1 /*-------------------------------------------------------------------------
2  *
3  * latch.c
4  *	  Routines for inter-process latches
5  *
6  * The Unix implementation uses the so-called self-pipe trick to overcome the
7  * race condition involved with poll() (or epoll_wait() on linux) and setting
8  * a global flag in the signal handler. When a latch is set and the current
9  * process is waiting for it, the signal handler wakes up the poll() in
10  * WaitLatch by writing a byte to a pipe. A signal by itself doesn't interrupt
11  * poll() on all platforms, and even on platforms where it does, a signal that
12  * arrives just before the poll() call does not prevent poll() from entering
13  * sleep. An incoming byte on a pipe however reliably interrupts the sleep,
14  * and causes poll() to return immediately even if the signal arrives before
15  * poll() begins.
16  *
17  * When SetLatch is called from the same process that owns the latch,
18  * SetLatch writes the byte directly to the pipe. If it's owned by another
19  * process, SIGUSR1 is sent and the signal handler in the waiting process
20  * writes the byte to the pipe on behalf of the signaling process.
21  *
22  * The Windows implementation uses Windows events that are inherited by all
23  * postmaster child processes. There's no need for the self-pipe trick there.
24  *
25  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
26  * Portions Copyright (c) 1994, Regents of the University of California
27  *
28  * IDENTIFICATION
29  *	  src/backend/storage/ipc/latch.c
30  *
31  *-------------------------------------------------------------------------
32  */
33 #include "postgres.h"
34 
35 #include <fcntl.h>
36 #include <limits.h>
37 #include <signal.h>
38 #include <unistd.h>
39 #ifdef HAVE_SYS_EPOLL_H
40 #include <sys/epoll.h>
41 #endif
42 #ifdef HAVE_POLL_H
43 #include <poll.h>
44 #endif
45 
46 #include "miscadmin.h"
47 #include "pgstat.h"
48 #include "port/atomics.h"
49 #include "portability/instr_time.h"
50 #include "postmaster/postmaster.h"
51 #include "storage/latch.h"
52 #include "storage/pmsignal.h"
53 #include "storage/shmem.h"
54 
55 /*
56  * Select the fd readiness primitive to use. Normally the "most modern"
57  * primitive supported by the OS will be used, but for testing it can be
58  * useful to manually specify the used primitive.  If desired, just add a
59  * define somewhere before this block.
60  */
61 #if defined(WAIT_USE_EPOLL) || defined(WAIT_USE_POLL) || \
62 	defined(WAIT_USE_WIN32)
63 /* don't overwrite manual choice */
64 #elif defined(HAVE_SYS_EPOLL_H)
65 #define WAIT_USE_EPOLL
66 #elif defined(HAVE_POLL)
67 #define WAIT_USE_POLL
68 #elif WIN32
69 #define WAIT_USE_WIN32
70 #else
71 #error "no wait set implementation available"
72 #endif
73 
74 /* typedef in latch.h */
75 struct WaitEventSet
76 {
77 	int			nevents;		/* number of registered events */
78 	int			nevents_space;	/* maximum number of events in this set */
79 
80 	/*
81 	 * Array, of nevents_space length, storing the definition of events this
82 	 * set is waiting for.
83 	 */
84 	WaitEvent  *events;
85 
86 	/*
87 	 * If WL_LATCH_SET is specified in any wait event, latch is a pointer to
88 	 * said latch, and latch_pos the offset in the ->events array. This is
89 	 * useful because we check the state of the latch before performing doing
90 	 * syscalls related to waiting.
91 	 */
92 	Latch	   *latch;
93 	int			latch_pos;
94 
95 #if defined(WAIT_USE_EPOLL)
96 	int			epoll_fd;
97 	/* epoll_wait returns events in a user provided arrays, allocate once */
98 	struct epoll_event *epoll_ret_events;
99 #elif defined(WAIT_USE_POLL)
100 	/* poll expects events to be waited on every poll() call, prepare once */
101 	struct pollfd *pollfds;
102 #elif defined(WAIT_USE_WIN32)
103 
104 	/*
105 	 * Array of windows events. The first element always contains
106 	 * pgwin32_signal_event, so the remaining elements are offset by one (i.e.
107 	 * event->pos + 1).
108 	 */
109 	HANDLE	   *handles;
110 #endif
111 };
112 
113 #ifndef WIN32
114 /* Are we currently in WaitLatch? The signal handler would like to know. */
115 static volatile sig_atomic_t waiting = false;
116 
117 /* Read and write ends of the self-pipe */
118 static int	selfpipe_readfd = -1;
119 static int	selfpipe_writefd = -1;
120 
121 /* Process owning the self-pipe --- needed for checking purposes */
122 static int	selfpipe_owner_pid = 0;
123 
124 /* Private function prototypes */
125 static void sendSelfPipeByte(void);
126 static void drainSelfPipe(void);
127 #endif							/* WIN32 */
128 
129 #if defined(WAIT_USE_EPOLL)
130 static void WaitEventAdjustEpoll(WaitEventSet *set, WaitEvent *event, int action);
131 #elif defined(WAIT_USE_POLL)
132 static void WaitEventAdjustPoll(WaitEventSet *set, WaitEvent *event);
133 #elif defined(WAIT_USE_WIN32)
134 static void WaitEventAdjustWin32(WaitEventSet *set, WaitEvent *event);
135 #endif
136 
137 static inline int WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
138 					  WaitEvent *occurred_events, int nevents);
139 
140 /*
141  * Initialize the process-local latch infrastructure.
142  *
143  * This must be called once during startup of any process that can wait on
144  * latches, before it issues any InitLatch() or OwnLatch() calls.
145  */
146 void
InitializeLatchSupport(void)147 InitializeLatchSupport(void)
148 {
149 #ifndef WIN32
150 	int			pipefd[2];
151 
152 	if (IsUnderPostmaster)
153 	{
154 		/*
155 		 * We might have inherited connections to a self-pipe created by the
156 		 * postmaster.  It's critical that child processes create their own
157 		 * self-pipes, of course, and we really want them to close the
158 		 * inherited FDs for safety's sake.
159 		 */
160 		if (selfpipe_owner_pid != 0)
161 		{
162 			/* Assert we go through here but once in a child process */
163 			Assert(selfpipe_owner_pid != MyProcPid);
164 			/* Release postmaster's pipe FDs; ignore any error */
165 			(void) close(selfpipe_readfd);
166 			(void) close(selfpipe_writefd);
167 			/* Clean up, just for safety's sake; we'll set these below */
168 			selfpipe_readfd = selfpipe_writefd = -1;
169 			selfpipe_owner_pid = 0;
170 		}
171 		else
172 		{
173 			/*
174 			 * Postmaster didn't create a self-pipe ... or else we're in an
175 			 * EXEC_BACKEND build, in which case it doesn't matter since the
176 			 * postmaster's pipe FDs were closed by the action of FD_CLOEXEC.
177 			 */
178 			Assert(selfpipe_readfd == -1);
179 		}
180 	}
181 	else
182 	{
183 		/* In postmaster or standalone backend, assert we do this but once */
184 		Assert(selfpipe_readfd == -1);
185 		Assert(selfpipe_owner_pid == 0);
186 	}
187 
188 	/*
189 	 * Set up the self-pipe that allows a signal handler to wake up the
190 	 * poll()/epoll_wait() in WaitLatch. Make the write-end non-blocking, so
191 	 * that SetLatch won't block if the event has already been set many times
192 	 * filling the kernel buffer. Make the read-end non-blocking too, so that
193 	 * we can easily clear the pipe by reading until EAGAIN or EWOULDBLOCK.
194 	 * Also, make both FDs close-on-exec, since we surely do not want any
195 	 * child processes messing with them.
196 	 */
197 	if (pipe(pipefd) < 0)
198 		elog(FATAL, "pipe() failed: %m");
199 	if (fcntl(pipefd[0], F_SETFL, O_NONBLOCK) == -1)
200 		elog(FATAL, "fcntl(F_SETFL) failed on read-end of self-pipe: %m");
201 	if (fcntl(pipefd[1], F_SETFL, O_NONBLOCK) == -1)
202 		elog(FATAL, "fcntl(F_SETFL) failed on write-end of self-pipe: %m");
203 	if (fcntl(pipefd[0], F_SETFD, FD_CLOEXEC) == -1)
204 		elog(FATAL, "fcntl(F_SETFD) failed on read-end of self-pipe: %m");
205 	if (fcntl(pipefd[1], F_SETFD, FD_CLOEXEC) == -1)
206 		elog(FATAL, "fcntl(F_SETFD) failed on write-end of self-pipe: %m");
207 
208 	selfpipe_readfd = pipefd[0];
209 	selfpipe_writefd = pipefd[1];
210 	selfpipe_owner_pid = MyProcPid;
211 #else
212 	/* currently, nothing to do here for Windows */
213 #endif
214 }
215 
216 /*
217  * Initialize a process-local latch.
218  */
219 void
InitLatch(volatile Latch * latch)220 InitLatch(volatile Latch *latch)
221 {
222 	latch->is_set = false;
223 	latch->owner_pid = MyProcPid;
224 	latch->is_shared = false;
225 
226 #ifndef WIN32
227 	/* Assert InitializeLatchSupport has been called in this process */
228 	Assert(selfpipe_readfd >= 0 && selfpipe_owner_pid == MyProcPid);
229 #else
230 	latch->event = CreateEvent(NULL, TRUE, FALSE, NULL);
231 	if (latch->event == NULL)
232 		elog(ERROR, "CreateEvent failed: error code %lu", GetLastError());
233 #endif							/* WIN32 */
234 }
235 
236 /*
237  * Initialize a shared latch that can be set from other processes. The latch
238  * is initially owned by no-one; use OwnLatch to associate it with the
239  * current process.
240  *
241  * InitSharedLatch needs to be called in postmaster before forking child
242  * processes, usually right after allocating the shared memory block
243  * containing the latch with ShmemInitStruct. (The Unix implementation
244  * doesn't actually require that, but the Windows one does.) Because of
245  * this restriction, we have no concurrency issues to worry about here.
246  *
247  * Note that other handles created in this module are never marked as
248  * inheritable.  Thus we do not need to worry about cleaning up child
249  * process references to postmaster-private latches or WaitEventSets.
250  */
251 void
InitSharedLatch(volatile Latch * latch)252 InitSharedLatch(volatile Latch *latch)
253 {
254 #ifdef WIN32
255 	SECURITY_ATTRIBUTES sa;
256 
257 	/*
258 	 * Set up security attributes to specify that the events are inherited.
259 	 */
260 	ZeroMemory(&sa, sizeof(sa));
261 	sa.nLength = sizeof(sa);
262 	sa.bInheritHandle = TRUE;
263 
264 	latch->event = CreateEvent(&sa, TRUE, FALSE, NULL);
265 	if (latch->event == NULL)
266 		elog(ERROR, "CreateEvent failed: error code %lu", GetLastError());
267 #endif
268 
269 	latch->is_set = false;
270 	latch->owner_pid = 0;
271 	latch->is_shared = true;
272 }
273 
274 /*
275  * Associate a shared latch with the current process, allowing it to
276  * wait on the latch.
277  *
278  * Although there is a sanity check for latch-already-owned, we don't do
279  * any sort of locking here, meaning that we could fail to detect the error
280  * if two processes try to own the same latch at about the same time.  If
281  * there is any risk of that, caller must provide an interlock to prevent it.
282  *
283  * In any process that calls OwnLatch(), make sure that
284  * latch_sigusr1_handler() is called from the SIGUSR1 signal handler,
285  * as shared latches use SIGUSR1 for inter-process communication.
286  */
287 void
OwnLatch(volatile Latch * latch)288 OwnLatch(volatile Latch *latch)
289 {
290 	/* Sanity checks */
291 	Assert(latch->is_shared);
292 
293 #ifndef WIN32
294 	/* Assert InitializeLatchSupport has been called in this process */
295 	Assert(selfpipe_readfd >= 0 && selfpipe_owner_pid == MyProcPid);
296 #endif
297 
298 	if (latch->owner_pid != 0)
299 		elog(ERROR, "latch already owned");
300 
301 	latch->owner_pid = MyProcPid;
302 }
303 
304 /*
305  * Disown a shared latch currently owned by the current process.
306  */
307 void
DisownLatch(volatile Latch * latch)308 DisownLatch(volatile Latch *latch)
309 {
310 	Assert(latch->is_shared);
311 	Assert(latch->owner_pid == MyProcPid);
312 
313 	latch->owner_pid = 0;
314 }
315 
316 /*
317  * Wait for a given latch to be set, or for postmaster death, or until timeout
318  * is exceeded. 'wakeEvents' is a bitmask that specifies which of those events
319  * to wait for. If the latch is already set (and WL_LATCH_SET is given), the
320  * function returns immediately.
321  *
322  * The "timeout" is given in milliseconds. It must be >= 0 if WL_TIMEOUT flag
323  * is given.  Although it is declared as "long", we don't actually support
324  * timeouts longer than INT_MAX milliseconds.  Note that some extra overhead
325  * is incurred when WL_TIMEOUT is given, so avoid using a timeout if possible.
326  *
327  * The latch must be owned by the current process, ie. it must be a
328  * process-local latch initialized with InitLatch, or a shared latch
329  * associated with the current process by calling OwnLatch.
330  *
331  * Returns bit mask indicating which condition(s) caused the wake-up. Note
332  * that if multiple wake-up conditions are true, there is no guarantee that
333  * we return all of them in one call, but we will return at least one.
334  */
335 int
WaitLatch(volatile Latch * latch,int wakeEvents,long timeout,uint32 wait_event_info)336 WaitLatch(volatile Latch *latch, int wakeEvents, long timeout,
337 		  uint32 wait_event_info)
338 {
339 	return WaitLatchOrSocket(latch, wakeEvents, PGINVALID_SOCKET, timeout,
340 							 wait_event_info);
341 }
342 
343 /*
344  * Like WaitLatch, but with an extra socket argument for WL_SOCKET_*
345  * conditions.
346  *
347  * When waiting on a socket, EOF and error conditions always cause the socket
348  * to be reported as readable/writable/connected, so that the caller can deal
349  * with the condition.
350  *
351  * NB: These days this is just a wrapper around the WaitEventSet API. When
352  * using a latch very frequently, consider creating a longer living
353  * WaitEventSet instead; that's more efficient.
354  */
355 int
WaitLatchOrSocket(volatile Latch * latch,int wakeEvents,pgsocket sock,long timeout,uint32 wait_event_info)356 WaitLatchOrSocket(volatile Latch *latch, int wakeEvents, pgsocket sock,
357 				  long timeout, uint32 wait_event_info)
358 {
359 	int			ret = 0;
360 	int			rc;
361 	WaitEvent	event;
362 	WaitEventSet *set = CreateWaitEventSet(CurrentMemoryContext, 3);
363 
364 	if (wakeEvents & WL_TIMEOUT)
365 		Assert(timeout >= 0);
366 	else
367 		timeout = -1;
368 
369 	if (wakeEvents & WL_LATCH_SET)
370 		AddWaitEventToSet(set, WL_LATCH_SET, PGINVALID_SOCKET,
371 						  (Latch *) latch, NULL);
372 
373 	if (wakeEvents & WL_POSTMASTER_DEATH && IsUnderPostmaster)
374 		AddWaitEventToSet(set, WL_POSTMASTER_DEATH, PGINVALID_SOCKET,
375 						  NULL, NULL);
376 
377 	if (wakeEvents & WL_SOCKET_MASK)
378 	{
379 		int			ev;
380 
381 		ev = wakeEvents & WL_SOCKET_MASK;
382 		AddWaitEventToSet(set, ev, sock, NULL, NULL);
383 	}
384 
385 	rc = WaitEventSetWait(set, timeout, &event, 1, wait_event_info);
386 
387 	if (rc == 0)
388 		ret |= WL_TIMEOUT;
389 	else
390 	{
391 		ret |= event.events & (WL_LATCH_SET |
392 							   WL_POSTMASTER_DEATH |
393 							   WL_SOCKET_MASK);
394 	}
395 
396 	FreeWaitEventSet(set);
397 
398 	return ret;
399 }
400 
401 /*
402  * Sets a latch and wakes up anyone waiting on it.
403  *
404  * This is cheap if the latch is already set, otherwise not so much.
405  *
406  * NB: when calling this in a signal handler, be sure to save and restore
407  * errno around it.  (That's standard practice in most signal handlers, of
408  * course, but we used to omit it in handlers that only set a flag.)
409  *
410  * NB: this function is called from critical sections and signal handlers so
411  * throwing an error is not a good idea.
412  */
413 void
SetLatch(volatile Latch * latch)414 SetLatch(volatile Latch *latch)
415 {
416 #ifndef WIN32
417 	pid_t		owner_pid;
418 #else
419 	HANDLE		handle;
420 #endif
421 
422 	/*
423 	 * The memory barrier has to be placed here to ensure that any flag
424 	 * variables possibly changed by this process have been flushed to main
425 	 * memory, before we check/set is_set.
426 	 */
427 	pg_memory_barrier();
428 
429 	/* Quick exit if already set */
430 	if (latch->is_set)
431 		return;
432 
433 	latch->is_set = true;
434 
435 #ifndef WIN32
436 
437 	/*
438 	 * See if anyone's waiting for the latch. It can be the current process if
439 	 * we're in a signal handler. We use the self-pipe to wake up the
440 	 * poll()/epoll_wait() in that case. If it's another process, send a
441 	 * signal.
442 	 *
443 	 * Fetch owner_pid only once, in case the latch is concurrently getting
444 	 * owned or disowned. XXX: This assumes that pid_t is atomic, which isn't
445 	 * guaranteed to be true! In practice, the effective range of pid_t fits
446 	 * in a 32 bit integer, and so should be atomic. In the worst case, we
447 	 * might end up signaling the wrong process. Even then, you're very
448 	 * unlucky if a process with that bogus pid exists and belongs to
449 	 * Postgres; and PG database processes should handle excess SIGUSR1
450 	 * interrupts without a problem anyhow.
451 	 *
452 	 * Another sort of race condition that's possible here is for a new
453 	 * process to own the latch immediately after we look, so we don't signal
454 	 * it. This is okay so long as all callers of ResetLatch/WaitLatch follow
455 	 * the standard coding convention of waiting at the bottom of their loops,
456 	 * not the top, so that they'll correctly process latch-setting events
457 	 * that happen before they enter the loop.
458 	 */
459 	owner_pid = latch->owner_pid;
460 	if (owner_pid == 0)
461 		return;
462 	else if (owner_pid == MyProcPid)
463 	{
464 		if (waiting)
465 			sendSelfPipeByte();
466 	}
467 	else
468 		kill(owner_pid, SIGUSR1);
469 #else
470 
471 	/*
472 	 * See if anyone's waiting for the latch. It can be the current process if
473 	 * we're in a signal handler.
474 	 *
475 	 * Use a local variable here just in case somebody changes the event field
476 	 * concurrently (which really should not happen).
477 	 */
478 	handle = latch->event;
479 	if (handle)
480 	{
481 		SetEvent(handle);
482 
483 		/*
484 		 * Note that we silently ignore any errors. We might be in a signal
485 		 * handler or other critical path where it's not safe to call elog().
486 		 */
487 	}
488 #endif
489 
490 }
491 
492 /*
493  * Clear the latch. Calling WaitLatch after this will sleep, unless
494  * the latch is set again before the WaitLatch call.
495  */
496 void
ResetLatch(volatile Latch * latch)497 ResetLatch(volatile Latch *latch)
498 {
499 	/* Only the owner should reset the latch */
500 	Assert(latch->owner_pid == MyProcPid);
501 
502 	latch->is_set = false;
503 
504 	/*
505 	 * Ensure that the write to is_set gets flushed to main memory before we
506 	 * examine any flag variables.  Otherwise a concurrent SetLatch might
507 	 * falsely conclude that it needn't signal us, even though we have missed
508 	 * seeing some flag updates that SetLatch was supposed to inform us of.
509 	 */
510 	pg_memory_barrier();
511 }
512 
513 /*
514  * Create a WaitEventSet with space for nevents different events to wait for.
515  *
516  * These events can then be efficiently waited upon together, using
517  * WaitEventSetWait().
518  */
519 WaitEventSet *
CreateWaitEventSet(MemoryContext context,int nevents)520 CreateWaitEventSet(MemoryContext context, int nevents)
521 {
522 	WaitEventSet *set;
523 	char	   *data;
524 	Size		sz = 0;
525 
526 	/*
527 	 * Use MAXALIGN size/alignment to guarantee that later uses of memory are
528 	 * aligned correctly. E.g. epoll_event might need 8 byte alignment on some
529 	 * platforms, but earlier allocations like WaitEventSet and WaitEvent
530 	 * might not sized to guarantee that when purely using sizeof().
531 	 */
532 	sz += MAXALIGN(sizeof(WaitEventSet));
533 	sz += MAXALIGN(sizeof(WaitEvent) * nevents);
534 
535 #if defined(WAIT_USE_EPOLL)
536 	sz += MAXALIGN(sizeof(struct epoll_event) * nevents);
537 #elif defined(WAIT_USE_POLL)
538 	sz += MAXALIGN(sizeof(struct pollfd) * nevents);
539 #elif defined(WAIT_USE_WIN32)
540 	/* need space for the pgwin32_signal_event */
541 	sz += MAXALIGN(sizeof(HANDLE) * (nevents + 1));
542 #endif
543 
544 	data = (char *) MemoryContextAllocZero(context, sz);
545 
546 	set = (WaitEventSet *) data;
547 	data += MAXALIGN(sizeof(WaitEventSet));
548 
549 	set->events = (WaitEvent *) data;
550 	data += MAXALIGN(sizeof(WaitEvent) * nevents);
551 
552 #if defined(WAIT_USE_EPOLL)
553 	set->epoll_ret_events = (struct epoll_event *) data;
554 	data += MAXALIGN(sizeof(struct epoll_event) * nevents);
555 #elif defined(WAIT_USE_POLL)
556 	set->pollfds = (struct pollfd *) data;
557 	data += MAXALIGN(sizeof(struct pollfd) * nevents);
558 #elif defined(WAIT_USE_WIN32)
559 	set->handles = (HANDLE) data;
560 	data += MAXALIGN(sizeof(HANDLE) * nevents);
561 #endif
562 
563 	set->latch = NULL;
564 	set->nevents_space = nevents;
565 
566 #if defined(WAIT_USE_EPOLL)
567 #ifdef EPOLL_CLOEXEC
568 	set->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
569 	if (set->epoll_fd < 0)
570 		elog(ERROR, "epoll_create1 failed: %m");
571 #else
572 	/* cope with ancient glibc lacking epoll_create1 (e.g., RHEL5) */
573 	set->epoll_fd = epoll_create(nevents);
574 	if (set->epoll_fd < 0)
575 		elog(ERROR, "epoll_create failed: %m");
576 	if (fcntl(set->epoll_fd, F_SETFD, FD_CLOEXEC) == -1)
577 		elog(ERROR, "fcntl(F_SETFD) failed on epoll descriptor: %m");
578 #endif							/* EPOLL_CLOEXEC */
579 #elif defined(WAIT_USE_WIN32)
580 
581 	/*
582 	 * To handle signals while waiting, we need to add a win32 specific event.
583 	 * We accounted for the additional event at the top of this routine. See
584 	 * port/win32/signal.c for more details.
585 	 *
586 	 * Note: pgwin32_signal_event should be first to ensure that it will be
587 	 * reported when multiple events are set.  We want to guarantee that
588 	 * pending signals are serviced.
589 	 */
590 	set->handles[0] = pgwin32_signal_event;
591 	StaticAssertStmt(WSA_INVALID_EVENT == NULL, "");
592 #endif
593 
594 	return set;
595 }
596 
597 /*
598  * Free a previously created WaitEventSet.
599  *
600  * Note: preferably, this shouldn't have to free any resources that could be
601  * inherited across an exec().  If it did, we'd likely leak those resources in
602  * many scenarios.  For the epoll case, we ensure that by setting FD_CLOEXEC
603  * when the FD is created.  For the Windows case, we assume that the handles
604  * involved are non-inheritable.
605  */
606 void
FreeWaitEventSet(WaitEventSet * set)607 FreeWaitEventSet(WaitEventSet *set)
608 {
609 #if defined(WAIT_USE_EPOLL)
610 	close(set->epoll_fd);
611 #elif defined(WAIT_USE_WIN32)
612 	WaitEvent  *cur_event;
613 
614 	for (cur_event = set->events;
615 		 cur_event < (set->events + set->nevents);
616 		 cur_event++)
617 	{
618 		if (cur_event->events & WL_LATCH_SET)
619 		{
620 			/* uses the latch's HANDLE */
621 		}
622 		else if (cur_event->events & WL_POSTMASTER_DEATH)
623 		{
624 			/* uses PostmasterHandle */
625 		}
626 		else
627 		{
628 			/* Clean up the event object we created for the socket */
629 			WSAEventSelect(cur_event->fd, NULL, 0);
630 			WSACloseEvent(set->handles[cur_event->pos + 1]);
631 		}
632 	}
633 #endif
634 
635 	pfree(set);
636 }
637 
638 /* ---
639  * Add an event to the set. Possible events are:
640  * - WL_LATCH_SET: Wait for the latch to be set
641  * - WL_POSTMASTER_DEATH: Wait for postmaster to die
642  * - WL_SOCKET_READABLE: Wait for socket to become readable,
643  *	 can be combined in one event with other WL_SOCKET_* events
644  * - WL_SOCKET_WRITEABLE: Wait for socket to become writeable,
645  *	 can be combined with other WL_SOCKET_* events
646  * - WL_SOCKET_CONNECTED: Wait for socket connection to be established,
647  *	 can be combined with other WL_SOCKET_* events (on non-Windows
648  *	 platforms, this is the same as WL_SOCKET_WRITEABLE)
649  *
650  * Returns the offset in WaitEventSet->events (starting from 0), which can be
651  * used to modify previously added wait events using ModifyWaitEvent().
652  *
653  * In the WL_LATCH_SET case the latch must be owned by the current process,
654  * i.e. it must be a process-local latch initialized with InitLatch, or a
655  * shared latch associated with the current process by calling OwnLatch.
656  *
657  * In the WL_SOCKET_READABLE/WRITEABLE/CONNECTED cases, EOF and error
658  * conditions cause the socket to be reported as readable/writable/connected,
659  * so that the caller can deal with the condition.
660  *
661  * The user_data pointer specified here will be set for the events returned
662  * by WaitEventSetWait(), allowing to easily associate additional data with
663  * events.
664  */
665 int
AddWaitEventToSet(WaitEventSet * set,uint32 events,pgsocket fd,Latch * latch,void * user_data)666 AddWaitEventToSet(WaitEventSet *set, uint32 events, pgsocket fd, Latch *latch,
667 				  void *user_data)
668 {
669 	WaitEvent  *event;
670 
671 	/* not enough space */
672 	Assert(set->nevents < set->nevents_space);
673 
674 	if (latch)
675 	{
676 		if (latch->owner_pid != MyProcPid)
677 			elog(ERROR, "cannot wait on a latch owned by another process");
678 		if (set->latch)
679 			elog(ERROR, "cannot wait on more than one latch");
680 		if ((events & WL_LATCH_SET) != WL_LATCH_SET)
681 			elog(ERROR, "latch events only support being set");
682 	}
683 	else
684 	{
685 		if (events & WL_LATCH_SET)
686 			elog(ERROR, "cannot wait on latch without a specified latch");
687 	}
688 
689 	/* waiting for socket readiness without a socket indicates a bug */
690 	if (fd == PGINVALID_SOCKET && (events & WL_SOCKET_MASK))
691 		elog(ERROR, "cannot wait on socket event without a socket");
692 
693 	event = &set->events[set->nevents];
694 	event->pos = set->nevents++;
695 	event->fd = fd;
696 	event->events = events;
697 	event->user_data = user_data;
698 #ifdef WIN32
699 	event->reset = false;
700 #endif
701 
702 	if (events == WL_LATCH_SET)
703 	{
704 		set->latch = latch;
705 		set->latch_pos = event->pos;
706 #ifndef WIN32
707 		event->fd = selfpipe_readfd;
708 #endif
709 	}
710 	else if (events == WL_POSTMASTER_DEATH)
711 	{
712 #ifndef WIN32
713 		event->fd = postmaster_alive_fds[POSTMASTER_FD_WATCH];
714 #endif
715 	}
716 
717 	/* perform wait primitive specific initialization, if needed */
718 #if defined(WAIT_USE_EPOLL)
719 	WaitEventAdjustEpoll(set, event, EPOLL_CTL_ADD);
720 #elif defined(WAIT_USE_POLL)
721 	WaitEventAdjustPoll(set, event);
722 #elif defined(WAIT_USE_WIN32)
723 	WaitEventAdjustWin32(set, event);
724 #endif
725 
726 	return event->pos;
727 }
728 
729 /*
730  * Change the event mask and, in the WL_LATCH_SET case, the latch associated
731  * with the WaitEvent.
732  *
733  * 'pos' is the id returned by AddWaitEventToSet.
734  */
735 void
ModifyWaitEvent(WaitEventSet * set,int pos,uint32 events,Latch * latch)736 ModifyWaitEvent(WaitEventSet *set, int pos, uint32 events, Latch *latch)
737 {
738 	WaitEvent  *event;
739 
740 	Assert(pos < set->nevents);
741 
742 	event = &set->events[pos];
743 
744 	/*
745 	 * If neither the event mask nor the associated latch changes, return
746 	 * early. That's an important optimization for some sockets, where
747 	 * ModifyWaitEvent is frequently used to switch from waiting for reads to
748 	 * waiting on writes.
749 	 */
750 	if (events == event->events &&
751 		(!(event->events & WL_LATCH_SET) || set->latch == latch))
752 		return;
753 
754 	if (event->events & WL_LATCH_SET &&
755 		events != event->events)
756 	{
757 		/* we could allow to disable latch events for a while */
758 		elog(ERROR, "cannot modify latch event");
759 	}
760 
761 	if (event->events & WL_POSTMASTER_DEATH)
762 	{
763 		elog(ERROR, "cannot modify postmaster death event");
764 	}
765 
766 	/* FIXME: validate event mask */
767 	event->events = events;
768 
769 	if (events == WL_LATCH_SET)
770 	{
771 		set->latch = latch;
772 	}
773 
774 #if defined(WAIT_USE_EPOLL)
775 	WaitEventAdjustEpoll(set, event, EPOLL_CTL_MOD);
776 #elif defined(WAIT_USE_POLL)
777 	WaitEventAdjustPoll(set, event);
778 #elif defined(WAIT_USE_WIN32)
779 	WaitEventAdjustWin32(set, event);
780 #endif
781 }
782 
783 #if defined(WAIT_USE_EPOLL)
784 /*
785  * action can be one of EPOLL_CTL_ADD | EPOLL_CTL_MOD | EPOLL_CTL_DEL
786  */
787 static void
WaitEventAdjustEpoll(WaitEventSet * set,WaitEvent * event,int action)788 WaitEventAdjustEpoll(WaitEventSet *set, WaitEvent *event, int action)
789 {
790 	struct epoll_event epoll_ev;
791 	int			rc;
792 
793 	/* pointer to our event, returned by epoll_wait */
794 	epoll_ev.data.ptr = event;
795 	/* always wait for errors */
796 	epoll_ev.events = EPOLLERR | EPOLLHUP;
797 
798 	/* prepare pollfd entry once */
799 	if (event->events == WL_LATCH_SET)
800 	{
801 		Assert(set->latch != NULL);
802 		epoll_ev.events |= EPOLLIN;
803 	}
804 	else if (event->events == WL_POSTMASTER_DEATH)
805 	{
806 		epoll_ev.events |= EPOLLIN;
807 	}
808 	else
809 	{
810 		Assert(event->fd != PGINVALID_SOCKET);
811 		Assert(event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE));
812 
813 		if (event->events & WL_SOCKET_READABLE)
814 			epoll_ev.events |= EPOLLIN;
815 		if (event->events & WL_SOCKET_WRITEABLE)
816 			epoll_ev.events |= EPOLLOUT;
817 	}
818 
819 	/*
820 	 * Even though unused, we also pass epoll_ev as the data argument if
821 	 * EPOLL_CTL_DEL is passed as action.  There used to be an epoll bug
822 	 * requiring that, and actually it makes the code simpler...
823 	 */
824 	rc = epoll_ctl(set->epoll_fd, action, event->fd, &epoll_ev);
825 
826 	if (rc < 0)
827 		ereport(ERROR,
828 				(errcode_for_socket_access(),
829 				 errmsg("epoll_ctl() failed: %m")));
830 }
831 #endif
832 
833 #if defined(WAIT_USE_POLL)
834 static void
WaitEventAdjustPoll(WaitEventSet * set,WaitEvent * event)835 WaitEventAdjustPoll(WaitEventSet *set, WaitEvent *event)
836 {
837 	struct pollfd *pollfd = &set->pollfds[event->pos];
838 
839 	pollfd->revents = 0;
840 	pollfd->fd = event->fd;
841 
842 	/* prepare pollfd entry once */
843 	if (event->events == WL_LATCH_SET)
844 	{
845 		Assert(set->latch != NULL);
846 		pollfd->events = POLLIN;
847 	}
848 	else if (event->events == WL_POSTMASTER_DEATH)
849 	{
850 		pollfd->events = POLLIN;
851 	}
852 	else
853 	{
854 		Assert(event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE));
855 		pollfd->events = 0;
856 		if (event->events & WL_SOCKET_READABLE)
857 			pollfd->events |= POLLIN;
858 		if (event->events & WL_SOCKET_WRITEABLE)
859 			pollfd->events |= POLLOUT;
860 	}
861 
862 	Assert(event->fd != PGINVALID_SOCKET);
863 }
864 #endif
865 
866 #if defined(WAIT_USE_WIN32)
867 static void
WaitEventAdjustWin32(WaitEventSet * set,WaitEvent * event)868 WaitEventAdjustWin32(WaitEventSet *set, WaitEvent *event)
869 {
870 	HANDLE	   *handle = &set->handles[event->pos + 1];
871 
872 	if (event->events == WL_LATCH_SET)
873 	{
874 		Assert(set->latch != NULL);
875 		*handle = set->latch->event;
876 	}
877 	else if (event->events == WL_POSTMASTER_DEATH)
878 	{
879 		*handle = PostmasterHandle;
880 	}
881 	else
882 	{
883 		int			flags = FD_CLOSE;	/* always check for errors/EOF */
884 
885 		if (event->events & WL_SOCKET_READABLE)
886 			flags |= FD_READ;
887 		if (event->events & WL_SOCKET_WRITEABLE)
888 			flags |= FD_WRITE;
889 		if (event->events & WL_SOCKET_CONNECTED)
890 			flags |= FD_CONNECT;
891 
892 		if (*handle == WSA_INVALID_EVENT)
893 		{
894 			*handle = WSACreateEvent();
895 			if (*handle == WSA_INVALID_EVENT)
896 				elog(ERROR, "failed to create event for socket: error code %u",
897 					 WSAGetLastError());
898 		}
899 		if (WSAEventSelect(event->fd, *handle, flags) != 0)
900 			elog(ERROR, "failed to set up event for socket: error code %u",
901 				 WSAGetLastError());
902 
903 		Assert(event->fd != PGINVALID_SOCKET);
904 	}
905 }
906 #endif
907 
908 /*
909  * Wait for events added to the set to happen, or until the timeout is
910  * reached.  At most nevents occurred events are returned.
911  *
912  * If timeout = -1, block until an event occurs; if 0, check sockets for
913  * readiness, but don't block; if > 0, block for at most timeout milliseconds.
914  *
915  * Returns the number of events occurred, or 0 if the timeout was reached.
916  *
917  * Returned events will have the fd, pos, user_data fields set to the
918  * values associated with the registered event.
919  */
920 int
WaitEventSetWait(WaitEventSet * set,long timeout,WaitEvent * occurred_events,int nevents,uint32 wait_event_info)921 WaitEventSetWait(WaitEventSet *set, long timeout,
922 				 WaitEvent *occurred_events, int nevents,
923 				 uint32 wait_event_info)
924 {
925 	int			returned_events = 0;
926 	instr_time	start_time;
927 	instr_time	cur_time;
928 	long		cur_timeout = -1;
929 
930 	Assert(nevents > 0);
931 
932 	/*
933 	 * Initialize timeout if requested.  We must record the current time so
934 	 * that we can determine the remaining timeout if interrupted.
935 	 */
936 	if (timeout >= 0)
937 	{
938 		INSTR_TIME_SET_CURRENT(start_time);
939 		Assert(timeout >= 0 && timeout <= INT_MAX);
940 		cur_timeout = timeout;
941 	}
942 
943 	pgstat_report_wait_start(wait_event_info);
944 
945 #ifndef WIN32
946 	waiting = true;
947 #else
948 	/* Ensure that signals are serviced even if latch is already set */
949 	pgwin32_dispatch_queued_signals();
950 #endif
951 	while (returned_events == 0)
952 	{
953 		int			rc;
954 
955 		/*
956 		 * Check if the latch is set already. If so, leave the loop
957 		 * immediately, avoid blocking again. We don't attempt to report any
958 		 * other events that might also be satisfied.
959 		 *
960 		 * If someone sets the latch between this and the
961 		 * WaitEventSetWaitBlock() below, the setter will write a byte to the
962 		 * pipe (or signal us and the signal handler will do that), and the
963 		 * readiness routine will return immediately.
964 		 *
965 		 * On unix, If there's a pending byte in the self pipe, we'll notice
966 		 * whenever blocking. Only clearing the pipe in that case avoids
967 		 * having to drain it every time WaitLatchOrSocket() is used. Should
968 		 * the pipe-buffer fill up we're still ok, because the pipe is in
969 		 * nonblocking mode. It's unlikely for that to happen, because the
970 		 * self pipe isn't filled unless we're blocking (waiting = true), or
971 		 * from inside a signal handler in latch_sigusr1_handler().
972 		 *
973 		 * On windows, we'll also notice if there's a pending event for the
974 		 * latch when blocking, but there's no danger of anything filling up,
975 		 * as "Setting an event that is already set has no effect.".
976 		 *
977 		 * Note: we assume that the kernel calls involved in latch management
978 		 * will provide adequate synchronization on machines with weak memory
979 		 * ordering, so that we cannot miss seeing is_set if a notification
980 		 * has already been queued.
981 		 */
982 		if (set->latch && set->latch->is_set)
983 		{
984 			occurred_events->fd = PGINVALID_SOCKET;
985 			occurred_events->pos = set->latch_pos;
986 			occurred_events->user_data =
987 				set->events[set->latch_pos].user_data;
988 			occurred_events->events = WL_LATCH_SET;
989 			occurred_events++;
990 			returned_events++;
991 
992 			break;
993 		}
994 
995 		/*
996 		 * Wait for events using the readiness primitive chosen at the top of
997 		 * this file. If -1 is returned, a timeout has occurred, if 0 we have
998 		 * to retry, everything >= 1 is the number of returned events.
999 		 */
1000 		rc = WaitEventSetWaitBlock(set, cur_timeout,
1001 								   occurred_events, nevents);
1002 
1003 		if (rc == -1)
1004 			break;				/* timeout occurred */
1005 		else
1006 			returned_events = rc;
1007 
1008 		/* If we're not done, update cur_timeout for next iteration */
1009 		if (returned_events == 0 && timeout >= 0)
1010 		{
1011 			INSTR_TIME_SET_CURRENT(cur_time);
1012 			INSTR_TIME_SUBTRACT(cur_time, start_time);
1013 			cur_timeout = timeout - (long) INSTR_TIME_GET_MILLISEC(cur_time);
1014 			if (cur_timeout <= 0)
1015 				break;
1016 		}
1017 	}
1018 #ifndef WIN32
1019 	waiting = false;
1020 #endif
1021 
1022 	pgstat_report_wait_end();
1023 
1024 	return returned_events;
1025 }
1026 
1027 
1028 #if defined(WAIT_USE_EPOLL)
1029 
1030 /*
1031  * Wait using linux's epoll_wait(2).
1032  *
1033  * This is the preferrable wait method, as several readiness notifications are
1034  * delivered, without having to iterate through all of set->events. The return
1035  * epoll_event struct contain a pointer to our events, making association
1036  * easy.
1037  */
1038 static inline int
WaitEventSetWaitBlock(WaitEventSet * set,int cur_timeout,WaitEvent * occurred_events,int nevents)1039 WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
1040 					  WaitEvent *occurred_events, int nevents)
1041 {
1042 	int			returned_events = 0;
1043 	int			rc;
1044 	WaitEvent  *cur_event;
1045 	struct epoll_event *cur_epoll_event;
1046 
1047 	/* Sleep */
1048 	rc = epoll_wait(set->epoll_fd, set->epoll_ret_events,
1049 					nevents, cur_timeout);
1050 
1051 	/* Check return code */
1052 	if (rc < 0)
1053 	{
1054 		/* EINTR is okay, otherwise complain */
1055 		if (errno != EINTR)
1056 		{
1057 			waiting = false;
1058 			ereport(ERROR,
1059 					(errcode_for_socket_access(),
1060 					 errmsg("epoll_wait() failed: %m")));
1061 		}
1062 		return 0;
1063 	}
1064 	else if (rc == 0)
1065 	{
1066 		/* timeout exceeded */
1067 		return -1;
1068 	}
1069 
1070 	/*
1071 	 * At least one event occurred, iterate over the returned epoll events
1072 	 * until they're either all processed, or we've returned all the events
1073 	 * the caller desired.
1074 	 */
1075 	for (cur_epoll_event = set->epoll_ret_events;
1076 		 cur_epoll_event < (set->epoll_ret_events + rc) &&
1077 		 returned_events < nevents;
1078 		 cur_epoll_event++)
1079 	{
1080 		/* epoll's data pointer is set to the associated WaitEvent */
1081 		cur_event = (WaitEvent *) cur_epoll_event->data.ptr;
1082 
1083 		occurred_events->pos = cur_event->pos;
1084 		occurred_events->user_data = cur_event->user_data;
1085 		occurred_events->events = 0;
1086 
1087 		if (cur_event->events == WL_LATCH_SET &&
1088 			cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP))
1089 		{
1090 			/* There's data in the self-pipe, clear it. */
1091 			drainSelfPipe();
1092 
1093 			if (set->latch->is_set)
1094 			{
1095 				occurred_events->fd = PGINVALID_SOCKET;
1096 				occurred_events->events = WL_LATCH_SET;
1097 				occurred_events++;
1098 				returned_events++;
1099 			}
1100 		}
1101 		else if (cur_event->events == WL_POSTMASTER_DEATH &&
1102 				 cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP))
1103 		{
1104 			/*
1105 			 * We expect an EPOLLHUP when the remote end is closed, but
1106 			 * because we don't expect the pipe to become readable or to have
1107 			 * any errors either, treat those cases as postmaster death, too.
1108 			 *
1109 			 * Be paranoid about a spurious event signalling the postmaster as
1110 			 * being dead.  There have been reports about that happening with
1111 			 * older primitives (select(2) to be specific), and a spurious
1112 			 * WL_POSTMASTER_DEATH event would be painful. Re-checking doesn't
1113 			 * cost much.
1114 			 */
1115 			if (!PostmasterIsAlive())
1116 			{
1117 				occurred_events->fd = PGINVALID_SOCKET;
1118 				occurred_events->events = WL_POSTMASTER_DEATH;
1119 				occurred_events++;
1120 				returned_events++;
1121 			}
1122 		}
1123 		else if (cur_event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
1124 		{
1125 			Assert(cur_event->fd != PGINVALID_SOCKET);
1126 
1127 			if ((cur_event->events & WL_SOCKET_READABLE) &&
1128 				(cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP)))
1129 			{
1130 				/* data available in socket, or EOF */
1131 				occurred_events->events |= WL_SOCKET_READABLE;
1132 			}
1133 
1134 			if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
1135 				(cur_epoll_event->events & (EPOLLOUT | EPOLLERR | EPOLLHUP)))
1136 			{
1137 				/* writable, or EOF */
1138 				occurred_events->events |= WL_SOCKET_WRITEABLE;
1139 			}
1140 
1141 			if (occurred_events->events != 0)
1142 			{
1143 				occurred_events->fd = cur_event->fd;
1144 				occurred_events++;
1145 				returned_events++;
1146 			}
1147 		}
1148 	}
1149 
1150 	return returned_events;
1151 }
1152 
1153 #elif defined(WAIT_USE_POLL)
1154 
1155 /*
1156  * Wait using poll(2).
1157  *
1158  * This allows to receive readiness notifications for several events at once,
1159  * but requires iterating through all of set->pollfds.
1160  */
1161 static inline int
WaitEventSetWaitBlock(WaitEventSet * set,int cur_timeout,WaitEvent * occurred_events,int nevents)1162 WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
1163 					  WaitEvent *occurred_events, int nevents)
1164 {
1165 	int			returned_events = 0;
1166 	int			rc;
1167 	WaitEvent  *cur_event;
1168 	struct pollfd *cur_pollfd;
1169 
1170 	/* Sleep */
1171 	rc = poll(set->pollfds, set->nevents, (int) cur_timeout);
1172 
1173 	/* Check return code */
1174 	if (rc < 0)
1175 	{
1176 		/* EINTR is okay, otherwise complain */
1177 		if (errno != EINTR)
1178 		{
1179 			waiting = false;
1180 			ereport(ERROR,
1181 					(errcode_for_socket_access(),
1182 					 errmsg("poll() failed: %m")));
1183 		}
1184 		return 0;
1185 	}
1186 	else if (rc == 0)
1187 	{
1188 		/* timeout exceeded */
1189 		return -1;
1190 	}
1191 
1192 	for (cur_event = set->events, cur_pollfd = set->pollfds;
1193 		 cur_event < (set->events + set->nevents) &&
1194 		 returned_events < nevents;
1195 		 cur_event++, cur_pollfd++)
1196 	{
1197 		/* no activity on this FD, skip */
1198 		if (cur_pollfd->revents == 0)
1199 			continue;
1200 
1201 		occurred_events->pos = cur_event->pos;
1202 		occurred_events->user_data = cur_event->user_data;
1203 		occurred_events->events = 0;
1204 
1205 		if (cur_event->events == WL_LATCH_SET &&
1206 			(cur_pollfd->revents & (POLLIN | POLLHUP | POLLERR | POLLNVAL)))
1207 		{
1208 			/* There's data in the self-pipe, clear it. */
1209 			drainSelfPipe();
1210 
1211 			if (set->latch->is_set)
1212 			{
1213 				occurred_events->fd = PGINVALID_SOCKET;
1214 				occurred_events->events = WL_LATCH_SET;
1215 				occurred_events++;
1216 				returned_events++;
1217 			}
1218 		}
1219 		else if (cur_event->events == WL_POSTMASTER_DEATH &&
1220 				 (cur_pollfd->revents & (POLLIN | POLLHUP | POLLERR | POLLNVAL)))
1221 		{
1222 			/*
1223 			 * We expect an POLLHUP when the remote end is closed, but because
1224 			 * we don't expect the pipe to become readable or to have any
1225 			 * errors either, treat those cases as postmaster death, too.
1226 			 *
1227 			 * Be paranoid about a spurious event signalling the postmaster as
1228 			 * being dead.  There have been reports about that happening with
1229 			 * older primitives (select(2) to be specific), and a spurious
1230 			 * WL_POSTMASTER_DEATH event would be painful. Re-checking doesn't
1231 			 * cost much.
1232 			 */
1233 			if (!PostmasterIsAlive())
1234 			{
1235 				occurred_events->fd = PGINVALID_SOCKET;
1236 				occurred_events->events = WL_POSTMASTER_DEATH;
1237 				occurred_events++;
1238 				returned_events++;
1239 			}
1240 		}
1241 		else if (cur_event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
1242 		{
1243 			int			errflags = POLLHUP | POLLERR | POLLNVAL;
1244 
1245 			Assert(cur_event->fd >= PGINVALID_SOCKET);
1246 
1247 			if ((cur_event->events & WL_SOCKET_READABLE) &&
1248 				(cur_pollfd->revents & (POLLIN | errflags)))
1249 			{
1250 				/* data available in socket, or EOF */
1251 				occurred_events->events |= WL_SOCKET_READABLE;
1252 			}
1253 
1254 			if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
1255 				(cur_pollfd->revents & (POLLOUT | errflags)))
1256 			{
1257 				/* writeable, or EOF */
1258 				occurred_events->events |= WL_SOCKET_WRITEABLE;
1259 			}
1260 
1261 			if (occurred_events->events != 0)
1262 			{
1263 				occurred_events->fd = cur_event->fd;
1264 				occurred_events++;
1265 				returned_events++;
1266 			}
1267 		}
1268 	}
1269 	return returned_events;
1270 }
1271 
1272 #elif defined(WAIT_USE_WIN32)
1273 
1274 /*
1275  * Wait using Windows' WaitForMultipleObjects().
1276  *
1277  * Unfortunately this will only ever return a single readiness notification at
1278  * a time.  Note that while the official documentation for
1279  * WaitForMultipleObjects is ambiguous about multiple events being "consumed"
1280  * with a single bWaitAll = FALSE call,
1281  * https://blogs.msdn.microsoft.com/oldnewthing/20150409-00/?p=44273 confirms
1282  * that only one event is "consumed".
1283  */
1284 static inline int
WaitEventSetWaitBlock(WaitEventSet * set,int cur_timeout,WaitEvent * occurred_events,int nevents)1285 WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
1286 					  WaitEvent *occurred_events, int nevents)
1287 {
1288 	int			returned_events = 0;
1289 	DWORD		rc;
1290 	WaitEvent  *cur_event;
1291 
1292 	/* Reset any wait events that need it */
1293 	for (cur_event = set->events;
1294 		 cur_event < (set->events + set->nevents);
1295 		 cur_event++)
1296 	{
1297 		if (cur_event->reset)
1298 		{
1299 			WaitEventAdjustWin32(set, cur_event);
1300 			cur_event->reset = false;
1301 		}
1302 
1303 		/*
1304 		 * Windows does not guarantee to log an FD_WRITE network event
1305 		 * indicating that more data can be sent unless the previous send()
1306 		 * failed with WSAEWOULDBLOCK.  While our caller might well have made
1307 		 * such a call, we cannot assume that here.  Therefore, if waiting for
1308 		 * write-ready, force the issue by doing a dummy send().  If the dummy
1309 		 * send() succeeds, assume that the socket is in fact write-ready, and
1310 		 * return immediately.  Also, if it fails with something other than
1311 		 * WSAEWOULDBLOCK, return a write-ready indication to let our caller
1312 		 * deal with the error condition.
1313 		 */
1314 		if (cur_event->events & WL_SOCKET_WRITEABLE)
1315 		{
1316 			char		c;
1317 			WSABUF		buf;
1318 			DWORD		sent;
1319 			int			r;
1320 
1321 			buf.buf = &c;
1322 			buf.len = 0;
1323 
1324 			r = WSASend(cur_event->fd, &buf, 1, &sent, 0, NULL, NULL);
1325 			if (r == 0 || WSAGetLastError() != WSAEWOULDBLOCK)
1326 			{
1327 				occurred_events->pos = cur_event->pos;
1328 				occurred_events->user_data = cur_event->user_data;
1329 				occurred_events->events = WL_SOCKET_WRITEABLE;
1330 				occurred_events->fd = cur_event->fd;
1331 				return 1;
1332 			}
1333 		}
1334 	}
1335 
1336 	/*
1337 	 * Sleep.
1338 	 *
1339 	 * Need to wait for ->nevents + 1, because signal handle is in [0].
1340 	 */
1341 	rc = WaitForMultipleObjects(set->nevents + 1, set->handles, FALSE,
1342 								cur_timeout);
1343 
1344 	/* Check return code */
1345 	if (rc == WAIT_FAILED)
1346 		elog(ERROR, "WaitForMultipleObjects() failed: error code %lu",
1347 			 GetLastError());
1348 	else if (rc == WAIT_TIMEOUT)
1349 	{
1350 		/* timeout exceeded */
1351 		return -1;
1352 	}
1353 
1354 	if (rc == WAIT_OBJECT_0)
1355 	{
1356 		/* Service newly-arrived signals */
1357 		pgwin32_dispatch_queued_signals();
1358 		return 0;				/* retry */
1359 	}
1360 
1361 	/*
1362 	 * With an offset of one, due to the always present pgwin32_signal_event,
1363 	 * the handle offset directly corresponds to a wait event.
1364 	 */
1365 	cur_event = (WaitEvent *) &set->events[rc - WAIT_OBJECT_0 - 1];
1366 
1367 	occurred_events->pos = cur_event->pos;
1368 	occurred_events->user_data = cur_event->user_data;
1369 	occurred_events->events = 0;
1370 
1371 	if (cur_event->events == WL_LATCH_SET)
1372 	{
1373 		if (!ResetEvent(set->latch->event))
1374 			elog(ERROR, "ResetEvent failed: error code %lu", GetLastError());
1375 
1376 		if (set->latch->is_set)
1377 		{
1378 			occurred_events->fd = PGINVALID_SOCKET;
1379 			occurred_events->events = WL_LATCH_SET;
1380 			occurred_events++;
1381 			returned_events++;
1382 		}
1383 	}
1384 	else if (cur_event->events == WL_POSTMASTER_DEATH)
1385 	{
1386 		/*
1387 		 * Postmaster apparently died.  Since the consequences of falsely
1388 		 * returning WL_POSTMASTER_DEATH could be pretty unpleasant, we take
1389 		 * the trouble to positively verify this with PostmasterIsAlive(),
1390 		 * even though there is no known reason to think that the event could
1391 		 * be falsely set on Windows.
1392 		 */
1393 		if (!PostmasterIsAlive())
1394 		{
1395 			occurred_events->fd = PGINVALID_SOCKET;
1396 			occurred_events->events = WL_POSTMASTER_DEATH;
1397 			occurred_events++;
1398 			returned_events++;
1399 		}
1400 	}
1401 	else if (cur_event->events & WL_SOCKET_MASK)
1402 	{
1403 		WSANETWORKEVENTS resEvents;
1404 		HANDLE		handle = set->handles[cur_event->pos + 1];
1405 
1406 		Assert(cur_event->fd);
1407 
1408 		occurred_events->fd = cur_event->fd;
1409 
1410 		ZeroMemory(&resEvents, sizeof(resEvents));
1411 		if (WSAEnumNetworkEvents(cur_event->fd, handle, &resEvents) != 0)
1412 			elog(ERROR, "failed to enumerate network events: error code %u",
1413 				 WSAGetLastError());
1414 		if ((cur_event->events & WL_SOCKET_READABLE) &&
1415 			(resEvents.lNetworkEvents & FD_READ))
1416 		{
1417 			/* data available in socket */
1418 			occurred_events->events |= WL_SOCKET_READABLE;
1419 
1420 			/*------
1421 			 * WaitForMultipleObjects doesn't guarantee that a read event will
1422 			 * be returned if the latch is set at the same time.  Even if it
1423 			 * did, the caller might drop that event expecting it to reoccur
1424 			 * on next call.  So, we must force the event to be reset if this
1425 			 * WaitEventSet is used again in order to avoid an indefinite
1426 			 * hang.  Refer https://msdn.microsoft.com/en-us/library/windows/desktop/ms741576(v=vs.85).aspx
1427 			 * for the behavior of socket events.
1428 			 *------
1429 			 */
1430 			cur_event->reset = true;
1431 		}
1432 		if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
1433 			(resEvents.lNetworkEvents & FD_WRITE))
1434 		{
1435 			/* writeable */
1436 			occurred_events->events |= WL_SOCKET_WRITEABLE;
1437 		}
1438 		if ((cur_event->events & WL_SOCKET_CONNECTED) &&
1439 			(resEvents.lNetworkEvents & FD_CONNECT))
1440 		{
1441 			/* connected */
1442 			occurred_events->events |= WL_SOCKET_CONNECTED;
1443 		}
1444 		if (resEvents.lNetworkEvents & FD_CLOSE)
1445 		{
1446 			/* EOF/error, so signal all caller-requested socket flags */
1447 			occurred_events->events |= (cur_event->events & WL_SOCKET_MASK);
1448 		}
1449 
1450 		if (occurred_events->events != 0)
1451 		{
1452 			occurred_events++;
1453 			returned_events++;
1454 		}
1455 	}
1456 
1457 	return returned_events;
1458 }
1459 #endif
1460 
1461 /*
1462  * SetLatch uses SIGUSR1 to wake up the process waiting on the latch.
1463  *
1464  * Wake up WaitLatch, if we're waiting.  (We might not be, since SIGUSR1 is
1465  * overloaded for multiple purposes; or we might not have reached WaitLatch
1466  * yet, in which case we don't need to fill the pipe either.)
1467  *
1468  * NB: when calling this in a signal handler, be sure to save and restore
1469  * errno around it.
1470  */
1471 #ifndef WIN32
1472 void
latch_sigusr1_handler(void)1473 latch_sigusr1_handler(void)
1474 {
1475 	if (waiting)
1476 		sendSelfPipeByte();
1477 }
1478 #endif							/* !WIN32 */
1479 
1480 /* Send one byte to the self-pipe, to wake up WaitLatch */
1481 #ifndef WIN32
1482 static void
sendSelfPipeByte(void)1483 sendSelfPipeByte(void)
1484 {
1485 	int			rc;
1486 	char		dummy = 0;
1487 
1488 retry:
1489 	rc = write(selfpipe_writefd, &dummy, 1);
1490 	if (rc < 0)
1491 	{
1492 		/* If interrupted by signal, just retry */
1493 		if (errno == EINTR)
1494 			goto retry;
1495 
1496 		/*
1497 		 * If the pipe is full, we don't need to retry, the data that's there
1498 		 * already is enough to wake up WaitLatch.
1499 		 */
1500 		if (errno == EAGAIN || errno == EWOULDBLOCK)
1501 			return;
1502 
1503 		/*
1504 		 * Oops, the write() failed for some other reason. We might be in a
1505 		 * signal handler, so it's not safe to elog(). We have no choice but
1506 		 * silently ignore the error.
1507 		 */
1508 		return;
1509 	}
1510 }
1511 #endif							/* !WIN32 */
1512 
1513 /*
1514  * Read all available data from the self-pipe
1515  *
1516  * Note: this is only called when waiting = true.  If it fails and doesn't
1517  * return, it must reset that flag first (though ideally, this will never
1518  * happen).
1519  */
1520 #ifndef WIN32
1521 static void
drainSelfPipe(void)1522 drainSelfPipe(void)
1523 {
1524 	/*
1525 	 * There shouldn't normally be more than one byte in the pipe, or maybe a
1526 	 * few bytes if multiple processes run SetLatch at the same instant.
1527 	 */
1528 	char		buf[16];
1529 	int			rc;
1530 
1531 	for (;;)
1532 	{
1533 		rc = read(selfpipe_readfd, buf, sizeof(buf));
1534 		if (rc < 0)
1535 		{
1536 			if (errno == EAGAIN || errno == EWOULDBLOCK)
1537 				break;			/* the pipe is empty */
1538 			else if (errno == EINTR)
1539 				continue;		/* retry */
1540 			else
1541 			{
1542 				waiting = false;
1543 				elog(ERROR, "read() on self-pipe failed: %m");
1544 			}
1545 		}
1546 		else if (rc == 0)
1547 		{
1548 			waiting = false;
1549 			elog(ERROR, "unexpected EOF on self-pipe");
1550 		}
1551 		else if (rc < sizeof(buf))
1552 		{
1553 			/* we successfully drained the pipe; no need to read() again */
1554 			break;
1555 		}
1556 		/* else buffer wasn't big enough, so read again */
1557 	}
1558 }
1559 #endif							/* !WIN32 */
1560