interesting tools, we may
143 // teach the GC how to root ubi::Nodes, fix up hash tables that use them as
144 // keys, etc.
145 //
146 //
147 // Hostile Graph Structure
148 //
149 // Analyses consuming ubi::Node graphs must be robust when presented with graphs
150 // that are deliberately constructed to exploit their weaknesses. When operating
151 // on live graphs, web content has control over the object graph, and less
152 // direct control over shape and string structure, and analyses should be
153 // prepared to handle extreme cases gracefully. For example, if an analysis were
154 // to use the C++ stack in a depth-first traversal, carefully constructed
155 // content could cause the analysis to overflow the stack.
156 //
157 // When ubi::Nodes refer to nodes deserialized from a heap snapshot, analyses
158 // must be even more careful: since snapshots often come from potentially
159 // compromised e10s content processes, even properties normally guaranteed by
160 // the platform (the proper linking of DOM nodes, for example) might be
161 // corrupted. While it is the deserializer's responsibility to check the basic
162 // structure of the snapshot file, the analyses should be prepared for ubi::Node
163 // graphs constructed from snapshots to be even more bizarre.
164 
165 class JSAtom;
166 
167 namespace JS {
168 namespace ubi {
169 
170 class Edge;
171 class EdgeRange;
172 class StackFrame;
173 
174 } // namespace ubi
175 } // namespace JS
176 
177 namespace mozilla {
178 
179 template<>
180 class DefaultDelete<JS::ubi::EdgeRange> : public JS::DeletePolicy<JS::ubi::EdgeRange> { };
181 
182 template<>
183 class DefaultDelete<JS::ubi::StackFrame> : public JS::DeletePolicy<JS::ubi::StackFrame> { };
184 
185 } // namespace mozilla
186 
187 namespace JS {
188 namespace ubi {
189 
190 using mozilla::Forward;
191 using mozilla::Maybe;
192 using mozilla::Move;
193 using mozilla::RangedPtr;
194 using mozilla::UniquePtr;
195 using mozilla::Variant;
196 
197 /*** ubi::StackFrame ******************************************************************************/
198 
199 // Concrete JS::ubi::StackFrame instances backed by a live SavedFrame object
200 // store their strings as JSAtom*, while deserialized stack frames from offline
201 // heap snapshots store their strings as const char16_t*. In order to provide
202 // zero-cost accessors to these strings in a single interface that works with
203 // both cases, we use this variant type.
204 class AtomOrTwoByteChars : public Variant<JSAtom*, const char16_t*> {
205     using Base = Variant<JSAtom*, const char16_t*>;
206 
207   public:
208     template<typename T>
AtomOrTwoByteChars(T && rhs)209     MOZ_IMPLICIT AtomOrTwoByteChars(T&& rhs) : Base(Forward<T>(rhs)) { }
210 
211     template<typename T>
212     AtomOrTwoByteChars& operator=(T&& rhs) {
213         MOZ_ASSERT(this != &rhs, "self-move disallowed");
214         this->~AtomOrTwoByteChars();
215         new (this) AtomOrTwoByteChars(Forward<T>(rhs));
216         return *this;
217     }
218 
219     // Return the length of the given AtomOrTwoByteChars string.
220     size_t length();
221 
222     // Copy the given AtomOrTwoByteChars string into the destination buffer,
223     // inflating if necessary. Does NOT null terminate. Returns the number of
224     // characters written to destination.
225     size_t copyToBuffer(RangedPtr<char16_t> destination, size_t length);
226 };
227 
228 // The base class implemented by each ConcreteStackFrame<T> type. Subclasses
229 // must not add data members to this class.
230 class BaseStackFrame {
231     friend class StackFrame;
232 
233     BaseStackFrame(const StackFrame&) = delete;
234     BaseStackFrame& operator=(const StackFrame&) = delete;
235 
236   protected:
237     void* ptr;
BaseStackFrame(void * ptr)238     explicit BaseStackFrame(void* ptr) : ptr(ptr) { }
239 
240   public:
241     // This is a value type that should not have a virtual destructor. Don't add
242     // destructors in subclasses!
243 
244     // Get a unique identifier for this StackFrame. The identifier is not valid
245     // across garbage collections.
identifier()246     virtual uint64_t identifier() const { return uint64_t(uintptr_t(ptr)); }
247 
248     // Get this frame's parent frame.
249     virtual StackFrame parent() const = 0;
250 
251     // Get this frame's line number.
252     virtual uint32_t line() const = 0;
253 
254     // Get this frame's column number.
255     virtual uint32_t column() const = 0;
256 
257     // Get this frame's source name. Never null.
258     virtual AtomOrTwoByteChars source() const = 0;
259 
260     // Return this frame's function name if named, otherwise the inferred
261     // display name. Can be null.
262     virtual AtomOrTwoByteChars functionDisplayName() const = 0;
263 
264     // Returns true if this frame's function is system JavaScript running with
265     // trusted principals, false otherwise.
266     virtual bool isSystem() const = 0;
267 
268     // Return true if this frame's function is a self-hosted JavaScript builtin,
269     // false otherwise.
270     virtual bool isSelfHosted() const = 0;
271 
272     // Construct a SavedFrame stack for the stack starting with this frame and
273     // containing all of its parents. The SavedFrame objects will be placed into
274     // cx's current compartment.
275     //
276     // Note that the process of
277     //
278     //     SavedFrame
279     //         |
280     //         V
281     //     JS::ubi::StackFrame
282     //         |
283     //         V
284     //     offline heap snapshot
285     //         |
286     //         V
287     //     JS::ubi::StackFrame
288     //         |
289     //         V
290     //     SavedFrame
291     //
292     // is lossy because we cannot serialize and deserialize the SavedFrame's
293     // principals in the offline heap snapshot, so JS::ubi::StackFrame
294     // simplifies the principals check into the boolean isSystem() state. This
295     // is fine because we only expose JS::ubi::Stack to devtools and chrome
296     // code, and not to the web platform.
297     virtual bool constructSavedFrameStack(JSContext* cx,
298                                           MutableHandleObject outSavedFrameStack) const = 0;
299 
300     // Trace the concrete implementation of JS::ubi::StackFrame.
301     virtual void trace(JSTracer* trc) = 0;
302 };
303 
304 // A traits template with a specialization for each backing type that implements
305 // the ubi::BaseStackFrame interface. Each specialization must be the a subclass
306 // of ubi::BaseStackFrame.
307 template<typename T> class ConcreteStackFrame;
308 
309 // A JS::ubi::StackFrame represents a frame in a recorded stack. It can be
310 // backed either by a live SavedFrame object or by a structure deserialized from
311 // an offline heap snapshot.
312 //
313 // It is a value type that may be memcpy'd hither and thither without worrying
314 // about constructors or destructors, similar to POD types.
315 //
316 // Its lifetime is the same as the lifetime of the graph that is being analyzed
317 // by the JS::ubi::Node that the JS::ubi::StackFrame came from. That is, if the
318 // graph being analyzed is the live heap graph, the JS::ubi::StackFrame is only
319 // valid within the scope of an AutoCheckCannotGC; if the graph being analyzed
320 // is an offline heap snapshot, the JS::ubi::StackFrame is valid as long as the
321 // offline heap snapshot is alive.
322 class StackFrame : public JS::Traceable {
323     // Storage in which we allocate BaseStackFrame subclasses.
324     mozilla::AlignedStorage2<BaseStackFrame> storage;
325 
base()326     BaseStackFrame* base() { return storage.addr(); }
base()327     const BaseStackFrame* base() const { return storage.addr(); }
328 
329     template<typename T>
construct(T * ptr)330     void construct(T* ptr) {
331         static_assert(mozilla::IsBaseOf<BaseStackFrame, ConcreteStackFrame<T>>::value,
332                       "ConcreteStackFrame<T> must inherit from BaseStackFrame");
333         static_assert(sizeof(ConcreteStackFrame<T>) == sizeof(*base()),
334                       "ubi::ConcreteStackFrame<T> specializations must be the same size as "
335                       "ubi::BaseStackFrame");
336         ConcreteStackFrame<T>::construct(base(), ptr);
337     }
338     struct ConstructFunctor;
339 
340   public:
StackFrame()341     StackFrame() { construct<void>(nullptr); }
342 
343     template<typename T>
StackFrame(T * ptr)344     MOZ_IMPLICIT StackFrame(T* ptr) {
345         construct(ptr);
346     }
347 
348     template<typename T>
349     StackFrame& operator=(T* ptr) {
350         construct(ptr);
351         return *this;
352     }
353 
354     // Constructors accepting SpiderMonkey's generic-pointer-ish types.
355 
356     template<typename T>
StackFrame(const JS::Handle<T * > & handle)357     explicit StackFrame(const JS::Handle<T*>& handle) {
358         construct(handle.get());
359     }
360 
361     template<typename T>
362     StackFrame& operator=(const JS::Handle<T*>& handle) {
363         construct(handle.get());
364         return *this;
365     }
366 
367     template<typename T>
StackFrame(const JS::Rooted<T * > & root)368     explicit StackFrame(const JS::Rooted<T*>& root) {
369         construct(root.get());
370     }
371 
372     template<typename T>
373     StackFrame& operator=(const JS::Rooted<T*>& root) {
374         construct(root.get());
375         return *this;
376     }
377 
378     // Because StackFrame is just a vtable pointer and an instance pointer, we
379     // can memcpy everything around instead of making concrete classes define
380     // virtual constructors. See the comment above Node's copy constructor for
381     // more details; that comment applies here as well.
StackFrame(const StackFrame & rhs)382     StackFrame(const StackFrame& rhs) {
383         memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
384     }
385 
386     StackFrame& operator=(const StackFrame& rhs) {
387         memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
388         return *this;
389     }
390 
391     bool operator==(const StackFrame& rhs) const { return base()->ptr == rhs.base()->ptr; }
392     bool operator!=(const StackFrame& rhs) const { return !(*this == rhs); }
393 
394     explicit operator bool() const {
395         return base()->ptr != nullptr;
396     }
397 
398     // Copy this StackFrame's source name into the given |destination|
399     // buffer. Copy no more than |length| characters. The result is *not* null
400     // terminated. Returns how many characters were written into the buffer.
401     size_t source(RangedPtr<char16_t> destination, size_t length) const;
402 
403     // Copy this StackFrame's function display name into the given |destination|
404     // buffer. Copy no more than |length| characters. The result is *not* null
405     // terminated. Returns how many characters were written into the buffer.
406     size_t functionDisplayName(RangedPtr<char16_t> destination, size_t length) const;
407 
408     // Get the size of the respective strings. 0 is returned for null strings.
409     size_t sourceLength();
410     size_t functionDisplayNameLength();
411 
412     // JS::Traceable implementation just forwards to our virtual trace method.
trace(StackFrame * frame,JSTracer * trc)413     static void trace(StackFrame* frame, JSTracer* trc) {
414         if (frame)
415             frame->trace(trc);
416     }
417 
418     // Methods that forward to virtual calls through BaseStackFrame.
419 
trace(JSTracer * trc)420     void trace(JSTracer* trc) { base()->trace(trc); }
identifier()421     uint64_t identifier() const {
422         auto id = base()->identifier();
423         MOZ_ASSERT(JS::Value::isNumberRepresentable(id));
424         return id;
425     }
line()426     uint32_t line() const { return base()->line(); }
column()427     uint32_t column() const { return base()->column(); }
source()428     AtomOrTwoByteChars source() const { return base()->source(); }
functionDisplayName()429     AtomOrTwoByteChars functionDisplayName() const { return base()->functionDisplayName(); }
parent()430     StackFrame parent() const { return base()->parent(); }
isSystem()431     bool isSystem() const { return base()->isSystem(); }
isSelfHosted()432     bool isSelfHosted() const { return base()->isSelfHosted(); }
constructSavedFrameStack(JSContext * cx,MutableHandleObject outSavedFrameStack)433     bool constructSavedFrameStack(JSContext* cx,
434                                   MutableHandleObject outSavedFrameStack) const {
435         return base()->constructSavedFrameStack(cx, outSavedFrameStack);
436     }
437 
438     struct HashPolicy {
439         using Lookup = JS::ubi::StackFrame;
440 
hashHashPolicy441         static js::HashNumber hash(const Lookup& lookup) {
442             return lookup.identifier();
443         }
444 
matchHashPolicy445         static bool match(const StackFrame& key, const Lookup& lookup) {
446             return key == lookup;
447         }
448 
rekeyHashPolicy449         static void rekey(StackFrame& k, const StackFrame& newKey) {
450             k = newKey;
451         }
452     };
453 };
454 
455 // The ubi::StackFrame null pointer. Any attempt to operate on a null
456 // ubi::StackFrame crashes.
457 template<>
458 class ConcreteStackFrame<void> : public BaseStackFrame {
ConcreteStackFrame(void * ptr)459     explicit ConcreteStackFrame(void* ptr) : BaseStackFrame(ptr) { }
460 
461   public:
construct(void * storage,void *)462     static void construct(void* storage, void*) { new (storage) ConcreteStackFrame(nullptr); }
463 
identifier()464     uint64_t identifier() const override { return 0; }
trace(JSTracer * trc)465     void trace(JSTracer* trc) override { }
constructSavedFrameStack(JSContext * cx,MutableHandleObject out)466     bool constructSavedFrameStack(JSContext* cx, MutableHandleObject out) const override {
467         out.set(nullptr);
468         return true;
469     }
470 
line()471     uint32_t line() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
column()472     uint32_t column() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
source()473     AtomOrTwoByteChars source() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
functionDisplayName()474     AtomOrTwoByteChars functionDisplayName() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
parent()475     StackFrame parent() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
isSystem()476     bool isSystem() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
isSelfHosted()477     bool isSelfHosted() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
478 };
479 
480 bool ConstructSavedFrameStackSlow(JSContext* cx, JS::ubi::StackFrame& frame,
481                                   MutableHandleObject outSavedFrameStack);
482 
483 
484 /*** ubi::Node ************************************************************************************/
485 
486 // A concrete node specialization can claim its referent is a member of a
487 // particular "coarse type" which is less specific than the actual
488 // implementation type but generally more palatable for web developers. For
489 // example, JitCode can be considered to have a coarse type of "Script". This is
490 // used by some analyses for putting nodes into different buckets. The default,
491 // if a concrete specialization does not provide its own mapping to a CoarseType
492 // variant, is "Other".
493 //
494 // NB: the values associated with a particular enum variant must not change or
495 // be reused for new variants. Doing so will cause inspecting ubi::Nodes backed
496 // by an offline heap snapshot from an older SpiderMonkey/Firefox version to
497 // break. Consider this enum append only.
498 enum class CoarseType: uint32_t {
499     Other  = 0,
500     Object = 1,
501     Script = 2,
502     String = 3,
503 
504     FIRST  = Other,
505     LAST   = String
506 };
507 
508 inline uint32_t
CoarseTypeToUint32(CoarseType type)509 CoarseTypeToUint32(CoarseType type)
510 {
511     return static_cast<uint32_t>(type);
512 }
513 
514 inline bool
Uint32IsValidCoarseType(uint32_t n)515 Uint32IsValidCoarseType(uint32_t n)
516 {
517     auto first = static_cast<uint32_t>(CoarseType::FIRST);
518     auto last = static_cast<uint32_t>(CoarseType::LAST);
519     MOZ_ASSERT(first < last);
520     return first <= n && n <= last;
521 }
522 
523 inline CoarseType
Uint32ToCoarseType(uint32_t n)524 Uint32ToCoarseType(uint32_t n)
525 {
526     MOZ_ASSERT(Uint32IsValidCoarseType(n));
527     return static_cast<CoarseType>(n);
528 }
529 
530 // The base class implemented by each ubi::Node referent type. Subclasses must
531 // not add data members to this class.
532 class Base {
533     friend class Node;
534 
535     // For performance's sake, we'd prefer to avoid a virtual destructor; and
536     // an empty constructor seems consistent with the 'lightweight value type'
537     // visible behavior we're trying to achieve. But if the destructor isn't
538     // virtual, and a subclass overrides it, the subclass's destructor will be
539     // ignored. Is there a way to make the compiler catch that error?
540 
541   protected:
542     // Space for the actual pointer. Concrete subclasses should define a
543     // properly typed 'get' member function to access this.
544     void* ptr;
545 
Base(void * ptr)546     explicit Base(void* ptr) : ptr(ptr) { }
547 
548   public:
549     bool operator==(const Base& rhs) const {
550         // Some compilers will indeed place objects of different types at
551         // the same address, so technically, we should include the vtable
552         // in this comparison. But it seems unlikely to cause problems in
553         // practice.
554         return ptr == rhs.ptr;
555     }
556     bool operator!=(const Base& rhs) const { return !(*this == rhs); }
557 
558     // An identifier for this node, guaranteed to be stable and unique for as
559     // long as this ubi::Node's referent is alive and at the same address.
560     //
561     // This is probably suitable for use in serializations, as it is an integral
562     // type. It may also help save memory when constructing HashSets of
563     // ubi::Nodes: since a uint64_t will always be smaller-or-equal-to the size
564     // of a ubi::Node, a HashSet<ubi::Node::Id> may use less space per element
565     // than a HashSet<ubi::Node>.
566     //
567     // (Note that 'unique' only means 'up to equality on ubi::Node'; see the
568     // caveats about multiple objects allocated at the same address for
569     // 'ubi::Node::operator=='.)
570     using Id = uint64_t;
identifier()571     virtual Id identifier() const { return Id(uintptr_t(ptr)); }
572 
573     // Returns true if this node is pointing to something on the live heap, as
574     // opposed to something from a deserialized core dump. Returns false,
575     // otherwise.
isLive()576     virtual bool isLive() const { return true; };
577 
578     // Return the coarse-grained type-of-thing that this node represents.
coarseType()579     virtual CoarseType coarseType() const { return CoarseType::Other; }
580 
581     // Return a human-readable name for the referent's type. The result should
582     // be statically allocated. (You can use MOZ_UTF16("strings") for this.)
583     //
584     // This must always return Concrete<T>::concreteTypeName; we use that
585     // pointer as a tag for this particular referent type.
586     virtual const char16_t* typeName() const = 0;
587 
588     // Return the size of this node, in bytes. Include any structures that this
589     // node owns exclusively that are not exposed as their own ubi::Nodes.
590     // |mallocSizeOf| should be a malloc block sizing function; see
591     // |mfbt/MemoryReporting.h|.
592     using Size = uint64_t;
size(mozilla::MallocSizeOf mallocSizeof)593     virtual Size size(mozilla::MallocSizeOf mallocSizeof) const { return 1; }
594 
595     // Return an EdgeRange that initially contains all the referent's outgoing
596     // edges. The caller takes ownership of the EdgeRange.
597     //
598     // If wantNames is true, compute names for edges. Doing so can be expensive
599     // in time and memory.
600     virtual UniquePtr<EdgeRange> edges(JSRuntime* rt, bool wantNames) const = 0;
601 
602     // Return the Zone to which this node's referent belongs, or nullptr if the
603     // referent is not of a type allocated in SpiderMonkey Zones.
zone()604     virtual JS::Zone* zone() const { return nullptr; }
605 
606     // Return the compartment for this node. Some ubi::Node referents are not
607     // associated with JSCompartments, such as JSStrings (which are associated
608     // with Zones). When the referent is not associated with a compartment,
609     // nullptr is returned.
compartment()610     virtual JSCompartment* compartment() const { return nullptr; }
611 
612     // Return whether this node's referent's allocation stack was captured.
hasAllocationStack()613     virtual bool hasAllocationStack() const { return false; }
614 
615     // Get the stack recorded at the time this node's referent was
616     // allocated. This must only be called when hasAllocationStack() is true.
allocationStack()617     virtual StackFrame allocationStack() const {
618         MOZ_CRASH("Concrete classes that have an allocation stack must override both "
619                   "hasAllocationStack and allocationStack.");
620     }
621 
622     // Methods for JSObject Referents
623     //
624     // These methods are only semantically valid if the referent is either a
625     // JSObject in the live heap, or represents a previously existing JSObject
626     // from some deserialized heap snapshot.
627 
628     // Return the object's [[Class]]'s name.
jsObjectClassName()629     virtual const char* jsObjectClassName() const { return nullptr; }
630 
631     // If this object was constructed with `new` and we have the data available,
632     // place the contructor function's display name in the out parameter.
633     // Otherwise, place nullptr in the out parameter. Caller maintains ownership
634     // of the out parameter. True is returned on success, false is returned on
635     // OOM.
jsObjectConstructorName(JSContext * cx,UniquePtr<char16_t[],JS::FreePolicy> & outName)636     virtual bool jsObjectConstructorName(JSContext* cx,
637                                          UniquePtr<char16_t[], JS::FreePolicy>& outName) const {
638         outName.reset(nullptr);
639         return true;
640     }
641 
642     // Methods for CoarseType::Script referents
643 
644     // Return the script's source's filename if available. If unavailable,
645     // return nullptr.
scriptFilename()646     virtual const char* scriptFilename() const { return nullptr; }
647 
648   private:
649     Base(const Base& rhs) = delete;
650     Base& operator=(const Base& rhs) = delete;
651 };
652 
653 // A traits template with a specialization for each referent type that
654 // ubi::Node supports. The specialization must be the concrete subclass of
655 // Base that represents a pointer to the referent type. It must also
656 // include the members described here.
657 template<typename Referent>
658 struct Concrete {
659     // The specific char16_t array returned by Concrete<T>::typeName.
660     static const char16_t concreteTypeName[];
661 
662     // Construct an instance of this concrete class in |storage| referring
663     // to |referent|. Implementations typically use a placement 'new'.
664     //
665     // In some cases, |referent| will contain dynamic type information that
666     // identifies it a some more specific subclass of |Referent|. For example,
667     // when |Referent| is |JSObject|, then |referent->getClass()| could tell us
668     // that it's actually a JSFunction. Similarly, if |Referent| is
669     // |nsISupports|, we would like a ubi::Node that knows its final
670     // implementation type.
671     //
672     // So, we delegate the actual construction to this specialization, which
673     // knows Referent's details.
674     static void construct(void* storage, Referent* referent);
675 };
676 
677 // A container for a Base instance; all members simply forward to the contained
678 // instance.  This container allows us to pass ubi::Node instances by value.
679 class Node {
680     // Storage in which we allocate Base subclasses.
681     mozilla::AlignedStorage2<Base> storage;
base()682     Base* base() { return storage.addr(); }
base()683     const Base* base() const { return storage.addr(); }
684 
685     template<typename T>
construct(T * ptr)686     void construct(T* ptr) {
687         static_assert(sizeof(Concrete<T>) == sizeof(*base()),
688                       "ubi::Base specializations must be the same size as ubi::Base");
689         Concrete<T>::construct(base(), ptr);
690     }
691     struct ConstructFunctor;
692 
693   public:
Node()694     Node() { construct<void>(nullptr); }
695 
696     template<typename T>
Node(T * ptr)697     MOZ_IMPLICIT Node(T* ptr) {
698         construct(ptr);
699     }
700     template<typename T>
701     Node& operator=(T* ptr) {
702         construct(ptr);
703         return *this;
704     }
705 
706     // We can construct and assign from rooted forms of pointers.
707     template<typename T>
Node(const Rooted<T * > & root)708     MOZ_IMPLICIT Node(const Rooted<T*>& root) {
709         construct(root.get());
710     }
711     template<typename T>
712     Node& operator=(const Rooted<T*>& root) {
713         construct(root.get());
714         return *this;
715     }
716 
717     // Constructors accepting SpiderMonkey's other generic-pointer-ish types.
718     // Note that we *do* want an implicit constructor here: JS::Value and
719     // JS::ubi::Node are both essentially tagged references to other sorts of
720     // objects, so letting conversions happen automatically is appropriate.
721     MOZ_IMPLICIT Node(JS::HandleValue value);
722     explicit Node(const JS::GCCellPtr& thing);
723 
724     // copy construction and copy assignment just use memcpy, since we know
725     // instances contain nothing but a vtable pointer and a data pointer.
726     //
727     // To be completely correct, concrete classes could provide a virtual
728     // 'construct' member function, which we could invoke on rhs to construct an
729     // instance in our storage. But this is good enough; there's no need to jump
730     // through vtables for copying and assignment that are just going to move
731     // two words around. The compiler knows how to optimize memcpy.
Node(const Node & rhs)732     Node(const Node& rhs) {
733         memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
734     }
735 
736     Node& operator=(const Node& rhs) {
737         memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
738         return *this;
739     }
740 
741     bool operator==(const Node& rhs) const { return *base() == *rhs.base(); }
742     bool operator!=(const Node& rhs) const { return *base() != *rhs.base(); }
743 
744     explicit operator bool() const {
745         return base()->ptr != nullptr;
746     }
747 
isLive()748     bool isLive() const { return base()->isLive(); }
749 
750     // Get the canonical type name for the given type T.
751     template<typename T>
canonicalTypeName()752     static const char16_t* canonicalTypeName() { return Concrete<T>::concreteTypeName; }
753 
754     template<typename T>
is()755     bool is() const {
756         return base()->typeName() == canonicalTypeName<T>();
757     }
758 
759     template<typename T>
as()760     T* as() const {
761         MOZ_ASSERT(isLive());
762         MOZ_ASSERT(is<T>());
763         return static_cast<T*>(base()->ptr);
764     }
765 
766     template<typename T>
asOrNull()767     T* asOrNull() const {
768         MOZ_ASSERT(isLive());
769         return is<T>() ? static_cast<T*>(base()->ptr) : nullptr;
770     }
771 
772     // If this node refers to something that can be represented as a JavaScript
773     // value that is safe to expose to JavaScript code, return that value.
774     // Otherwise return UndefinedValue(). JSStrings, JS::Symbols, and some (but
775     // not all!) JSObjects can be exposed.
776     JS::Value exposeToJS() const;
777 
coarseType()778     CoarseType coarseType()         const { return base()->coarseType(); }
typeName()779     const char16_t* typeName()      const { return base()->typeName(); }
zone()780     JS::Zone* zone()                const { return base()->zone(); }
compartment()781     JSCompartment* compartment()    const { return base()->compartment(); }
jsObjectClassName()782     const char* jsObjectClassName() const { return base()->jsObjectClassName(); }
jsObjectConstructorName(JSContext * cx,UniquePtr<char16_t[],JS::FreePolicy> & outName)783     bool jsObjectConstructorName(JSContext* cx,
784                                  UniquePtr<char16_t[], JS::FreePolicy>& outName) const {
785         return base()->jsObjectConstructorName(cx, outName);
786     }
787 
scriptFilename()788     const char* scriptFilename() const { return base()->scriptFilename(); }
789 
790     using Size = Base::Size;
size(mozilla::MallocSizeOf mallocSizeof)791     Size size(mozilla::MallocSizeOf mallocSizeof) const {
792         auto size =  base()->size(mallocSizeof);
793         MOZ_ASSERT(size > 0,
794                    "C++ does not have zero-sized types! Choose 1 if you just need a "
795                    "conservative default.");
796         return size;
797     }
798 
799     UniquePtr<EdgeRange> edges(JSRuntime* rt, bool wantNames = true) const {
800         return base()->edges(rt, wantNames);
801     }
802 
hasAllocationStack()803     bool hasAllocationStack() const { return base()->hasAllocationStack(); }
allocationStack()804     StackFrame allocationStack() const {
805         return base()->allocationStack();
806     }
807 
808     using Id = Base::Id;
identifier()809     Id identifier() const {
810         auto id = base()->identifier();
811         MOZ_ASSERT(JS::Value::isNumberRepresentable(id));
812         return id;
813     }
814 
815     // A hash policy for ubi::Nodes.
816     // This simply uses the stock PointerHasher on the ubi::Node's pointer.
817     // We specialize DefaultHasher below to make this the default.
818     class HashPolicy {
819         typedef js::PointerHasher<void*, mozilla::tl::FloorLog2<sizeof(void*)>::value> PtrHash;
820 
821       public:
822         typedef Node Lookup;
823 
hash(const Lookup & l)824         static js::HashNumber hash(const Lookup& l) { return PtrHash::hash(l.base()->ptr); }
match(const Node & k,const Lookup & l)825         static bool match(const Node& k, const Lookup& l) { return k == l; }
rekey(Node & k,const Node & newKey)826         static void rekey(Node& k, const Node& newKey) { k = newKey; }
827     };
828 };
829 
830 
831 /*** Edge and EdgeRange ***************************************************************************/
832 
833 using EdgeName = UniquePtr<const char16_t[], JS::FreePolicy>;
834 
835 // An outgoing edge to a referent node.
836 class Edge {
837   public:
Edge()838     Edge() : name(nullptr), referent() { }
839 
840     // Construct an initialized Edge, taking ownership of |name|.
Edge(char16_t * name,const Node & referent)841     Edge(char16_t* name, const Node& referent)
842         : name(name)
843         , referent(referent)
844     { }
845 
846     // Move construction and assignment.
Edge(Edge && rhs)847     Edge(Edge&& rhs)
848         : name(mozilla::Move(rhs.name))
849         , referent(rhs.referent)
850     { }
851 
852     Edge& operator=(Edge&& rhs) {
853         MOZ_ASSERT(&rhs != this);
854         this->~Edge();
855         new (this) Edge(mozilla::Move(rhs));
856         return *this;
857     }
858 
859     Edge(const Edge&) = delete;
860     Edge& operator=(const Edge&) = delete;
861 
862     // This edge's name. This may be nullptr, if Node::edges was called with
863     // false as the wantNames parameter.
864     //
865     // The storage is owned by this Edge, and will be freed when this Edge is
866     // destructed.
867     //
868     // (In real life we'll want a better representation for names, to avoid
869     // creating tons of strings when the names follow a pattern; and we'll need
870     // to think about lifetimes carefully to ensure traversal stays cheap.)
871     EdgeName name;
872 
873     // This edge's referent.
874     Node referent;
875 };
876 
877 // EdgeRange is an abstract base class for iterating over a node's outgoing
878 // edges. (This is modeled after js::HashTable<K,V>::Range.)
879 //
880 // Concrete instances of this class need not be as lightweight as Node itself,
881 // since they're usually only instantiated while iterating over a particular
882 // object's edges. For example, a dumb implementation for JS Cells might use
883 // JS::TraceChildren to to get the outgoing edges, and then store them in an
884 // array internal to the EdgeRange.
885 class EdgeRange {
886   protected:
887     // The current front edge of this range, or nullptr if this range is empty.
888     Edge* front_;
889 
EdgeRange()890     EdgeRange() : front_(nullptr) { }
891 
892   public:
~EdgeRange()893     virtual ~EdgeRange() { }
894 
895     // True if there are no more edges in this range.
empty()896     bool empty() const { return !front_; }
897 
898     // The front edge of this range. This is owned by the EdgeRange, and is
899     // only guaranteed to live until the next call to popFront, or until
900     // the EdgeRange is destructed.
front()901     const Edge& front() const { return *front_; }
front()902     Edge& front() { return *front_; }
903 
904     // Remove the front edge from this range. This should only be called if
905     // !empty().
906     virtual void popFront() = 0;
907 
908   private:
909     EdgeRange(const EdgeRange&) = delete;
910     EdgeRange& operator=(const EdgeRange&) = delete;
911 };
912 
913 
914 typedef mozilla::Vector<Edge, 8, js::SystemAllocPolicy> EdgeVector;
915 
916 // An EdgeRange concrete class that holds a pre-existing vector of
917 // Edges. A PreComputedEdgeRange does not take ownership of its
918 // EdgeVector; it is up to the PreComputedEdgeRange's consumer to manage
919 // that lifetime.
920 class PreComputedEdgeRange : public EdgeRange {
921     EdgeVector& edges;
922     size_t      i;
923 
settle()924     void settle() {
925         front_ = i < edges.length() ? &edges[i] : nullptr;
926     }
927 
928   public:
PreComputedEdgeRange(EdgeVector & edges)929     explicit PreComputedEdgeRange(EdgeVector& edges)
930       : edges(edges),
931         i(0)
932     {
933         settle();
934     }
935 
popFront()936     void popFront() override {
937         MOZ_ASSERT(!empty());
938         i++;
939         settle();
940     }
941 };
942 
943 /*** RootList *************************************************************************************/
944 
945 // RootList is a class that can be pointed to by a |ubi::Node|, creating a
946 // fictional root-of-roots which has edges to every GC root in the JS
947 // runtime. Having a single root |ubi::Node| is useful for algorithms written
948 // with the assumption that there aren't multiple roots (such as computing
949 // dominator trees) and you want a single point of entry. It also ensures that
950 // the roots themselves get visited by |ubi::BreadthFirst| (they would otherwise
951 // only be used as starting points).
952 //
953 // RootList::init itself causes a minor collection, but once the list of roots
954 // has been created, GC must not occur, as the referent ubi::Nodes are not
955 // stable across GC. The init calls emplace on |noGC|'s AutoCheckCannotGC, whose
956 // lifetime must extend at least as long as the RootList itself.
957 //
958 // Example usage:
959 //
960 //    {
961 //        mozilla::Maybe<JS::AutoCheckCannotGC> maybeNoGC;
962 //        JS::ubi::RootList rootList(rt, maybeNoGC);
963 //        if (!rootList.init())
964 //            return false;
965 //
966 //        // The AutoCheckCannotGC is guaranteed to exist if init returned true.
967 //        MOZ_ASSERT(maybeNoGC.isSome());
968 //
969 //        JS::ubi::Node root(&rootList);
970 //
971 //        ...
972 //    }
973 class MOZ_STACK_CLASS RootList {
974     Maybe<AutoCheckCannotGC>& noGC;
975 
976   public:
977     JSRuntime* rt;
978     EdgeVector edges;
979     bool       wantNames;
980 
981     RootList(JSRuntime* rt, Maybe<AutoCheckCannotGC>& noGC, bool wantNames = false);
982 
983     // Find all GC roots.
984     bool init();
985     // Find only GC roots in the provided set of |Zone|s.
986     bool init(ZoneSet& debuggees);
987     // Find only GC roots in the given Debugger object's set of debuggee zones.
988     bool init(HandleObject debuggees);
989 
990     // Returns true if the RootList has been initialized successfully, false
991     // otherwise.
initialized()992     bool initialized() { return noGC.isSome(); }
993 
994     // Explicitly add the given Node as a root in this RootList. If wantNames is
995     // true, you must pass an edgeName. The RootList does not take ownership of
996     // edgeName.
997     bool addRoot(Node node, const char16_t* edgeName = nullptr);
998 };
999 
1000 
1001 /*** Concrete classes for ubi::Node referent types ************************************************/
1002 
1003 template<>
1004 struct Concrete<RootList> : public Base {
1005     UniquePtr<EdgeRange> edges(JSRuntime* rt, bool wantNames) const override;
1006     const char16_t* typeName() const override { return concreteTypeName; }
1007 
1008   protected:
1009     explicit Concrete(RootList* ptr) : Base(ptr) { }
1010     RootList& get() const { return *static_cast<RootList*>(ptr); }
1011 
1012   public:
1013     static const char16_t concreteTypeName[];
1014     static void construct(void* storage, RootList* ptr) { new (storage) Concrete(ptr); }
1015 };
1016 
1017 // A reusable ubi::Concrete specialization base class for types supported by
1018 // JS::TraceChildren.
1019 template<typename Referent>
1020 class TracerConcrete : public Base {
1021     const char16_t* typeName() const override { return concreteTypeName; }
1022     UniquePtr<EdgeRange> edges(JSRuntime* rt, bool wantNames) const override;
1023     JS::Zone* zone() const override;
1024 
1025   protected:
1026     explicit TracerConcrete(Referent* ptr) : Base(ptr) { }
1027     Referent& get() const { return *static_cast<Referent*>(ptr); }
1028 
1029   public:
1030     static const char16_t concreteTypeName[];
1031     static void construct(void* storage, Referent* ptr) { new (storage) TracerConcrete(ptr); }
1032 };
1033 
1034 // For JS::TraceChildren-based types that have a 'compartment' method.
1035 template<typename Referent>
1036 class TracerConcreteWithCompartment : public TracerConcrete<Referent> {
1037     typedef TracerConcrete<Referent> TracerBase;
1038     JSCompartment* compartment() const override;
1039 
1040   protected:
1041     explicit TracerConcreteWithCompartment(Referent* ptr) : TracerBase(ptr) { }
1042 
1043   public:
1044     static void construct(void* storage, Referent* ptr) {
1045         new (storage) TracerConcreteWithCompartment(ptr);
1046     }
1047 };
1048 
1049 // Define specializations for some commonly-used public JSAPI types.
1050 // These can use the generic templates above.
1051 template<>
1052 struct Concrete<JS::Symbol> : TracerConcrete<JS::Symbol> {
1053     Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
1054 
1055   protected:
1056     explicit Concrete(JS::Symbol* ptr) : TracerConcrete(ptr) { }
1057 
1058   public:
1059     static void construct(void* storage, JS::Symbol* ptr) {
1060         new (storage) Concrete(ptr);
1061     }
1062 };
1063 
1064 template<> struct Concrete<JSScript> : TracerConcreteWithCompartment<JSScript> {
1065     CoarseType coarseType() const final { return CoarseType::Script; }
1066     Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
1067     const char* scriptFilename() const final;
1068 
1069   protected:
1070     explicit Concrete(JSScript *ptr) : TracerConcreteWithCompartment<JSScript>(ptr) { }
1071 
1072   public:
1073     static void construct(void *storage, JSScript *ptr) { new (storage) Concrete(ptr); }
1074 };
1075 
1076 // The JSObject specialization.
1077 template<>
1078 class Concrete<JSObject> : public TracerConcreteWithCompartment<JSObject> {
1079     const char* jsObjectClassName() const override;
1080     bool jsObjectConstructorName(JSContext* cx,
1081                                  UniquePtr<char16_t[], JS::FreePolicy>& outName) const override;
1082     Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
1083 
1084     bool hasAllocationStack() const override;
1085     StackFrame allocationStack() const override;
1086 
1087     CoarseType coarseType() const final { return CoarseType::Object; }
1088 
1089   protected:
1090     explicit Concrete(JSObject* ptr) : TracerConcreteWithCompartment(ptr) { }
1091 
1092   public:
1093     static void construct(void* storage, JSObject* ptr) {
1094         new (storage) Concrete(ptr);
1095     }
1096 };
1097 
1098 // For JSString, we extend the generic template with a 'size' implementation.
1099 template<> struct Concrete<JSString> : TracerConcrete<JSString> {
1100     Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
1101 
1102     CoarseType coarseType() const final { return CoarseType::String; }
1103 
1104   protected:
1105     explicit Concrete(JSString *ptr) : TracerConcrete<JSString>(ptr) { }
1106 
1107   public:
1108     static void construct(void *storage, JSString *ptr) { new (storage) Concrete(ptr); }
1109 };
1110 
1111 // The ubi::Node null pointer. Any attempt to operate on a null ubi::Node asserts.
1112 template<>
1113 class Concrete<void> : public Base {
1114     const char16_t* typeName() const override;
1115     Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
1116     UniquePtr<EdgeRange> edges(JSRuntime* rt, bool wantNames) const override;
1117     JS::Zone* zone() const override;
1118     JSCompartment* compartment() const override;
1119     CoarseType coarseType() const final;
1120 
1121     explicit Concrete(void* ptr) : Base(ptr) { }
1122 
1123   public:
1124     static void construct(void* storage, void* ptr) { new (storage) Concrete(ptr); }
1125     static const char16_t concreteTypeName[];
1126 };
1127 
1128 
1129 } // namespace ubi
1130 } // namespace JS
1131 
1132 namespace js {
1133 
1134 // Make ubi::Node::HashPolicy the default hash policy for ubi::Node.
1135 template<> struct DefaultHasher<JS::ubi::Node> : JS::ubi::Node::HashPolicy { };
1136 template<> struct DefaultHasher<JS::ubi::StackFrame> : JS::ubi::StackFrame::HashPolicy { };
1137 
1138 } // namespace js
1139 
1140 #endif // js_UbiNode_h
1141