1 /*-------------------------------------------------------------------------
2  *
3  * deadlock.c
4  *	  POSTGRES deadlock detection code
5  *
6  * See src/backend/storage/lmgr/README for a description of the deadlock
7  * detection and resolution algorithms.
8  *
9  *
10  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  *
14  * IDENTIFICATION
15  *	  src/backend/storage/lmgr/deadlock.c
16  *
17  *	Interface:
18  *
19  *	DeadLockCheck()
20  *	DeadLockReport()
21  *	RememberSimpleDeadLock()
22  *	InitDeadLockChecking()
23  *
24  *-------------------------------------------------------------------------
25  */
26 #include "postgres.h"
27 
28 #include "miscadmin.h"
29 #include "pg_trace.h"
30 #include "pgstat.h"
31 #include "storage/lmgr.h"
32 #include "storage/proc.h"
33 #include "utils/memutils.h"
34 
35 
36 /*
37  * One edge in the waits-for graph.
38  *
39  * waiter and blocker may or may not be members of a lock group, but if either
40  * is, it will be the leader rather than any other member of the lock group.
41  * The group leaders act as representatives of the whole group even though
42  * those particular processes need not be waiting at all.  There will be at
43  * least one member of the waiter's lock group on the wait queue for the given
44  * lock, maybe more.
45  */
46 typedef struct
47 {
48 	PGPROC	   *waiter;			/* the leader of the waiting lock group */
49 	PGPROC	   *blocker;		/* the leader of the group it is waiting for */
scan_build()50 	LOCK	   *lock;			/* the lock being waited for */
51 	int			pred;			/* workspace for TopoSort */
52 	int			link;			/* workspace for TopoSort */
53 } EDGE;
54 
55 /* One potential reordering of a lock's wait queue */
56 typedef struct
57 {
58 	LOCK	   *lock;			/* the lock whose wait queue is described */
59 	PGPROC	  **procs;			/* array of PGPROC *'s in new wait order */
60 	int			nProcs;
61 } WAIT_ORDER;
62 
63 /*
64  * Information saved about each edge in a detected deadlock cycle.  This
65  * is used to print a diagnostic message upon failure.
66  *
67  * Note: because we want to examine this info after releasing the lock
68  * manager's partition locks, we can't just store LOCK and PGPROC pointers;
69  * we must extract out all the info we want to be able to print.
70  */
71 typedef struct
72 {
73 	LOCKTAG		locktag;		/* ID of awaited lock object */
74 	LOCKMODE	lockmode;		/* type of lock we're waiting for */
75 	int			pid;			/* PID of blocked backend */
76 } DEADLOCK_INFO;
77 
analyze_build()78 
79 static bool DeadLockCheckRecurse(PGPROC *proc);
80 static int	TestConfiguration(PGPROC *startProc);
81 static bool FindLockCycle(PGPROC *checkProc,
82 			  EDGE *softEdges, int *nSoftEdges);
83 static bool FindLockCycleRecurse(PGPROC *checkProc, int depth,
84 					 EDGE *softEdges, int *nSoftEdges);
85 static bool FindLockCycleRecurseMember(PGPROC *checkProc,
86 						   PGPROC *checkProcLeader,
87 						   int depth, EDGE *softEdges, int *nSoftEdges);
88 static bool ExpandConstraints(EDGE *constraints, int nConstraints);
89 static bool TopoSort(LOCK *lock, EDGE *constraints, int nConstraints,
90 		 PGPROC **ordering);
91 
need_analyzer(args)92 #ifdef DEBUG_DEADLOCK
93 static void PrintLockQueue(LOCK *lock, const char *info);
94 #endif
95 
96 
97 /*
98  * Working space for the deadlock detector
99  */
100 
101 /* Workspace for FindLockCycle */
102 static PGPROC **visitedProcs;	/* Array of visited procs */
103 static int	nVisitedProcs;
104 
prefix_with(constant, pieces)105 /* Workspace for TopoSort */
106 static PGPROC **topoProcs;		/* Array of not-yet-output procs */
107 static int *beforeConstraints;	/* Counts of remaining before-constraints */
108 static int *afterConstraints;	/* List head for after-constraints */
109 
110 /* Output area for ExpandConstraints */
111 static WAIT_ORDER *waitOrders;	/* Array of proposed queue rearrangements */
112 static int	nWaitOrders;
113 static PGPROC **waitOrderProcs; /* Space for waitOrders queue contents */
get_ctu_config_from_args(args)114 
115 /* Current list of constraints being considered */
116 static EDGE *curConstraints;
117 static int	nCurConstraints;
118 static int	maxCurConstraints;
119 
120 /* Storage space for results from FindLockCycle */
121 static EDGE *possibleConstraints;
122 static int	nPossibleConstraints;
123 static int	maxPossibleConstraints;
124 static DEADLOCK_INFO *deadlockDetails;
125 static int	nDeadlockDetails;
get_ctu_config_from_json(ctu_conf_json)126 
127 /* PGPROC pointer of any blocking autovacuum worker found */
128 static PGPROC *blocking_autovacuum_proc = NULL;
129 
130 
131 /*
132  * InitDeadLockChecking -- initialize deadlock checker during backend startup
133  *
134  * This does per-backend initialization of the deadlock checker; primarily,
135  * allocation of working memory for DeadLockCheck.  We do this per-backend
136  * since there's no percentage in making the kernel do copy-on-write
create_global_ctu_extdef_map(extdef_map_lines)137  * inheritance of workspace from the postmaster.  We want to allocate the
138  * space at startup because (a) the deadlock checker might be invoked when
139  * there's no free memory left, and (b) the checker is normally run inside a
140  * signal handler, which is a very dangerous place to invoke palloc from.
141  */
142 void
143 InitDeadLockChecking(void)
144 {
145 	MemoryContext oldcxt;
146 
147 	/* Make sure allocations are permanent */
148 	oldcxt = MemoryContextSwitchTo(TopMemoryContext);
149 
150 	/*
151 	 * FindLockCycle needs at most MaxBackends entries in visitedProcs[] and
152 	 * deadlockDetails[].
153 	 */
154 	visitedProcs = (PGPROC **) palloc(MaxBackends * sizeof(PGPROC *));
155 	deadlockDetails = (DEADLOCK_INFO *) palloc(MaxBackends * sizeof(DEADLOCK_INFO));
156 
157 	/*
158 	 * TopoSort needs to consider at most MaxBackends wait-queue entries, and
159 	 * it needn't run concurrently with FindLockCycle.
160 	 */
161 	topoProcs = visitedProcs;	/* re-use this space */
162 	beforeConstraints = (int *) palloc(MaxBackends * sizeof(int));
163 	afterConstraints = (int *) palloc(MaxBackends * sizeof(int));
164 
165 	/*
166 	 * We need to consider rearranging at most MaxBackends/2 wait queues
167 	 * (since it takes at least two waiters in a queue to create a soft edge),
168 	 * and the expanded form of the wait queues can't involve more than
169 	 * MaxBackends total waiters.
170 	 */
171 	waitOrders = (WAIT_ORDER *)
172 		palloc((MaxBackends / 2) * sizeof(WAIT_ORDER));
173 	waitOrderProcs = (PGPROC **) palloc(MaxBackends * sizeof(PGPROC *));
174 
175 	/*
176 	 * Allow at most MaxBackends distinct constraints in a configuration. (Is
177 	 * this enough?  In practice it seems it should be, but I don't quite see
178 	 * how to prove it.  If we run out, we might fail to find a workable wait
179 	 * queue rearrangement even though one exists.)  NOTE that this number
180 	 * limits the maximum recursion depth of DeadLockCheckRecurse. Making it
181 	 * really big might potentially allow a stack-overflow problem.
182 	 */
183 	maxCurConstraints = MaxBackends;
184 	curConstraints = (EDGE *) palloc(maxCurConstraints * sizeof(EDGE));
185 
186 	/*
187 	 * Allow up to 3*MaxBackends constraints to be saved without having to
188 	 * re-run TestConfiguration.  (This is probably more than enough, but we
189 	 * can survive if we run low on space by doing excess runs of
190 	 * TestConfiguration to re-compute constraint lists each time needed.) The
191 	 * last MaxBackends entries in possibleConstraints[] are reserved as
192 	 * output workspace for FindLockCycle.
193 	 */
194 	maxPossibleConstraints = MaxBackends * 4;
195 	possibleConstraints =
196 		(EDGE *) palloc(maxPossibleConstraints * sizeof(EDGE));
197 
198 	MemoryContextSwitchTo(oldcxt);
199 }
200 
201 /*
202  * DeadLockCheck -- Checks for deadlocks for a given process
203  *
204  * This code looks for deadlocks involving the given process.  If any
205  * are found, it tries to rearrange lock wait queues to resolve the
206  * deadlock.  If resolution is impossible, return DS_HARD_DEADLOCK ---
207  * the caller is then expected to abort the given proc's transaction.
run_analyzer_parallel(args)208  *
209  * Caller must already have locked all partitions of the lock tables.
210  *
211  * On failure, deadlock details are recorded in deadlockDetails[] for
212  * subsequent printing by DeadLockReport().  That activity is separate
213  * because (a) we don't want to do it while holding all those LWLocks,
214  * and (b) we are typically invoked inside a signal handler.
215  */
216 DeadLockState
217 DeadLockCheck(PGPROC *proc)
218 {
219 	int			i,
220 				j;
221 
222 	/* Initialize to "no constraints" */
223 	nCurConstraints = 0;
224 	nPossibleConstraints = 0;
225 	nWaitOrders = 0;
226 
227 	/* Initialize to not blocked by an autovacuum worker */
228 	blocking_autovacuum_proc = NULL;
229 
230 	/* Search for deadlocks and possible fixes */
231 	if (DeadLockCheckRecurse(proc))
232 	{
233 		/*
234 		 * Call FindLockCycle one more time, to record the correct
235 		 * deadlockDetails[] for the basic state with no rearrangements.
236 		 */
237 		int			nSoftEdges;
238 
239 		TRACE_POSTGRESQL_DEADLOCK_FOUND();
240 
241 		nWaitOrders = 0;
242 		if (!FindLockCycle(proc, possibleConstraints, &nSoftEdges))
243 			elog(FATAL, "deadlock seems to have disappeared");
244 
245 		return DS_HARD_DEADLOCK;	/* cannot find a non-deadlocked state */
246 	}
247 
248 	/* Apply any needed rearrangements of wait queues */
249 	for (i = 0; i < nWaitOrders; i++)
250 	{
251 		LOCK	   *lock = waitOrders[i].lock;
252 		PGPROC	  **procs = waitOrders[i].procs;
253 		int			nProcs = waitOrders[i].nProcs;
254 		PROC_QUEUE *waitQueue = &(lock->waitProcs);
255 
256 		Assert(nProcs == waitQueue->size);
257 
258 #ifdef DEBUG_DEADLOCK
259 		PrintLockQueue(lock, "DeadLockCheck:");
260 #endif
261 
262 		/* Reset the queue and re-add procs in the desired order */
263 		ProcQueueInit(waitQueue);
264 		for (j = 0; j < nProcs; j++)
265 		{
266 			SHMQueueInsertBefore(&(waitQueue->links), &(procs[j]->links));
267 			waitQueue->size++;
268 		}
269 
270 #ifdef DEBUG_DEADLOCK
271 		PrintLockQueue(lock, "rearranged to:");
272 #endif
273 
274 		/* See if any waiters for the lock can be woken up now */
275 		ProcLockWakeup(GetLocksMethodTable(lock), lock);
276 	}
277 
278 	/* Return code tells caller if we had to escape a deadlock or not */
279 	if (nWaitOrders > 0)
280 		return DS_SOFT_DEADLOCK;
281 	else if (blocking_autovacuum_proc != NULL)
282 		return DS_BLOCKED_BY_AUTOVACUUM;
283 	else
284 		return DS_NO_DEADLOCK;
285 }
286 
287 /*
288  * Return the PGPROC of the autovacuum that's blocking a process.
289  *
290  * We reset the saved pointer as soon as we pass it back.
291  */
292 PGPROC *
293 GetBlockingAutoVacuumPgproc(void)
294 {
295 	PGPROC	   *ptr;
296 
297 	ptr = blocking_autovacuum_proc;
analyze_compiler_wrapper()298 	blocking_autovacuum_proc = NULL;
299 
300 	return ptr;
301 }
302 
303 /*
analyze_compiler_wrapper_impl(result, execution)304  * DeadLockCheckRecurse -- recursively search for valid orderings
305  *
306  * curConstraints[] holds the current set of constraints being considered
307  * by an outer level of recursion.  Add to this each possible solution
308  * constraint for any cycle detected at this level.
309  *
310  * Returns true if no solution exists.  Returns false if a deadlock-free
311  * state is attainable, in which case waitOrders[] shows the required
312  * rearrangements of lock wait queues (if any).
313  */
314 static bool
315 DeadLockCheckRecurse(PGPROC *proc)
316 {
317 	int			nEdges;
318 	int			oldPossibleConstraints;
319 	bool		savedList;
320 	int			i;
321 
322 	nEdges = TestConfiguration(proc);
323 	if (nEdges < 0)
324 		return true;			/* hard deadlock --- no solution */
325 	if (nEdges == 0)
326 		return false;			/* good configuration found */
327 	if (nCurConstraints >= maxCurConstraints)
328 		return true;			/* out of room for active constraints? */
329 	oldPossibleConstraints = nPossibleConstraints;
330 	if (nPossibleConstraints + nEdges + MaxBackends <= maxPossibleConstraints)
331 	{
332 		/* We can save the edge list in possibleConstraints[] */
333 		nPossibleConstraints += nEdges;
334 		savedList = true;
335 	}
336 	else
337 	{
338 		/* Not room; will need to regenerate the edges on-the-fly */
339 		savedList = false;
340 	}
341 
342 	/*
343 	 * Try each available soft edge as an addition to the configuration.
344 	 */
345 	for (i = 0; i < nEdges; i++)
346 	{
347 		if (!savedList && i > 0)
348 		{
349 			/* Regenerate the list of possible added constraints */
350 			if (nEdges != TestConfiguration(proc))
351 				elog(FATAL, "inconsistent results during deadlock check");
352 		}
353 		curConstraints[nCurConstraints] =
354 			possibleConstraints[oldPossibleConstraints + i];
355 		nCurConstraints++;
356 		if (!DeadLockCheckRecurse(proc))
357 			return false;		/* found a valid solution! */
358 		/* give up on that added constraint, try again */
359 		nCurConstraints--;
360 	}
361 	nPossibleConstraints = oldPossibleConstraints;
362 	return true;				/* no solution found */
363 }
364 
365 
366 /*--------------------
367  * Test a configuration (current set of constraints) for validity.
368  *
369  * Returns:
370  *		0: the configuration is good (no deadlocks)
371  *	   -1: the configuration has a hard deadlock or is not self-consistent
372  *		>0: the configuration has one or more soft deadlocks
373  *
374  * In the soft-deadlock case, one of the soft cycles is chosen arbitrarily
375  * and a list of its soft edges is returned beginning at
376  * possibleConstraints+nPossibleConstraints.  The return value is the
377  * number of soft edges.
378  *--------------------
analyzer_params(args)379  */
380 static int
381 TestConfiguration(PGPROC *startProc)
382 {
383 	int			softFound = 0;
384 	EDGE	   *softEdges = possibleConstraints + nPossibleConstraints;
385 	int			nSoftEdges;
386 	int			i;
387 
388 	/*
389 	 * Make sure we have room for FindLockCycle's output.
390 	 */
391 	if (nPossibleConstraints + MaxBackends > maxPossibleConstraints)
392 		return -1;
393 
394 	/*
395 	 * Expand current constraint set into wait orderings.  Fail if the
396 	 * constraint set is not self-consistent.
397 	 */
398 	if (!ExpandConstraints(curConstraints, nCurConstraints))
399 		return -1;
400 
401 	/*
402 	 * Check for cycles involving startProc or any of the procs mentioned in
403 	 * constraints.  We check startProc last because if it has a soft cycle
404 	 * still to be dealt with, we want to deal with that first.
405 	 */
406 	for (i = 0; i < nCurConstraints; i++)
407 	{
408 		if (FindLockCycle(curConstraints[i].waiter, softEdges, &nSoftEdges))
409 		{
410 			if (nSoftEdges == 0)
411 				return -1;		/* hard deadlock detected */
412 			softFound = nSoftEdges;
413 		}
414 		if (FindLockCycle(curConstraints[i].blocker, softEdges, &nSoftEdges))
415 		{
416 			if (nSoftEdges == 0)
417 				return -1;		/* hard deadlock detected */
418 			softFound = nSoftEdges;
419 		}
420 	}
421 	if (FindLockCycle(startProc, softEdges, &nSoftEdges))
422 	{
423 		if (nSoftEdges == 0)
424 			return -1;			/* hard deadlock detected */
425 		softFound = nSoftEdges;
426 	}
427 	return softFound;
428 }
429 
430 
431 /*
432  * FindLockCycle -- basic check for deadlock cycles
433  *
434  * Scan outward from the given proc to see if there is a cycle in the
435  * waits-for graph that includes this proc.  Return true if a cycle
436  * is found, else false.  If a cycle is found, we return a list of
437  * the "soft edges", if any, included in the cycle.  These edges could
438  * potentially be eliminated by rearranging wait queues.  We also fill
439  * deadlockDetails[] with information about the detected cycle; this info
440  * is not used by the deadlock algorithm itself, only to print a useful
441  * message after failing.
442  *
443  * Since we need to be able to check hypothetical configurations that would
444  * exist after wait queue rearrangement, the routine pays attention to the
445  * table of hypothetical queue orders in waitOrders[].  These orders will
446  * be believed in preference to the actual ordering seen in the locktable.
run(opts)447  */
448 static bool
449 FindLockCycle(PGPROC *checkProc,
450 			  EDGE *softEdges,	/* output argument */
451 			  int *nSoftEdges)	/* output argument */
452 {
453 	nVisitedProcs = 0;
454 	nDeadlockDetails = 0;
455 	*nSoftEdges = 0;
456 	return FindLockCycleRecurse(checkProc, 0, softEdges, nSoftEdges);
457 }
458 
459 static bool
460 FindLockCycleRecurse(PGPROC *checkProc,
461 					 int depth,
462 					 EDGE *softEdges,	/* output argument */
463 					 int *nSoftEdges)	/* output argument */
464 {
465 	int			i;
466 	dlist_iter	iter;
467 
468 	/*
469 	 * If this process is a lock group member, check the leader instead. (Note
470 	 * that we might be the leader, in which case this is a no-op.)
471 	 */
472 	if (checkProc->lockGroupLeader != NULL)
473 		checkProc = checkProc->lockGroupLeader;
report_failure(opts)474 
475 	/*
476 	 * Have we already seen this proc?
477 	 */
478 	for (i = 0; i < nVisitedProcs; i++)
479 	{
480 		if (visitedProcs[i] == checkProc)
extension()481 		{
482 			/* If we return to starting point, we have a deadlock cycle */
483 			if (i == 0)
484 			{
485 				/*
486 				 * record total length of cycle --- outer levels will now fill
487 				 * deadlockDetails[]
488 				 */
489 				Assert(depth <= MaxBackends);
490 				nDeadlockDetails = depth;
491 
492 				return true;
493 			}
494 
495 			/*
496 			 * Otherwise, we have a cycle but it does not include the start
497 			 * point, so say "no deadlock".
498 			 */
499 			return false;
500 		}
501 	}
502 	/* Mark proc as seen */
503 	Assert(nVisitedProcs < MaxBackends);
504 	visitedProcs[nVisitedProcs++] = checkProc;
505 
506 	/*
507 	 * If the process is waiting, there is an outgoing waits-for edge to each
508 	 * process that blocks it.
509 	 */
510 	if (checkProc->links.next != NULL && checkProc->waitLock != NULL &&
511 		FindLockCycleRecurseMember(checkProc, checkProc, depth, softEdges,
512 								   nSoftEdges))
513 		return true;
514 
515 	/*
516 	 * If the process is not waiting, there could still be outgoing waits-for
517 	 * edges if it is part of a lock group, because other members of the lock
518 	 * group might be waiting even though this process is not.  (Given lock
519 	 * groups {A1, A2} and {B1, B2}, if A1 waits for B1 and B2 waits for A2,
520 	 * that is a deadlock even neither of B1 and A2 are waiting for anything.)
521 	 */
522 	dlist_foreach(iter, &checkProc->lockGroupMembers)
523 	{
524 		PGPROC	   *memberProc;
525 
526 		memberProc = dlist_container(PGPROC, lockGroupLink, iter.cur);
527 
528 		if (memberProc->links.next != NULL && memberProc->waitLock != NULL &&
529 			memberProc != checkProc &&
530 			FindLockCycleRecurseMember(memberProc, checkProc, depth, softEdges,
531 									   nSoftEdges))
run_analyzer(opts, continuation=report_failure)532 			return true;
533 	}
534 
535 	return false;
536 }
target()537 
538 static bool
539 FindLockCycleRecurseMember(PGPROC *checkProc,
540 						   PGPROC *checkProcLeader,
541 						   int depth,
542 						   EDGE *softEdges, /* output argument */
543 						   int *nSoftEdges) /* output argument */
544 {
545 	PGPROC	   *proc;
546 	LOCK	   *lock = checkProc->waitLock;
547 	PGXACT	   *pgxact;
548 	PROCLOCK   *proclock;
549 	SHM_QUEUE  *procLocks;
550 	LockMethod	lockMethodTable;
551 	PROC_QUEUE *waitQueue;
552 	int			queue_size;
553 	int			conflictMask;
554 	int			i;
555 	int			numLockModes,
556 				lm;
557 
558 	lockMethodTable = GetLocksMethodTable(lock);
559 	numLockModes = lockMethodTable->numLockModes;
560 	conflictMask = lockMethodTable->conflictTab[checkProc->waitLockMode];
561 
562 	/*
563 	 * Scan for procs that already hold conflicting locks.  These are "hard"
564 	 * edges in the waits-for graph.
565 	 */
566 	procLocks = &(lock->procLocks);
567 
568 	proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks,
569 										 offsetof(PROCLOCK, lockLink));
570 
571 	while (proclock)
572 	{
573 		PGPROC	   *leader;
574 
575 		proc = proclock->tag.myProc;
576 		pgxact = &ProcGlobal->allPgXact[proc->pgprocno];
577 		leader = proc->lockGroupLeader == NULL ? proc : proc->lockGroupLeader;
578 
579 		/* A proc never blocks itself or any other lock group member */
580 		if (leader != checkProcLeader)
581 		{
582 			for (lm = 1; lm <= numLockModes; lm++)
583 			{
584 				if ((proclock->holdMask & LOCKBIT_ON(lm)) &&
585 					(conflictMask & LOCKBIT_ON(lm)))
586 				{
587 					/* This proc hard-blocks checkProc */
588 					if (FindLockCycleRecurse(proc, depth + 1,
589 											 softEdges, nSoftEdges))
590 					{
591 						/* fill deadlockDetails[] */
592 						DEADLOCK_INFO *info = &deadlockDetails[depth];
593 
594 						info->locktag = lock->tag;
595 						info->lockmode = checkProc->waitLockMode;
596 						info->pid = checkProc->pid;
597 
598 						return true;
599 					}
600 
601 					/*
602 					 * No deadlock here, but see if this proc is an autovacuum
603 					 * that is directly hard-blocking our own proc.  If so,
604 					 * report it so that the caller can send a cancel signal
605 					 * to it, if appropriate.  If there's more than one such
606 					 * proc, it's indeterminate which one will be reported.
607 					 *
608 					 * We don't touch autovacuums that are indirectly blocking
609 					 * us; it's up to the direct blockee to take action.  This
610 					 * rule simplifies understanding the behavior and ensures
611 					 * that an autovacuum won't be canceled with less than
612 					 * deadlock_timeout grace period.
613 					 *
614 					 * Note we read vacuumFlags without any locking.  This is
615 					 * OK only for checking the PROC_IS_AUTOVACUUM flag,
616 					 * because that flag is set at process start and never
617 					 * reset.  There is logic elsewhere to avoid canceling an
618 					 * autovacuum that is working to prevent XID wraparound
619 					 * problems (which needs to read a different vacuumFlag
620 					 * bit), but we don't do that here to avoid grabbing
621 					 * ProcArrayLock.
622 					 */
623 					if (checkProc == MyProc &&
624 						pgxact->vacuumFlags & PROC_IS_AUTOVACUUM)
625 						blocking_autovacuum_proc = proc;
626 
627 					/* We're done looking at this proclock */
628 					break;
629 				}
630 			}
631 		}
632 
633 		proclock = (PROCLOCK *) SHMQueueNext(procLocks, &proclock->lockLink,
634 											 offsetof(PROCLOCK, lockLink));
635 	}
636 
637 	/*
638 	 * Scan for procs that are ahead of this one in the lock's wait queue.
639 	 * Those that have conflicting requests soft-block this one.  This must be
640 	 * done after the hard-block search, since if another proc both hard- and
641 	 * soft-blocks this one, we want to call it a hard edge.
642 	 *
643 	 * If there is a proposed re-ordering of the lock's wait order, use that
644 	 * rather than the current wait order.
645 	 */
646 	for (i = 0; i < nWaitOrders; i++)
647 	{
648 		if (waitOrders[i].lock == lock)
649 			break;
650 	}
651 
652 	if (i < nWaitOrders)
653 	{
654 		/* Use the given hypothetical wait queue order */
655 		PGPROC	  **procs = waitOrders[i].procs;
656 
657 		queue_size = waitOrders[i].nProcs;
658 
659 		for (i = 0; i < queue_size; i++)
660 		{
661 			PGPROC	   *leader;
662 
663 			proc = procs[i];
664 			leader = proc->lockGroupLeader == NULL ? proc :
665 				proc->lockGroupLeader;
666 
667 			/*
668 			 * TopoSort will always return an ordering with group members
669 			 * adjacent to each other in the wait queue (see comments
670 			 * therein). So, as soon as we reach a process in the same lock
671 			 * group as checkProc, we know we've found all the conflicts that
672 			 * precede any member of the lock group lead by checkProcLeader.
673 			 */
674 			if (leader == checkProcLeader)
675 				break;
676 
677 			/* Is there a conflict with this guy's request? */
678 			if ((LOCKBIT_ON(proc->waitLockMode) & conflictMask) != 0)
679 			{
680 				/* This proc soft-blocks checkProc */
681 				if (FindLockCycleRecurse(proc, depth + 1,
682 										 softEdges, nSoftEdges))
683 				{
684 					/* fill deadlockDetails[] */
685 					DEADLOCK_INFO *info = &deadlockDetails[depth];
686 
687 					info->locktag = lock->tag;
688 					info->lockmode = checkProc->waitLockMode;
689 					info->pid = checkProc->pid;
690 
691 					/*
692 					 * Add this edge to the list of soft edges in the cycle
693 					 */
694 					Assert(*nSoftEdges < MaxBackends);
695 					softEdges[*nSoftEdges].waiter = checkProcLeader;
696 					softEdges[*nSoftEdges].blocker = leader;
697 					softEdges[*nSoftEdges].lock = lock;
698 					(*nSoftEdges)++;
699 					return true;
700 				}
701 			}
702 		}
703 	}
704 	else
705 	{
706 		PGPROC	   *lastGroupMember = NULL;
707 
708 		/* Use the true lock wait queue order */
709 		waitQueue = &(lock->waitProcs);
710 
711 		/*
712 		 * Find the last member of the lock group that is present in the wait
713 		 * queue.  Anything after this is not a soft lock conflict. If group
714 		 * locking is not in use, then we know immediately which process we're
715 		 * looking for, but otherwise we've got to search the wait queue to
716 		 * find the last process actually present.
717 		 */
718 		if (checkProc->lockGroupLeader == NULL)
719 			lastGroupMember = checkProc;
720 		else
721 		{
722 			proc = (PGPROC *) waitQueue->links.next;
723 			queue_size = waitQueue->size;
724 			while (queue_size-- > 0)
725 			{
726 				if (proc->lockGroupLeader == checkProcLeader)
727 					lastGroupMember = proc;
728 				proc = (PGPROC *) proc->links.next;
729 			}
730 			Assert(lastGroupMember != NULL);
731 		}
732 
733 		/*
734 		 * OK, now rescan (or scan) the queue to identify the soft conflicts.
735 		 */
736 		queue_size = waitQueue->size;
737 		proc = (PGPROC *) waitQueue->links.next;
738 		while (queue_size-- > 0)
739 		{
740 			PGPROC	   *leader;
741 
742 			leader = proc->lockGroupLeader == NULL ? proc :
743 				proc->lockGroupLeader;
744 
745 			/* Done when we reach the target proc */
746 			if (proc == lastGroupMember)
747 				break;
748 
749 			/* Is there a conflict with this guy's request? */
750 			if ((LOCKBIT_ON(proc->waitLockMode) & conflictMask) != 0 &&
751 				leader != checkProcLeader)
752 			{
753 				/* This proc soft-blocks checkProc */
754 				if (FindLockCycleRecurse(proc, depth + 1,
755 										 softEdges, nSoftEdges))
756 				{
757 					/* fill deadlockDetails[] */
758 					DEADLOCK_INFO *info = &deadlockDetails[depth];
759 
760 					info->locktag = lock->tag;
761 					info->lockmode = checkProc->waitLockMode;
762 					info->pid = checkProc->pid;
763 
764 					/*
765 					 * Add this edge to the list of soft edges in the cycle
766 					 */
767 					Assert(*nSoftEdges < MaxBackends);
768 					softEdges[*nSoftEdges].waiter = checkProcLeader;
769 					softEdges[*nSoftEdges].blocker = leader;
770 					softEdges[*nSoftEdges].lock = lock;
771 					(*nSoftEdges)++;
772 					return true;
773 				}
774 			}
775 
776 			proc = (PGPROC *) proc->links.next;
777 		}
778 	}
779 
780 	/*
781 	 * No conflict detected here.
782 	 */
783 	return false;
784 }
785 
786 
787 /*
788  * ExpandConstraints -- expand a list of constraints into a set of
789  *		specific new orderings for affected wait queues
790  *
791  * Input is a list of soft edges to be reversed.  The output is a list
792  * of nWaitOrders WAIT_ORDER structs in waitOrders[], with PGPROC array
793  * workspace in waitOrderProcs[].
794  *
795  * Returns true if able to build an ordering that satisfies all the
796  * constraints, false if not (there are contradictory constraints).
797  */
798 static bool
799 ExpandConstraints(EDGE *constraints,
800 				  int nConstraints)
801 {
802 	int			nWaitOrderProcs = 0;
803 	int			i,
804 				j;
805 
806 	nWaitOrders = 0;
807 
808 	/*
809 	 * Scan constraint list backwards.  This is because the last-added
810 	 * constraint is the only one that could fail, and so we want to test it
811 	 * for inconsistency first.
812 	 */
813 	for (i = nConstraints; --i >= 0;)
814 	{
815 		LOCK	   *lock = constraints[i].lock;
816 
817 		/* Did we already make a list for this lock? */
818 		for (j = nWaitOrders; --j >= 0;)
819 		{
820 			if (waitOrders[j].lock == lock)
821 				break;
822 		}
823 		if (j >= 0)
824 			continue;
825 		/* No, so allocate a new list */
826 		waitOrders[nWaitOrders].lock = lock;
827 		waitOrders[nWaitOrders].procs = waitOrderProcs + nWaitOrderProcs;
828 		waitOrders[nWaitOrders].nProcs = lock->waitProcs.size;
829 		nWaitOrderProcs += lock->waitProcs.size;
830 		Assert(nWaitOrderProcs <= MaxBackends);
831 
832 		/*
833 		 * Do the topo sort.  TopoSort need not examine constraints after this
834 		 * one, since they must be for different locks.
835 		 */
836 		if (!TopoSort(lock, constraints, i + 1,
837 					  waitOrders[nWaitOrders].procs))
838 			return false;
839 		nWaitOrders++;
840 	}
841 	return true;
842 }
843 
844 
845 /*
846  * TopoSort -- topological sort of a wait queue
847  *
848  * Generate a re-ordering of a lock's wait queue that satisfies given
849  * constraints about certain procs preceding others.  (Each such constraint
850  * is a fact of a partial ordering.)  Minimize rearrangement of the queue
851  * not needed to achieve the partial ordering.
852  *
853  * This is a lot simpler and slower than, for example, the topological sort
854  * algorithm shown in Knuth's Volume 1.  However, Knuth's method doesn't
855  * try to minimize the damage to the existing order.  In practice we are
856  * not likely to be working with more than a few constraints, so the apparent
857  * slowness of the algorithm won't really matter.
858  *
859  * The initial queue ordering is taken directly from the lock's wait queue.
860  * The output is an array of PGPROC pointers, of length equal to the lock's
861  * wait queue length (the caller is responsible for providing this space).
862  * The partial order is specified by an array of EDGE structs.  Each EDGE
863  * is one that we need to reverse, therefore the "waiter" must appear before
864  * the "blocker" in the output array.  The EDGE array may well contain
865  * edges associated with other locks; these should be ignored.
866  *
867  * Returns true if able to build an ordering that satisfies all the
868  * constraints, false if not (there are contradictory constraints).
869  */
870 static bool
871 TopoSort(LOCK *lock,
872 		 EDGE *constraints,
873 		 int nConstraints,
874 		 PGPROC **ordering)		/* output argument */
875 {
876 	PROC_QUEUE *waitQueue = &(lock->waitProcs);
877 	int			queue_size = waitQueue->size;
878 	PGPROC	   *proc;
879 	int			i,
880 				j,
881 				jj,
882 				k,
883 				kk,
884 				last;
885 
886 	/* First, fill topoProcs[] array with the procs in their current order */
887 	proc = (PGPROC *) waitQueue->links.next;
888 	for (i = 0; i < queue_size; i++)
889 	{
890 		topoProcs[i] = proc;
891 		proc = (PGPROC *) proc->links.next;
892 	}
893 
894 	/*
895 	 * Scan the constraints, and for each proc in the array, generate a count
896 	 * of the number of constraints that say it must be before something else,
897 	 * plus a list of the constraints that say it must be after something
898 	 * else. The count for the j'th proc is stored in beforeConstraints[j],
899 	 * and the head of its list in afterConstraints[j].  Each constraint
900 	 * stores its list link in constraints[i].link (note any constraint will
901 	 * be in just one list). The array index for the before-proc of the i'th
902 	 * constraint is remembered in constraints[i].pred.
903 	 *
904 	 * Note that it's not necessarily the case that every constraint affects
905 	 * this particular wait queue.  Prior to group locking, a process could be
906 	 * waiting for at most one lock.  But a lock group can be waiting for
907 	 * zero, one, or multiple locks.  Since topoProcs[] is an array of the
908 	 * processes actually waiting, while constraints[] is an array of group
909 	 * leaders, we've got to scan through topoProcs[] for each constraint,
910 	 * checking whether both a waiter and a blocker for that group are
911 	 * present.  If so, the constraint is relevant to this wait queue; if not,
912 	 * it isn't.
913 	 */
914 	MemSet(beforeConstraints, 0, queue_size * sizeof(int));
915 	MemSet(afterConstraints, 0, queue_size * sizeof(int));
916 	for (i = 0; i < nConstraints; i++)
917 	{
918 		/*
919 		 * Find a representative process that is on the lock queue and part of
920 		 * the waiting lock group.  This may or may not be the leader, which
921 		 * may or may not be waiting at all.  If there are any other processes
922 		 * in the same lock group on the queue, set their number of
923 		 * beforeConstraints to -1 to indicate that they should be emitted
924 		 * with their groupmates rather than considered separately.
925 		 *
926 		 * In this loop and the similar one just below, it's critical that we
927 		 * consistently select the same representative member of any one lock
928 		 * group, so that all the constraints are associated with the same
929 		 * proc, and the -1's are only associated with not-representative
930 		 * members.  We select the last one in the topoProcs array.
931 		 */
932 		proc = constraints[i].waiter;
933 		Assert(proc != NULL);
934 		jj = -1;
935 		for (j = queue_size; --j >= 0;)
936 		{
937 			PGPROC	   *waiter = topoProcs[j];
938 
939 			if (waiter == proc || waiter->lockGroupLeader == proc)
940 			{
941 				Assert(waiter->waitLock == lock);
942 				if (jj == -1)
943 					jj = j;
944 				else
945 				{
946 					Assert(beforeConstraints[j] <= 0);
947 					beforeConstraints[j] = -1;
948 				}
949 			}
950 		}
951 
952 		/* If no matching waiter, constraint is not relevant to this lock. */
953 		if (jj < 0)
954 			continue;
955 
956 		/*
957 		 * Similarly, find a representative process that is on the lock queue
958 		 * and waiting for the blocking lock group.  Again, this could be the
959 		 * leader but does not need to be.
960 		 */
961 		proc = constraints[i].blocker;
962 		Assert(proc != NULL);
963 		kk = -1;
964 		for (k = queue_size; --k >= 0;)
965 		{
966 			PGPROC	   *blocker = topoProcs[k];
967 
968 			if (blocker == proc || blocker->lockGroupLeader == proc)
969 			{
970 				Assert(blocker->waitLock == lock);
971 				if (kk == -1)
972 					kk = k;
973 				else
974 				{
975 					Assert(beforeConstraints[k] <= 0);
976 					beforeConstraints[k] = -1;
977 				}
978 			}
979 		}
980 
981 		/* If no matching blocker, constraint is not relevant to this lock. */
982 		if (kk < 0)
983 			continue;
984 
985 		Assert(beforeConstraints[jj] >= 0);
986 		beforeConstraints[jj]++;	/* waiter must come before */
987 		/* add this constraint to list of after-constraints for blocker */
988 		constraints[i].pred = jj;
989 		constraints[i].link = afterConstraints[kk];
990 		afterConstraints[kk] = i + 1;
991 	}
992 
993 	/*--------------------
994 	 * Now scan the topoProcs array backwards.  At each step, output the
995 	 * last proc that has no remaining before-constraints plus any other
996 	 * members of the same lock group; then decrease the beforeConstraints
997 	 * count of each of the procs it was constrained against.
998 	 * i = index of ordering[] entry we want to output this time
999 	 * j = search index for topoProcs[]
1000 	 * k = temp for scanning constraint list for proc j
1001 	 * last = last non-null index in topoProcs (avoid redundant searches)
1002 	 *--------------------
1003 	 */
1004 	last = queue_size - 1;
1005 	for (i = queue_size - 1; i >= 0;)
1006 	{
1007 		int			c;
1008 		int			nmatches = 0;
1009 
1010 		/* Find next candidate to output */
1011 		while (topoProcs[last] == NULL)
1012 			last--;
1013 		for (j = last; j >= 0; j--)
1014 		{
1015 			if (topoProcs[j] != NULL && beforeConstraints[j] == 0)
1016 				break;
1017 		}
1018 
1019 		/* If no available candidate, topological sort fails */
1020 		if (j < 0)
1021 			return false;
1022 
1023 		/*
1024 		 * Output everything in the lock group.  There's no point in
1025 		 * outputting an ordering where members of the same lock group are not
1026 		 * consecutive on the wait queue: if some other waiter is between two
1027 		 * requests that belong to the same group, then either it conflicts
1028 		 * with both of them and is certainly not a solution; or it conflicts
1029 		 * with at most one of them and is thus isomorphic to an ordering
1030 		 * where the group members are consecutive.
1031 		 */
1032 		proc = topoProcs[j];
1033 		if (proc->lockGroupLeader != NULL)
1034 			proc = proc->lockGroupLeader;
1035 		Assert(proc != NULL);
1036 		for (c = 0; c <= last; ++c)
1037 		{
1038 			if (topoProcs[c] == proc || (topoProcs[c] != NULL &&
1039 										 topoProcs[c]->lockGroupLeader == proc))
1040 			{
1041 				ordering[i - nmatches] = topoProcs[c];
1042 				topoProcs[c] = NULL;
1043 				++nmatches;
1044 			}
1045 		}
1046 		Assert(nmatches > 0);
1047 		i -= nmatches;
1048 
1049 		/* Update beforeConstraints counts of its predecessors */
1050 		for (k = afterConstraints[j]; k > 0; k = constraints[k - 1].link)
1051 			beforeConstraints[constraints[k - 1].pred]--;
1052 	}
1053 
1054 	/* Done */
1055 	return true;
1056 }
1057 
1058 #ifdef DEBUG_DEADLOCK
1059 static void
1060 PrintLockQueue(LOCK *lock, const char *info)
1061 {
1062 	PROC_QUEUE *waitQueue = &(lock->waitProcs);
1063 	int			queue_size = waitQueue->size;
1064 	PGPROC	   *proc;
1065 	int			i;
1066 
1067 	printf("%s lock %p queue ", info, lock);
1068 	proc = (PGPROC *) waitQueue->links.next;
1069 	for (i = 0; i < queue_size; i++)
1070 	{
1071 		printf(" %d", proc->pid);
1072 		proc = (PGPROC *) proc->links.next;
1073 	}
1074 	printf("\n");
1075 	fflush(stdout);
1076 }
1077 #endif
1078 
1079 /*
1080  * Report a detected deadlock, with available details.
1081  */
1082 void
1083 DeadLockReport(void)
1084 {
1085 	StringInfoData clientbuf;	/* errdetail for client */
1086 	StringInfoData logbuf;		/* errdetail for server log */
1087 	StringInfoData locktagbuf;
1088 	int			i;
1089 
1090 	initStringInfo(&clientbuf);
1091 	initStringInfo(&logbuf);
1092 	initStringInfo(&locktagbuf);
1093 
1094 	/* Generate the "waits for" lines sent to the client */
1095 	for (i = 0; i < nDeadlockDetails; i++)
1096 	{
1097 		DEADLOCK_INFO *info = &deadlockDetails[i];
1098 		int			nextpid;
1099 
1100 		/* The last proc waits for the first one... */
1101 		if (i < nDeadlockDetails - 1)
1102 			nextpid = info[1].pid;
1103 		else
1104 			nextpid = deadlockDetails[0].pid;
1105 
1106 		/* reset locktagbuf to hold next object description */
1107 		resetStringInfo(&locktagbuf);
1108 
1109 		DescribeLockTag(&locktagbuf, &info->locktag);
1110 
1111 		if (i > 0)
1112 			appendStringInfoChar(&clientbuf, '\n');
1113 
1114 		appendStringInfo(&clientbuf,
1115 						 _("Process %d waits for %s on %s; blocked by process %d."),
1116 						 info->pid,
1117 						 GetLockmodeName(info->locktag.locktag_lockmethodid,
1118 										 info->lockmode),
1119 						 locktagbuf.data,
1120 						 nextpid);
1121 	}
1122 
1123 	/* Duplicate all the above for the server ... */
1124 	appendStringInfoString(&logbuf, clientbuf.data);
1125 
1126 	/* ... and add info about query strings */
1127 	for (i = 0; i < nDeadlockDetails; i++)
1128 	{
1129 		DEADLOCK_INFO *info = &deadlockDetails[i];
1130 
1131 		appendStringInfoChar(&logbuf, '\n');
1132 
1133 		appendStringInfo(&logbuf,
1134 						 _("Process %d: %s"),
1135 						 info->pid,
1136 						 pgstat_get_backend_current_activity(info->pid, false));
1137 	}
1138 
1139 	pgstat_report_deadlock();
1140 
1141 	ereport(ERROR,
1142 			(errcode(ERRCODE_T_R_DEADLOCK_DETECTED),
1143 			 errmsg("deadlock detected"),
1144 			 errdetail_internal("%s", clientbuf.data),
1145 			 errdetail_log("%s", logbuf.data),
1146 			 errhint("See server log for query details.")));
1147 }
1148 
1149 /*
1150  * RememberSimpleDeadLock: set up info for DeadLockReport when ProcSleep
1151  * detects a trivial (two-way) deadlock.  proc1 wants to block for lockmode
1152  * on lock, but proc2 is already waiting and would be blocked by proc1.
1153  */
1154 void
1155 RememberSimpleDeadLock(PGPROC *proc1,
1156 					   LOCKMODE lockmode,
1157 					   LOCK *lock,
1158 					   PGPROC *proc2)
1159 {
1160 	DEADLOCK_INFO *info = &deadlockDetails[0];
1161 
1162 	info->locktag = lock->tag;
1163 	info->lockmode = lockmode;
1164 	info->pid = proc1->pid;
1165 	info++;
1166 	info->locktag = proc2->waitLock->tag;
1167 	info->lockmode = proc2->waitLockMode;
1168 	info->pid = proc2->pid;
1169 	nDeadlockDetails = 2;
1170 }
1171