1 /*-------------------------------------------------------------------------
2  *
3  * rewriteheap.c
4  *	  Support functions to rewrite tables.
5  *
6  * These functions provide a facility to completely rewrite a heap, while
7  * preserving visibility information and update chains.
8  *
9  * INTERFACE
10  *
11  * The caller is responsible for creating the new heap, all catalog
12  * changes, supplying the tuples to be written to the new heap, and
13  * rebuilding indexes.  The caller must hold AccessExclusiveLock on the
14  * target table, because we assume no one else is writing into it.
15  *
16  * To use the facility:
17  *
18  * begin_heap_rewrite
19  * while (fetch next tuple)
20  * {
21  *	   if (tuple is dead)
22  *		   rewrite_heap_dead_tuple
23  *	   else
24  *	   {
25  *		   // do any transformations here if required
26  *		   rewrite_heap_tuple
27  *	   }
28  * }
29  * end_heap_rewrite
30  *
31  * The contents of the new relation shouldn't be relied on until after
32  * end_heap_rewrite is called.
33  *
34  *
35  * IMPLEMENTATION
36  *
37  * This would be a fairly trivial affair, except that we need to maintain
38  * the ctid chains that link versions of an updated tuple together.
39  * Since the newly stored tuples will have tids different from the original
40  * ones, if we just copied t_ctid fields to the new table the links would
41  * be wrong.  When we are required to copy a (presumably recently-dead or
42  * delete-in-progress) tuple whose ctid doesn't point to itself, we have
43  * to substitute the correct ctid instead.
44  *
45  * For each ctid reference from A -> B, we might encounter either A first
46  * or B first.  (Note that a tuple in the middle of a chain is both A and B
47  * of different pairs.)
48  *
49  * If we encounter A first, we'll store the tuple in the unresolved_tups
50  * hash table. When we later encounter B, we remove A from the hash table,
51  * fix the ctid to point to the new location of B, and insert both A and B
52  * to the new heap.
53  *
54  * If we encounter B first, we can insert B to the new heap right away.
55  * We then add an entry to the old_new_tid_map hash table showing B's
56  * original tid (in the old heap) and new tid (in the new heap).
57  * When we later encounter A, we get the new location of B from the table,
58  * and can write A immediately with the correct ctid.
59  *
60  * Entries in the hash tables can be removed as soon as the later tuple
61  * is encountered.  That helps to keep the memory usage down.  At the end,
62  * both tables are usually empty; we should have encountered both A and B
63  * of each pair.  However, it's possible for A to be RECENTLY_DEAD and B
64  * entirely DEAD according to HeapTupleSatisfiesVacuum, because the test
65  * for deadness using OldestXmin is not exact.  In such a case we might
66  * encounter B first, and skip it, and find A later.  Then A would be added
67  * to unresolved_tups, and stay there until end of the rewrite.  Since
68  * this case is very unusual, we don't worry about the memory usage.
69  *
70  * Using in-memory hash tables means that we use some memory for each live
71  * update chain in the table, from the time we find one end of the
72  * reference until we find the other end.  That shouldn't be a problem in
73  * practice, but if you do something like an UPDATE without a where-clause
74  * on a large table, and then run CLUSTER in the same transaction, you
75  * could run out of memory.  It doesn't seem worthwhile to add support for
76  * spill-to-disk, as there shouldn't be that many RECENTLY_DEAD tuples in a
77  * table under normal circumstances.  Furthermore, in the typical scenario
78  * of CLUSTERing on an unchanging key column, we'll see all the versions
79  * of a given tuple together anyway, and so the peak memory usage is only
80  * proportional to the number of RECENTLY_DEAD versions of a single row, not
81  * in the whole table.  Note that if we do fail halfway through a CLUSTER,
82  * the old table is still valid, so failure is not catastrophic.
83  *
84  * We can't use the normal heap_insert function to insert into the new
85  * heap, because heap_insert overwrites the visibility information.
86  * We use a special-purpose raw_heap_insert function instead, which
87  * is optimized for bulk inserting a lot of tuples, knowing that we have
88  * exclusive access to the heap.  raw_heap_insert builds new pages in
89  * local storage.  When a page is full, or at the end of the process,
90  * we insert it to WAL as a single record and then write it to disk
91  * directly through smgr.  Note, however, that any data sent to the new
92  * heap's TOAST table will go through the normal bufmgr.
93  *
94  *
95  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
96  * Portions Copyright (c) 1994-5, Regents of the University of California
97  *
98  * IDENTIFICATION
99  *	  src/backend/access/heap/rewriteheap.c
100  *
101  *-------------------------------------------------------------------------
102  */
103 #include "postgres.h"
104 
105 #include <sys/stat.h>
106 #include <unistd.h>
107 
108 #include "miscadmin.h"
109 
110 #include "access/heapam.h"
111 #include "access/heapam_xlog.h"
112 #include "access/rewriteheap.h"
113 #include "access/transam.h"
114 #include "access/tuptoaster.h"
115 #include "access/xact.h"
116 #include "access/xloginsert.h"
117 
118 #include "catalog/catalog.h"
119 
120 #include "lib/ilist.h"
121 
122 #include "pgstat.h"
123 
124 #include "replication/logical.h"
125 #include "replication/slot.h"
126 
127 #include "storage/bufmgr.h"
128 #include "storage/fd.h"
129 #include "storage/smgr.h"
130 
131 #include "utils/memutils.h"
132 #include "utils/rel.h"
133 #include "utils/tqual.h"
134 
135 #include "storage/procarray.h"
136 
137 /*
138  * State associated with a rewrite operation. This is opaque to the user
139  * of the rewrite facility.
140  */
141 typedef struct RewriteStateData
142 {
143 	Relation	rs_old_rel;		/* source heap */
144 	Relation	rs_new_rel;		/* destination heap */
145 	Page		rs_buffer;		/* page currently being built */
146 	BlockNumber rs_blockno;		/* block where page will go */
147 	bool		rs_buffer_valid;	/* T if any tuples in buffer */
148 	bool		rs_use_wal;		/* must we WAL-log inserts? */
149 	bool		rs_logical_rewrite; /* do we need to do logical rewriting */
150 	TransactionId rs_oldest_xmin;	/* oldest xmin used by caller to determine
151 									 * tuple visibility */
152 	TransactionId rs_freeze_xid;	/* Xid that will be used as freeze cutoff
153 									 * point */
154 	TransactionId rs_logical_xmin;	/* Xid that will be used as cutoff point
155 									 * for logical rewrites */
156 	MultiXactId rs_cutoff_multi;	/* MultiXactId that will be used as cutoff
157 									 * point for multixacts */
158 	MemoryContext rs_cxt;		/* for hash tables and entries and tuples in
159 								 * them */
160 	XLogRecPtr	rs_begin_lsn;	/* XLogInsertLsn when starting the rewrite */
161 	HTAB	   *rs_unresolved_tups; /* unmatched A tuples */
162 	HTAB	   *rs_old_new_tid_map; /* unmatched B tuples */
163 	HTAB	   *rs_logical_mappings;	/* logical remapping files */
164 	uint32		rs_num_rewrite_mappings;	/* # in memory mappings */
165 }			RewriteStateData;
166 
167 /*
168  * The lookup keys for the hash tables are tuple TID and xmin (we must check
169  * both to avoid false matches from dead tuples).  Beware that there is
170  * probably some padding space in this struct; it must be zeroed out for
171  * correct hashtable operation.
172  */
173 typedef struct
174 {
175 	TransactionId xmin;			/* tuple xmin */
176 	ItemPointerData tid;		/* tuple location in old heap */
177 } TidHashKey;
178 
179 /*
180  * Entry structures for the hash tables
181  */
182 typedef struct
183 {
184 	TidHashKey	key;			/* expected xmin/old location of B tuple */
185 	ItemPointerData old_tid;	/* A's location in the old heap */
186 	HeapTuple	tuple;			/* A's tuple contents */
187 } UnresolvedTupData;
188 
189 typedef UnresolvedTupData *UnresolvedTup;
190 
191 typedef struct
192 {
193 	TidHashKey	key;			/* actual xmin/old location of B tuple */
194 	ItemPointerData new_tid;	/* where we put it in the new heap */
195 } OldToNewMappingData;
196 
197 typedef OldToNewMappingData *OldToNewMapping;
198 
199 /*
200  * In-Memory data for an xid that might need logical remapping entries
201  * to be logged.
202  */
203 typedef struct RewriteMappingFile
204 {
205 	TransactionId xid;			/* xid that might need to see the row */
206 	int			vfd;			/* fd of mappings file */
207 	off_t		off;			/* how far have we written yet */
208 	uint32		num_mappings;	/* number of in-memory mappings */
209 	dlist_head	mappings;		/* list of in-memory mappings */
210 	char		path[MAXPGPATH];	/* path, for error messages */
211 } RewriteMappingFile;
212 
213 /*
214  * A single In-Memory logical rewrite mapping, hanging off
215  * RewriteMappingFile->mappings.
216  */
217 typedef struct RewriteMappingDataEntry
218 {
219 	LogicalRewriteMappingData map;	/* map between old and new location of the
220 									 * tuple */
221 	dlist_node	node;
222 } RewriteMappingDataEntry;
223 
224 
225 /* prototypes for internal functions */
226 static void raw_heap_insert(RewriteState state, HeapTuple tup);
227 
228 /* internal logical remapping prototypes */
229 static void logical_begin_heap_rewrite(RewriteState state);
230 static void logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid, HeapTuple new_tuple);
231 static void logical_end_heap_rewrite(RewriteState state);
232 
233 
234 /*
235  * Begin a rewrite of a table
236  *
237  * old_heap		old, locked heap relation tuples will be read from
238  * new_heap		new, locked heap relation to insert tuples to
239  * oldest_xmin	xid used by the caller to determine which tuples are dead
240  * freeze_xid	xid before which tuples will be frozen
241  * min_multi	multixact before which multis will be removed
242  * use_wal		should the inserts to the new heap be WAL-logged?
243  *
244  * Returns an opaque RewriteState, allocated in current memory context,
245  * to be used in subsequent calls to the other functions.
246  */
247 RewriteState
begin_heap_rewrite(Relation old_heap,Relation new_heap,TransactionId oldest_xmin,TransactionId freeze_xid,MultiXactId cutoff_multi,bool use_wal)248 begin_heap_rewrite(Relation old_heap, Relation new_heap, TransactionId oldest_xmin,
249 				   TransactionId freeze_xid, MultiXactId cutoff_multi,
250 				   bool use_wal)
251 {
252 	RewriteState state;
253 	MemoryContext rw_cxt;
254 	MemoryContext old_cxt;
255 	HASHCTL		hash_ctl;
256 
257 	/*
258 	 * To ease cleanup, make a separate context that will contain the
259 	 * RewriteState struct itself plus all subsidiary data.
260 	 */
261 	rw_cxt = AllocSetContextCreate(CurrentMemoryContext,
262 								   "Table rewrite",
263 								   ALLOCSET_DEFAULT_SIZES);
264 	old_cxt = MemoryContextSwitchTo(rw_cxt);
265 
266 	/* Create and fill in the state struct */
267 	state = palloc0(sizeof(RewriteStateData));
268 
269 	state->rs_old_rel = old_heap;
270 	state->rs_new_rel = new_heap;
271 	state->rs_buffer = (Page) palloc(BLCKSZ);
272 	/* new_heap needn't be empty, just locked */
273 	state->rs_blockno = RelationGetNumberOfBlocks(new_heap);
274 	state->rs_buffer_valid = false;
275 	state->rs_use_wal = use_wal;
276 	state->rs_oldest_xmin = oldest_xmin;
277 	state->rs_freeze_xid = freeze_xid;
278 	state->rs_cutoff_multi = cutoff_multi;
279 	state->rs_cxt = rw_cxt;
280 
281 	/* Initialize hash tables used to track update chains */
282 	memset(&hash_ctl, 0, sizeof(hash_ctl));
283 	hash_ctl.keysize = sizeof(TidHashKey);
284 	hash_ctl.entrysize = sizeof(UnresolvedTupData);
285 	hash_ctl.hcxt = state->rs_cxt;
286 
287 	state->rs_unresolved_tups =
288 		hash_create("Rewrite / Unresolved ctids",
289 					128,		/* arbitrary initial size */
290 					&hash_ctl,
291 					HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
292 
293 	hash_ctl.entrysize = sizeof(OldToNewMappingData);
294 
295 	state->rs_old_new_tid_map =
296 		hash_create("Rewrite / Old to new tid map",
297 					128,		/* arbitrary initial size */
298 					&hash_ctl,
299 					HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
300 
301 	MemoryContextSwitchTo(old_cxt);
302 
303 	logical_begin_heap_rewrite(state);
304 
305 	return state;
306 }
307 
308 /*
309  * End a rewrite.
310  *
311  * state and any other resources are freed.
312  */
313 void
end_heap_rewrite(RewriteState state)314 end_heap_rewrite(RewriteState state)
315 {
316 	HASH_SEQ_STATUS seq_status;
317 	UnresolvedTup unresolved;
318 
319 	/*
320 	 * Write any remaining tuples in the UnresolvedTups table. If we have any
321 	 * left, they should in fact be dead, but let's err on the safe side.
322 	 */
323 	hash_seq_init(&seq_status, state->rs_unresolved_tups);
324 
325 	while ((unresolved = hash_seq_search(&seq_status)) != NULL)
326 	{
327 		ItemPointerSetInvalid(&unresolved->tuple->t_data->t_ctid);
328 		raw_heap_insert(state, unresolved->tuple);
329 	}
330 
331 	/* Write the last page, if any */
332 	if (state->rs_buffer_valid)
333 	{
334 		if (state->rs_use_wal)
335 			log_newpage(&state->rs_new_rel->rd_node,
336 						MAIN_FORKNUM,
337 						state->rs_blockno,
338 						state->rs_buffer,
339 						true);
340 		RelationOpenSmgr(state->rs_new_rel);
341 
342 		PageSetChecksumInplace(state->rs_buffer, state->rs_blockno);
343 
344 		smgrextend(state->rs_new_rel->rd_smgr, MAIN_FORKNUM, state->rs_blockno,
345 				   (char *) state->rs_buffer, true);
346 	}
347 
348 	/*
349 	 * If the rel is WAL-logged, must fsync before commit.  We use heap_sync
350 	 * to ensure that the toast table gets fsync'd too.
351 	 *
352 	 * It's obvious that we must do this when not WAL-logging. It's less
353 	 * obvious that we have to do it even if we did WAL-log the pages. The
354 	 * reason is the same as in tablecmds.c's copy_relation_data(): we're
355 	 * writing data that's not in shared buffers, and so a CHECKPOINT
356 	 * occurring during the rewriteheap operation won't have fsync'd data we
357 	 * wrote before the checkpoint.
358 	 */
359 	if (RelationNeedsWAL(state->rs_new_rel))
360 		heap_sync(state->rs_new_rel);
361 
362 	logical_end_heap_rewrite(state);
363 
364 	/* Deleting the context frees everything */
365 	MemoryContextDelete(state->rs_cxt);
366 }
367 
368 /*
369  * Add a tuple to the new heap.
370  *
371  * Visibility information is copied from the original tuple, except that
372  * we "freeze" very-old tuples.  Note that since we scribble on new_tuple,
373  * it had better be temp storage not a pointer to the original tuple.
374  *
375  * state		opaque state as returned by begin_heap_rewrite
376  * old_tuple	original tuple in the old heap
377  * new_tuple	new, rewritten tuple to be inserted to new heap
378  */
379 void
rewrite_heap_tuple(RewriteState state,HeapTuple old_tuple,HeapTuple new_tuple)380 rewrite_heap_tuple(RewriteState state,
381 				   HeapTuple old_tuple, HeapTuple new_tuple)
382 {
383 	MemoryContext old_cxt;
384 	ItemPointerData old_tid;
385 	TidHashKey	hashkey;
386 	bool		found;
387 	bool		free_new;
388 
389 	old_cxt = MemoryContextSwitchTo(state->rs_cxt);
390 
391 	/*
392 	 * Copy the original tuple's visibility information into new_tuple.
393 	 *
394 	 * XXX we might later need to copy some t_infomask2 bits, too? Right now,
395 	 * we intentionally clear the HOT status bits.
396 	 */
397 	memcpy(&new_tuple->t_data->t_choice.t_heap,
398 		   &old_tuple->t_data->t_choice.t_heap,
399 		   sizeof(HeapTupleFields));
400 
401 	new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
402 	new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
403 	new_tuple->t_data->t_infomask |=
404 		old_tuple->t_data->t_infomask & HEAP_XACT_MASK;
405 
406 	/*
407 	 * While we have our hands on the tuple, we may as well freeze any
408 	 * eligible xmin or xmax, so that future VACUUM effort can be saved.
409 	 */
410 	heap_freeze_tuple(new_tuple->t_data,
411 					  state->rs_old_rel->rd_rel->relfrozenxid,
412 					  state->rs_old_rel->rd_rel->relminmxid,
413 					  state->rs_freeze_xid,
414 					  state->rs_cutoff_multi);
415 
416 	/*
417 	 * Invalid ctid means that ctid should point to the tuple itself. We'll
418 	 * override it later if the tuple is part of an update chain.
419 	 */
420 	ItemPointerSetInvalid(&new_tuple->t_data->t_ctid);
421 
422 	/*
423 	 * If the tuple has been updated, check the old-to-new mapping hash table.
424 	 */
425 	if (!((old_tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
426 		  HeapTupleHeaderIsOnlyLocked(old_tuple->t_data)) &&
427 		!(ItemPointerEquals(&(old_tuple->t_self),
428 							&(old_tuple->t_data->t_ctid))))
429 	{
430 		OldToNewMapping mapping;
431 
432 		memset(&hashkey, 0, sizeof(hashkey));
433 		hashkey.xmin = HeapTupleHeaderGetUpdateXid(old_tuple->t_data);
434 		hashkey.tid = old_tuple->t_data->t_ctid;
435 
436 		mapping = (OldToNewMapping)
437 			hash_search(state->rs_old_new_tid_map, &hashkey,
438 						HASH_FIND, NULL);
439 
440 		if (mapping != NULL)
441 		{
442 			/*
443 			 * We've already copied the tuple that t_ctid points to, so we can
444 			 * set the ctid of this tuple to point to the new location, and
445 			 * insert it right away.
446 			 */
447 			new_tuple->t_data->t_ctid = mapping->new_tid;
448 
449 			/* We don't need the mapping entry anymore */
450 			hash_search(state->rs_old_new_tid_map, &hashkey,
451 						HASH_REMOVE, &found);
452 			Assert(found);
453 		}
454 		else
455 		{
456 			/*
457 			 * We haven't seen the tuple t_ctid points to yet. Stash this
458 			 * tuple into unresolved_tups to be written later.
459 			 */
460 			UnresolvedTup unresolved;
461 
462 			unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
463 									 HASH_ENTER, &found);
464 			Assert(!found);
465 
466 			unresolved->old_tid = old_tuple->t_self;
467 			unresolved->tuple = heap_copytuple(new_tuple);
468 
469 			/*
470 			 * We can't do anything more now, since we don't know where the
471 			 * tuple will be written.
472 			 */
473 			MemoryContextSwitchTo(old_cxt);
474 			return;
475 		}
476 	}
477 
478 	/*
479 	 * Now we will write the tuple, and then check to see if it is the B tuple
480 	 * in any new or known pair.  When we resolve a known pair, we will be
481 	 * able to write that pair's A tuple, and then we have to check if it
482 	 * resolves some other pair.  Hence, we need a loop here.
483 	 */
484 	old_tid = old_tuple->t_self;
485 	free_new = false;
486 
487 	for (;;)
488 	{
489 		ItemPointerData new_tid;
490 
491 		/* Insert the tuple and find out where it's put in new_heap */
492 		raw_heap_insert(state, new_tuple);
493 		new_tid = new_tuple->t_self;
494 
495 		logical_rewrite_heap_tuple(state, old_tid, new_tuple);
496 
497 		/*
498 		 * If the tuple is the updated version of a row, and the prior version
499 		 * wouldn't be DEAD yet, then we need to either resolve the prior
500 		 * version (if it's waiting in rs_unresolved_tups), or make an entry
501 		 * in rs_old_new_tid_map (so we can resolve it when we do see it). The
502 		 * previous tuple's xmax would equal this one's xmin, so it's
503 		 * RECENTLY_DEAD if and only if the xmin is not before OldestXmin.
504 		 */
505 		if ((new_tuple->t_data->t_infomask & HEAP_UPDATED) &&
506 			!TransactionIdPrecedes(HeapTupleHeaderGetXmin(new_tuple->t_data),
507 								   state->rs_oldest_xmin))
508 		{
509 			/*
510 			 * Okay, this is B in an update pair.  See if we've seen A.
511 			 */
512 			UnresolvedTup unresolved;
513 
514 			memset(&hashkey, 0, sizeof(hashkey));
515 			hashkey.xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
516 			hashkey.tid = old_tid;
517 
518 			unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
519 									 HASH_FIND, NULL);
520 
521 			if (unresolved != NULL)
522 			{
523 				/*
524 				 * We have seen and memorized the previous tuple already. Now
525 				 * that we know where we inserted the tuple its t_ctid points
526 				 * to, fix its t_ctid and insert it to the new heap.
527 				 */
528 				if (free_new)
529 					heap_freetuple(new_tuple);
530 				new_tuple = unresolved->tuple;
531 				free_new = true;
532 				old_tid = unresolved->old_tid;
533 				new_tuple->t_data->t_ctid = new_tid;
534 
535 				/*
536 				 * We don't need the hash entry anymore, but don't free its
537 				 * tuple just yet.
538 				 */
539 				hash_search(state->rs_unresolved_tups, &hashkey,
540 							HASH_REMOVE, &found);
541 				Assert(found);
542 
543 				/* loop back to insert the previous tuple in the chain */
544 				continue;
545 			}
546 			else
547 			{
548 				/*
549 				 * Remember the new tid of this tuple. We'll use it to set the
550 				 * ctid when we find the previous tuple in the chain.
551 				 */
552 				OldToNewMapping mapping;
553 
554 				mapping = hash_search(state->rs_old_new_tid_map, &hashkey,
555 									  HASH_ENTER, &found);
556 				Assert(!found);
557 
558 				mapping->new_tid = new_tid;
559 			}
560 		}
561 
562 		/* Done with this (chain of) tuples, for now */
563 		if (free_new)
564 			heap_freetuple(new_tuple);
565 		break;
566 	}
567 
568 	MemoryContextSwitchTo(old_cxt);
569 }
570 
571 /*
572  * Register a dead tuple with an ongoing rewrite. Dead tuples are not
573  * copied to the new table, but we still make note of them so that we
574  * can release some resources earlier.
575  *
576  * Returns true if a tuple was removed from the unresolved_tups table.
577  * This indicates that that tuple, previously thought to be "recently dead",
578  * is now known really dead and won't be written to the output.
579  */
580 bool
rewrite_heap_dead_tuple(RewriteState state,HeapTuple old_tuple)581 rewrite_heap_dead_tuple(RewriteState state, HeapTuple old_tuple)
582 {
583 	/*
584 	 * If we have already seen an earlier tuple in the update chain that
585 	 * points to this tuple, let's forget about that earlier tuple. It's in
586 	 * fact dead as well, our simple xmax < OldestXmin test in
587 	 * HeapTupleSatisfiesVacuum just wasn't enough to detect it. It happens
588 	 * when xmin of a tuple is greater than xmax, which sounds
589 	 * counter-intuitive but is perfectly valid.
590 	 *
591 	 * We don't bother to try to detect the situation the other way round,
592 	 * when we encounter the dead tuple first and then the recently dead one
593 	 * that points to it. If that happens, we'll have some unmatched entries
594 	 * in the UnresolvedTups hash table at the end. That can happen anyway,
595 	 * because a vacuum might have removed the dead tuple in the chain before
596 	 * us.
597 	 */
598 	UnresolvedTup unresolved;
599 	TidHashKey	hashkey;
600 	bool		found;
601 
602 	memset(&hashkey, 0, sizeof(hashkey));
603 	hashkey.xmin = HeapTupleHeaderGetXmin(old_tuple->t_data);
604 	hashkey.tid = old_tuple->t_self;
605 
606 	unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
607 							 HASH_FIND, NULL);
608 
609 	if (unresolved != NULL)
610 	{
611 		/* Need to free the contained tuple as well as the hashtable entry */
612 		heap_freetuple(unresolved->tuple);
613 		hash_search(state->rs_unresolved_tups, &hashkey,
614 					HASH_REMOVE, &found);
615 		Assert(found);
616 		return true;
617 	}
618 
619 	return false;
620 }
621 
622 /*
623  * Insert a tuple to the new relation.  This has to track heap_insert
624  * and its subsidiary functions!
625  *
626  * t_self of the tuple is set to the new TID of the tuple. If t_ctid of the
627  * tuple is invalid on entry, it's replaced with the new TID as well (in
628  * the inserted data only, not in the caller's copy).
629  */
630 static void
raw_heap_insert(RewriteState state,HeapTuple tup)631 raw_heap_insert(RewriteState state, HeapTuple tup)
632 {
633 	Page		page = state->rs_buffer;
634 	Size		pageFreeSpace,
635 				saveFreeSpace;
636 	Size		len;
637 	OffsetNumber newoff;
638 	HeapTuple	heaptup;
639 
640 	/*
641 	 * If the new tuple is too big for storage or contains already toasted
642 	 * out-of-line attributes from some other relation, invoke the toaster.
643 	 *
644 	 * Note: below this point, heaptup is the data we actually intend to store
645 	 * into the relation; tup is the caller's original untoasted data.
646 	 */
647 	if (state->rs_new_rel->rd_rel->relkind == RELKIND_TOASTVALUE)
648 	{
649 		/* toast table entries should never be recursively toasted */
650 		Assert(!HeapTupleHasExternal(tup));
651 		heaptup = tup;
652 	}
653 	else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
654 	{
655 		int options = HEAP_INSERT_SKIP_FSM;
656 
657 		if (!state->rs_use_wal)
658 			options |= HEAP_INSERT_SKIP_WAL;
659 
660 		/*
661 		 * While rewriting the heap for VACUUM FULL / CLUSTER, make sure data
662 		 * for the TOAST table are not logically decoded.  The main heap is
663 		 * WAL-logged as XLOG FPI records, which are not logically decoded.
664 		 */
665 		options |= HEAP_INSERT_NO_LOGICAL;
666 
667 		heaptup = toast_insert_or_update(state->rs_new_rel, tup, NULL,
668 										 options);
669 	}
670 	else
671 		heaptup = tup;
672 
673 	len = MAXALIGN(heaptup->t_len); /* be conservative */
674 
675 	/*
676 	 * If we're gonna fail for oversize tuple, do it right away
677 	 */
678 	if (len > MaxHeapTupleSize)
679 		ereport(ERROR,
680 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
681 				 errmsg("row is too big: size %zu, maximum size %zu",
682 						len, MaxHeapTupleSize)));
683 
684 	/* Compute desired extra freespace due to fillfactor option */
685 	saveFreeSpace = RelationGetTargetPageFreeSpace(state->rs_new_rel,
686 												   HEAP_DEFAULT_FILLFACTOR);
687 
688 	/* Now we can check to see if there's enough free space already. */
689 	if (state->rs_buffer_valid)
690 	{
691 		pageFreeSpace = PageGetHeapFreeSpace(page);
692 
693 		if (len + saveFreeSpace > pageFreeSpace)
694 		{
695 			/* Doesn't fit, so write out the existing page */
696 
697 			/* XLOG stuff */
698 			if (state->rs_use_wal)
699 				log_newpage(&state->rs_new_rel->rd_node,
700 							MAIN_FORKNUM,
701 							state->rs_blockno,
702 							page,
703 							true);
704 
705 			/*
706 			 * Now write the page. We say isTemp = true even if it's not a
707 			 * temp table, because there's no need for smgr to schedule an
708 			 * fsync for this write; we'll do it ourselves in
709 			 * end_heap_rewrite.
710 			 */
711 			RelationOpenSmgr(state->rs_new_rel);
712 
713 			PageSetChecksumInplace(page, state->rs_blockno);
714 
715 			smgrextend(state->rs_new_rel->rd_smgr, MAIN_FORKNUM,
716 					   state->rs_blockno, (char *) page, true);
717 
718 			state->rs_blockno++;
719 			state->rs_buffer_valid = false;
720 		}
721 	}
722 
723 	if (!state->rs_buffer_valid)
724 	{
725 		/* Initialize a new empty page */
726 		PageInit(page, BLCKSZ, 0);
727 		state->rs_buffer_valid = true;
728 	}
729 
730 	/* And now we can insert the tuple into the page */
731 	newoff = PageAddItem(page, (Item) heaptup->t_data, heaptup->t_len,
732 						 InvalidOffsetNumber, false, true);
733 	if (newoff == InvalidOffsetNumber)
734 		elog(ERROR, "failed to add tuple");
735 
736 	/* Update caller's t_self to the actual position where it was stored */
737 	ItemPointerSet(&(tup->t_self), state->rs_blockno, newoff);
738 
739 	/*
740 	 * Insert the correct position into CTID of the stored tuple, too, if the
741 	 * caller didn't supply a valid CTID.
742 	 */
743 	if (!ItemPointerIsValid(&tup->t_data->t_ctid))
744 	{
745 		ItemId		newitemid;
746 		HeapTupleHeader onpage_tup;
747 
748 		newitemid = PageGetItemId(page, newoff);
749 		onpage_tup = (HeapTupleHeader) PageGetItem(page, newitemid);
750 
751 		onpage_tup->t_ctid = tup->t_self;
752 	}
753 
754 	/* If heaptup is a private copy, release it. */
755 	if (heaptup != tup)
756 		heap_freetuple(heaptup);
757 }
758 
759 /* ------------------------------------------------------------------------
760  * Logical rewrite support
761  *
762  * When doing logical decoding - which relies on using cmin/cmax of catalog
763  * tuples, via xl_heap_new_cid records - heap rewrites have to log enough
764  * information to allow the decoding backend to updates its internal mapping
765  * of (relfilenode,ctid) => (cmin, cmax) to be correct for the rewritten heap.
766  *
767  * For that, every time we find a tuple that's been modified in a catalog
768  * relation within the xmin horizon of any decoding slot, we log a mapping
769  * from the old to the new location.
770  *
771  * To deal with rewrites that abort the filename of a mapping file contains
772  * the xid of the transaction performing the rewrite, which then can be
773  * checked before being read in.
774  *
775  * For efficiency we don't immediately spill every single map mapping for a
776  * row to disk but only do so in batches when we've collected several of them
777  * in memory or when end_heap_rewrite() has been called.
778  *
779  * Crash-Safety: This module diverts from the usual patterns of doing WAL
780  * since it cannot rely on checkpoint flushing out all buffers and thus
781  * waiting for exclusive locks on buffers. Usually the XLogInsert() covering
782  * buffer modifications is performed while the buffer(s) that are being
783  * modified are exclusively locked guaranteeing that both the WAL record and
784  * the modified heap are on either side of the checkpoint. But since the
785  * mapping files we log aren't in shared_buffers that interlock doesn't work.
786  *
787  * Instead we simply write the mapping files out to disk, *before* the
788  * XLogInsert() is performed. That guarantees that either the XLogInsert() is
789  * inserted after the checkpoint's redo pointer or that the checkpoint (via
790  * LogicalRewriteHeapCheckpoint()) has flushed the (partial) mapping file to
791  * disk. That leaves the tail end that has not yet been flushed open to
792  * corruption, which is solved by including the current offset in the
793  * xl_heap_rewrite_mapping records and truncating the mapping file to it
794  * during replay. Every time a rewrite is finished all generated mapping files
795  * are synced to disk.
796  *
797  * Note that if we were only concerned about crash safety we wouldn't have to
798  * deal with WAL logging at all - an fsync() at the end of a rewrite would be
799  * sufficient for crash safety. Any mapping that hasn't been safely flushed to
800  * disk has to be by an aborted (explicitly or via a crash) transaction and is
801  * ignored by virtue of the xid in its name being subject to a
802  * TransactionDidCommit() check. But we want to support having standbys via
803  * physical replication, both for availability and to do logical decoding
804  * there.
805  * ------------------------------------------------------------------------
806  */
807 
808 /*
809  * Do preparations for logging logical mappings during a rewrite if
810  * necessary. If we detect that we don't need to log anything we'll prevent
811  * any further action by the various logical rewrite functions.
812  */
813 static void
logical_begin_heap_rewrite(RewriteState state)814 logical_begin_heap_rewrite(RewriteState state)
815 {
816 	HASHCTL		hash_ctl;
817 	TransactionId logical_xmin;
818 
819 	/*
820 	 * We only need to persist these mappings if the rewritten table can be
821 	 * accessed during logical decoding, if not, we can skip doing any
822 	 * additional work.
823 	 */
824 	state->rs_logical_rewrite =
825 		RelationIsAccessibleInLogicalDecoding(state->rs_old_rel);
826 
827 	if (!state->rs_logical_rewrite)
828 		return;
829 
830 	ProcArrayGetReplicationSlotXmin(NULL, &logical_xmin);
831 
832 	/*
833 	 * If there are no logical slots in progress we don't need to do anything,
834 	 * there cannot be any remappings for relevant rows yet. The relation's
835 	 * lock protects us against races.
836 	 */
837 	if (logical_xmin == InvalidTransactionId)
838 	{
839 		state->rs_logical_rewrite = false;
840 		return;
841 	}
842 
843 	state->rs_logical_xmin = logical_xmin;
844 	state->rs_begin_lsn = GetXLogInsertRecPtr();
845 	state->rs_num_rewrite_mappings = 0;
846 
847 	memset(&hash_ctl, 0, sizeof(hash_ctl));
848 	hash_ctl.keysize = sizeof(TransactionId);
849 	hash_ctl.entrysize = sizeof(RewriteMappingFile);
850 	hash_ctl.hcxt = state->rs_cxt;
851 
852 	state->rs_logical_mappings =
853 		hash_create("Logical rewrite mapping",
854 					128,		/* arbitrary initial size */
855 					&hash_ctl,
856 					HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
857 }
858 
859 /*
860  * Flush all logical in-memory mappings to disk, but don't fsync them yet.
861  */
862 static void
logical_heap_rewrite_flush_mappings(RewriteState state)863 logical_heap_rewrite_flush_mappings(RewriteState state)
864 {
865 	HASH_SEQ_STATUS seq_status;
866 	RewriteMappingFile *src;
867 	dlist_mutable_iter iter;
868 
869 	Assert(state->rs_logical_rewrite);
870 
871 	/* no logical rewrite in progress, no need to iterate over mappings */
872 	if (state->rs_num_rewrite_mappings == 0)
873 		return;
874 
875 	elog(DEBUG1, "flushing %u logical rewrite mapping entries",
876 		 state->rs_num_rewrite_mappings);
877 
878 	hash_seq_init(&seq_status, state->rs_logical_mappings);
879 	while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
880 	{
881 		char	   *waldata;
882 		char	   *waldata_start;
883 		xl_heap_rewrite_mapping xlrec;
884 		Oid			dboid;
885 		uint32		len;
886 		int			written;
887 
888 		/* this file hasn't got any new mappings */
889 		if (src->num_mappings == 0)
890 			continue;
891 
892 		if (state->rs_old_rel->rd_rel->relisshared)
893 			dboid = InvalidOid;
894 		else
895 			dboid = MyDatabaseId;
896 
897 		xlrec.num_mappings = src->num_mappings;
898 		xlrec.mapped_rel = RelationGetRelid(state->rs_old_rel);
899 		xlrec.mapped_xid = src->xid;
900 		xlrec.mapped_db = dboid;
901 		xlrec.offset = src->off;
902 		xlrec.start_lsn = state->rs_begin_lsn;
903 
904 		/* write all mappings consecutively */
905 		len = src->num_mappings * sizeof(LogicalRewriteMappingData);
906 		waldata_start = waldata = palloc(len);
907 
908 		/*
909 		 * collect data we need to write out, but don't modify ondisk data yet
910 		 */
911 		dlist_foreach_modify(iter, &src->mappings)
912 		{
913 			RewriteMappingDataEntry *pmap;
914 
915 			pmap = dlist_container(RewriteMappingDataEntry, node, iter.cur);
916 
917 			memcpy(waldata, &pmap->map, sizeof(pmap->map));
918 			waldata += sizeof(pmap->map);
919 
920 			/* remove from the list and free */
921 			dlist_delete(&pmap->node);
922 			pfree(pmap);
923 
924 			/* update bookkeeping */
925 			state->rs_num_rewrite_mappings--;
926 			src->num_mappings--;
927 		}
928 
929 		Assert(src->num_mappings == 0);
930 		Assert(waldata == waldata_start + len);
931 
932 		/*
933 		 * Note that we deviate from the usual WAL coding practices here,
934 		 * check the above "Logical rewrite support" comment for reasoning.
935 		 */
936 		written = FileWrite(src->vfd, waldata_start, len,
937 							WAIT_EVENT_LOGICAL_REWRITE_WRITE);
938 		if (written != len)
939 			ereport(ERROR,
940 					(errcode_for_file_access(),
941 					 errmsg("could not write to file \"%s\", wrote %d of %d: %m", src->path,
942 							written, len)));
943 		src->off += len;
944 
945 		XLogBeginInsert();
946 		XLogRegisterData((char *) (&xlrec), sizeof(xlrec));
947 		XLogRegisterData(waldata_start, len);
948 
949 		/* write xlog record */
950 		XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_REWRITE);
951 
952 		pfree(waldata_start);
953 	}
954 	Assert(state->rs_num_rewrite_mappings == 0);
955 }
956 
957 /*
958  * Logical remapping part of end_heap_rewrite().
959  */
960 static void
logical_end_heap_rewrite(RewriteState state)961 logical_end_heap_rewrite(RewriteState state)
962 {
963 	HASH_SEQ_STATUS seq_status;
964 	RewriteMappingFile *src;
965 
966 	/* done, no logical rewrite in progress */
967 	if (!state->rs_logical_rewrite)
968 		return;
969 
970 	/* writeout remaining in-memory entries */
971 	if (state->rs_num_rewrite_mappings > 0)
972 		logical_heap_rewrite_flush_mappings(state);
973 
974 	/* Iterate over all mappings we have written and fsync the files. */
975 	hash_seq_init(&seq_status, state->rs_logical_mappings);
976 	while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
977 	{
978 		if (FileSync(src->vfd, WAIT_EVENT_LOGICAL_REWRITE_SYNC) != 0)
979 			ereport(data_sync_elevel(ERROR),
980 					(errcode_for_file_access(),
981 					 errmsg("could not fsync file \"%s\": %m", src->path)));
982 		FileClose(src->vfd);
983 	}
984 	/* memory context cleanup will deal with the rest */
985 }
986 
987 /*
988  * Log a single (old->new) mapping for 'xid'.
989  */
990 static void
logical_rewrite_log_mapping(RewriteState state,TransactionId xid,LogicalRewriteMappingData * map)991 logical_rewrite_log_mapping(RewriteState state, TransactionId xid,
992 							LogicalRewriteMappingData *map)
993 {
994 	RewriteMappingFile *src;
995 	RewriteMappingDataEntry *pmap;
996 	Oid			relid;
997 	bool		found;
998 
999 	relid = RelationGetRelid(state->rs_old_rel);
1000 
1001 	/* look for existing mappings for this 'mapped' xid */
1002 	src = hash_search(state->rs_logical_mappings, &xid,
1003 					  HASH_ENTER, &found);
1004 
1005 	/*
1006 	 * We haven't yet had the need to map anything for this xid, create
1007 	 * per-xid data structures.
1008 	 */
1009 	if (!found)
1010 	{
1011 		char		path[MAXPGPATH];
1012 		Oid			dboid;
1013 
1014 		if (state->rs_old_rel->rd_rel->relisshared)
1015 			dboid = InvalidOid;
1016 		else
1017 			dboid = MyDatabaseId;
1018 
1019 		snprintf(path, MAXPGPATH,
1020 				 "pg_logical/mappings/" LOGICAL_REWRITE_FORMAT,
1021 				 dboid, relid,
1022 				 (uint32) (state->rs_begin_lsn >> 32),
1023 				 (uint32) state->rs_begin_lsn,
1024 				 xid, GetCurrentTransactionId());
1025 
1026 		dlist_init(&src->mappings);
1027 		src->num_mappings = 0;
1028 		src->off = 0;
1029 		memcpy(src->path, path, sizeof(path));
1030 		src->vfd = PathNameOpenFile(path,
1031 									O_CREAT | O_EXCL | O_WRONLY | PG_BINARY,
1032 									S_IRUSR | S_IWUSR);
1033 		if (src->vfd < 0)
1034 			ereport(ERROR,
1035 					(errcode_for_file_access(),
1036 					 errmsg("could not create file \"%s\": %m", path)));
1037 	}
1038 
1039 	pmap = MemoryContextAlloc(state->rs_cxt,
1040 							  sizeof(RewriteMappingDataEntry));
1041 	memcpy(&pmap->map, map, sizeof(LogicalRewriteMappingData));
1042 	dlist_push_tail(&src->mappings, &pmap->node);
1043 	src->num_mappings++;
1044 	state->rs_num_rewrite_mappings++;
1045 
1046 	/*
1047 	 * Write out buffer every time we've too many in-memory entries across all
1048 	 * mapping files.
1049 	 */
1050 	if (state->rs_num_rewrite_mappings >= 1000 /* arbitrary number */ )
1051 		logical_heap_rewrite_flush_mappings(state);
1052 }
1053 
1054 /*
1055  * Perform logical remapping for a tuple that's mapped from old_tid to
1056  * new_tuple->t_self by rewrite_heap_tuple() if necessary for the tuple.
1057  */
1058 static void
logical_rewrite_heap_tuple(RewriteState state,ItemPointerData old_tid,HeapTuple new_tuple)1059 logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid,
1060 						   HeapTuple new_tuple)
1061 {
1062 	ItemPointerData new_tid = new_tuple->t_self;
1063 	TransactionId cutoff = state->rs_logical_xmin;
1064 	TransactionId xmin;
1065 	TransactionId xmax;
1066 	bool		do_log_xmin = false;
1067 	bool		do_log_xmax = false;
1068 	LogicalRewriteMappingData map;
1069 
1070 	/* no logical rewrite in progress, we don't need to log anything */
1071 	if (!state->rs_logical_rewrite)
1072 		return;
1073 
1074 	xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
1075 	/* use *GetUpdateXid to correctly deal with multixacts */
1076 	xmax = HeapTupleHeaderGetUpdateXid(new_tuple->t_data);
1077 
1078 	/*
1079 	 * Log the mapping iff the tuple has been created recently.
1080 	 */
1081 	if (TransactionIdIsNormal(xmin) && !TransactionIdPrecedes(xmin, cutoff))
1082 		do_log_xmin = true;
1083 
1084 	if (!TransactionIdIsNormal(xmax))
1085 	{
1086 		/*
1087 		 * no xmax is set, can't have any permanent ones, so this check is
1088 		 * sufficient
1089 		 */
1090 	}
1091 	else if (HEAP_XMAX_IS_LOCKED_ONLY(new_tuple->t_data->t_infomask))
1092 	{
1093 		/* only locked, we don't care */
1094 	}
1095 	else if (!TransactionIdPrecedes(xmax, cutoff))
1096 	{
1097 		/* tuple has been deleted recently, log */
1098 		do_log_xmax = true;
1099 	}
1100 
1101 	/* if neither needs to be logged, we're done */
1102 	if (!do_log_xmin && !do_log_xmax)
1103 		return;
1104 
1105 	/* fill out mapping information */
1106 	map.old_node = state->rs_old_rel->rd_node;
1107 	map.old_tid = old_tid;
1108 	map.new_node = state->rs_new_rel->rd_node;
1109 	map.new_tid = new_tid;
1110 
1111 	/* ---
1112 	 * Now persist the mapping for the individual xids that are affected. We
1113 	 * need to log for both xmin and xmax if they aren't the same transaction
1114 	 * since the mapping files are per "affected" xid.
1115 	 * We don't muster all that much effort detecting whether xmin and xmax
1116 	 * are actually the same transaction, we just check whether the xid is the
1117 	 * same disregarding subtransactions. Logging too much is relatively
1118 	 * harmless and we could never do the check fully since subtransaction
1119 	 * data is thrown away during restarts.
1120 	 * ---
1121 	 */
1122 	if (do_log_xmin)
1123 		logical_rewrite_log_mapping(state, xmin, &map);
1124 	/* separately log mapping for xmax unless it'd be redundant */
1125 	if (do_log_xmax && !TransactionIdEquals(xmin, xmax))
1126 		logical_rewrite_log_mapping(state, xmax, &map);
1127 }
1128 
1129 /*
1130  * Replay XLOG_HEAP2_REWRITE records
1131  */
1132 void
heap_xlog_logical_rewrite(XLogReaderState * r)1133 heap_xlog_logical_rewrite(XLogReaderState *r)
1134 {
1135 	char		path[MAXPGPATH];
1136 	int			fd;
1137 	xl_heap_rewrite_mapping *xlrec;
1138 	uint32		len;
1139 	char	   *data;
1140 
1141 	xlrec = (xl_heap_rewrite_mapping *) XLogRecGetData(r);
1142 
1143 	snprintf(path, MAXPGPATH,
1144 			 "pg_logical/mappings/" LOGICAL_REWRITE_FORMAT,
1145 			 xlrec->mapped_db, xlrec->mapped_rel,
1146 			 (uint32) (xlrec->start_lsn >> 32),
1147 			 (uint32) xlrec->start_lsn,
1148 			 xlrec->mapped_xid, XLogRecGetXid(r));
1149 
1150 	fd = OpenTransientFile(path,
1151 						   O_CREAT | O_WRONLY | PG_BINARY,
1152 						   S_IRUSR | S_IWUSR);
1153 	if (fd < 0)
1154 		ereport(ERROR,
1155 				(errcode_for_file_access(),
1156 				 errmsg("could not create file \"%s\": %m", path)));
1157 
1158 	/*
1159 	 * Truncate all data that's not guaranteed to have been safely fsynced (by
1160 	 * previous record or by the last checkpoint).
1161 	 */
1162 	pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_TRUNCATE);
1163 	if (ftruncate(fd, xlrec->offset) != 0)
1164 		ereport(ERROR,
1165 				(errcode_for_file_access(),
1166 				 errmsg("could not truncate file \"%s\" to %u: %m",
1167 						path, (uint32) xlrec->offset)));
1168 	pgstat_report_wait_end();
1169 
1170 	/* now seek to the position we want to write our data to */
1171 	if (lseek(fd, xlrec->offset, SEEK_SET) != xlrec->offset)
1172 		ereport(ERROR,
1173 				(errcode_for_file_access(),
1174 				 errmsg("could not seek to end of file \"%s\": %m",
1175 						path)));
1176 
1177 	data = XLogRecGetData(r) + sizeof(*xlrec);
1178 
1179 	len = xlrec->num_mappings * sizeof(LogicalRewriteMappingData);
1180 
1181 	/* write out tail end of mapping file (again) */
1182 	errno = 0;
1183 	pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_WRITE);
1184 	if (write(fd, data, len) != len)
1185 	{
1186 		/* if write didn't set errno, assume problem is no disk space */
1187 		if (errno == 0)
1188 			errno = ENOSPC;
1189 		ereport(ERROR,
1190 				(errcode_for_file_access(),
1191 				 errmsg("could not write to file \"%s\": %m", path)));
1192 	}
1193 	pgstat_report_wait_end();
1194 
1195 	/*
1196 	 * Now fsync all previously written data. We could improve things and only
1197 	 * do this for the last write to a file, but the required bookkeeping
1198 	 * doesn't seem worth the trouble.
1199 	 */
1200 	pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_SYNC);
1201 	if (pg_fsync(fd) != 0)
1202 		ereport(data_sync_elevel(ERROR),
1203 				(errcode_for_file_access(),
1204 				 errmsg("could not fsync file \"%s\": %m", path)));
1205 	pgstat_report_wait_end();
1206 
1207 	CloseTransientFile(fd);
1208 }
1209 
1210 /* ---
1211  * Perform a checkpoint for logical rewrite mappings
1212  *
1213  * This serves two tasks:
1214  * 1) Remove all mappings not needed anymore based on the logical restart LSN
1215  * 2) Flush all remaining mappings to disk, so that replay after a checkpoint
1216  *	  only has to deal with the parts of a mapping that have been written out
1217  *	  after the checkpoint started.
1218  * ---
1219  */
1220 void
CheckPointLogicalRewriteHeap(void)1221 CheckPointLogicalRewriteHeap(void)
1222 {
1223 	XLogRecPtr	cutoff;
1224 	XLogRecPtr	redo;
1225 	DIR		   *mappings_dir;
1226 	struct dirent *mapping_de;
1227 	char		path[MAXPGPATH + 20];
1228 
1229 	/*
1230 	 * We start of with a minimum of the last redo pointer. No new decoding
1231 	 * slot will start before that, so that's a safe upper bound for removal.
1232 	 */
1233 	redo = GetRedoRecPtr();
1234 
1235 	/* now check for the restart ptrs from existing slots */
1236 	cutoff = ReplicationSlotsComputeLogicalRestartLSN();
1237 
1238 	/* don't start earlier than the restart lsn */
1239 	if (cutoff != InvalidXLogRecPtr && redo < cutoff)
1240 		cutoff = redo;
1241 
1242 	mappings_dir = AllocateDir("pg_logical/mappings");
1243 	while ((mapping_de = ReadDir(mappings_dir, "pg_logical/mappings")) != NULL)
1244 	{
1245 		struct stat statbuf;
1246 		Oid			dboid;
1247 		Oid			relid;
1248 		XLogRecPtr	lsn;
1249 		TransactionId rewrite_xid;
1250 		TransactionId create_xid;
1251 		uint32		hi,
1252 					lo;
1253 
1254 		if (strcmp(mapping_de->d_name, ".") == 0 ||
1255 			strcmp(mapping_de->d_name, "..") == 0)
1256 			continue;
1257 
1258 		snprintf(path, sizeof(path), "pg_logical/mappings/%s", mapping_de->d_name);
1259 		if (lstat(path, &statbuf) == 0 && !S_ISREG(statbuf.st_mode))
1260 			continue;
1261 
1262 		/* Skip over files that cannot be ours. */
1263 		if (strncmp(mapping_de->d_name, "map-", 4) != 0)
1264 			continue;
1265 
1266 		if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT,
1267 				   &dboid, &relid, &hi, &lo, &rewrite_xid, &create_xid) != 6)
1268 			elog(ERROR, "could not parse filename \"%s\"", mapping_de->d_name);
1269 
1270 		lsn = ((uint64) hi) << 32 | lo;
1271 
1272 		if (lsn < cutoff || cutoff == InvalidXLogRecPtr)
1273 		{
1274 			elog(DEBUG1, "removing logical rewrite file \"%s\"", path);
1275 			if (unlink(path) < 0)
1276 				ereport(ERROR,
1277 						(errcode_for_file_access(),
1278 						 errmsg("could not remove file \"%s\": %m", path)));
1279 		}
1280 		else
1281 		{
1282 			/* on some operating systems fsyncing a file requires O_RDWR */
1283 			int			fd = OpenTransientFile(path, O_RDWR | PG_BINARY, 0);
1284 
1285 			/*
1286 			 * The file cannot vanish due to concurrency since this function
1287 			 * is the only one removing logical mappings and it's run while
1288 			 * CheckpointLock is held exclusively.
1289 			 */
1290 			if (fd < 0)
1291 				ereport(ERROR,
1292 						(errcode_for_file_access(),
1293 						 errmsg("could not open file \"%s\": %m", path)));
1294 
1295 			/*
1296 			 * We could try to avoid fsyncing files that either haven't
1297 			 * changed or have only been created since the checkpoint's start,
1298 			 * but it's currently not deemed worth the effort.
1299 			 */
1300 			pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_CHECKPOINT_SYNC);
1301 			if (pg_fsync(fd) != 0)
1302 				ereport(data_sync_elevel(ERROR),
1303 						(errcode_for_file_access(),
1304 						 errmsg("could not fsync file \"%s\": %m", path)));
1305 			pgstat_report_wait_end();
1306 			CloseTransientFile(fd);
1307 		}
1308 	}
1309 	FreeDir(mappings_dir);
1310 }
1311