1 /*-------------------------------------------------------------------------
2  *
3  * hio.c
4  *	  POSTGRES heap access method input/output code.
5  *
6  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/access/heap/hio.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 
16 #include "postgres.h"
17 
18 #include "access/heapam.h"
19 #include "access/hio.h"
20 #include "access/htup_details.h"
21 #include "access/visibilitymap.h"
22 #include "storage/bufmgr.h"
23 #include "storage/freespace.h"
24 #include "storage/lmgr.h"
25 #include "storage/smgr.h"
26 
27 
28 /*
29  * RelationPutHeapTuple - place tuple at specified page
30  *
31  * !!! EREPORT(ERROR) IS DISALLOWED HERE !!!  Must PANIC on failure!!!
32  *
33  * Note - caller must hold BUFFER_LOCK_EXCLUSIVE on the buffer.
34  */
35 void
RelationPutHeapTuple(Relation relation,Buffer buffer,HeapTuple tuple,bool token)36 RelationPutHeapTuple(Relation relation,
37 					 Buffer buffer,
38 					 HeapTuple tuple,
39 					 bool token)
40 {
41 	Page		pageHeader;
42 	OffsetNumber offnum;
43 
44 	/*
45 	 * A tuple that's being inserted speculatively should already have its
46 	 * token set.
47 	 */
48 	Assert(!token || HeapTupleHeaderIsSpeculative(tuple->t_data));
49 
50 	/* Add the tuple to the page */
51 	pageHeader = BufferGetPage(buffer);
52 
53 	offnum = PageAddItem(pageHeader, (Item) tuple->t_data,
54 						 tuple->t_len, InvalidOffsetNumber, false, true);
55 
56 	if (offnum == InvalidOffsetNumber)
57 		elog(PANIC, "failed to add tuple to page");
58 
59 	/* Update tuple->t_self to the actual position where it was stored */
60 	ItemPointerSet(&(tuple->t_self), BufferGetBlockNumber(buffer), offnum);
61 
62 	/*
63 	 * Insert the correct position into CTID of the stored tuple, too (unless
64 	 * this is a speculative insertion, in which case the token is held in
65 	 * CTID field instead)
66 	 */
67 	if (!token)
68 	{
69 		ItemId		itemId = PageGetItemId(pageHeader, offnum);
70 		HeapTupleHeader item = (HeapTupleHeader) PageGetItem(pageHeader, itemId);
71 
72 		item->t_ctid = tuple->t_self;
73 	}
74 }
75 
76 /*
77  * Read in a buffer, using bulk-insert strategy if bistate isn't NULL.
78  */
79 static Buffer
ReadBufferBI(Relation relation,BlockNumber targetBlock,BulkInsertState bistate)80 ReadBufferBI(Relation relation, BlockNumber targetBlock,
81 			 BulkInsertState bistate)
82 {
83 	Buffer		buffer;
84 
85 	/* If not bulk-insert, exactly like ReadBuffer */
86 	if (!bistate)
87 		return ReadBuffer(relation, targetBlock);
88 
89 	/* If we have the desired block already pinned, re-pin and return it */
90 	if (bistate->current_buf != InvalidBuffer)
91 	{
92 		if (BufferGetBlockNumber(bistate->current_buf) == targetBlock)
93 		{
94 			IncrBufferRefCount(bistate->current_buf);
95 			return bistate->current_buf;
96 		}
97 		/* ... else drop the old buffer */
98 		ReleaseBuffer(bistate->current_buf);
99 		bistate->current_buf = InvalidBuffer;
100 	}
101 
102 	/* Perform a read using the buffer strategy */
103 	buffer = ReadBufferExtended(relation, MAIN_FORKNUM, targetBlock,
104 								RBM_NORMAL, bistate->strategy);
105 
106 	/* Save the selected block as target for future inserts */
107 	IncrBufferRefCount(buffer);
108 	bistate->current_buf = buffer;
109 
110 	return buffer;
111 }
112 
113 /*
114  * For each heap page which is all-visible, acquire a pin on the appropriate
115  * visibility map page, if we haven't already got one.
116  *
117  * buffer2 may be InvalidBuffer, if only one buffer is involved.  buffer1
118  * must not be InvalidBuffer.  If both buffers are specified, block1 must
119  * be less than block2.
120  */
121 static void
GetVisibilityMapPins(Relation relation,Buffer buffer1,Buffer buffer2,BlockNumber block1,BlockNumber block2,Buffer * vmbuffer1,Buffer * vmbuffer2)122 GetVisibilityMapPins(Relation relation, Buffer buffer1, Buffer buffer2,
123 					 BlockNumber block1, BlockNumber block2,
124 					 Buffer *vmbuffer1, Buffer *vmbuffer2)
125 {
126 	bool		need_to_pin_buffer1;
127 	bool		need_to_pin_buffer2;
128 
129 	Assert(BufferIsValid(buffer1));
130 	Assert(buffer2 == InvalidBuffer || block1 <= block2);
131 
132 	while (1)
133 	{
134 		/* Figure out which pins we need but don't have. */
135 		need_to_pin_buffer1 = PageIsAllVisible(BufferGetPage(buffer1))
136 			&& !visibilitymap_pin_ok(block1, *vmbuffer1);
137 		need_to_pin_buffer2 = buffer2 != InvalidBuffer
138 			&& PageIsAllVisible(BufferGetPage(buffer2))
139 			&& !visibilitymap_pin_ok(block2, *vmbuffer2);
140 		if (!need_to_pin_buffer1 && !need_to_pin_buffer2)
141 			return;
142 
143 		/* We must unlock both buffers before doing any I/O. */
144 		LockBuffer(buffer1, BUFFER_LOCK_UNLOCK);
145 		if (buffer2 != InvalidBuffer && buffer2 != buffer1)
146 			LockBuffer(buffer2, BUFFER_LOCK_UNLOCK);
147 
148 		/* Get pins. */
149 		if (need_to_pin_buffer1)
150 			visibilitymap_pin(relation, block1, vmbuffer1);
151 		if (need_to_pin_buffer2)
152 			visibilitymap_pin(relation, block2, vmbuffer2);
153 
154 		/* Relock buffers. */
155 		LockBuffer(buffer1, BUFFER_LOCK_EXCLUSIVE);
156 		if (buffer2 != InvalidBuffer && buffer2 != buffer1)
157 			LockBuffer(buffer2, BUFFER_LOCK_EXCLUSIVE);
158 
159 		/*
160 		 * If there are two buffers involved and we pinned just one of them,
161 		 * it's possible that the second one became all-visible while we were
162 		 * busy pinning the first one.  If it looks like that's a possible
163 		 * scenario, we'll need to make a second pass through this loop.
164 		 */
165 		if (buffer2 == InvalidBuffer || buffer1 == buffer2
166 			|| (need_to_pin_buffer1 && need_to_pin_buffer2))
167 			break;
168 	}
169 }
170 
171 /*
172  * Extend a relation by multiple blocks to avoid future contention on the
173  * relation extension lock.  Our goal is to pre-extend the relation by an
174  * amount which ramps up as the degree of contention ramps up, but limiting
175  * the result to some sane overall value.
176  */
177 static void
RelationAddExtraBlocks(Relation relation,BulkInsertState bistate)178 RelationAddExtraBlocks(Relation relation, BulkInsertState bistate)
179 {
180 	BlockNumber blockNum,
181 				firstBlock = InvalidBlockNumber;
182 	int			extraBlocks;
183 	int			lockWaiters;
184 
185 	/* Use the length of the lock wait queue to judge how much to extend. */
186 	lockWaiters = RelationExtensionLockWaiterCount(relation);
187 	if (lockWaiters <= 0)
188 		return;
189 
190 	/*
191 	 * It might seem like multiplying the number of lock waiters by as much as
192 	 * 20 is too aggressive, but benchmarking revealed that smaller numbers
193 	 * were insufficient.  512 is just an arbitrary cap to prevent
194 	 * pathological results.
195 	 */
196 	extraBlocks = Min(512, lockWaiters * 20);
197 
198 	do
199 	{
200 		Buffer		buffer;
201 		Page		page;
202 		Size		freespace;
203 
204 		/*
205 		 * Extend by one page.  This should generally match the main-line
206 		 * extension code in RelationGetBufferForTuple, except that we hold
207 		 * the relation extension lock throughout.
208 		 */
209 		buffer = ReadBufferBI(relation, P_NEW, bistate);
210 
211 		LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
212 		page = BufferGetPage(buffer);
213 
214 		if (!PageIsNew(page))
215 			elog(ERROR, "page %u of relation \"%s\" should be empty but is not",
216 				 BufferGetBlockNumber(buffer),
217 				 RelationGetRelationName(relation));
218 
219 		PageInit(page, BufferGetPageSize(buffer), 0);
220 
221 		/*
222 		 * We mark all the new buffers dirty, but do nothing to write them
223 		 * out; they'll probably get used soon, and even if they are not, a
224 		 * crash will leave an okay all-zeroes page on disk.
225 		 */
226 		MarkBufferDirty(buffer);
227 
228 		/* we'll need this info below */
229 		blockNum = BufferGetBlockNumber(buffer);
230 		freespace = PageGetHeapFreeSpace(page);
231 
232 		UnlockReleaseBuffer(buffer);
233 
234 		/* Remember first block number thus added. */
235 		if (firstBlock == InvalidBlockNumber)
236 			firstBlock = blockNum;
237 
238 		/*
239 		 * Immediately update the bottom level of the FSM.  This has a good
240 		 * chance of making this page visible to other concurrently inserting
241 		 * backends, and we want that to happen without delay.
242 		 */
243 		RecordPageWithFreeSpace(relation, blockNum, freespace);
244 	}
245 	while (--extraBlocks > 0);
246 
247 	/*
248 	 * Updating the upper levels of the free space map is too expensive to do
249 	 * for every block, but it's worth doing once at the end to make sure that
250 	 * subsequent insertion activity sees all of those nifty free pages we
251 	 * just inserted.
252 	 */
253 	FreeSpaceMapVacuumRange(relation, firstBlock, blockNum + 1);
254 }
255 
256 /*
257  * RelationGetBufferForTuple
258  *
259  *	Returns pinned and exclusive-locked buffer of a page in given relation
260  *	with free space >= given len.
261  *
262  *	If otherBuffer is not InvalidBuffer, then it references a previously
263  *	pinned buffer of another page in the same relation; on return, this
264  *	buffer will also be exclusive-locked.  (This case is used by heap_update;
265  *	the otherBuffer contains the tuple being updated.)
266  *
267  *	The reason for passing otherBuffer is that if two backends are doing
268  *	concurrent heap_update operations, a deadlock could occur if they try
269  *	to lock the same two buffers in opposite orders.  To ensure that this
270  *	can't happen, we impose the rule that buffers of a relation must be
271  *	locked in increasing page number order.  This is most conveniently done
272  *	by having RelationGetBufferForTuple lock them both, with suitable care
273  *	for ordering.
274  *
275  *	NOTE: it is unlikely, but not quite impossible, for otherBuffer to be the
276  *	same buffer we select for insertion of the new tuple (this could only
277  *	happen if space is freed in that page after heap_update finds there's not
278  *	enough there).  In that case, the page will be pinned and locked only once.
279  *
280  *	For the vmbuffer and vmbuffer_other arguments, we avoid deadlock by
281  *	locking them only after locking the corresponding heap page, and taking
282  *	no further lwlocks while they are locked.
283  *
284  *	We normally use FSM to help us find free space.  However,
285  *	if HEAP_INSERT_SKIP_FSM is specified, we just append a new empty page to
286  *	the end of the relation if the tuple won't fit on the current target page.
287  *	This can save some cycles when we know the relation is new and doesn't
288  *	contain useful amounts of free space.
289  *
290  *	HEAP_INSERT_SKIP_FSM is also useful for non-WAL-logged additions to a
291  *	relation, if the caller holds exclusive lock and is careful to invalidate
292  *	relation's smgr_targblock before the first insertion --- that ensures that
293  *	all insertions will occur into newly added pages and not be intermixed
294  *	with tuples from other transactions.  That way, a crash can't risk losing
295  *	any committed data of other transactions.  (See heap_insert's comments
296  *	for additional constraints needed for safe usage of this behavior.)
297  *
298  *	The caller can also provide a BulkInsertState object to optimize many
299  *	insertions into the same relation.  This keeps a pin on the current
300  *	insertion target page (to save pin/unpin cycles) and also passes a
301  *	BULKWRITE buffer selection strategy object to the buffer manager.
302  *	Passing NULL for bistate selects the default behavior.
303  *
304  *	We always try to avoid filling existing pages further than the fillfactor.
305  *	This is OK since this routine is not consulted when updating a tuple and
306  *	keeping it on the same page, which is the scenario fillfactor is meant
307  *	to reserve space for.
308  *
309  *	ereport(ERROR) is allowed here, so this routine *must* be called
310  *	before any (unlogged) changes are made in buffer pool.
311  */
312 Buffer
RelationGetBufferForTuple(Relation relation,Size len,Buffer otherBuffer,int options,BulkInsertState bistate,Buffer * vmbuffer,Buffer * vmbuffer_other)313 RelationGetBufferForTuple(Relation relation, Size len,
314 						  Buffer otherBuffer, int options,
315 						  BulkInsertState bistate,
316 						  Buffer *vmbuffer, Buffer *vmbuffer_other)
317 {
318 	bool		use_fsm = !(options & HEAP_INSERT_SKIP_FSM);
319 	Buffer		buffer = InvalidBuffer;
320 	Page		page;
321 	Size		pageFreeSpace = 0,
322 				saveFreeSpace = 0;
323 	BlockNumber targetBlock,
324 				otherBlock;
325 	bool		needLock;
326 
327 	len = MAXALIGN(len);		/* be conservative */
328 
329 	/* Bulk insert is not supported for updates, only inserts. */
330 	Assert(otherBuffer == InvalidBuffer || !bistate);
331 
332 	/*
333 	 * If we're gonna fail for oversize tuple, do it right away
334 	 */
335 	if (len > MaxHeapTupleSize)
336 		ereport(ERROR,
337 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
338 				 errmsg("row is too big: size %zu, maximum size %zu",
339 						len, MaxHeapTupleSize)));
340 
341 	/* Compute desired extra freespace due to fillfactor option */
342 	saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
343 												   HEAP_DEFAULT_FILLFACTOR);
344 
345 	if (otherBuffer != InvalidBuffer)
346 		otherBlock = BufferGetBlockNumber(otherBuffer);
347 	else
348 		otherBlock = InvalidBlockNumber;	/* just to keep compiler quiet */
349 
350 	/*
351 	 * We first try to put the tuple on the same page we last inserted a tuple
352 	 * on, as cached in the BulkInsertState or relcache entry.  If that
353 	 * doesn't work, we ask the Free Space Map to locate a suitable page.
354 	 * Since the FSM's info might be out of date, we have to be prepared to
355 	 * loop around and retry multiple times. (To insure this isn't an infinite
356 	 * loop, we must update the FSM with the correct amount of free space on
357 	 * each page that proves not to be suitable.)  If the FSM has no record of
358 	 * a page with enough free space, we give up and extend the relation.
359 	 *
360 	 * When use_fsm is false, we either put the tuple onto the existing target
361 	 * page or extend the relation.
362 	 */
363 	if (len + saveFreeSpace > MaxHeapTupleSize)
364 	{
365 		/* can't fit, don't bother asking FSM */
366 		targetBlock = InvalidBlockNumber;
367 		use_fsm = false;
368 	}
369 	else if (bistate && bistate->current_buf != InvalidBuffer)
370 		targetBlock = BufferGetBlockNumber(bistate->current_buf);
371 	else
372 		targetBlock = RelationGetTargetBlock(relation);
373 
374 	if (targetBlock == InvalidBlockNumber && use_fsm)
375 	{
376 		/*
377 		 * We have no cached target page, so ask the FSM for an initial
378 		 * target.
379 		 */
380 		targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);
381 
382 		/*
383 		 * If the FSM knows nothing of the rel, try the last page before we
384 		 * give up and extend.  This avoids one-tuple-per-page syndrome during
385 		 * bootstrapping or in a recently-started system.
386 		 */
387 		if (targetBlock == InvalidBlockNumber)
388 		{
389 			BlockNumber nblocks = RelationGetNumberOfBlocks(relation);
390 
391 			if (nblocks > 0)
392 				targetBlock = nblocks - 1;
393 		}
394 	}
395 
396 loop:
397 	while (targetBlock != InvalidBlockNumber)
398 	{
399 		/*
400 		 * Read and exclusive-lock the target block, as well as the other
401 		 * block if one was given, taking suitable care with lock ordering and
402 		 * the possibility they are the same block.
403 		 *
404 		 * If the page-level all-visible flag is set, caller will need to
405 		 * clear both that and the corresponding visibility map bit.  However,
406 		 * by the time we return, we'll have x-locked the buffer, and we don't
407 		 * want to do any I/O while in that state.  So we check the bit here
408 		 * before taking the lock, and pin the page if it appears necessary.
409 		 * Checking without the lock creates a risk of getting the wrong
410 		 * answer, so we'll have to recheck after acquiring the lock.
411 		 */
412 		if (otherBuffer == InvalidBuffer)
413 		{
414 			/* easy case */
415 			buffer = ReadBufferBI(relation, targetBlock, bistate);
416 			if (PageIsAllVisible(BufferGetPage(buffer)))
417 				visibilitymap_pin(relation, targetBlock, vmbuffer);
418 			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
419 		}
420 		else if (otherBlock == targetBlock)
421 		{
422 			/* also easy case */
423 			buffer = otherBuffer;
424 			if (PageIsAllVisible(BufferGetPage(buffer)))
425 				visibilitymap_pin(relation, targetBlock, vmbuffer);
426 			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
427 		}
428 		else if (otherBlock < targetBlock)
429 		{
430 			/* lock other buffer first */
431 			buffer = ReadBuffer(relation, targetBlock);
432 			if (PageIsAllVisible(BufferGetPage(buffer)))
433 				visibilitymap_pin(relation, targetBlock, vmbuffer);
434 			LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
435 			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
436 		}
437 		else
438 		{
439 			/* lock target buffer first */
440 			buffer = ReadBuffer(relation, targetBlock);
441 			if (PageIsAllVisible(BufferGetPage(buffer)))
442 				visibilitymap_pin(relation, targetBlock, vmbuffer);
443 			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
444 			LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
445 		}
446 
447 		/*
448 		 * We now have the target page (and the other buffer, if any) pinned
449 		 * and locked.  However, since our initial PageIsAllVisible checks
450 		 * were performed before acquiring the lock, the results might now be
451 		 * out of date, either for the selected victim buffer, or for the
452 		 * other buffer passed by the caller.  In that case, we'll need to
453 		 * give up our locks, go get the pin(s) we failed to get earlier, and
454 		 * re-lock.  That's pretty painful, but hopefully shouldn't happen
455 		 * often.
456 		 *
457 		 * Note that there's a small possibility that we didn't pin the page
458 		 * above but still have the correct page pinned anyway, either because
459 		 * we've already made a previous pass through this loop, or because
460 		 * caller passed us the right page anyway.
461 		 *
462 		 * Note also that it's possible that by the time we get the pin and
463 		 * retake the buffer locks, the visibility map bit will have been
464 		 * cleared by some other backend anyway.  In that case, we'll have
465 		 * done a bit of extra work for no gain, but there's no real harm
466 		 * done.
467 		 */
468 		if (otherBuffer == InvalidBuffer || targetBlock <= otherBlock)
469 			GetVisibilityMapPins(relation, buffer, otherBuffer,
470 								 targetBlock, otherBlock, vmbuffer,
471 								 vmbuffer_other);
472 		else
473 			GetVisibilityMapPins(relation, otherBuffer, buffer,
474 								 otherBlock, targetBlock, vmbuffer_other,
475 								 vmbuffer);
476 
477 		/*
478 		 * Now we can check to see if there's enough free space here. If so,
479 		 * we're done.
480 		 */
481 		page = BufferGetPage(buffer);
482 		pageFreeSpace = PageGetHeapFreeSpace(page);
483 		if (len + saveFreeSpace <= pageFreeSpace)
484 		{
485 			/* use this page as future insert target, too */
486 			RelationSetTargetBlock(relation, targetBlock);
487 			return buffer;
488 		}
489 
490 		/*
491 		 * Not enough space, so we must give up our page locks and pin (if
492 		 * any) and prepare to look elsewhere.  We don't care which order we
493 		 * unlock the two buffers in, so this can be slightly simpler than the
494 		 * code above.
495 		 */
496 		LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
497 		if (otherBuffer == InvalidBuffer)
498 			ReleaseBuffer(buffer);
499 		else if (otherBlock != targetBlock)
500 		{
501 			LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);
502 			ReleaseBuffer(buffer);
503 		}
504 
505 		/* Without FSM, always fall out of the loop and extend */
506 		if (!use_fsm)
507 			break;
508 
509 		/*
510 		 * Update FSM as to condition of this page, and ask for another page
511 		 * to try.
512 		 */
513 		targetBlock = RecordAndGetPageWithFreeSpace(relation,
514 													targetBlock,
515 													pageFreeSpace,
516 													len + saveFreeSpace);
517 	}
518 
519 	/*
520 	 * Have to extend the relation.
521 	 *
522 	 * We have to use a lock to ensure no one else is extending the rel at the
523 	 * same time, else we will both try to initialize the same new page.  We
524 	 * can skip locking for new or temp relations, however, since no one else
525 	 * could be accessing them.
526 	 */
527 	needLock = !RELATION_IS_LOCAL(relation);
528 
529 	/*
530 	 * If we need the lock but are not able to acquire it immediately, we'll
531 	 * consider extending the relation by multiple blocks at a time to manage
532 	 * contention on the relation extension lock.  However, this only makes
533 	 * sense if we're using the FSM; otherwise, there's no point.
534 	 */
535 	if (needLock)
536 	{
537 		if (!use_fsm)
538 			LockRelationForExtension(relation, ExclusiveLock);
539 		else if (!ConditionalLockRelationForExtension(relation, ExclusiveLock))
540 		{
541 			/* Couldn't get the lock immediately; wait for it. */
542 			LockRelationForExtension(relation, ExclusiveLock);
543 
544 			/*
545 			 * Check if some other backend has extended a block for us while
546 			 * we were waiting on the lock.
547 			 */
548 			targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);
549 
550 			/*
551 			 * If some other waiter has already extended the relation, we
552 			 * don't need to do so; just use the existing freespace.
553 			 */
554 			if (targetBlock != InvalidBlockNumber)
555 			{
556 				UnlockRelationForExtension(relation, ExclusiveLock);
557 				goto loop;
558 			}
559 
560 			/* Time to bulk-extend. */
561 			RelationAddExtraBlocks(relation, bistate);
562 		}
563 	}
564 
565 	/*
566 	 * In addition to whatever extension we performed above, we always add at
567 	 * least one block to satisfy our own request.
568 	 *
569 	 * XXX This does an lseek - rather expensive - but at the moment it is the
570 	 * only way to accurately determine how many blocks are in a relation.  Is
571 	 * it worth keeping an accurate file length in shared memory someplace,
572 	 * rather than relying on the kernel to do it for us?
573 	 */
574 	buffer = ReadBufferBI(relation, P_NEW, bistate);
575 
576 	/*
577 	 * We can be certain that locking the otherBuffer first is OK, since it
578 	 * must have a lower page number.
579 	 */
580 	if (otherBuffer != InvalidBuffer)
581 		LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
582 
583 	/*
584 	 * Now acquire lock on the new page.
585 	 */
586 	LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
587 
588 	/*
589 	 * Release the file-extension lock; it's now OK for someone else to extend
590 	 * the relation some more.  Note that we cannot release this lock before
591 	 * we have buffer lock on the new page, or we risk a race condition
592 	 * against vacuumlazy.c --- see comments therein.
593 	 */
594 	if (needLock)
595 		UnlockRelationForExtension(relation, ExclusiveLock);
596 
597 	/*
598 	 * We need to initialize the empty new page.  Double-check that it really
599 	 * is empty (this should never happen, but if it does we don't want to
600 	 * risk wiping out valid data).
601 	 */
602 	page = BufferGetPage(buffer);
603 
604 	if (!PageIsNew(page))
605 		elog(ERROR, "page %u of relation \"%s\" should be empty but is not",
606 			 BufferGetBlockNumber(buffer),
607 			 RelationGetRelationName(relation));
608 
609 	PageInit(page, BufferGetPageSize(buffer), 0);
610 
611 	if (len > PageGetHeapFreeSpace(page))
612 	{
613 		/* We should not get here given the test at the top */
614 		elog(PANIC, "tuple is too big: size %zu", len);
615 	}
616 
617 	/*
618 	 * Remember the new page as our target for future insertions.
619 	 *
620 	 * XXX should we enter the new page into the free space map immediately,
621 	 * or just keep it for this backend's exclusive use in the short run
622 	 * (until VACUUM sees it)?	Seems to depend on whether you expect the
623 	 * current backend to make more insertions or not, which is probably a
624 	 * good bet most of the time.  So for now, don't add it to FSM yet.
625 	 */
626 	RelationSetTargetBlock(relation, BufferGetBlockNumber(buffer));
627 
628 	return buffer;
629 }
630