1<!-- doc/src/sgml/textsearch.sgml -->
2
3<chapter id="textsearch">
4 <title>Full Text Search</title>
5
6  <indexterm zone="textsearch">
7   <primary>full text search</primary>
8  </indexterm>
9
10  <indexterm zone="textsearch">
11   <primary>text search</primary>
12  </indexterm>
13
14 <sect1 id="textsearch-intro">
15  <title>Introduction</title>
16
17  <para>
18   Full Text Searching (or just <firstterm>text search</firstterm>) provides
19   the capability to identify natural-language <firstterm>documents</firstterm> that
20   satisfy a <firstterm>query</firstterm>, and optionally to sort them by
21   relevance to the query.  The most common type of search
22   is to find all documents containing given <firstterm>query terms</firstterm>
23   and return them in order of their <firstterm>similarity</firstterm> to the
24   query.  Notions of <varname>query</varname> and
25   <varname>similarity</varname> are very flexible and depend on the specific
26   application. The simplest search considers <varname>query</varname> as a
27   set of words and <varname>similarity</varname> as the frequency of query
28   words in the document.
29  </para>
30
31  <para>
32   Textual search operators have existed in databases for years.
33   <productname>PostgreSQL</productname> has
34   <literal>~</literal>, <literal>~*</literal>, <literal>LIKE</literal>, and
35   <literal>ILIKE</literal> operators for textual data types, but they lack
36   many essential properties required by modern information systems:
37  </para>
38
39  <itemizedlist  spacing="compact" mark="bullet">
40   <listitem>
41    <para>
42     There is no linguistic support, even for English.  Regular expressions
43     are not sufficient because they cannot easily handle derived words, e.g.,
44     <literal>satisfies</literal> and <literal>satisfy</literal>. You might
45     miss documents that contain <literal>satisfies</literal>, although you
46     probably would like to find them when searching for
47     <literal>satisfy</literal>. It is possible to use <literal>OR</literal>
48     to search for multiple derived forms, but this is tedious and error-prone
49     (some words can have several thousand derivatives).
50    </para>
51   </listitem>
52
53   <listitem>
54    <para>
55     They provide no ordering (ranking) of search results, which makes them
56     ineffective when thousands of matching documents are found.
57    </para>
58   </listitem>
59
60   <listitem>
61    <para>
62     They tend to be slow because there is no index support, so they must
63     process all documents for every search.
64    </para>
65   </listitem>
66  </itemizedlist>
67
68  <para>
69   Full text indexing allows documents to be <emphasis>preprocessed</emphasis>
70   and an index saved for later rapid searching. Preprocessing includes:
71  </para>
72
73  <itemizedlist  mark="none">
74   <listitem>
75    <para>
76     <emphasis>Parsing documents into <firstterm>tokens</firstterm></emphasis>. It is
77     useful to identify various classes of tokens, e.g., numbers, words,
78     complex words, email addresses, so that they can be processed
79     differently.  In principle token classes depend on the specific
80     application, but for most purposes it is adequate to use a predefined
81     set of classes.
82     <productname>PostgreSQL</productname> uses a <firstterm>parser</firstterm> to
83     perform this step.  A standard parser is provided, and custom parsers
84     can be created for specific needs.
85    </para>
86   </listitem>
87
88   <listitem>
89    <para>
90     <emphasis>Converting tokens into <firstterm>lexemes</firstterm></emphasis>.
91     A lexeme is a string, just like a token, but it has been
92     <firstterm>normalized</firstterm> so that different forms of the same word
93     are made alike.  For example, normalization almost always includes
94     folding upper-case letters to lower-case, and often involves removal
95     of suffixes (such as <literal>s</literal> or <literal>es</literal> in English).
96     This allows searches to find variant forms of the
97     same word, without tediously entering all the possible variants.
98     Also, this step typically eliminates <firstterm>stop words</firstterm>, which
99     are words that are so common that they are useless for searching.
100     (In short, then, tokens are raw fragments of the document text, while
101     lexemes are words that are believed useful for indexing and searching.)
102     <productname>PostgreSQL</productname> uses <firstterm>dictionaries</firstterm> to
103     perform this step.  Various standard dictionaries are provided, and
104     custom ones can be created for specific needs.
105    </para>
106   </listitem>
107
108   <listitem>
109    <para>
110     <emphasis>Storing preprocessed documents optimized for
111     searching</emphasis>.  For example, each document can be represented
112     as a sorted array of normalized lexemes. Along with the lexemes it is
113     often desirable to store positional information to use for
114     <firstterm>proximity ranking</firstterm>, so that a document that
115     contains a more <quote>dense</quote> region of query words is
116     assigned a higher rank than one with scattered query words.
117    </para>
118   </listitem>
119  </itemizedlist>
120
121  <para>
122   Dictionaries allow fine-grained control over how tokens are normalized.
123   With appropriate dictionaries, you can:
124  </para>
125
126  <itemizedlist  spacing="compact" mark="bullet">
127   <listitem>
128    <para>
129     Define stop words that should not be indexed.
130    </para>
131   </listitem>
132
133   <listitem>
134    <para>
135     Map synonyms to a single word using <application>Ispell</application>.
136    </para>
137   </listitem>
138
139   <listitem>
140    <para>
141     Map phrases to a single word using a thesaurus.
142    </para>
143   </listitem>
144
145   <listitem>
146    <para>
147     Map different variations of a word to a canonical form using
148     an <application>Ispell</application> dictionary.
149    </para>
150   </listitem>
151
152   <listitem>
153    <para>
154     Map different variations of a word to a canonical form using
155     <application>Snowball</application> stemmer rules.
156    </para>
157   </listitem>
158  </itemizedlist>
159
160  <para>
161   A data type <type>tsvector</type> is provided for storing preprocessed
162   documents, along with a type <type>tsquery</type> for representing processed
163   queries (<xref linkend="datatype-textsearch"/>).  There are many
164   functions and operators available for these data types
165   (<xref linkend="functions-textsearch"/>), the most important of which is
166   the match operator <literal>@@</literal>, which we introduce in
167   <xref linkend="textsearch-matching"/>.  Full text searches can be accelerated
168   using indexes (<xref linkend="textsearch-indexes"/>).
169  </para>
170
171
172  <sect2 id="textsearch-document">
173   <title>What Is a Document?</title>
174
175   <indexterm zone="textsearch-document">
176    <primary>document</primary>
177    <secondary>text search</secondary>
178   </indexterm>
179
180   <para>
181    A <firstterm>document</firstterm> is the unit of searching in a full text search
182    system; for example, a magazine article or email message.  The text search
183    engine must be able to parse documents and store associations of lexemes
184    (key words) with their parent document. Later, these associations are
185    used to search for documents that contain query words.
186   </para>
187
188   <para>
189    For searches within <productname>PostgreSQL</productname>,
190    a document is normally a textual field within a row of a database table,
191    or possibly a combination (concatenation) of such fields, perhaps stored
192    in several tables or obtained dynamically. In other words, a document can
193    be constructed from different parts for indexing and it might not be
194    stored anywhere as a whole. For example:
195
196<programlisting>
197SELECT title || ' ' ||  author || ' ' ||  abstract || ' ' || body AS document
198FROM messages
199WHERE mid = 12;
200
201SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS document
202FROM messages m, docs d
203WHERE m.mid = d.did AND m.mid = 12;
204</programlisting>
205   </para>
206
207   <note>
208    <para>
209     Actually, in these example queries, <function>coalesce</function>
210     should be used to prevent a single <literal>NULL</literal> attribute from
211     causing a <literal>NULL</literal> result for the whole document.
212    </para>
213   </note>
214
215   <para>
216    Another possibility is to store the documents as simple text files in the
217    file system. In this case, the database can be used to store the full text
218    index and to execute searches, and some unique identifier can be used to
219    retrieve the document from the file system.  However, retrieving files
220    from outside the database requires superuser permissions or special
221    function support, so this is usually less convenient than keeping all
222    the data inside <productname>PostgreSQL</productname>.  Also, keeping
223    everything inside the database allows easy access
224    to document metadata to assist in indexing and display.
225   </para>
226
227   <para>
228    For text search purposes, each document must be reduced to the
229    preprocessed <type>tsvector</type> format.  Searching and ranking
230    are performed entirely on the <type>tsvector</type> representation
231    of a document &mdash; the original text need only be retrieved
232    when the document has been selected for display to a user.
233    We therefore often speak of the <type>tsvector</type> as being the
234    document, but of course it is only a compact representation of
235    the full document.
236   </para>
237  </sect2>
238
239  <sect2 id="textsearch-matching">
240   <title>Basic Text Matching</title>
241
242   <para>
243    Full text searching in <productname>PostgreSQL</productname> is based on
244    the match operator <literal>@@</literal>, which returns
245    <literal>true</literal> if a <type>tsvector</type>
246    (document) matches a <type>tsquery</type> (query).
247    It doesn't matter which data type is written first:
248
249<programlisting>
250SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat &amp; rat'::tsquery;
251 ?column?
252----------
253 t
254
255SELECT 'fat &amp; cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
256 ?column?
257----------
258 f
259</programlisting>
260   </para>
261
262   <para>
263    As the above example suggests, a <type>tsquery</type> is not just raw
264    text, any more than a <type>tsvector</type> is.  A <type>tsquery</type>
265    contains search terms, which must be already-normalized lexemes, and
266    may combine multiple terms using AND, OR, NOT, and FOLLOWED BY operators.
267    (For syntax details see <xref linkend="datatype-tsquery"/>.)  There are
268    functions <function>to_tsquery</function>, <function>plainto_tsquery</function>,
269    and <function>phraseto_tsquery</function>
270    that are helpful in converting user-written text into a proper
271    <type>tsquery</type>, primarily by normalizing words appearing in
272    the text.  Similarly, <function>to_tsvector</function> is used to parse and
273    normalize a document string.  So in practice a text search match would
274    look more like this:
275
276<programlisting>
277SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat &amp; rat');
278 ?column?
279----------
280 t
281</programlisting>
282
283    Observe that this match would not succeed if written as
284
285<programlisting>
286SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat &amp; rat');
287 ?column?
288----------
289 f
290</programlisting>
291
292    since here no normalization of the word <literal>rats</literal> will occur.
293    The elements of a <type>tsvector</type> are lexemes, which are assumed
294    already normalized, so <literal>rats</literal> does not match <literal>rat</literal>.
295   </para>
296
297   <para>
298    The <literal>@@</literal> operator also
299    supports <type>text</type> input, allowing explicit conversion of a text
300    string to <type>tsvector</type> or <type>tsquery</type> to be skipped
301    in simple cases.  The variants available are:
302
303<programlisting>
304tsvector @@ tsquery
305tsquery  @@ tsvector
306text @@ tsquery
307text @@ text
308</programlisting>
309   </para>
310
311   <para>
312    The first two of these we saw already.
313    The form <type>text</type> <literal>@@</literal> <type>tsquery</type>
314    is equivalent to <literal>to_tsvector(x) @@ y</literal>.
315    The form <type>text</type> <literal>@@</literal> <type>text</type>
316    is equivalent to <literal>to_tsvector(x) @@ plainto_tsquery(y)</literal>.
317   </para>
318
319   <para>
320    Within a <type>tsquery</type>, the <literal>&amp;</literal> (AND) operator
321    specifies that both its arguments must appear in the document to have a
322    match.  Similarly, the <literal>|</literal> (OR) operator specifies that
323    at least one of its arguments must appear, while the <literal>!</literal> (NOT)
324    operator specifies that its argument must <emphasis>not</emphasis> appear in
325    order to have a match.
326    For example, the query <literal>fat &amp; ! rat</literal> matches documents that
327    contain <literal>fat</literal> but not <literal>rat</literal>.
328   </para>
329
330   <para>
331    Searching for phrases is possible with the help of
332    the <literal>&lt;-&gt;</literal> (FOLLOWED BY) <type>tsquery</type> operator, which
333    matches only if its arguments have matches that are adjacent and in the
334    given order.  For example:
335
336<programlisting>
337SELECT to_tsvector('fatal error') @@ to_tsquery('fatal &lt;-&gt; error');
338 ?column?
339----------
340 t
341
342SELECT to_tsvector('error is not fatal') @@ to_tsquery('fatal &lt;-&gt; error');
343 ?column?
344----------
345 f
346</programlisting>
347
348    There is a more general version of the FOLLOWED BY operator having the
349    form <literal>&lt;<replaceable>N</replaceable>&gt;</literal>,
350    where <replaceable>N</replaceable> is an integer standing for the difference between
351    the positions of the matching lexemes.  <literal>&lt;1&gt;</literal> is
352    the same as <literal>&lt;-&gt;</literal>, while <literal>&lt;2&gt;</literal>
353    allows exactly one other lexeme to appear between the matches, and so
354    on.  The <literal>phraseto_tsquery</literal> function makes use of this
355    operator to construct a <literal>tsquery</literal> that can match a multi-word
356    phrase when some of the words are stop words.  For example:
357
358<programlisting>
359SELECT phraseto_tsquery('cats ate rats');
360       phraseto_tsquery
361-------------------------------
362 'cat' &lt;-&gt; 'ate' &lt;-&gt; 'rat'
363
364SELECT phraseto_tsquery('the cats ate the rats');
365       phraseto_tsquery
366-------------------------------
367 'cat' &lt;-&gt; 'ate' &lt;2&gt; 'rat'
368</programlisting>
369   </para>
370
371   <para>
372    A special case that's sometimes useful is that <literal>&lt;0&gt;</literal>
373    can be used to require that two patterns match the same word.
374   </para>
375
376   <para>
377    Parentheses can be used to control nesting of the <type>tsquery</type>
378    operators.  Without parentheses, <literal>|</literal> binds least tightly,
379    then <literal>&amp;</literal>, then <literal>&lt;-&gt;</literal>,
380    and <literal>!</literal> most tightly.
381   </para>
382
383   <para>
384    It's worth noticing that the AND/OR/NOT operators mean something subtly
385    different when they are within the arguments of a FOLLOWED BY operator
386    than when they are not, because within FOLLOWED BY the exact position of
387    the match is significant.  For example, normally <literal>!x</literal> matches
388    only documents that do not contain <literal>x</literal> anywhere.
389    But <literal>!x &lt;-&gt; y</literal> matches <literal>y</literal> if it is not
390    immediately after an <literal>x</literal>; an occurrence of <literal>x</literal>
391    elsewhere in the document does not prevent a match.  Another example is
392    that <literal>x &amp; y</literal> normally only requires that <literal>x</literal>
393    and <literal>y</literal> both appear somewhere in the document, but
394    <literal>(x &amp; y) &lt;-&gt; z</literal> requires <literal>x</literal>
395    and <literal>y</literal> to match at the same place, immediately before
396    a <literal>z</literal>.  Thus this query behaves differently from
397    <literal>x &lt;-&gt; z &amp; y &lt;-&gt; z</literal>, which will match a
398    document containing two separate sequences <literal>x z</literal> and
399    <literal>y z</literal>.  (This specific query is useless as written,
400    since <literal>x</literal> and <literal>y</literal> could not match at the same place;
401    but with more complex situations such as prefix-match patterns, a query
402    of this form could be useful.)
403   </para>
404  </sect2>
405
406  <sect2 id="textsearch-intro-configurations">
407   <title>Configurations</title>
408
409   <para>
410    The above are all simple text search examples.  As mentioned before, full
411    text search functionality includes the ability to do many more things:
412    skip indexing certain words (stop words), process synonyms, and use
413    sophisticated parsing, e.g., parse based on more than just white space.
414    This functionality is controlled by <firstterm>text search
415    configurations</firstterm>.  <productname>PostgreSQL</productname> comes with predefined
416    configurations for many languages, and you can easily create your own
417    configurations.  (<application>psql</application>'s <command>\dF</command> command
418    shows all available configurations.)
419   </para>
420
421   <para>
422    During installation an appropriate configuration is selected and
423    <xref linkend="guc-default-text-search-config"/> is set accordingly
424    in <filename>postgresql.conf</filename>.  If you are using the same text search
425    configuration for the entire cluster you can use the value in
426    <filename>postgresql.conf</filename>.  To use different configurations
427    throughout the cluster but the same configuration within any one database,
428    use <command>ALTER DATABASE ... SET</command>.  Otherwise, you can set
429    <varname>default_text_search_config</varname> in each session.
430   </para>
431
432   <para>
433    Each text search function that depends on a configuration has an optional
434    <type>regconfig</type> argument, so that the configuration to use can be
435    specified explicitly.  <varname>default_text_search_config</varname>
436    is used only when this argument is omitted.
437   </para>
438
439   <para>
440    To make it easier to build custom text search configurations, a
441    configuration is built up from simpler database objects.
442    <productname>PostgreSQL</productname>'s text search facility provides
443    four types of configuration-related database objects:
444   </para>
445
446  <itemizedlist  spacing="compact" mark="bullet">
447   <listitem>
448    <para>
449     <firstterm>Text search parsers</firstterm> break documents into tokens
450     and classify each token (for example, as words or numbers).
451    </para>
452   </listitem>
453
454   <listitem>
455    <para>
456     <firstterm>Text search dictionaries</firstterm> convert tokens to normalized
457     form and reject stop words.
458    </para>
459   </listitem>
460
461   <listitem>
462    <para>
463     <firstterm>Text search templates</firstterm> provide the functions underlying
464     dictionaries.  (A dictionary simply specifies a template and a set
465     of parameters for the template.)
466    </para>
467   </listitem>
468
469   <listitem>
470    <para>
471     <firstterm>Text search configurations</firstterm> select a parser and a set
472     of dictionaries to use to normalize the tokens produced by the parser.
473    </para>
474   </listitem>
475  </itemizedlist>
476
477   <para>
478    Text search parsers and templates are built from low-level C functions;
479    therefore it requires C programming ability to develop new ones, and
480    superuser privileges to install one into a database.  (There are examples
481    of add-on parsers and templates in the <filename>contrib/</filename> area of the
482    <productname>PostgreSQL</productname> distribution.)  Since dictionaries and
483    configurations just parameterize and connect together some underlying
484    parsers and templates, no special privilege is needed to create a new
485    dictionary or configuration.  Examples of creating custom dictionaries and
486    configurations appear later in this chapter.
487   </para>
488
489  </sect2>
490
491 </sect1>
492
493 <sect1 id="textsearch-tables">
494  <title>Tables and Indexes</title>
495
496  <para>
497   The examples in the previous section illustrated full text matching using
498   simple constant strings.  This section shows how to search table data,
499   optionally using indexes.
500  </para>
501
502  <sect2 id="textsearch-tables-search">
503   <title>Searching a Table</title>
504
505   <para>
506    It is possible to do a full text search without an index.  A simple query
507    to print the <structname>title</structname> of each row that contains the word
508    <literal>friend</literal> in its <structfield>body</structfield> field is:
509
510<programlisting>
511SELECT title
512FROM pgweb
513WHERE to_tsvector('english', body) @@ to_tsquery('english', 'friend');
514</programlisting>
515
516    This will also find related words such as <literal>friends</literal>
517    and <literal>friendly</literal>, since all these are reduced to the same
518    normalized lexeme.
519   </para>
520
521   <para>
522    The query above specifies that the <literal>english</literal> configuration
523    is to be used to parse and normalize the strings.  Alternatively we
524    could omit the configuration parameters:
525
526<programlisting>
527SELECT title
528FROM pgweb
529WHERE to_tsvector(body) @@ to_tsquery('friend');
530</programlisting>
531
532    This query will use the configuration set by <xref
533    linkend="guc-default-text-search-config"/>.
534   </para>
535
536   <para>
537    A more complex example is to
538    select the ten most recent documents that contain <literal>create</literal> and
539    <literal>table</literal> in the <structname>title</structname> or <structname>body</structname>:
540
541<programlisting>
542SELECT title
543FROM pgweb
544WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('create &amp; table')
545ORDER BY last_mod_date DESC
546LIMIT 10;
547</programlisting>
548
549    For clarity we omitted the <function>coalesce</function> function calls
550    which would be needed to find rows that contain <literal>NULL</literal>
551    in one of the two fields.
552   </para>
553
554   <para>
555    Although these queries will work without an index, most applications
556    will find this approach too slow, except perhaps for occasional ad-hoc
557    searches.  Practical use of text searching usually requires creating
558    an index.
559   </para>
560
561  </sect2>
562
563  <sect2 id="textsearch-tables-index">
564   <title>Creating Indexes</title>
565
566   <para>
567    We can create a <acronym>GIN</acronym> index (<xref
568    linkend="textsearch-indexes"/>) to speed up text searches:
569
570<programlisting>
571CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', body));
572</programlisting>
573
574    Notice that the 2-argument version of <function>to_tsvector</function> is
575    used.  Only text search functions that specify a configuration name can
576    be used in expression indexes (<xref linkend="indexes-expressional"/>).
577    This is because the index contents must be unaffected by <xref
578    linkend="guc-default-text-search-config"/>.  If they were affected, the
579    index contents might be inconsistent because different entries could
580    contain <type>tsvector</type>s that were created with different text search
581    configurations, and there would be no way to guess which was which.  It
582    would be impossible to dump and restore such an index correctly.
583   </para>
584
585   <para>
586    Because the two-argument version of <function>to_tsvector</function> was
587    used in the index above, only a query reference that uses the 2-argument
588    version of <function>to_tsvector</function> with the same configuration
589    name will use that index.  That is, <literal>WHERE
590    to_tsvector('english', body) @@ 'a &amp; b'</literal> can use the index,
591    but <literal>WHERE to_tsvector(body) @@ 'a &amp; b'</literal> cannot.
592    This ensures that an index will be used only with the same configuration
593    used to create the index entries.
594   </para>
595
596  <para>
597    It is possible to set up more complex expression indexes wherein the
598    configuration name is specified by another column, e.g.:
599
600<programlisting>
601CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector(config_name, body));
602</programlisting>
603
604    where <literal>config_name</literal> is a column in the <literal>pgweb</literal>
605    table.  This allows mixed configurations in the same index while
606    recording which configuration was used for each index entry.  This
607    would be useful, for example, if the document collection contained
608    documents in different languages.  Again,
609    queries that are meant to use the index must be phrased to match, e.g.,
610    <literal>WHERE to_tsvector(config_name, body) @@ 'a &amp; b'</literal>.
611   </para>
612
613   <para>
614    Indexes can even concatenate columns:
615
616<programlisting>
617CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));
618</programlisting>
619   </para>
620
621   <para>
622    Another approach is to create a separate <type>tsvector</type> column
623    to hold the output of <function>to_tsvector</function>.  To keep this
624    column automatically up to date with its source data, use a stored
625    generated column.  This example is a
626    concatenation of <literal>title</literal> and <literal>body</literal>,
627    using <function>coalesce</function> to ensure that one field will still be
628    indexed when the other is <literal>NULL</literal>:
629
630<programlisting>
631ALTER TABLE pgweb
632    ADD COLUMN textsearchable_index_col tsvector
633               GENERATED ALWAYS AS (to_tsvector('english', coalesce(title, '') || ' ' || coalesce(body, ''))) STORED;
634</programlisting>
635
636    Then we create a <acronym>GIN</acronym> index to speed up the search:
637
638<programlisting>
639CREATE INDEX textsearch_idx ON pgweb USING GIN (textsearchable_index_col);
640</programlisting>
641
642    Now we are ready to perform a fast full text search:
643
644<programlisting>
645SELECT title
646FROM pgweb
647WHERE textsearchable_index_col @@ to_tsquery('create &amp; table')
648ORDER BY last_mod_date DESC
649LIMIT 10;
650</programlisting>
651   </para>
652
653   <para>
654    One advantage of the separate-column approach over an expression index
655    is that it is not necessary to explicitly specify the text search
656    configuration in queries in order to make use of the index.  As shown
657    in the example above, the query can depend on
658    <varname>default_text_search_config</varname>.  Another advantage is that
659    searches will be faster, since it will not be necessary to redo the
660    <function>to_tsvector</function> calls to verify index matches.  (This is more
661    important when using a GiST index than a GIN index; see <xref
662    linkend="textsearch-indexes"/>.)  The expression-index approach is
663    simpler to set up, however, and it requires less disk space since the
664    <type>tsvector</type> representation is not stored explicitly.
665   </para>
666
667  </sect2>
668
669 </sect1>
670
671 <sect1 id="textsearch-controls">
672  <title>Controlling Text Search</title>
673
674  <para>
675   To implement full text searching there must be a function to create a
676   <type>tsvector</type> from a document and a <type>tsquery</type> from a
677   user query. Also, we need to return results in a useful order, so we need
678   a function that compares documents with respect to their relevance to
679   the query. It's also important to be able to display the results nicely.
680   <productname>PostgreSQL</productname> provides support for all of these
681   functions.
682  </para>
683
684  <sect2 id="textsearch-parsing-documents">
685   <title>Parsing Documents</title>
686
687   <para>
688    <productname>PostgreSQL</productname> provides the
689    function <function>to_tsvector</function> for converting a document to
690    the <type>tsvector</type> data type.
691   </para>
692
693   <indexterm>
694    <primary>to_tsvector</primary>
695   </indexterm>
696
697<synopsis>
698to_tsvector(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">document</replaceable> <type>text</type>) returns <type>tsvector</type>
699</synopsis>
700
701   <para>
702    <function>to_tsvector</function> parses a textual document into tokens,
703    reduces the tokens to lexemes, and returns a <type>tsvector</type> which
704    lists the lexemes together with their positions in the document.
705    The document is processed according to the specified or default
706    text search configuration.
707    Here is a simple example:
708
709<screen>
710SELECT to_tsvector('english', 'a fat  cat sat on a mat - it ate a fat rats');
711                  to_tsvector
712-----------------------------------------------------
713 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4
714</screen>
715   </para>
716
717   <para>
718    In the example above we see that the resulting <type>tsvector</type> does not
719    contain the words <literal>a</literal>, <literal>on</literal>, or
720    <literal>it</literal>, the word <literal>rats</literal> became
721    <literal>rat</literal>, and the punctuation sign <literal>-</literal> was
722    ignored.
723   </para>
724
725   <para>
726    The <function>to_tsvector</function> function internally calls a parser
727    which breaks the document text into tokens and assigns a type to
728    each token.  For each token, a list of
729    dictionaries (<xref linkend="textsearch-dictionaries"/>) is consulted,
730    where the list can vary depending on the token type.  The first dictionary
731    that <firstterm>recognizes</firstterm> the token emits one or more normalized
732    <firstterm>lexemes</firstterm> to represent the token.  For example,
733    <literal>rats</literal> became <literal>rat</literal> because one of the
734    dictionaries recognized that the word <literal>rats</literal> is a plural
735    form of <literal>rat</literal>.  Some words are recognized as
736    <firstterm>stop words</firstterm> (<xref linkend="textsearch-stopwords"/>), which
737    causes them to be ignored since they occur too frequently to be useful in
738    searching.  In our example these are
739    <literal>a</literal>, <literal>on</literal>, and <literal>it</literal>.
740    If no dictionary in the list recognizes the token then it is also ignored.
741    In this example that happened to the punctuation sign <literal>-</literal>
742    because there are in fact no dictionaries assigned for its token type
743    (<literal>Space symbols</literal>), meaning space tokens will never be
744    indexed. The choices of parser, dictionaries and which types of tokens to
745    index are determined by the selected text search configuration (<xref
746    linkend="textsearch-configuration"/>).  It is possible to have
747    many different configurations in the same database, and predefined
748    configurations are available for various languages. In our example
749    we used the default configuration <literal>english</literal> for the
750    English language.
751   </para>
752
753   <para>
754    The function <function>setweight</function> can be used to label the
755    entries of a <type>tsvector</type> with a given <firstterm>weight</firstterm>,
756    where a weight is one of the letters <literal>A</literal>, <literal>B</literal>,
757    <literal>C</literal>, or <literal>D</literal>.
758    This is typically used to mark entries coming from
759    different parts of a document, such as title versus body.  Later, this
760    information can be used for ranking of search results.
761   </para>
762
763   <para>
764    Because <function>to_tsvector</function>(<literal>NULL</literal>) will
765    return <literal>NULL</literal>, it is recommended to use
766    <function>coalesce</function> whenever a field might be null.
767    Here is the recommended method for creating
768    a <type>tsvector</type> from a structured document:
769
770<programlisting>
771UPDATE tt SET ti =
772    setweight(to_tsvector(coalesce(title,'')), 'A')    ||
773    setweight(to_tsvector(coalesce(keyword,'')), 'B')  ||
774    setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
775    setweight(to_tsvector(coalesce(body,'')), 'D');
776</programlisting>
777
778    Here we have used <function>setweight</function> to label the source
779    of each lexeme in the finished <type>tsvector</type>, and then merged
780    the labeled <type>tsvector</type> values using the <type>tsvector</type>
781    concatenation operator <literal>||</literal>.  (<xref
782    linkend="textsearch-manipulate-tsvector"/> gives details about these
783    operations.)
784   </para>
785
786  </sect2>
787
788  <sect2 id="textsearch-parsing-queries">
789   <title>Parsing Queries</title>
790
791   <para>
792    <productname>PostgreSQL</productname> provides the
793    functions <function>to_tsquery</function>,
794    <function>plainto_tsquery</function>,
795    <function>phraseto_tsquery</function> and
796    <function>websearch_to_tsquery</function>
797    for converting a query to the <type>tsquery</type> data type.
798    <function>to_tsquery</function> offers access to more features
799    than either <function>plainto_tsquery</function> or
800    <function>phraseto_tsquery</function>, but it is less forgiving about its
801    input. <function>websearch_to_tsquery</function> is a simplified version
802    of <function>to_tsquery</function> with an alternative syntax, similar
803    to the one used by web search engines.
804   </para>
805
806   <indexterm>
807    <primary>to_tsquery</primary>
808   </indexterm>
809
810<synopsis>
811to_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
812</synopsis>
813
814   <para>
815    <function>to_tsquery</function> creates a <type>tsquery</type> value from
816    <replaceable>querytext</replaceable>, which must consist of single tokens
817    separated by the <type>tsquery</type> operators <literal>&amp;</literal> (AND),
818    <literal>|</literal> (OR), <literal>!</literal> (NOT), and
819    <literal>&lt;-&gt;</literal> (FOLLOWED BY), possibly grouped
820    using parentheses.  In other words, the input to
821    <function>to_tsquery</function> must already follow the general rules for
822    <type>tsquery</type> input, as described in <xref
823    linkend="datatype-tsquery"/>.  The difference is that while basic
824    <type>tsquery</type> input takes the tokens at face value,
825    <function>to_tsquery</function> normalizes each token into a lexeme using
826    the specified or default configuration, and discards any tokens that are
827    stop words according to the configuration.  For example:
828
829<screen>
830SELECT to_tsquery('english', 'The &amp; Fat &amp; Rats');
831  to_tsquery
832---------------
833 'fat' &amp; 'rat'
834</screen>
835
836    As in basic <type>tsquery</type> input, weight(s) can be attached to each
837    lexeme to restrict it to match only <type>tsvector</type> lexemes of those
838    weight(s).  For example:
839
840<screen>
841SELECT to_tsquery('english', 'Fat | Rats:AB');
842    to_tsquery
843------------------
844 'fat' | 'rat':AB
845</screen>
846
847    Also, <literal>*</literal> can be attached to a lexeme to specify prefix matching:
848
849<screen>
850SELECT to_tsquery('supern:*A &amp; star:A*B');
851        to_tsquery
852--------------------------
853 'supern':*A &amp; 'star':*AB
854</screen>
855
856    Such a lexeme will match any word in a <type>tsvector</type> that begins
857    with the given string.
858   </para>
859
860   <para>
861    <function>to_tsquery</function> can also accept single-quoted
862    phrases.  This is primarily useful when the configuration includes a
863    thesaurus dictionary that may trigger on such phrases.
864    In the example below, a thesaurus contains the rule <literal>supernovae
865    stars : sn</literal>:
866
867<screen>
868SELECT to_tsquery('''supernovae stars'' &amp; !crab');
869  to_tsquery
870---------------
871 'sn' &amp; !'crab'
872</screen>
873
874    Without quotes, <function>to_tsquery</function> will generate a syntax
875    error for tokens that are not separated by an AND, OR, or FOLLOWED BY
876    operator.
877   </para>
878
879   <indexterm>
880    <primary>plainto_tsquery</primary>
881   </indexterm>
882
883<synopsis>
884plainto_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
885</synopsis>
886
887   <para>
888    <function>plainto_tsquery</function> transforms the unformatted text
889    <replaceable>querytext</replaceable> to a <type>tsquery</type> value.
890    The text is parsed and normalized much as for <function>to_tsvector</function>,
891    then the <literal>&amp;</literal> (AND) <type>tsquery</type> operator is
892    inserted between surviving words.
893   </para>
894
895   <para>
896    Example:
897
898<screen>
899SELECT plainto_tsquery('english', 'The Fat Rats');
900 plainto_tsquery
901-----------------
902 'fat' &amp; 'rat'
903</screen>
904
905    Note that <function>plainto_tsquery</function> will not
906    recognize <type>tsquery</type> operators, weight labels,
907    or prefix-match labels in its input:
908
909<screen>
910SELECT plainto_tsquery('english', 'The Fat &amp; Rats:C');
911   plainto_tsquery
912---------------------
913 'fat' &amp; 'rat' &amp; 'c'
914</screen>
915
916    Here, all the input punctuation was discarded as being space symbols.
917   </para>
918
919   <indexterm>
920    <primary>phraseto_tsquery</primary>
921   </indexterm>
922
923<synopsis>
924phraseto_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
925</synopsis>
926
927   <para>
928    <function>phraseto_tsquery</function> behaves much like
929    <function>plainto_tsquery</function>, except that it inserts
930    the <literal>&lt;-&gt;</literal> (FOLLOWED BY) operator between
931    surviving words instead of the <literal>&amp;</literal> (AND) operator.
932    Also, stop words are not simply discarded, but are accounted for by
933    inserting <literal>&lt;<replaceable>N</replaceable>&gt;</literal> operators rather
934    than <literal>&lt;-&gt;</literal> operators.  This function is useful
935    when searching for exact lexeme sequences, since the FOLLOWED BY
936    operators check lexeme order not just the presence of all the lexemes.
937   </para>
938
939   <para>
940    Example:
941
942<screen>
943SELECT phraseto_tsquery('english', 'The Fat Rats');
944 phraseto_tsquery
945------------------
946 'fat' &lt;-&gt; 'rat'
947</screen>
948
949    Like <function>plainto_tsquery</function>, the
950    <function>phraseto_tsquery</function> function will not
951    recognize <type>tsquery</type> operators, weight labels,
952    or prefix-match labels in its input:
953
954<screen>
955SELECT phraseto_tsquery('english', 'The Fat &amp; Rats:C');
956      phraseto_tsquery
957-----------------------------
958 'fat' &lt;-&gt; 'rat' &lt;-&gt; 'c'
959</screen>
960   </para>
961
962<synopsis>
963websearch_to_tsquery(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">querytext</replaceable> <type>text</type>) returns <type>tsquery</type>
964</synopsis>
965
966   <para>
967    <function>websearch_to_tsquery</function> creates a <type>tsquery</type>
968    value from <replaceable>querytext</replaceable> using an alternative
969    syntax in which simple unformatted text is a valid query.
970    Unlike <function>plainto_tsquery</function>
971    and <function>phraseto_tsquery</function>, it also recognizes certain
972    operators. Moreover, this function should never raise syntax errors,
973    which makes it possible to use raw user-supplied input for search.
974    The following syntax is supported:
975    <itemizedlist  spacing="compact" mark="bullet">
976     <listitem>
977       <para>
978        <literal>unquoted text</literal>: text not inside quote marks will be
979        converted to terms separated by <literal>&amp;</literal> operators, as
980        if processed by
981        <function>plainto_tsquery</function>.
982      </para>
983     </listitem>
984     <listitem>
985       <para>
986        <literal>"quoted text"</literal>: text inside quote marks will be
987        converted to terms separated by <literal>&lt;-&gt;</literal>
988        operators, as if processed by <function>phraseto_tsquery</function>.
989      </para>
990     </listitem>
991     <listitem>
992      <para>
993       <literal>OR</literal>: logical or will be converted to
994       the <literal>|</literal> operator.
995      </para>
996     </listitem>
997     <listitem>
998      <para>
999       <literal>-</literal>: the logical not operator, converted to the
1000       the <literal>!</literal> operator.
1001      </para>
1002     </listitem>
1003    </itemizedlist>
1004   </para>
1005   <para>
1006    Examples:
1007<screen>
1008SELECT websearch_to_tsquery('english', 'The fat rats');
1009 websearch_to_tsquery
1010----------------------
1011 'fat' &amp; 'rat'
1012(1 row)
1013
1014SELECT websearch_to_tsquery('english', '"supernovae stars" -crab');
1015       websearch_to_tsquery
1016----------------------------------
1017 'supernova' &lt;-&gt; 'star' &amp; !'crab'
1018(1 row)
1019
1020SELECT websearch_to_tsquery('english', '"sad cat" or "fat rat"');
1021       websearch_to_tsquery
1022-----------------------------------
1023 'sad' &lt;-&gt; 'cat' | 'fat' &lt;-&gt; 'rat'
1024(1 row)
1025
1026SELECT websearch_to_tsquery('english', 'signal -"segmentation fault"');
1027         websearch_to_tsquery
1028---------------------------------------
1029 'signal' &amp; !( 'segment' &lt;-&gt; 'fault' )
1030(1 row)
1031
1032SELECT websearch_to_tsquery('english', '""" )( dummy \\ query &lt;-&gt;');
1033 websearch_to_tsquery
1034----------------------
1035 'dummi' &amp; 'queri'
1036(1 row)
1037</screen>
1038    </para>
1039  </sect2>
1040
1041  <sect2 id="textsearch-ranking">
1042   <title>Ranking Search Results</title>
1043
1044   <para>
1045    Ranking attempts to measure how relevant documents are to a particular
1046    query, so that when there are many matches the most relevant ones can be
1047    shown first.  <productname>PostgreSQL</productname> provides two
1048    predefined ranking functions, which take into account lexical, proximity,
1049    and structural information; that is, they consider how often the query
1050    terms appear in the document, how close together the terms are in the
1051    document, and how important is the part of the document where they occur.
1052    However, the concept of relevancy is vague and very application-specific.
1053    Different applications might require additional information for ranking,
1054    e.g., document modification time.  The built-in ranking functions are only
1055    examples.  You can write your own ranking functions and/or combine their
1056    results with additional factors to fit your specific needs.
1057   </para>
1058
1059   <para>
1060    The two ranking functions currently available are:
1061
1062    <variablelist>
1063
1064     <varlistentry>
1065
1066      <term>
1067       <indexterm>
1068        <primary>ts_rank</primary>
1069       </indexterm>
1070
1071       <literal>ts_rank(<optional> <replaceable class="parameter">weights</replaceable> <type>float4[]</type>, </optional> <replaceable class="parameter">vector</replaceable> <type>tsvector</type>, <replaceable class="parameter">query</replaceable> <type>tsquery</type> <optional>, <replaceable class="parameter">normalization</replaceable> <type>integer</type> </optional>) returns <type>float4</type></literal>
1072      </term>
1073
1074      <listitem>
1075       <para>
1076        Ranks vectors based on the frequency of their matching lexemes.
1077       </para>
1078      </listitem>
1079     </varlistentry>
1080
1081     <varlistentry>
1082
1083      <term>
1084      <indexterm>
1085       <primary>ts_rank_cd</primary>
1086      </indexterm>
1087
1088       <literal>ts_rank_cd(<optional> <replaceable class="parameter">weights</replaceable> <type>float4[]</type>, </optional> <replaceable class="parameter">vector</replaceable> <type>tsvector</type>, <replaceable class="parameter">query</replaceable> <type>tsquery</type> <optional>, <replaceable class="parameter">normalization</replaceable> <type>integer</type> </optional>) returns <type>float4</type></literal>
1089      </term>
1090
1091      <listitem>
1092       <para>
1093        This function computes the <firstterm>cover density</firstterm>
1094        ranking for the given document vector and query, as described in
1095        Clarke, Cormack, and Tudhope's "Relevance Ranking for One to Three
1096        Term Queries" in the journal "Information Processing and Management",
1097        1999.  Cover density is similar to <function>ts_rank</function> ranking
1098        except that the proximity of matching lexemes to each other is
1099        taken into consideration.
1100       </para>
1101
1102       <para>
1103        This function requires lexeme positional information to perform
1104        its calculation.  Therefore, it ignores any <quote>stripped</quote>
1105        lexemes in the <type>tsvector</type>.  If there are no unstripped
1106        lexemes in the input, the result will be zero.  (See <xref
1107        linkend="textsearch-manipulate-tsvector"/> for more information
1108        about the <function>strip</function> function and positional information
1109        in <type>tsvector</type>s.)
1110       </para>
1111      </listitem>
1112     </varlistentry>
1113
1114    </variablelist>
1115
1116   </para>
1117
1118   <para>
1119    For both these functions,
1120    the optional <replaceable class="parameter">weights</replaceable>
1121    argument offers the ability to weigh word instances more or less
1122    heavily depending on how they are labeled.  The weight arrays specify
1123    how heavily to weigh each category of word, in the order:
1124
1125<synopsis>
1126{D-weight, C-weight, B-weight, A-weight}
1127</synopsis>
1128
1129    If no <replaceable class="parameter">weights</replaceable> are provided,
1130    then these defaults are used:
1131
1132<programlisting>
1133{0.1, 0.2, 0.4, 1.0}
1134</programlisting>
1135
1136    Typically weights are used to mark words from special areas of the
1137    document, like the title or an initial abstract, so they can be
1138    treated with more or less importance than words in the document body.
1139   </para>
1140
1141   <para>
1142    Since a longer document has a greater chance of containing a query term
1143    it is reasonable to take into account document size, e.g., a hundred-word
1144    document with five instances of a search word is probably more relevant
1145    than a thousand-word document with five instances.  Both ranking functions
1146    take an integer <replaceable>normalization</replaceable> option that
1147    specifies whether and how a document's length should impact its rank.
1148    The integer option controls several behaviors, so it is a bit mask:
1149    you can specify one or more behaviors using
1150    <literal>|</literal> (for example, <literal>2|4</literal>).
1151
1152    <itemizedlist  spacing="compact" mark="bullet">
1153     <listitem>
1154      <para>
1155       0 (the default) ignores the document length
1156      </para>
1157     </listitem>
1158     <listitem>
1159      <para>
1160       1 divides the rank by 1 + the logarithm of the document length
1161      </para>
1162     </listitem>
1163     <listitem>
1164      <para>
1165       2 divides the rank by the document length
1166      </para>
1167     </listitem>
1168     <listitem>
1169      <para>
1170       4 divides the rank by the mean harmonic distance between extents
1171       (this is implemented only by <function>ts_rank_cd</function>)
1172      </para>
1173     </listitem>
1174     <listitem>
1175      <para>
1176       8 divides the rank by the number of unique words in document
1177      </para>
1178     </listitem>
1179     <listitem>
1180      <para>
1181       16 divides the rank by 1 + the logarithm of the number
1182       of unique words in document
1183      </para>
1184     </listitem>
1185     <listitem>
1186      <para>
1187       32 divides the rank by itself + 1
1188      </para>
1189     </listitem>
1190    </itemizedlist>
1191
1192    If more than one flag bit is specified, the transformations are
1193    applied in the order listed.
1194   </para>
1195
1196   <para>
1197    It is important to note that the ranking functions do not use any global
1198    information, so it is impossible to produce a fair normalization to 1% or
1199    100% as sometimes desired.  Normalization option 32
1200    (<literal>rank/(rank+1)</literal>) can be applied to scale all ranks
1201    into the range zero to one, but of course this is just a cosmetic change;
1202    it will not affect the ordering of the search results.
1203   </para>
1204
1205   <para>
1206    Here is an example that selects only the ten highest-ranked matches:
1207
1208<screen>
1209SELECT title, ts_rank_cd(textsearch, query) AS rank
1210FROM apod, to_tsquery('neutrino|(dark &amp; matter)') query
1211WHERE query @@ textsearch
1212ORDER BY rank DESC
1213LIMIT 10;
1214                     title                     |   rank
1215-----------------------------------------------+----------
1216 Neutrinos in the Sun                          |      3.1
1217 The Sudbury Neutrino Detector                 |      2.4
1218 A MACHO View of Galactic Dark Matter          |  2.01317
1219 Hot Gas and Dark Matter                       |  1.91171
1220 The Virgo Cluster: Hot Plasma and Dark Matter |  1.90953
1221 Rafting for Solar Neutrinos                   |      1.9
1222 NGC 4650A: Strange Galaxy and Dark Matter     |  1.85774
1223 Hot Gas and Dark Matter                       |   1.6123
1224 Ice Fishing for Cosmic Neutrinos              |      1.6
1225 Weak Lensing Distorts the Universe            | 0.818218
1226</screen>
1227
1228    This is the same example using normalized ranking:
1229
1230<screen>
1231SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */ ) AS rank
1232FROM apod, to_tsquery('neutrino|(dark &amp; matter)') query
1233WHERE  query @@ textsearch
1234ORDER BY rank DESC
1235LIMIT 10;
1236                     title                     |        rank
1237-----------------------------------------------+-------------------
1238 Neutrinos in the Sun                          | 0.756097569485493
1239 The Sudbury Neutrino Detector                 | 0.705882361190954
1240 A MACHO View of Galactic Dark Matter          | 0.668123210574724
1241 Hot Gas and Dark Matter                       |  0.65655958650282
1242 The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
1243 Rafting for Solar Neutrinos                   | 0.655172410958162
1244 NGC 4650A: Strange Galaxy and Dark Matter     | 0.650072921219637
1245 Hot Gas and Dark Matter                       | 0.617195790024749
1246 Ice Fishing for Cosmic Neutrinos              | 0.615384618911517
1247 Weak Lensing Distorts the Universe            | 0.450010798361481
1248</screen>
1249   </para>
1250
1251   <para>
1252    Ranking can be expensive since it requires consulting the
1253    <type>tsvector</type> of each matching document, which can be I/O bound and
1254    therefore slow. Unfortunately, it is almost impossible to avoid since
1255    practical queries often result in large numbers of matches.
1256   </para>
1257
1258  </sect2>
1259
1260  <sect2 id="textsearch-headline">
1261   <title>Highlighting Results</title>
1262
1263   <para>
1264    To present search results it is ideal to show a part of each document and
1265    how it is related to the query. Usually, search engines show fragments of
1266    the document with marked search terms.  <productname>PostgreSQL</productname>
1267    provides a function <function>ts_headline</function> that
1268    implements this functionality.
1269   </para>
1270
1271   <indexterm>
1272    <primary>ts_headline</primary>
1273   </indexterm>
1274
1275<synopsis>
1276ts_headline(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">document</replaceable> <type>text</type>, <replaceable class="parameter">query</replaceable> <type>tsquery</type> <optional>, <replaceable class="parameter">options</replaceable> <type>text</type> </optional>) returns <type>text</type>
1277</synopsis>
1278
1279   <para>
1280    <function>ts_headline</function> accepts a document along
1281    with a query, and returns an excerpt from
1282    the document in which terms from the query are highlighted.  The
1283    configuration to be used to parse the document can be specified by
1284    <replaceable>config</replaceable>; if <replaceable>config</replaceable>
1285    is omitted, the
1286    <varname>default_text_search_config</varname> configuration is used.
1287   </para>
1288
1289   <para>
1290    If an <replaceable>options</replaceable> string is specified it must
1291    consist of a comma-separated list of one or more
1292    <replaceable>option</replaceable><literal>=</literal><replaceable>value</replaceable> pairs.
1293    The available options are:
1294
1295    <itemizedlist  spacing="compact" mark="bullet">
1296     <listitem>
1297      <para>
1298       <literal>MaxWords</literal>, <literal>MinWords</literal> (integers):
1299       these numbers determine the longest and shortest headlines to output.
1300       The default values are 35 and 15.
1301      </para>
1302     </listitem>
1303     <listitem>
1304      <para>
1305       <literal>ShortWord</literal> (integer): words of this length or less
1306       will be dropped at the start and end of a headline, unless they are
1307       query terms.  The default value of three eliminates common English
1308       articles.
1309      </para>
1310     </listitem>
1311     <listitem>
1312      <para>
1313       <literal>HighlightAll</literal> (boolean): if
1314       <literal>true</literal> the whole document will be used as the
1315       headline, ignoring the preceding three parameters.  The default
1316       is <literal>false</literal>.
1317      </para>
1318     </listitem>
1319     <listitem>
1320      <para>
1321       <literal>MaxFragments</literal> (integer): maximum number of text
1322       fragments to display.  The default value of zero selects a
1323       non-fragment-based headline generation method.  A value greater
1324       than zero selects fragment-based headline generation (see below).
1325      </para>
1326     </listitem>
1327     <listitem>
1328      <para>
1329       <literal>StartSel</literal>, <literal>StopSel</literal> (strings):
1330       the strings with which to delimit query words appearing in the
1331       document, to distinguish them from other excerpted words.  The
1332       default values are <quote><literal>&lt;b&gt;</literal></quote> and
1333       <quote><literal>&lt;/b&gt;</literal></quote>, which can be suitable
1334       for HTML output.
1335      </para>
1336     </listitem>
1337     <listitem>
1338      <para>
1339       <literal>FragmentDelimiter</literal> (string): When more than one
1340       fragment is displayed, the fragments will be separated by this string.
1341       The default is <quote><literal> ... </literal></quote>.
1342      </para>
1343     </listitem>
1344    </itemizedlist>
1345
1346    These option names are recognized case-insensitively.
1347    You must double-quote string values if they contain spaces or commas.
1348   </para>
1349
1350   <para>
1351    In non-fragment-based headline
1352    generation, <function>ts_headline</function> locates matches for the
1353    given <replaceable class="parameter">query</replaceable> and chooses a
1354    single one to display, preferring matches that have more query words
1355    within the allowed headline length.
1356    In fragment-based headline generation, <function>ts_headline</function>
1357    locates the query matches and splits each match
1358    into <quote>fragments</quote> of no more than <literal>MaxWords</literal>
1359    words each, preferring fragments with more query words, and when
1360    possible <quote>stretching</quote> fragments to include surrounding
1361    words.  The fragment-based mode is thus more useful when the query
1362    matches span large sections of the document, or when it's desirable to
1363    display multiple matches.
1364    In either mode, if no query matches can be identified, then a single
1365    fragment of the first <literal>MinWords</literal> words in the document
1366    will be displayed.
1367   </para>
1368
1369   <para>
1370    For example:
1371
1372<screen>
1373SELECT ts_headline('english',
1374  'The most common type of search
1375is to find all documents containing given query terms
1376and return them in order of their similarity to the
1377query.',
1378  to_tsquery('english', 'query &amp; similarity'));
1379                        ts_headline
1380------------------------------------------------------------
1381 containing given &lt;b&gt;query&lt;/b&gt; terms                       +
1382 and return them in order of their &lt;b&gt;similarity&lt;/b&gt; to the+
1383 &lt;b&gt;query&lt;/b&gt;.
1384
1385SELECT ts_headline('english',
1386  'Search terms may occur
1387many times in a document,
1388requiring ranking of the search matches to decide which
1389occurrences to display in the result.',
1390  to_tsquery('english', 'search &amp; term'),
1391  'MaxFragments=10, MaxWords=7, MinWords=3, StartSel=&lt;&lt;, StopSel=&gt;&gt;');
1392                        ts_headline
1393------------------------------------------------------------
1394 &lt;&lt;Search&gt;&gt; &lt;&lt;terms&gt;&gt; may occur                            +
1395 many times ... ranking of the &lt;&lt;search&gt;&gt; matches to decide
1396</screen>
1397   </para>
1398
1399   <para>
1400    <function>ts_headline</function> uses the original document, not a
1401    <type>tsvector</type> summary, so it can be slow and should be used with
1402    care.
1403   </para>
1404
1405  </sect2>
1406
1407 </sect1>
1408
1409 <sect1 id="textsearch-features">
1410  <title>Additional Features</title>
1411
1412  <para>
1413   This section describes additional functions and operators that are
1414   useful in connection with text search.
1415  </para>
1416
1417  <sect2 id="textsearch-manipulate-tsvector">
1418   <title>Manipulating Documents</title>
1419
1420   <para>
1421    <xref linkend="textsearch-parsing-documents"/> showed how raw textual
1422    documents can be converted into <type>tsvector</type> values.
1423    <productname>PostgreSQL</productname> also provides functions and
1424    operators that can be used to manipulate documents that are already
1425    in <type>tsvector</type> form.
1426   </para>
1427
1428   <variablelist>
1429
1430    <varlistentry>
1431
1432     <term>
1433     <indexterm>
1434      <primary>tsvector concatenation</primary>
1435     </indexterm>
1436
1437      <literal><type>tsvector</type> || <type>tsvector</type></literal>
1438     </term>
1439
1440     <listitem>
1441      <para>
1442       The <type>tsvector</type> concatenation operator
1443       returns a vector which combines the lexemes and positional information
1444       of the two vectors given as arguments.  Positions and weight labels
1445       are retained during the concatenation.
1446       Positions appearing in the right-hand vector are offset by the largest
1447       position mentioned in the left-hand vector, so that the result is
1448       nearly equivalent to the result of performing <function>to_tsvector</function>
1449       on the concatenation of the two original document strings.  (The
1450       equivalence is not exact, because any stop-words removed from the
1451       end of the left-hand argument will not affect the result, whereas
1452       they would have affected the positions of the lexemes in the
1453       right-hand argument if textual concatenation were used.)
1454      </para>
1455
1456      <para>
1457       One advantage of using concatenation in the vector form, rather than
1458       concatenating text before applying <function>to_tsvector</function>, is that
1459       you can use different configurations to parse different sections
1460       of the document.  Also, because the <function>setweight</function> function
1461       marks all lexemes of the given vector the same way, it is necessary
1462       to parse the text and do <function>setweight</function> before concatenating
1463       if you want to label different parts of the document with different
1464       weights.
1465      </para>
1466     </listitem>
1467    </varlistentry>
1468
1469    <varlistentry>
1470
1471     <term>
1472     <indexterm>
1473      <primary>setweight</primary>
1474     </indexterm>
1475
1476      <literal>setweight(<replaceable class="parameter">vector</replaceable> <type>tsvector</type>, <replaceable class="parameter">weight</replaceable> <type>"char"</type>) returns <type>tsvector</type></literal>
1477     </term>
1478
1479     <listitem>
1480      <para>
1481       <function>setweight</function> returns a copy of the input vector in which every
1482       position has been labeled with the given <replaceable>weight</replaceable>, either
1483       <literal>A</literal>, <literal>B</literal>, <literal>C</literal>, or
1484       <literal>D</literal>.  (<literal>D</literal> is the default for new
1485       vectors and as such is not displayed on output.)  These labels are
1486       retained when vectors are concatenated, allowing words from different
1487       parts of a document to be weighted differently by ranking functions.
1488      </para>
1489
1490      <para>
1491       Note that weight labels apply to <emphasis>positions</emphasis>, not
1492       <emphasis>lexemes</emphasis>.  If the input vector has been stripped of
1493       positions then <function>setweight</function> does nothing.
1494      </para>
1495     </listitem>
1496    </varlistentry>
1497
1498    <varlistentry>
1499     <term>
1500     <indexterm>
1501      <primary>length(tsvector)</primary>
1502     </indexterm>
1503
1504      <literal>length(<replaceable class="parameter">vector</replaceable> <type>tsvector</type>) returns <type>integer</type></literal>
1505     </term>
1506
1507     <listitem>
1508      <para>
1509       Returns the number of lexemes stored in the vector.
1510      </para>
1511     </listitem>
1512    </varlistentry>
1513
1514    <varlistentry>
1515
1516     <term>
1517     <indexterm>
1518      <primary>strip</primary>
1519     </indexterm>
1520
1521      <literal>strip(<replaceable class="parameter">vector</replaceable> <type>tsvector</type>) returns <type>tsvector</type></literal>
1522     </term>
1523
1524     <listitem>
1525      <para>
1526       Returns a vector that lists the same lexemes as the given vector, but
1527       lacks any position or weight information.  The result is usually much
1528       smaller than an unstripped vector, but it is also less useful.
1529       Relevance ranking does not work as well on stripped vectors as
1530       unstripped ones.  Also,
1531       the <literal>&lt;-&gt;</literal> (FOLLOWED BY) <type>tsquery</type> operator
1532       will never match stripped input, since it cannot determine the
1533       distance between lexeme occurrences.
1534      </para>
1535     </listitem>
1536
1537    </varlistentry>
1538
1539   </variablelist>
1540
1541   <para>
1542    A full list of <type>tsvector</type>-related functions is available
1543    in <xref linkend="textsearch-functions-table"/>.
1544   </para>
1545
1546  </sect2>
1547
1548  <sect2 id="textsearch-manipulate-tsquery">
1549   <title>Manipulating Queries</title>
1550
1551   <para>
1552    <xref linkend="textsearch-parsing-queries"/> showed how raw textual
1553    queries can be converted into <type>tsquery</type> values.
1554    <productname>PostgreSQL</productname> also provides functions and
1555    operators that can be used to manipulate queries that are already
1556    in <type>tsquery</type> form.
1557   </para>
1558
1559   <variablelist>
1560
1561    <varlistentry>
1562
1563     <term>
1564      <literal><type>tsquery</type> &amp;&amp; <type>tsquery</type></literal>
1565     </term>
1566
1567     <listitem>
1568      <para>
1569       Returns the AND-combination of the two given queries.
1570      </para>
1571     </listitem>
1572
1573    </varlistentry>
1574
1575    <varlistentry>
1576
1577     <term>
1578      <literal><type>tsquery</type> || <type>tsquery</type></literal>
1579     </term>
1580
1581     <listitem>
1582      <para>
1583       Returns the OR-combination of the two given queries.
1584      </para>
1585     </listitem>
1586
1587    </varlistentry>
1588
1589    <varlistentry>
1590
1591     <term>
1592      <literal>!! <type>tsquery</type></literal>
1593     </term>
1594
1595     <listitem>
1596      <para>
1597       Returns the negation (NOT) of the given query.
1598      </para>
1599     </listitem>
1600
1601    </varlistentry>
1602
1603    <varlistentry>
1604
1605     <term>
1606      <literal><type>tsquery</type> &lt;-&gt; <type>tsquery</type></literal>
1607     </term>
1608
1609     <listitem>
1610      <para>
1611       Returns a query that searches for a match to the first given query
1612       immediately followed by a match to the second given query, using
1613       the <literal>&lt;-&gt;</literal> (FOLLOWED BY)
1614       <type>tsquery</type> operator.  For example:
1615
1616<screen>
1617SELECT to_tsquery('fat') &lt;-&gt; to_tsquery('cat | rat');
1618          ?column?
1619----------------------------
1620 'fat' &lt;-&gt; ( 'cat' | 'rat' )
1621</screen>
1622      </para>
1623     </listitem>
1624
1625    </varlistentry>
1626
1627    <varlistentry>
1628
1629     <term>
1630     <indexterm>
1631      <primary>tsquery_phrase</primary>
1632     </indexterm>
1633
1634      <literal>tsquery_phrase(<replaceable class="parameter">query1</replaceable> <type>tsquery</type>, <replaceable class="parameter">query2</replaceable> <type>tsquery</type> [, <replaceable class="parameter">distance</replaceable> <type>integer</type> ]) returns <type>tsquery</type></literal>
1635     </term>
1636
1637     <listitem>
1638      <para>
1639       Returns a query that searches for a match to the first given query
1640       followed by a match to the second given query at a distance of exactly
1641       <replaceable>distance</replaceable> lexemes, using
1642       the <literal>&lt;<replaceable>N</replaceable>&gt;</literal>
1643       <type>tsquery</type> operator.  For example:
1644
1645<screen>
1646SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10);
1647  tsquery_phrase
1648------------------
1649 'fat' &lt;10&gt; 'cat'
1650</screen>
1651      </para>
1652     </listitem>
1653
1654    </varlistentry>
1655
1656    <varlistentry>
1657
1658     <term>
1659     <indexterm>
1660      <primary>numnode</primary>
1661     </indexterm>
1662
1663      <literal>numnode(<replaceable class="parameter">query</replaceable> <type>tsquery</type>) returns <type>integer</type></literal>
1664     </term>
1665
1666     <listitem>
1667      <para>
1668       Returns the number of nodes (lexemes plus operators) in a
1669       <type>tsquery</type>. This function is useful
1670       to determine if the <replaceable>query</replaceable> is meaningful
1671       (returns &gt; 0), or contains only stop words (returns 0).
1672       Examples:
1673
1674<screen>
1675SELECT numnode(plainto_tsquery('the any'));
1676NOTICE:  query contains only stopword(s) or doesn't contain lexeme(s), ignored
1677 numnode
1678---------
1679       0
1680
1681SELECT numnode('foo &amp; bar'::tsquery);
1682 numnode
1683---------
1684       3
1685</screen>
1686      </para>
1687     </listitem>
1688    </varlistentry>
1689
1690    <varlistentry>
1691
1692     <term>
1693     <indexterm>
1694      <primary>querytree</primary>
1695     </indexterm>
1696
1697      <literal>querytree(<replaceable class="parameter">query</replaceable> <type>tsquery</type>) returns <type>text</type></literal>
1698     </term>
1699
1700     <listitem>
1701      <para>
1702       Returns the portion of a <type>tsquery</type> that can be used for
1703       searching an index.  This function is useful for detecting
1704       unindexable queries, for example those containing only stop words
1705       or only negated terms.  For example:
1706
1707<screen>
1708SELECT querytree(to_tsquery('!defined'));
1709 querytree
1710-----------
1711
1712</screen>
1713      </para>
1714     </listitem>
1715    </varlistentry>
1716
1717   </variablelist>
1718
1719   <sect3 id="textsearch-query-rewriting">
1720    <title>Query Rewriting</title>
1721
1722    <indexterm zone="textsearch-query-rewriting">
1723     <primary>ts_rewrite</primary>
1724    </indexterm>
1725
1726    <para>
1727     The <function>ts_rewrite</function> family of functions search a
1728     given <type>tsquery</type> for occurrences of a target
1729     subquery, and replace each occurrence with a
1730     substitute subquery.  In essence this operation is a
1731     <type>tsquery</type>-specific version of substring replacement.
1732     A target and substitute combination can be
1733     thought of as a <firstterm>query rewrite rule</firstterm>.  A collection
1734     of such rewrite rules can be a powerful search aid.
1735     For example, you can expand the search using synonyms
1736     (e.g., <literal>new york</literal>, <literal>big apple</literal>, <literal>nyc</literal>,
1737     <literal>gotham</literal>) or narrow the search to direct the user to some hot
1738     topic.  There is some overlap in functionality between this feature
1739     and thesaurus dictionaries (<xref linkend="textsearch-thesaurus"/>).
1740     However, you can modify a set of rewrite rules on-the-fly without
1741     reindexing, whereas updating a thesaurus requires reindexing to be
1742     effective.
1743    </para>
1744
1745    <variablelist>
1746
1747     <varlistentry>
1748
1749      <term>
1750       <literal>ts_rewrite (<replaceable class="parameter">query</replaceable> <type>tsquery</type>, <replaceable class="parameter">target</replaceable> <type>tsquery</type>, <replaceable class="parameter">substitute</replaceable> <type>tsquery</type>) returns <type>tsquery</type></literal>
1751      </term>
1752
1753      <listitem>
1754       <para>
1755        This form of <function>ts_rewrite</function> simply applies a single
1756        rewrite rule: <replaceable class="parameter">target</replaceable>
1757        is replaced by <replaceable class="parameter">substitute</replaceable>
1758        wherever it appears in <replaceable
1759        class="parameter">query</replaceable>.  For example:
1760
1761<screen>
1762SELECT ts_rewrite('a &amp; b'::tsquery, 'a'::tsquery, 'c'::tsquery);
1763 ts_rewrite
1764------------
1765 'b' &amp; 'c'
1766</screen>
1767       </para>
1768      </listitem>
1769     </varlistentry>
1770
1771     <varlistentry>
1772
1773      <term>
1774       <literal>ts_rewrite (<replaceable class="parameter">query</replaceable> <type>tsquery</type>, <replaceable class="parameter">select</replaceable> <type>text</type>) returns <type>tsquery</type></literal>
1775      </term>
1776
1777      <listitem>
1778       <para>
1779        This form of <function>ts_rewrite</function> accepts a starting
1780        <replaceable>query</replaceable> and a SQL <replaceable>select</replaceable> command, which
1781        is given as a text string.  The <replaceable>select</replaceable> must yield two
1782        columns of <type>tsquery</type> type.  For each row of the
1783        <replaceable>select</replaceable> result, occurrences of the first column value
1784        (the target) are replaced by the second column value (the substitute)
1785        within the current <replaceable>query</replaceable> value.  For example:
1786
1787<screen>
1788CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
1789INSERT INTO aliases VALUES('a', 'c');
1790
1791SELECT ts_rewrite('a &amp; b'::tsquery, 'SELECT t,s FROM aliases');
1792 ts_rewrite
1793------------
1794 'b' &amp; 'c'
1795</screen>
1796       </para>
1797
1798       <para>
1799        Note that when multiple rewrite rules are applied in this way,
1800        the order of application can be important; so in practice you will
1801        want the source query to <literal>ORDER BY</literal> some ordering key.
1802       </para>
1803      </listitem>
1804     </varlistentry>
1805
1806    </variablelist>
1807
1808    <para>
1809     Let's consider a real-life astronomical example. We'll expand query
1810     <literal>supernovae</literal> using table-driven rewriting rules:
1811
1812<screen>
1813CREATE TABLE aliases (t tsquery primary key, s tsquery);
1814INSERT INTO aliases VALUES(to_tsquery('supernovae'), to_tsquery('supernovae|sn'));
1815
1816SELECT ts_rewrite(to_tsquery('supernovae &amp; crab'), 'SELECT * FROM aliases');
1817           ts_rewrite
1818---------------------------------
1819 'crab' &amp; ( 'supernova' | 'sn' )
1820</screen>
1821
1822     We can change the rewriting rules just by updating the table:
1823
1824<screen>
1825UPDATE aliases
1826SET s = to_tsquery('supernovae|sn &amp; !nebulae')
1827WHERE t = to_tsquery('supernovae');
1828
1829SELECT ts_rewrite(to_tsquery('supernovae &amp; crab'), 'SELECT * FROM aliases');
1830                 ts_rewrite
1831---------------------------------------------
1832 'crab' &amp; ( 'supernova' | 'sn' &amp; !'nebula' )
1833</screen>
1834    </para>
1835
1836    <para>
1837     Rewriting can be slow when there are many rewriting rules, since it
1838     checks every rule for a possible match. To filter out obvious non-candidate
1839     rules we can use the containment operators for the <type>tsquery</type>
1840     type. In the example below, we select only those rules which might match
1841     the original query:
1842
1843<screen>
1844SELECT ts_rewrite('a &amp; b'::tsquery,
1845                  'SELECT t,s FROM aliases WHERE ''a &amp; b''::tsquery @&gt; t');
1846 ts_rewrite
1847------------
1848 'b' &amp; 'c'
1849</screen>
1850    </para>
1851
1852   </sect3>
1853
1854  </sect2>
1855
1856  <sect2 id="textsearch-update-triggers">
1857   <title>Triggers for Automatic Updates</title>
1858
1859   <indexterm>
1860    <primary>trigger</primary>
1861    <secondary>for updating a derived tsvector column</secondary>
1862   </indexterm>
1863
1864   <note>
1865    <para>
1866     The method described in this section has been obsoleted by the use of
1867     stored generated columns, as described in <xref
1868     linkend="textsearch-tables-index"/>.
1869    </para>
1870   </note>
1871
1872   <para>
1873    When using a separate column to store the <type>tsvector</type> representation
1874    of your documents, it is necessary to create a trigger to update the
1875    <type>tsvector</type> column when the document content columns change.
1876    Two built-in trigger functions are available for this, or you can write
1877    your own.
1878   </para>
1879
1880<synopsis>
1881tsvector_update_trigger(<replaceable class="parameter">tsvector_column_name</replaceable>, <replaceable class="parameter">config_name</replaceable>, <replaceable class="parameter">text_column_name</replaceable> <optional>, ... </optional>)
1882tsvector_update_trigger_column(<replaceable class="parameter">tsvector_column_name</replaceable>, <replaceable class="parameter">config_column_name</replaceable>, <replaceable class="parameter">text_column_name</replaceable> <optional>, ... </optional>)
1883</synopsis>
1884
1885   <para>
1886    These trigger functions automatically compute a <type>tsvector</type>
1887    column from one or more textual columns, under the control of
1888    parameters specified in the <command>CREATE TRIGGER</command> command.
1889    An example of their use is:
1890
1891<screen>
1892CREATE TABLE messages (
1893    title       text,
1894    body        text,
1895    tsv         tsvector
1896);
1897
1898CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
1899ON messages FOR EACH ROW EXECUTE FUNCTION
1900tsvector_update_trigger(tsv, 'pg_catalog.english', title, body);
1901
1902INSERT INTO messages VALUES('title here', 'the body text is here');
1903
1904SELECT * FROM messages;
1905   title    |         body          |            tsv
1906------------+-----------------------+----------------------------
1907 title here | the body text is here | 'bodi':4 'text':5 'titl':1
1908
1909SELECT title, body FROM messages WHERE tsv @@ to_tsquery('title &amp; body');
1910   title    |         body
1911------------+-----------------------
1912 title here | the body text is here
1913</screen>
1914
1915    Having created this trigger, any change in <structfield>title</structfield> or
1916    <structfield>body</structfield> will automatically be reflected into
1917    <structfield>tsv</structfield>, without the application having to worry about it.
1918   </para>
1919
1920   <para>
1921    The first trigger argument must be the name of the <type>tsvector</type>
1922    column to be updated.  The second argument specifies the text search
1923    configuration to be used to perform the conversion.  For
1924    <function>tsvector_update_trigger</function>, the configuration name is simply
1925    given as the second trigger argument.  It must be schema-qualified as
1926    shown above, so that the trigger behavior will not change with changes
1927    in <varname>search_path</varname>.  For
1928    <function>tsvector_update_trigger_column</function>, the second trigger argument
1929    is the name of another table column, which must be of type
1930    <type>regconfig</type>.  This allows a per-row selection of configuration
1931    to be made.  The remaining argument(s) are the names of textual columns
1932    (of type <type>text</type>, <type>varchar</type>, or <type>char</type>).  These
1933    will be included in the document in the order given.  NULL values will
1934    be skipped (but the other columns will still be indexed).
1935   </para>
1936
1937   <para>
1938    A limitation of these built-in triggers is that they treat all the
1939    input columns alike.  To process columns differently &mdash; for
1940    example, to weight title differently from body &mdash; it is necessary
1941    to write a custom trigger.  Here is an example using
1942    <application>PL/pgSQL</application> as the trigger language:
1943
1944<programlisting>
1945CREATE FUNCTION messages_trigger() RETURNS trigger AS $$
1946begin
1947  new.tsv :=
1948     setweight(to_tsvector('pg_catalog.english', coalesce(new.title,'')), 'A') ||
1949     setweight(to_tsvector('pg_catalog.english', coalesce(new.body,'')), 'D');
1950  return new;
1951end
1952$$ LANGUAGE plpgsql;
1953
1954CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
1955    ON messages FOR EACH ROW EXECUTE FUNCTION messages_trigger();
1956</programlisting>
1957   </para>
1958
1959   <para>
1960    Keep in mind that it is important to specify the configuration name
1961    explicitly when creating <type>tsvector</type> values inside triggers,
1962    so that the column's contents will not be affected by changes to
1963    <varname>default_text_search_config</varname>.  Failure to do this is likely to
1964    lead to problems such as search results changing after a dump and reload.
1965   </para>
1966
1967  </sect2>
1968
1969  <sect2 id="textsearch-statistics">
1970   <title>Gathering Document Statistics</title>
1971
1972   <indexterm>
1973    <primary>ts_stat</primary>
1974   </indexterm>
1975
1976   <para>
1977    The function <function>ts_stat</function> is useful for checking your
1978    configuration and for finding stop-word candidates.
1979   </para>
1980
1981<synopsis>
1982ts_stat(<replaceable class="parameter">sqlquery</replaceable> <type>text</type>, <optional> <replaceable class="parameter">weights</replaceable> <type>text</type>, </optional>
1983        OUT <replaceable class="parameter">word</replaceable> <type>text</type>, OUT <replaceable class="parameter">ndoc</replaceable> <type>integer</type>,
1984        OUT <replaceable class="parameter">nentry</replaceable> <type>integer</type>) returns <type>setof record</type>
1985</synopsis>
1986
1987   <para>
1988    <replaceable>sqlquery</replaceable> is a text value containing an SQL
1989    query which must return a single <type>tsvector</type> column.
1990    <function>ts_stat</function> executes the query and returns statistics about
1991    each distinct lexeme (word) contained in the <type>tsvector</type>
1992    data.  The columns returned are
1993
1994    <itemizedlist  spacing="compact" mark="bullet">
1995     <listitem>
1996      <para>
1997       <replaceable>word</replaceable> <type>text</type> &mdash; the value of a lexeme
1998      </para>
1999     </listitem>
2000     <listitem>
2001      <para>
2002       <replaceable>ndoc</replaceable> <type>integer</type> &mdash; number of documents
2003       (<type>tsvector</type>s) the word occurred in
2004      </para>
2005     </listitem>
2006     <listitem>
2007      <para>
2008       <replaceable>nentry</replaceable> <type>integer</type> &mdash; total number of
2009       occurrences of the word
2010      </para>
2011     </listitem>
2012    </itemizedlist>
2013
2014    If <replaceable>weights</replaceable> is supplied, only occurrences
2015    having one of those weights are counted.
2016   </para>
2017
2018   <para>
2019    For example, to find the ten most frequent words in a document collection:
2020
2021<programlisting>
2022SELECT * FROM ts_stat('SELECT vector FROM apod')
2023ORDER BY nentry DESC, ndoc DESC, word
2024LIMIT 10;
2025</programlisting>
2026
2027    The same, but counting only word occurrences with weight <literal>A</literal>
2028    or <literal>B</literal>:
2029
2030<programlisting>
2031SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab')
2032ORDER BY nentry DESC, ndoc DESC, word
2033LIMIT 10;
2034</programlisting>
2035   </para>
2036
2037  </sect2>
2038
2039 </sect1>
2040
2041 <sect1 id="textsearch-parsers">
2042  <title>Parsers</title>
2043
2044  <para>
2045   Text search parsers are responsible for splitting raw document text
2046   into <firstterm>tokens</firstterm> and identifying each token's type, where
2047   the set of possible types is defined by the parser itself.
2048   Note that a parser does not modify the text at all &mdash; it simply
2049   identifies plausible word boundaries.  Because of this limited scope,
2050   there is less need for application-specific custom parsers than there is
2051   for custom dictionaries.  At present <productname>PostgreSQL</productname>
2052   provides just one built-in parser, which has been found to be useful for a
2053   wide range of applications.
2054  </para>
2055
2056  <para>
2057   The built-in parser is named <literal>pg_catalog.default</literal>.
2058   It recognizes 23 token types, shown in <xref linkend="textsearch-default-parser"/>.
2059  </para>
2060
2061  <table id="textsearch-default-parser">
2062   <title>Default Parser's Token Types</title>
2063   <tgroup cols="3">
2064    <thead>
2065     <row>
2066      <entry>Alias</entry>
2067      <entry>Description</entry>
2068      <entry>Example</entry>
2069     </row>
2070    </thead>
2071    <tbody>
2072     <row>
2073      <entry><literal>asciiword</literal></entry>
2074      <entry>Word, all ASCII letters</entry>
2075      <entry><literal>elephant</literal></entry>
2076     </row>
2077     <row>
2078      <entry><literal>word</literal></entry>
2079      <entry>Word, all letters</entry>
2080      <entry><literal>ma&ntilde;ana</literal></entry>
2081     </row>
2082     <row>
2083      <entry><literal>numword</literal></entry>
2084      <entry>Word, letters and digits</entry>
2085      <entry><literal>beta1</literal></entry>
2086     </row>
2087     <row>
2088      <entry><literal>asciihword</literal></entry>
2089      <entry>Hyphenated word, all ASCII</entry>
2090      <entry><literal>up-to-date</literal></entry>
2091     </row>
2092     <row>
2093      <entry><literal>hword</literal></entry>
2094      <entry>Hyphenated word, all letters</entry>
2095      <entry><literal>l&oacute;gico-matem&aacute;tica</literal></entry>
2096     </row>
2097     <row>
2098      <entry><literal>numhword</literal></entry>
2099      <entry>Hyphenated word, letters and digits</entry>
2100      <entry><literal>postgresql-beta1</literal></entry>
2101     </row>
2102     <row>
2103      <entry><literal>hword_asciipart</literal></entry>
2104      <entry>Hyphenated word part, all ASCII</entry>
2105      <entry><literal>postgresql</literal> in the context <literal>postgresql-beta1</literal></entry>
2106     </row>
2107     <row>
2108      <entry><literal>hword_part</literal></entry>
2109      <entry>Hyphenated word part, all letters</entry>
2110      <entry><literal>l&oacute;gico</literal> or <literal>matem&aacute;tica</literal>
2111       in the context <literal>l&oacute;gico-matem&aacute;tica</literal></entry>
2112     </row>
2113     <row>
2114      <entry><literal>hword_numpart</literal></entry>
2115      <entry>Hyphenated word part, letters and digits</entry>
2116      <entry><literal>beta1</literal> in the context
2117       <literal>postgresql-beta1</literal></entry>
2118     </row>
2119     <row>
2120      <entry><literal>email</literal></entry>
2121      <entry>Email address</entry>
2122      <entry><literal>foo@example.com</literal></entry>
2123     </row>
2124     <row>
2125      <entry><literal>protocol</literal></entry>
2126      <entry>Protocol head</entry>
2127      <entry><literal>http://</literal></entry>
2128     </row>
2129     <row>
2130      <entry><literal>url</literal></entry>
2131      <entry>URL</entry>
2132      <entry><literal>example.com/stuff/index.html</literal></entry>
2133     </row>
2134     <row>
2135      <entry><literal>host</literal></entry>
2136      <entry>Host</entry>
2137      <entry><literal>example.com</literal></entry>
2138     </row>
2139     <row>
2140      <entry><literal>url_path</literal></entry>
2141      <entry>URL path</entry>
2142      <entry><literal>/stuff/index.html</literal>, in the context of a URL</entry>
2143     </row>
2144     <row>
2145      <entry><literal>file</literal></entry>
2146      <entry>File or path name</entry>
2147      <entry><literal>/usr/local/foo.txt</literal>, if not within a URL</entry>
2148     </row>
2149     <row>
2150      <entry><literal>sfloat</literal></entry>
2151      <entry>Scientific notation</entry>
2152      <entry><literal>-1.234e56</literal></entry>
2153     </row>
2154     <row>
2155      <entry><literal>float</literal></entry>
2156      <entry>Decimal notation</entry>
2157      <entry><literal>-1.234</literal></entry>
2158     </row>
2159     <row>
2160      <entry><literal>int</literal></entry>
2161      <entry>Signed integer</entry>
2162      <entry><literal>-1234</literal></entry>
2163     </row>
2164     <row>
2165      <entry><literal>uint</literal></entry>
2166      <entry>Unsigned integer</entry>
2167      <entry><literal>1234</literal></entry>
2168     </row>
2169     <row>
2170      <entry><literal>version</literal></entry>
2171      <entry>Version number</entry>
2172      <entry><literal>8.3.0</literal></entry>
2173     </row>
2174     <row>
2175      <entry><literal>tag</literal></entry>
2176      <entry>XML tag</entry>
2177      <entry><literal>&lt;a href="dictionaries.html"&gt;</literal></entry>
2178     </row>
2179     <row>
2180      <entry><literal>entity</literal></entry>
2181      <entry>XML entity</entry>
2182      <entry><literal>&amp;amp;</literal></entry>
2183     </row>
2184     <row>
2185      <entry><literal>blank</literal></entry>
2186      <entry>Space symbols</entry>
2187      <entry>(any whitespace or punctuation not otherwise recognized)</entry>
2188     </row>
2189    </tbody>
2190   </tgroup>
2191  </table>
2192
2193  <note>
2194   <para>
2195    The parser's notion of a <quote>letter</quote> is determined by the database's
2196    locale setting, specifically <varname>lc_ctype</varname>.  Words containing
2197    only the basic ASCII letters are reported as a separate token type,
2198    since it is sometimes useful to distinguish them.  In most European
2199    languages, token types <literal>word</literal> and <literal>asciiword</literal>
2200    should be treated alike.
2201   </para>
2202
2203   <para>
2204    <literal>email</literal> does not support all valid email characters as
2205    defined by RFC 5322.  Specifically, the only non-alphanumeric
2206    characters supported for email user names are period, dash, and
2207    underscore.
2208   </para>
2209  </note>
2210
2211  <para>
2212   It is possible for the parser to produce overlapping tokens from the same
2213   piece of text.  As an example, a hyphenated word will be reported both
2214   as the entire word and as each component:
2215
2216<screen>
2217SELECT alias, description, token FROM ts_debug('foo-bar-beta1');
2218      alias      |               description                |     token
2219-----------------+------------------------------------------+---------------
2220 numhword        | Hyphenated word, letters and digits      | foo-bar-beta1
2221 hword_asciipart | Hyphenated word part, all ASCII          | foo
2222 blank           | Space symbols                            | -
2223 hword_asciipart | Hyphenated word part, all ASCII          | bar
2224 blank           | Space symbols                            | -
2225 hword_numpart   | Hyphenated word part, letters and digits | beta1
2226</screen>
2227
2228   This behavior is desirable since it allows searches to work for both
2229   the whole compound word and for components.  Here is another
2230   instructive example:
2231
2232<screen>
2233SELECT alias, description, token FROM ts_debug('http://example.com/stuff/index.html');
2234  alias   |  description  |            token
2235----------+---------------+------------------------------
2236 protocol | Protocol head | http://
2237 url      | URL           | example.com/stuff/index.html
2238 host     | Host          | example.com
2239 url_path | URL path      | /stuff/index.html
2240</screen>
2241  </para>
2242
2243 </sect1>
2244
2245 <sect1 id="textsearch-dictionaries">
2246  <title>Dictionaries</title>
2247
2248  <para>
2249   Dictionaries are used to eliminate words that should not be considered in a
2250   search (<firstterm>stop words</firstterm>), and to <firstterm>normalize</firstterm> words so
2251   that different derived forms of the same word will match.  A successfully
2252   normalized word is called a <firstterm>lexeme</firstterm>.  Aside from
2253   improving search quality, normalization and removal of stop words reduce the
2254   size of the <type>tsvector</type> representation of a document, thereby
2255   improving performance.  Normalization does not always have linguistic meaning
2256   and usually depends on application semantics.
2257  </para>
2258
2259  <para>
2260   Some examples of normalization:
2261
2262   <itemizedlist  spacing="compact" mark="bullet">
2263
2264    <listitem>
2265     <para>
2266      Linguistic - Ispell dictionaries try to reduce input words to a
2267      normalized form; stemmer dictionaries remove word endings
2268     </para>
2269    </listitem>
2270    <listitem>
2271     <para>
2272      <acronym>URL</acronym> locations can be canonicalized to make
2273      equivalent URLs match:
2274
2275      <itemizedlist  spacing="compact" mark="bullet">
2276       <listitem>
2277        <para>
2278         http://www.pgsql.ru/db/mw/index.html
2279        </para>
2280       </listitem>
2281       <listitem>
2282        <para>
2283         http://www.pgsql.ru/db/mw/
2284        </para>
2285       </listitem>
2286       <listitem>
2287        <para>
2288         http://www.pgsql.ru/db/../db/mw/index.html
2289        </para>
2290       </listitem>
2291      </itemizedlist>
2292     </para>
2293    </listitem>
2294    <listitem>
2295     <para>
2296      Color names can be replaced by their hexadecimal values, e.g.,
2297      <literal>red, green, blue, magenta -> FF0000, 00FF00, 0000FF, FF00FF</literal>
2298     </para>
2299    </listitem>
2300    <listitem>
2301     <para>
2302      If indexing numbers, we can
2303      remove some fractional digits to reduce the range of possible
2304      numbers, so for example <emphasis>3.14</emphasis>159265359,
2305      <emphasis>3.14</emphasis>15926, <emphasis>3.14</emphasis> will be the same
2306      after normalization if only two digits are kept after the decimal point.
2307     </para>
2308    </listitem>
2309   </itemizedlist>
2310
2311  </para>
2312
2313  <para>
2314   A dictionary is a program that accepts a token as
2315   input and returns:
2316   <itemizedlist  spacing="compact" mark="bullet">
2317    <listitem>
2318     <para>
2319      an array of lexemes if the input token is known to the dictionary
2320      (notice that one token can produce more than one lexeme)
2321     </para>
2322    </listitem>
2323    <listitem>
2324     <para>
2325      a single lexeme with the <literal>TSL_FILTER</literal> flag set, to replace
2326      the original token with a new token to be passed to subsequent
2327      dictionaries (a dictionary that does this is called a
2328      <firstterm>filtering dictionary</firstterm>)
2329     </para>
2330    </listitem>
2331    <listitem>
2332     <para>
2333      an empty array if the dictionary knows the token, but it is a stop word
2334     </para>
2335    </listitem>
2336    <listitem>
2337     <para>
2338      <literal>NULL</literal> if the dictionary does not recognize the input token
2339     </para>
2340    </listitem>
2341   </itemizedlist>
2342  </para>
2343
2344  <para>
2345   <productname>PostgreSQL</productname> provides predefined dictionaries for
2346   many languages.  There are also several predefined templates that can be
2347   used to create new dictionaries with custom parameters.  Each predefined
2348   dictionary template is described below.  If no existing
2349   template is suitable, it is possible to create new ones; see the
2350   <filename>contrib/</filename> area of the <productname>PostgreSQL</productname> distribution
2351   for examples.
2352  </para>
2353
2354  <para>
2355   A text search configuration binds a parser together with a set of
2356   dictionaries to process the parser's output tokens.  For each token
2357   type that the parser can return, a separate list of dictionaries is
2358   specified by the configuration.  When a token of that type is found
2359   by the parser, each dictionary in the list is consulted in turn,
2360   until some dictionary recognizes it as a known word.  If it is identified
2361   as a stop word, or if no dictionary recognizes the token, it will be
2362   discarded and not indexed or searched for.
2363   Normally, the first dictionary that returns a non-<literal>NULL</literal>
2364   output determines the result, and any remaining dictionaries are not
2365   consulted; but a filtering dictionary can replace the given word
2366   with a modified word, which is then passed to subsequent dictionaries.
2367  </para>
2368
2369  <para>
2370   The general rule for configuring a list of dictionaries
2371   is to place first the most narrow, most specific dictionary, then the more
2372   general dictionaries, finishing with a very general dictionary, like
2373   a <application>Snowball</application> stemmer or <literal>simple</literal>, which
2374   recognizes everything.  For example, for an astronomy-specific search
2375   (<literal>astro_en</literal> configuration) one could bind token type
2376   <type>asciiword</type> (ASCII word) to a synonym dictionary of astronomical
2377   terms, a general English dictionary and a <application>Snowball</application> English
2378   stemmer:
2379
2380<programlisting>
2381ALTER TEXT SEARCH CONFIGURATION astro_en
2382    ADD MAPPING FOR asciiword WITH astrosyn, english_ispell, english_stem;
2383</programlisting>
2384  </para>
2385
2386  <para>
2387   A filtering dictionary can be placed anywhere in the list, except at the
2388   end where it'd be useless.  Filtering dictionaries are useful to partially
2389   normalize words to simplify the task of later dictionaries.  For example,
2390   a filtering dictionary could be used to remove accents from accented
2391   letters, as is done by the <xref linkend="unaccent"/> module.
2392  </para>
2393
2394  <sect2 id="textsearch-stopwords">
2395   <title>Stop Words</title>
2396
2397   <para>
2398    Stop words are words that are very common, appear in almost every
2399    document, and have no discrimination value. Therefore, they can be ignored
2400    in the context of full text searching. For example, every English text
2401    contains words like <literal>a</literal> and <literal>the</literal>, so it is
2402    useless to store them in an index.  However, stop words do affect the
2403    positions in <type>tsvector</type>, which in turn affect ranking:
2404
2405<screen>
2406SELECT to_tsvector('english', 'in the list of stop words');
2407        to_tsvector
2408----------------------------
2409 'list':3 'stop':5 'word':6
2410</screen>
2411
2412    The missing positions 1,2,4 are because of stop words.  Ranks
2413    calculated for documents with and without stop words are quite different:
2414
2415<screen>
2416SELECT ts_rank_cd (to_tsvector('english', 'in the list of stop words'), to_tsquery('list &amp; stop'));
2417 ts_rank_cd
2418------------
2419       0.05
2420
2421SELECT ts_rank_cd (to_tsvector('english', 'list stop words'), to_tsquery('list &amp; stop'));
2422 ts_rank_cd
2423------------
2424        0.1
2425</screen>
2426
2427   </para>
2428
2429   <para>
2430    It is up to the specific dictionary how it treats stop words. For example,
2431    <literal>ispell</literal> dictionaries first normalize words and then
2432    look at the list of stop words, while <literal>Snowball</literal> stemmers
2433    first check the list of stop words. The reason for the different
2434    behavior is an attempt to decrease noise.
2435   </para>
2436
2437  </sect2>
2438
2439  <sect2 id="textsearch-simple-dictionary">
2440   <title>Simple Dictionary</title>
2441
2442   <para>
2443    The <literal>simple</literal> dictionary template operates by converting the
2444    input token to lower case and checking it against a file of stop words.
2445    If it is found in the file then an empty array is returned, causing
2446    the token to be discarded.  If not, the lower-cased form of the word
2447    is returned as the normalized lexeme.  Alternatively, the dictionary
2448    can be configured to report non-stop-words as unrecognized, allowing
2449    them to be passed on to the next dictionary in the list.
2450   </para>
2451
2452   <para>
2453    Here is an example of a dictionary definition using the <literal>simple</literal>
2454    template:
2455
2456<programlisting>
2457CREATE TEXT SEARCH DICTIONARY public.simple_dict (
2458    TEMPLATE = pg_catalog.simple,
2459    STOPWORDS = english
2460);
2461</programlisting>
2462
2463    Here, <literal>english</literal> is the base name of a file of stop words.
2464    The file's full name will be
2465    <filename>$SHAREDIR/tsearch_data/english.stop</filename>,
2466    where <literal>$SHAREDIR</literal> means the
2467    <productname>PostgreSQL</productname> installation's shared-data directory,
2468    often <filename>/usr/local/share/postgresql</filename> (use <command>pg_config
2469    --sharedir</command> to determine it if you're not sure).
2470    The file format is simply a list
2471    of words, one per line.  Blank lines and trailing spaces are ignored,
2472    and upper case is folded to lower case, but no other processing is done
2473    on the file contents.
2474   </para>
2475
2476   <para>
2477    Now we can test our dictionary:
2478
2479<screen>
2480SELECT ts_lexize('public.simple_dict', 'YeS');
2481 ts_lexize
2482-----------
2483 {yes}
2484
2485SELECT ts_lexize('public.simple_dict', 'The');
2486 ts_lexize
2487-----------
2488 {}
2489</screen>
2490   </para>
2491
2492   <para>
2493    We can also choose to return <literal>NULL</literal>, instead of the lower-cased
2494    word, if it is not found in the stop words file.  This behavior is
2495    selected by setting the dictionary's <literal>Accept</literal> parameter to
2496    <literal>false</literal>.  Continuing the example:
2497
2498<screen>
2499ALTER TEXT SEARCH DICTIONARY public.simple_dict ( Accept = false );
2500
2501SELECT ts_lexize('public.simple_dict', 'YeS');
2502 ts_lexize
2503-----------
2504
2505
2506SELECT ts_lexize('public.simple_dict', 'The');
2507 ts_lexize
2508-----------
2509 {}
2510</screen>
2511   </para>
2512
2513   <para>
2514    With the default setting of <literal>Accept</literal> = <literal>true</literal>,
2515    it is only useful to place a <literal>simple</literal> dictionary at the end
2516    of a list of dictionaries, since it will never pass on any token to
2517    a following dictionary.  Conversely, <literal>Accept</literal> = <literal>false</literal>
2518    is only useful when there is at least one following dictionary.
2519   </para>
2520
2521   <caution>
2522    <para>
2523     Most types of dictionaries rely on configuration files, such as files of
2524     stop words.  These files <emphasis>must</emphasis> be stored in UTF-8 encoding.
2525     They will be translated to the actual database encoding, if that is
2526     different, when they are read into the server.
2527    </para>
2528   </caution>
2529
2530   <caution>
2531    <para>
2532     Normally, a database session will read a dictionary configuration file
2533     only once, when it is first used within the session.  If you modify a
2534     configuration file and want to force existing sessions to pick up the
2535     new contents, issue an <command>ALTER TEXT SEARCH DICTIONARY</command> command
2536     on the dictionary.  This can be a <quote>dummy</quote> update that doesn't
2537     actually change any parameter values.
2538    </para>
2539   </caution>
2540
2541  </sect2>
2542
2543  <sect2 id="textsearch-synonym-dictionary">
2544   <title>Synonym Dictionary</title>
2545
2546   <para>
2547    This dictionary template is used to create dictionaries that replace a
2548    word with a synonym. Phrases are not supported (use the thesaurus
2549    template (<xref linkend="textsearch-thesaurus"/>) for that).  A synonym
2550    dictionary can be used to overcome linguistic problems, for example, to
2551    prevent an English stemmer dictionary from reducing the word <quote>Paris</quote> to
2552    <quote>pari</quote>.  It is enough to have a <literal>Paris paris</literal> line in the
2553    synonym dictionary and put it before the <literal>english_stem</literal>
2554    dictionary.  For example:
2555
2556<screen>
2557SELECT * FROM ts_debug('english', 'Paris');
2558   alias   |   description   | token |  dictionaries  |  dictionary  | lexemes
2559-----------+-----------------+-------+----------------+--------------+---------
2560 asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}
2561
2562CREATE TEXT SEARCH DICTIONARY my_synonym (
2563    TEMPLATE = synonym,
2564    SYNONYMS = my_synonyms
2565);
2566
2567ALTER TEXT SEARCH CONFIGURATION english
2568    ALTER MAPPING FOR asciiword
2569    WITH my_synonym, english_stem;
2570
2571SELECT * FROM ts_debug('english', 'Paris');
2572   alias   |   description   | token |       dictionaries        | dictionary | lexemes
2573-----------+-----------------+-------+---------------------------+------------+---------
2574 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}
2575</screen>
2576   </para>
2577
2578   <para>
2579    The only parameter required by the <literal>synonym</literal> template is
2580    <literal>SYNONYMS</literal>, which is the base name of its configuration file
2581    &mdash; <literal>my_synonyms</literal> in the above example.
2582    The file's full name will be
2583    <filename>$SHAREDIR/tsearch_data/my_synonyms.syn</filename>
2584    (where <literal>$SHAREDIR</literal> means the
2585    <productname>PostgreSQL</productname> installation's shared-data directory).
2586    The file format is just one line
2587    per word to be substituted, with the word followed by its synonym,
2588    separated by white space.  Blank lines and trailing spaces are ignored.
2589   </para>
2590
2591   <para>
2592    The <literal>synonym</literal> template also has an optional parameter
2593    <literal>CaseSensitive</literal>, which defaults to <literal>false</literal>.  When
2594    <literal>CaseSensitive</literal> is <literal>false</literal>, words in the synonym file
2595    are folded to lower case, as are input tokens.  When it is
2596    <literal>true</literal>, words and tokens are not folded to lower case,
2597    but are compared as-is.
2598   </para>
2599
2600   <para>
2601    An asterisk (<literal>*</literal>) can be placed at the end of a synonym
2602    in the configuration file.  This indicates that the synonym is a prefix.
2603    The asterisk is ignored when the entry is used in
2604    <function>to_tsvector()</function>, but when it is used in
2605    <function>to_tsquery()</function>, the result will be a query item with
2606    the prefix match marker (see
2607    <xref linkend="textsearch-parsing-queries"/>).
2608    For example, suppose we have these entries in
2609    <filename>$SHAREDIR/tsearch_data/synonym_sample.syn</filename>:
2610<programlisting>
2611postgres        pgsql
2612postgresql      pgsql
2613postgre pgsql
2614gogle   googl
2615indices index*
2616</programlisting>
2617    Then we will get these results:
2618<screen>
2619mydb=# CREATE TEXT SEARCH DICTIONARY syn (template=synonym, synonyms='synonym_sample');
2620mydb=# SELECT ts_lexize('syn', 'indices');
2621 ts_lexize
2622-----------
2623 {index}
2624(1 row)
2625
2626mydb=# CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
2627mydb=# ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH syn;
2628mydb=# SELECT to_tsvector('tst', 'indices');
2629 to_tsvector
2630-------------
2631 'index':1
2632(1 row)
2633
2634mydb=# SELECT to_tsquery('tst', 'indices');
2635 to_tsquery
2636------------
2637 'index':*
2638(1 row)
2639
2640mydb=# SELECT 'indexes are very useful'::tsvector;
2641            tsvector
2642---------------------------------
2643 'are' 'indexes' 'useful' 'very'
2644(1 row)
2645
2646mydb=# SELECT 'indexes are very useful'::tsvector @@ to_tsquery('tst', 'indices');
2647 ?column?
2648----------
2649 t
2650(1 row)
2651</screen>
2652   </para>
2653  </sect2>
2654
2655  <sect2 id="textsearch-thesaurus">
2656   <title>Thesaurus Dictionary</title>
2657
2658   <para>
2659    A thesaurus dictionary (sometimes abbreviated as <acronym>TZ</acronym>) is
2660    a collection of words that includes information about the relationships
2661    of words and phrases, i.e., broader terms (<acronym>BT</acronym>), narrower
2662    terms (<acronym>NT</acronym>), preferred terms, non-preferred terms, related
2663    terms, etc.
2664   </para>
2665
2666   <para>
2667    Basically a thesaurus dictionary replaces all non-preferred terms by one
2668    preferred term and, optionally, preserves the original terms for indexing
2669    as well.  <productname>PostgreSQL</productname>'s current implementation of the
2670    thesaurus dictionary is an extension of the synonym dictionary with added
2671    <firstterm>phrase</firstterm> support.  A thesaurus dictionary requires
2672    a configuration file of the following format:
2673
2674<programlisting>
2675# this is a comment
2676sample word(s) : indexed word(s)
2677more sample word(s) : more indexed word(s)
2678...
2679</programlisting>
2680
2681    where  the colon (<symbol>:</symbol>) symbol acts as a delimiter between a
2682    phrase and its replacement.
2683   </para>
2684
2685   <para>
2686    A thesaurus dictionary uses a <firstterm>subdictionary</firstterm> (which
2687    is specified in the dictionary's configuration) to normalize the input
2688    text before checking for phrase matches. It is only possible to select one
2689    subdictionary.  An error is reported if the subdictionary fails to
2690    recognize a word. In that case, you should remove the use of the word or
2691    teach the subdictionary about it.  You can place an asterisk
2692    (<symbol>*</symbol>) at the beginning of an indexed word to skip applying
2693    the subdictionary to it, but all sample words <emphasis>must</emphasis> be known
2694    to the subdictionary.
2695   </para>
2696
2697   <para>
2698    The thesaurus dictionary chooses the longest match if there are multiple
2699    phrases matching the input, and ties are broken by using the last
2700    definition.
2701   </para>
2702
2703   <para>
2704    Specific stop words recognized by the subdictionary cannot be
2705    specified;  instead use <literal>?</literal> to mark the location where any
2706    stop word can appear.  For example, assuming that <literal>a</literal> and
2707    <literal>the</literal> are stop words according to the subdictionary:
2708
2709<programlisting>
2710? one ? two : swsw
2711</programlisting>
2712
2713    matches <literal>a one the two</literal> and <literal>the one a two</literal>;
2714    both would be replaced by <literal>swsw</literal>.
2715   </para>
2716
2717   <para>
2718    Since a thesaurus dictionary has the capability to recognize phrases it
2719    must remember its state and interact with the parser. A thesaurus dictionary
2720    uses these assignments to check if it should handle the next word or stop
2721    accumulation.  The thesaurus dictionary must be configured
2722    carefully. For example, if the thesaurus dictionary is assigned to handle
2723    only the <literal>asciiword</literal> token, then a thesaurus dictionary
2724    definition like <literal>one 7</literal> will not work since token type
2725    <literal>uint</literal> is not assigned to the thesaurus dictionary.
2726   </para>
2727
2728   <caution>
2729    <para>
2730     Thesauruses are used during indexing so any change in the thesaurus
2731     dictionary's parameters <emphasis>requires</emphasis> reindexing.
2732     For most other dictionary types, small changes such as adding or
2733     removing stopwords does not force reindexing.
2734    </para>
2735   </caution>
2736
2737  <sect3 id="textsearch-thesaurus-config">
2738   <title>Thesaurus Configuration</title>
2739
2740   <para>
2741    To define a new thesaurus dictionary, use the <literal>thesaurus</literal>
2742    template.  For example:
2743
2744<programlisting>
2745CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
2746    TEMPLATE = thesaurus,
2747    DictFile = mythesaurus,
2748    Dictionary = pg_catalog.english_stem
2749);
2750</programlisting>
2751
2752    Here:
2753    <itemizedlist  spacing="compact" mark="bullet">
2754     <listitem>
2755      <para>
2756       <literal>thesaurus_simple</literal> is the new dictionary's name
2757      </para>
2758     </listitem>
2759     <listitem>
2760      <para>
2761       <literal>mythesaurus</literal> is the base name of the thesaurus
2762       configuration file.
2763       (Its full name will be <filename>$SHAREDIR/tsearch_data/mythesaurus.ths</filename>,
2764       where <literal>$SHAREDIR</literal> means the installation shared-data
2765       directory.)
2766      </para>
2767     </listitem>
2768     <listitem>
2769      <para>
2770       <literal>pg_catalog.english_stem</literal> is the subdictionary (here,
2771       a Snowball English stemmer) to use for thesaurus normalization.
2772       Notice that the subdictionary will have its own
2773       configuration (for example, stop words), which is not shown here.
2774      </para>
2775     </listitem>
2776    </itemizedlist>
2777
2778    Now it is possible to bind the thesaurus dictionary <literal>thesaurus_simple</literal>
2779    to the desired token types in a configuration, for example:
2780
2781<programlisting>
2782ALTER TEXT SEARCH CONFIGURATION russian
2783    ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
2784    WITH thesaurus_simple;
2785</programlisting>
2786   </para>
2787
2788  </sect3>
2789
2790  <sect3 id="textsearch-thesaurus-examples">
2791   <title>Thesaurus Example</title>
2792
2793   <para>
2794    Consider a simple astronomical thesaurus <literal>thesaurus_astro</literal>,
2795    which contains some astronomical word combinations:
2796
2797<programlisting>
2798supernovae stars : sn
2799crab nebulae : crab
2800</programlisting>
2801
2802    Below we create a dictionary and bind some token types to
2803    an astronomical thesaurus and English stemmer:
2804
2805<programlisting>
2806CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
2807    TEMPLATE = thesaurus,
2808    DictFile = thesaurus_astro,
2809    Dictionary = english_stem
2810);
2811
2812ALTER TEXT SEARCH CONFIGURATION russian
2813    ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
2814    WITH thesaurus_astro, english_stem;
2815</programlisting>
2816
2817    Now we can see how it works.
2818    <function>ts_lexize</function> is not very useful for testing a thesaurus,
2819    because it treats its input as a single token.  Instead we can use
2820    <function>plainto_tsquery</function> and <function>to_tsvector</function>
2821    which will break their input strings into multiple tokens:
2822
2823<screen>
2824SELECT plainto_tsquery('supernova star');
2825 plainto_tsquery
2826-----------------
2827 'sn'
2828
2829SELECT to_tsvector('supernova star');
2830 to_tsvector
2831-------------
2832 'sn':1
2833</screen>
2834
2835    In principle, one can use <function>to_tsquery</function> if you quote
2836    the argument:
2837
2838<screen>
2839SELECT to_tsquery('''supernova star''');
2840 to_tsquery
2841------------
2842 'sn'
2843</screen>
2844
2845    Notice that <literal>supernova star</literal> matches <literal>supernovae
2846    stars</literal> in <literal>thesaurus_astro</literal> because we specified
2847    the <literal>english_stem</literal> stemmer in the thesaurus definition.
2848    The stemmer removed the <literal>e</literal> and <literal>s</literal>.
2849   </para>
2850
2851   <para>
2852    To index the original phrase as well as the substitute, just include it
2853    in the right-hand part of the definition:
2854
2855<screen>
2856supernovae stars : sn supernovae stars
2857
2858SELECT plainto_tsquery('supernova star');
2859       plainto_tsquery
2860-----------------------------
2861 'sn' &amp; 'supernova' &amp; 'star'
2862</screen>
2863   </para>
2864
2865  </sect3>
2866
2867  </sect2>
2868
2869  <sect2 id="textsearch-ispell-dictionary">
2870   <title><application>Ispell</application> Dictionary</title>
2871
2872   <para>
2873    The <application>Ispell</application> dictionary template supports
2874    <firstterm>morphological dictionaries</firstterm>, which can normalize many
2875    different linguistic forms of a word into the same lexeme.  For example,
2876    an English <application>Ispell</application> dictionary can match all declensions and
2877    conjugations of the search term <literal>bank</literal>, e.g.,
2878    <literal>banking</literal>, <literal>banked</literal>, <literal>banks</literal>,
2879    <literal>banks'</literal>, and <literal>bank's</literal>.
2880   </para>
2881
2882   <para>
2883    The standard <productname>PostgreSQL</productname> distribution does
2884    not include any <application>Ispell</application> configuration files.
2885    Dictionaries for a large number of languages are available from <ulink
2886    url="https://www.cs.hmc.edu/~geoff/ispell.html">Ispell</ulink>.
2887    Also, some more modern dictionary file formats are supported &mdash; <ulink
2888    url="https://en.wikipedia.org/wiki/MySpell">MySpell</ulink> (OO &lt; 2.0.1)
2889    and <ulink url="https://sourceforge.net/projects/hunspell/">Hunspell</ulink>
2890    (OO &gt;= 2.0.2).  A large list of dictionaries is available on the <ulink
2891    url="https://wiki.openoffice.org/wiki/Dictionaries">OpenOffice
2892    Wiki</ulink>.
2893   </para>
2894
2895   <para>
2896    To create an <application>Ispell</application> dictionary perform these steps:
2897   </para>
2898   <itemizedlist spacing="compact" mark="bullet">
2899    <listitem>
2900     <para>
2901      download dictionary configuration files. <productname>OpenOffice</productname>
2902      extension files have the <filename>.oxt</filename> extension. It is necessary
2903      to extract <filename>.aff</filename> and <filename>.dic</filename> files, change
2904      extensions to <filename>.affix</filename> and <filename>.dict</filename>. For some
2905      dictionary files it is also needed to convert characters to the UTF-8
2906      encoding with commands (for example, for a Norwegian language dictionary):
2907<programlisting>
2908iconv -f ISO_8859-1 -t UTF-8 -o nn_no.affix nn_NO.aff
2909iconv -f ISO_8859-1 -t UTF-8 -o nn_no.dict nn_NO.dic
2910</programlisting>
2911     </para>
2912    </listitem>
2913    <listitem>
2914     <para>
2915      copy files to the <filename>$SHAREDIR/tsearch_data</filename> directory
2916     </para>
2917    </listitem>
2918    <listitem>
2919     <para>
2920      load files into PostgreSQL with the following command:
2921<programlisting>
2922CREATE TEXT SEARCH DICTIONARY english_hunspell (
2923    TEMPLATE = ispell,
2924    DictFile = en_us,
2925    AffFile = en_us,
2926    Stopwords = english);
2927</programlisting>
2928     </para>
2929    </listitem>
2930   </itemizedlist>
2931
2932   <para>
2933    Here, <literal>DictFile</literal>, <literal>AffFile</literal>, and <literal>StopWords</literal>
2934    specify the base names of the dictionary, affixes, and stop-words files.
2935    The stop-words file has the same format explained above for the
2936    <literal>simple</literal> dictionary type.  The format of the other files is
2937    not specified here but is available from the above-mentioned web sites.
2938   </para>
2939
2940   <para>
2941    Ispell dictionaries usually recognize a limited set of words, so they
2942    should be followed by another broader dictionary; for
2943    example, a Snowball dictionary, which recognizes everything.
2944   </para>
2945
2946   <para>
2947    The <filename>.affix</filename> file of <application>Ispell</application> has the following
2948    structure:
2949<programlisting>
2950prefixes
2951flag *A:
2952    .           >   RE      # As in enter > reenter
2953suffixes
2954flag T:
2955    E           >   ST      # As in late > latest
2956    [^AEIOU]Y   >   -Y,IEST # As in dirty > dirtiest
2957    [AEIOU]Y    >   EST     # As in gray > grayest
2958    [^EY]       >   EST     # As in small > smallest
2959</programlisting>
2960   </para>
2961   <para>
2962    And the <filename>.dict</filename> file has the following structure:
2963<programlisting>
2964lapse/ADGRS
2965lard/DGRS
2966large/PRTY
2967lark/MRS
2968</programlisting>
2969   </para>
2970
2971   <para>
2972    Format of the <filename>.dict</filename> file is:
2973<programlisting>
2974basic_form/affix_class_name
2975</programlisting>
2976   </para>
2977
2978   <para>
2979    In the <filename>.affix</filename> file every affix flag is described in the
2980    following format:
2981<programlisting>
2982condition > [-stripping_letters,] adding_affix
2983</programlisting>
2984   </para>
2985
2986   <para>
2987    Here, condition has a format similar to the format of regular expressions.
2988    It can use groupings <literal>[...]</literal> and <literal>[^...]</literal>.
2989    For example, <literal>[AEIOU]Y</literal> means that the last letter of the word
2990    is <literal>"y"</literal> and the penultimate letter is <literal>"a"</literal>,
2991    <literal>"e"</literal>, <literal>"i"</literal>, <literal>"o"</literal> or <literal>"u"</literal>.
2992    <literal>[^EY]</literal> means that the last letter is neither <literal>"e"</literal>
2993    nor <literal>"y"</literal>.
2994   </para>
2995
2996   <para>
2997    Ispell dictionaries support splitting compound words;
2998    a useful feature.
2999    Notice that the affix file should specify a special flag using the
3000    <literal>compoundwords controlled</literal> statement that marks dictionary
3001    words that can participate in compound formation:
3002
3003<programlisting>
3004compoundwords  controlled z
3005</programlisting>
3006
3007    Here are some examples for the Norwegian language:
3008
3009<programlisting>
3010SELECT ts_lexize('norwegian_ispell', 'overbuljongterningpakkmesterassistent');
3011   {over,buljong,terning,pakk,mester,assistent}
3012SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
3013   {sjokoladefabrikk,sjokolade,fabrikk}
3014</programlisting>
3015   </para>
3016
3017   <para>
3018    <application>MySpell</application> format is a subset of <application>Hunspell</application>.
3019    The <filename>.affix</filename> file of <application>Hunspell</application> has the following
3020    structure:
3021<programlisting>
3022PFX A Y 1
3023PFX A   0     re         .
3024SFX T N 4
3025SFX T   0     st         e
3026SFX T   y     iest       [^aeiou]y
3027SFX T   0     est        [aeiou]y
3028SFX T   0     est        [^ey]
3029</programlisting>
3030   </para>
3031
3032   <para>
3033    The first line of an affix class is the header. Fields of an affix rules are
3034    listed after the header:
3035   </para>
3036   <itemizedlist spacing="compact" mark="bullet">
3037    <listitem>
3038     <para>
3039      parameter name (PFX or SFX)
3040     </para>
3041    </listitem>
3042    <listitem>
3043     <para>
3044      flag (name of the affix class)
3045     </para>
3046    </listitem>
3047    <listitem>
3048     <para>
3049      stripping characters from beginning (at prefix) or end (at suffix) of the
3050      word
3051     </para>
3052    </listitem>
3053    <listitem>
3054     <para>
3055      adding affix
3056     </para>
3057    </listitem>
3058    <listitem>
3059     <para>
3060      condition that has a format similar to the format of regular expressions.
3061     </para>
3062    </listitem>
3063   </itemizedlist>
3064
3065   <para>
3066    The <filename>.dict</filename> file looks like the <filename>.dict</filename> file of
3067    <application>Ispell</application>:
3068<programlisting>
3069larder/M
3070lardy/RT
3071large/RSPMYT
3072largehearted
3073</programlisting>
3074   </para>
3075
3076   <note>
3077    <para>
3078     <application>MySpell</application> does not support compound words.
3079     <application>Hunspell</application> has sophisticated support for compound words. At
3080     present, <productname>PostgreSQL</productname> implements only the basic
3081     compound word operations of Hunspell.
3082    </para>
3083   </note>
3084
3085  </sect2>
3086
3087  <sect2 id="textsearch-snowball-dictionary">
3088   <title><application>Snowball</application> Dictionary</title>
3089
3090   <para>
3091    The <application>Snowball</application> dictionary template is based on a project
3092    by Martin Porter, inventor of the popular Porter's stemming algorithm
3093    for the English language.  Snowball now provides stemming algorithms for
3094    many languages (see the <ulink url="https://snowballstem.org/">Snowball
3095    site</ulink> for more information).  Each algorithm understands how to
3096    reduce common variant forms of words to a base, or stem, spelling within
3097    its language.  A Snowball dictionary requires a <literal>language</literal>
3098    parameter to identify which stemmer to use, and optionally can specify a
3099    <literal>stopword</literal> file name that gives a list of words to eliminate.
3100    (<productname>PostgreSQL</productname>'s standard stopword lists are also
3101    provided by the Snowball project.)
3102    For example, there is a built-in definition equivalent to
3103
3104<programlisting>
3105CREATE TEXT SEARCH DICTIONARY english_stem (
3106    TEMPLATE = snowball,
3107    Language = english,
3108    StopWords = english
3109);
3110</programlisting>
3111
3112    The stopword file format is the same as already explained.
3113   </para>
3114
3115   <para>
3116    A <application>Snowball</application> dictionary recognizes everything, whether
3117    or not it is able to simplify the word, so it should be placed
3118    at the end of the dictionary list. It is useless to have it
3119    before any other dictionary because a token will never pass through it to
3120    the next dictionary.
3121   </para>
3122
3123  </sect2>
3124
3125 </sect1>
3126
3127 <sect1 id="textsearch-configuration">
3128  <title>Configuration Example</title>
3129
3130   <para>
3131    A text search configuration specifies all options necessary to transform a
3132    document into a <type>tsvector</type>: the parser to use to break text
3133    into tokens, and the dictionaries to use to transform each token into a
3134    lexeme.  Every call of
3135    <function>to_tsvector</function> or <function>to_tsquery</function>
3136    needs a text search configuration to perform its processing.
3137    The configuration parameter
3138    <xref linkend="guc-default-text-search-config"/>
3139    specifies the name of the default configuration, which is the
3140    one used by text search functions if an explicit configuration
3141    parameter is omitted.
3142    It can be set in <filename>postgresql.conf</filename>, or set for an
3143    individual session using the <command>SET</command> command.
3144   </para>
3145
3146   <para>
3147    Several predefined text search configurations are available, and
3148    you can create custom configurations easily.  To facilitate management
3149    of text search objects, a set of <acronym>SQL</acronym> commands
3150    is available, and there are several <application>psql</application> commands that display information
3151    about text search objects (<xref linkend="textsearch-psql"/>).
3152   </para>
3153
3154   <para>
3155    As an example we will create a configuration
3156    <literal>pg</literal>, starting by duplicating the built-in
3157    <literal>english</literal> configuration:
3158
3159<programlisting>
3160CREATE TEXT SEARCH CONFIGURATION public.pg ( COPY = pg_catalog.english );
3161</programlisting>
3162   </para>
3163
3164   <para>
3165    We will use a PostgreSQL-specific synonym list
3166    and store it in <filename>$SHAREDIR/tsearch_data/pg_dict.syn</filename>.
3167    The file contents look like:
3168
3169<programlisting>
3170postgres    pg
3171pgsql       pg
3172postgresql  pg
3173</programlisting>
3174
3175    We define the synonym dictionary like this:
3176
3177<programlisting>
3178CREATE TEXT SEARCH DICTIONARY pg_dict (
3179    TEMPLATE = synonym,
3180    SYNONYMS = pg_dict
3181);
3182</programlisting>
3183
3184    Next we register the <productname>Ispell</productname> dictionary
3185    <literal>english_ispell</literal>, which has its own configuration files:
3186
3187<programlisting>
3188CREATE TEXT SEARCH DICTIONARY english_ispell (
3189    TEMPLATE = ispell,
3190    DictFile = english,
3191    AffFile = english,
3192    StopWords = english
3193);
3194</programlisting>
3195
3196    Now we can set up the mappings for words in configuration
3197    <literal>pg</literal>:
3198
3199<programlisting>
3200ALTER TEXT SEARCH CONFIGURATION pg
3201    ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
3202                      word, hword, hword_part
3203    WITH pg_dict, english_ispell, english_stem;
3204</programlisting>
3205
3206    We choose not to index or search some token types that the built-in
3207    configuration does handle:
3208
3209<programlisting>
3210ALTER TEXT SEARCH CONFIGURATION pg
3211    DROP MAPPING FOR email, url, url_path, sfloat, float;
3212</programlisting>
3213   </para>
3214
3215   <para>
3216    Now we can test our configuration:
3217
3218<programlisting>
3219SELECT * FROM ts_debug('public.pg', '
3220PostgreSQL, the highly scalable, SQL compliant, open source object-relational
3221database management system, is now undergoing beta testing of the next
3222version of our software.
3223');
3224</programlisting>
3225   </para>
3226
3227   <para>
3228    The next step is to set the session to use the new configuration, which was
3229    created in the <literal>public</literal> schema:
3230
3231<screen>
3232=&gt; \dF
3233   List of text search configurations
3234 Schema  | Name | Description
3235---------+------+-------------
3236 public  | pg   |
3237
3238SET default_text_search_config = 'public.pg';
3239SET
3240
3241SHOW default_text_search_config;
3242 default_text_search_config
3243----------------------------
3244 public.pg
3245</screen>
3246  </para>
3247
3248 </sect1>
3249
3250 <sect1 id="textsearch-debugging">
3251  <title>Testing and Debugging Text Search</title>
3252
3253  <para>
3254   The behavior of a custom text search configuration can easily become
3255   confusing.  The functions described
3256   in this section are useful for testing text search objects.  You can
3257   test a complete configuration, or test parsers and dictionaries separately.
3258  </para>
3259
3260  <sect2 id="textsearch-configuration-testing">
3261   <title>Configuration Testing</title>
3262
3263  <para>
3264   The function <function>ts_debug</function> allows easy testing of a
3265   text search configuration.
3266  </para>
3267
3268  <indexterm>
3269   <primary>ts_debug</primary>
3270  </indexterm>
3271
3272<synopsis>
3273ts_debug(<optional> <replaceable class="parameter">config</replaceable> <type>regconfig</type>, </optional> <replaceable class="parameter">document</replaceable> <type>text</type>,
3274         OUT <replaceable class="parameter">alias</replaceable> <type>text</type>,
3275         OUT <replaceable class="parameter">description</replaceable> <type>text</type>,
3276         OUT <replaceable class="parameter">token</replaceable> <type>text</type>,
3277         OUT <replaceable class="parameter">dictionaries</replaceable> <type>regdictionary[]</type>,
3278         OUT <replaceable class="parameter">dictionary</replaceable> <type>regdictionary</type>,
3279         OUT <replaceable class="parameter">lexemes</replaceable> <type>text[]</type>)
3280         returns setof record
3281</synopsis>
3282
3283  <para>
3284   <function>ts_debug</function> displays information about every token of
3285   <replaceable class="parameter">document</replaceable> as produced by the
3286   parser and processed by the configured dictionaries.  It uses the
3287   configuration specified by <replaceable
3288   class="parameter">config</replaceable>,
3289   or <varname>default_text_search_config</varname> if that argument is
3290   omitted.
3291  </para>
3292
3293  <para>
3294   <function>ts_debug</function> returns one row for each token identified in the text
3295   by the parser.  The columns returned are
3296
3297    <itemizedlist  spacing="compact" mark="bullet">
3298     <listitem>
3299      <para>
3300       <replaceable>alias</replaceable> <type>text</type> &mdash; short name of the token type
3301      </para>
3302     </listitem>
3303     <listitem>
3304      <para>
3305       <replaceable>description</replaceable> <type>text</type> &mdash; description of the
3306       token type
3307      </para>
3308     </listitem>
3309     <listitem>
3310      <para>
3311       <replaceable>token</replaceable> <type>text</type> &mdash; text of the token
3312      </para>
3313     </listitem>
3314     <listitem>
3315      <para>
3316       <replaceable>dictionaries</replaceable> <type>regdictionary[]</type> &mdash; the
3317       dictionaries selected by the configuration for this token type
3318      </para>
3319     </listitem>
3320     <listitem>
3321      <para>
3322       <replaceable>dictionary</replaceable> <type>regdictionary</type> &mdash; the dictionary
3323       that recognized the token, or <literal>NULL</literal> if none did
3324      </para>
3325     </listitem>
3326     <listitem>
3327      <para>
3328       <replaceable>lexemes</replaceable> <type>text[]</type> &mdash; the lexeme(s) produced
3329       by the dictionary that recognized the token, or <literal>NULL</literal> if
3330       none did; an empty array (<literal>{}</literal>) means it was recognized as a
3331       stop word
3332      </para>
3333     </listitem>
3334    </itemizedlist>
3335  </para>
3336
3337  <para>
3338   Here is a simple example:
3339
3340<screen>
3341SELECT * FROM ts_debug('english', 'a fat  cat sat on a mat - it ate a fat rats');
3342   alias   |   description   | token |  dictionaries  |  dictionary  | lexemes
3343-----------+-----------------+-------+----------------+--------------+---------
3344 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
3345 blank     | Space symbols   |       | {}             |              |
3346 asciiword | Word, all ASCII | fat   | {english_stem} | english_stem | {fat}
3347 blank     | Space symbols   |       | {}             |              |
3348 asciiword | Word, all ASCII | cat   | {english_stem} | english_stem | {cat}
3349 blank     | Space symbols   |       | {}             |              |
3350 asciiword | Word, all ASCII | sat   | {english_stem} | english_stem | {sat}
3351 blank     | Space symbols   |       | {}             |              |
3352 asciiword | Word, all ASCII | on    | {english_stem} | english_stem | {}
3353 blank     | Space symbols   |       | {}             |              |
3354 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
3355 blank     | Space symbols   |       | {}             |              |
3356 asciiword | Word, all ASCII | mat   | {english_stem} | english_stem | {mat}
3357 blank     | Space symbols   |       | {}             |              |
3358 blank     | Space symbols   | -     | {}             |              |
3359 asciiword | Word, all ASCII | it    | {english_stem} | english_stem | {}
3360 blank     | Space symbols   |       | {}             |              |
3361 asciiword | Word, all ASCII | ate   | {english_stem} | english_stem | {ate}
3362 blank     | Space symbols   |       | {}             |              |
3363 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
3364 blank     | Space symbols   |       | {}             |              |
3365 asciiword | Word, all ASCII | fat   | {english_stem} | english_stem | {fat}
3366 blank     | Space symbols   |       | {}             |              |
3367 asciiword | Word, all ASCII | rats  | {english_stem} | english_stem | {rat}
3368</screen>
3369  </para>
3370
3371  <para>
3372   For a more extensive demonstration, we
3373   first create a <literal>public.english</literal> configuration and
3374   Ispell dictionary for the English language:
3375  </para>
3376
3377<programlisting>
3378CREATE TEXT SEARCH CONFIGURATION public.english ( COPY = pg_catalog.english );
3379
3380CREATE TEXT SEARCH DICTIONARY english_ispell (
3381    TEMPLATE = ispell,
3382    DictFile = english,
3383    AffFile = english,
3384    StopWords = english
3385);
3386
3387ALTER TEXT SEARCH CONFIGURATION public.english
3388   ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;
3389</programlisting>
3390
3391<screen>
3392SELECT * FROM ts_debug('public.english', 'The Brightest supernovaes');
3393   alias   |   description   |    token    |         dictionaries          |   dictionary   |   lexemes
3394-----------+-----------------+-------------+-------------------------------+----------------+-------------
3395 asciiword | Word, all ASCII | The         | {english_ispell,english_stem} | english_ispell | {}
3396 blank     | Space symbols   |             | {}                            |                |
3397 asciiword | Word, all ASCII | Brightest   | {english_ispell,english_stem} | english_ispell | {bright}
3398 blank     | Space symbols   |             | {}                            |                |
3399 asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem} | english_stem   | {supernova}
3400</screen>
3401
3402  <para>
3403   In this example, the word <literal>Brightest</literal> was recognized by the
3404   parser as an <literal>ASCII word</literal> (alias <literal>asciiword</literal>).
3405   For this token type the dictionary list is
3406   <literal>english_ispell</literal> and
3407   <literal>english_stem</literal>. The word was recognized by
3408   <literal>english_ispell</literal>, which reduced it to the noun
3409   <literal>bright</literal>. The word <literal>supernovaes</literal> is
3410   unknown to the <literal>english_ispell</literal> dictionary so it
3411   was passed to the next dictionary, and, fortunately, was recognized (in
3412   fact, <literal>english_stem</literal> is a Snowball dictionary which
3413   recognizes everything; that is why it was placed at the end of the
3414   dictionary list).
3415  </para>
3416
3417  <para>
3418   The word <literal>The</literal> was recognized by the
3419   <literal>english_ispell</literal> dictionary as a stop word (<xref
3420   linkend="textsearch-stopwords"/>) and will not be indexed.
3421   The spaces are discarded too, since the configuration provides no
3422   dictionaries at all for them.
3423  </para>
3424
3425  <para>
3426   You can reduce the width of the output by explicitly specifying which columns
3427   you want to see:
3428
3429<screen>
3430SELECT alias, token, dictionary, lexemes
3431FROM ts_debug('public.english', 'The Brightest supernovaes');
3432   alias   |    token    |   dictionary   |   lexemes
3433-----------+-------------+----------------+-------------
3434 asciiword | The         | english_ispell | {}
3435 blank     |             |                |
3436 asciiword | Brightest   | english_ispell | {bright}
3437 blank     |             |                |
3438 asciiword | supernovaes | english_stem   | {supernova}
3439</screen>
3440  </para>
3441
3442  </sect2>
3443
3444  <sect2 id="textsearch-parser-testing">
3445   <title>Parser Testing</title>
3446
3447  <para>
3448   The following functions allow direct testing of a text search parser.
3449  </para>
3450
3451  <indexterm>
3452   <primary>ts_parse</primary>
3453  </indexterm>
3454
3455<synopsis>
3456ts_parse(<replaceable class="parameter">parser_name</replaceable> <type>text</type>, <replaceable class="parameter">document</replaceable> <type>text</type>,
3457         OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>, OUT <replaceable class="parameter">token</replaceable> <type>text</type>) returns <type>setof record</type>
3458ts_parse(<replaceable class="parameter">parser_oid</replaceable> <type>oid</type>, <replaceable class="parameter">document</replaceable> <type>text</type>,
3459         OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>, OUT <replaceable class="parameter">token</replaceable> <type>text</type>) returns <type>setof record</type>
3460</synopsis>
3461
3462  <para>
3463   <function>ts_parse</function> parses the given <replaceable>document</replaceable>
3464   and returns a series of records, one for each token produced by
3465   parsing. Each record includes a <varname>tokid</varname> showing the
3466   assigned token type and a <varname>token</varname> which is the text of the
3467   token.  For example:
3468
3469<screen>
3470SELECT * FROM ts_parse('default', '123 - a number');
3471 tokid | token
3472-------+--------
3473    22 | 123
3474    12 |
3475    12 | -
3476     1 | a
3477    12 |
3478     1 | number
3479</screen>
3480  </para>
3481
3482  <indexterm>
3483   <primary>ts_token_type</primary>
3484  </indexterm>
3485
3486<synopsis>
3487ts_token_type(<replaceable class="parameter">parser_name</replaceable> <type>text</type>, OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>,
3488              OUT <replaceable class="parameter">alias</replaceable> <type>text</type>, OUT <replaceable class="parameter">description</replaceable> <type>text</type>) returns <type>setof record</type>
3489ts_token_type(<replaceable class="parameter">parser_oid</replaceable> <type>oid</type>, OUT <replaceable class="parameter">tokid</replaceable> <type>integer</type>,
3490              OUT <replaceable class="parameter">alias</replaceable> <type>text</type>, OUT <replaceable class="parameter">description</replaceable> <type>text</type>) returns <type>setof record</type>
3491</synopsis>
3492
3493  <para>
3494   <function>ts_token_type</function> returns a table which describes each type of
3495   token the specified parser can recognize.  For each token type, the table
3496   gives the integer <varname>tokid</varname> that the parser uses to label a
3497   token of that type, the <varname>alias</varname> that names the token type
3498   in configuration commands, and a short <varname>description</varname>.  For
3499   example:
3500
3501<screen>
3502SELECT * FROM ts_token_type('default');
3503 tokid |      alias      |               description
3504-------+-----------------+------------------------------------------
3505     1 | asciiword       | Word, all ASCII
3506     2 | word            | Word, all letters
3507     3 | numword         | Word, letters and digits
3508     4 | email           | Email address
3509     5 | url             | URL
3510     6 | host            | Host
3511     7 | sfloat          | Scientific notation
3512     8 | version         | Version number
3513     9 | hword_numpart   | Hyphenated word part, letters and digits
3514    10 | hword_part      | Hyphenated word part, all letters
3515    11 | hword_asciipart | Hyphenated word part, all ASCII
3516    12 | blank           | Space symbols
3517    13 | tag             | XML tag
3518    14 | protocol        | Protocol head
3519    15 | numhword        | Hyphenated word, letters and digits
3520    16 | asciihword      | Hyphenated word, all ASCII
3521    17 | hword           | Hyphenated word, all letters
3522    18 | url_path        | URL path
3523    19 | file            | File or path name
3524    20 | float           | Decimal notation
3525    21 | int             | Signed integer
3526    22 | uint            | Unsigned integer
3527    23 | entity          | XML entity
3528</screen>
3529   </para>
3530
3531  </sect2>
3532
3533  <sect2 id="textsearch-dictionary-testing">
3534   <title>Dictionary Testing</title>
3535
3536   <para>
3537    The <function>ts_lexize</function> function facilitates dictionary testing.
3538   </para>
3539
3540   <indexterm>
3541    <primary>ts_lexize</primary>
3542   </indexterm>
3543
3544<synopsis>
3545ts_lexize(<replaceable class="parameter">dict</replaceable> <type>regdictionary</type>, <replaceable class="parameter">token</replaceable> <type>text</type>) returns <type>text[]</type>
3546</synopsis>
3547
3548   <para>
3549    <function>ts_lexize</function> returns an array of lexemes if the input
3550    <replaceable>token</replaceable> is known to the dictionary,
3551    or an empty array if the token
3552    is known to the dictionary but it is a stop word, or
3553    <literal>NULL</literal> if it is an unknown word.
3554   </para>
3555
3556   <para>
3557    Examples:
3558
3559<screen>
3560SELECT ts_lexize('english_stem', 'stars');
3561 ts_lexize
3562-----------
3563 {star}
3564
3565SELECT ts_lexize('english_stem', 'a');
3566 ts_lexize
3567-----------
3568 {}
3569</screen>
3570   </para>
3571
3572   <note>
3573    <para>
3574     The <function>ts_lexize</function> function expects a single
3575     <emphasis>token</emphasis>, not text. Here is a case
3576     where this can be confusing:
3577
3578<screen>
3579SELECT ts_lexize('thesaurus_astro', 'supernovae stars') is null;
3580 ?column?
3581----------
3582 t
3583</screen>
3584
3585     The thesaurus dictionary <literal>thesaurus_astro</literal> does know the
3586     phrase <literal>supernovae stars</literal>, but <function>ts_lexize</function>
3587     fails since it does not parse the input text but treats it as a single
3588     token. Use <function>plainto_tsquery</function> or <function>to_tsvector</function> to
3589     test thesaurus dictionaries, for example:
3590
3591<screen>
3592SELECT plainto_tsquery('supernovae stars');
3593 plainto_tsquery
3594-----------------
3595 'sn'
3596</screen>
3597    </para>
3598   </note>
3599
3600  </sect2>
3601
3602 </sect1>
3603
3604 <sect1 id="textsearch-indexes">
3605  <title>GIN and GiST Index Types</title>
3606
3607  <indexterm zone="textsearch-indexes">
3608   <primary>text search</primary>
3609   <secondary>indexes</secondary>
3610  </indexterm>
3611
3612  <para>
3613   There are two kinds of indexes that can be used to speed up full text
3614   searches.
3615   Note that indexes are not mandatory for full text searching, but in
3616   cases where a column is searched on a regular basis, an index is
3617   usually desirable.
3618
3619   <variablelist>
3620
3621    <varlistentry>
3622
3623     <term>
3624     <indexterm zone="textsearch-indexes">
3625      <primary>index</primary>
3626      <secondary>GIN</secondary>
3627      <tertiary>text search</tertiary>
3628     </indexterm>
3629
3630      <literal>CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable> USING GIN (<replaceable>column</replaceable>);</literal>
3631     </term>
3632
3633     <listitem>
3634      <para>
3635       Creates a GIN (Generalized Inverted Index)-based index.
3636       The <replaceable>column</replaceable> must be of <type>tsvector</type> type.
3637      </para>
3638     </listitem>
3639    </varlistentry>
3640
3641    <varlistentry>
3642
3643     <term>
3644     <indexterm zone="textsearch-indexes">
3645      <primary>index</primary>
3646      <secondary>GiST</secondary>
3647      <tertiary>text search</tertiary>
3648     </indexterm>
3649
3650      <literal>CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable> USING GIST (<replaceable>column</replaceable>);</literal>
3651     </term>
3652
3653     <listitem>
3654      <para>
3655       Creates a GiST (Generalized Search Tree)-based index.
3656       The <replaceable>column</replaceable> can be of <type>tsvector</type> or
3657       <type>tsquery</type> type.
3658      </para>
3659     </listitem>
3660    </varlistentry>
3661
3662   </variablelist>
3663  </para>
3664
3665  <para>
3666   GIN indexes are the preferred text search index type.  As inverted
3667   indexes, they contain an index entry for each word (lexeme), with a
3668   compressed list of matching locations.  Multi-word searches can find
3669   the first match, then use the index to remove rows that are lacking
3670   additional words.  GIN indexes store only the words (lexemes) of
3671   <type>tsvector</type> values, and not their weight labels.  Thus a table
3672   row recheck is needed when using a query that involves weights.
3673  </para>
3674
3675  <para>
3676   A GiST index is <firstterm>lossy</firstterm>, meaning that the index
3677   might produce false matches, and it is necessary
3678   to check the actual table row to eliminate such false matches.
3679   (<productname>PostgreSQL</productname> does this automatically when needed.)
3680   GiST indexes are lossy because each document is represented in the
3681   index by a fixed-length signature. The signature is generated by hashing
3682   each word into a single bit in an n-bit string, with all these bits OR-ed
3683   together to produce an n-bit document signature.  When two words hash to
3684   the same bit position there will be a false match.  If all words in
3685   the query have matches (real or false) then the table row must be
3686   retrieved to see if the match is correct.
3687  </para>
3688
3689  <para>
3690   A GiST index can be covering, i.e., use the <literal>INCLUDE</literal>
3691   clause.  Included columns can have data types without any GiST operator
3692   class.  Included attributes will be stored uncompressed.
3693  </para>
3694
3695  <para>
3696   Lossiness causes performance degradation due to unnecessary fetches of table
3697   records that turn out to be false matches.  Since random access to table
3698   records is slow, this limits the usefulness of GiST indexes.  The
3699   likelihood of false matches depends on several factors, in particular the
3700   number of unique words, so using dictionaries to reduce this number is
3701   recommended.
3702  </para>
3703
3704  <para>
3705   Note that <acronym>GIN</acronym> index build time can often be improved
3706   by increasing <xref linkend="guc-maintenance-work-mem"/>, while
3707   <acronym>GiST</acronym> index build time is not sensitive to that
3708   parameter.
3709  </para>
3710
3711  <para>
3712   Partitioning of big collections and the proper use of GIN and GiST indexes
3713   allows the implementation of very fast searches with online update.
3714   Partitioning can be done at the database level using table inheritance,
3715   or by distributing documents over
3716   servers and collecting external search results, e.g., via <link
3717   linkend="ddl-foreign-data">Foreign Data</link> access.
3718   The latter is possible because ranking functions use
3719   only local information.
3720  </para>
3721
3722 </sect1>
3723
3724 <sect1 id="textsearch-psql">
3725  <title><application>psql</application> Support</title>
3726
3727  <para>
3728   Information about text search configuration objects can be obtained
3729   in <application>psql</application> using a set of commands:
3730<synopsis>
3731\dF{d,p,t}<optional>+</optional> <optional>PATTERN</optional>
3732</synopsis>
3733   An optional <literal>+</literal> produces more details.
3734  </para>
3735
3736  <para>
3737   The optional parameter <replaceable>PATTERN</replaceable> can be the name of
3738   a text search object, optionally schema-qualified.  If
3739   <replaceable>PATTERN</replaceable> is omitted then information about all
3740   visible objects will be displayed.  <replaceable>PATTERN</replaceable> can be a
3741   regular expression and can provide <emphasis>separate</emphasis> patterns
3742   for the schema and object names.  The following examples illustrate this:
3743
3744<screen>
3745=&gt; \dF *fulltext*
3746       List of text search configurations
3747 Schema |  Name        | Description
3748--------+--------------+-------------
3749 public | fulltext_cfg |
3750</screen>
3751
3752<screen>
3753=&gt; \dF *.fulltext*
3754       List of text search configurations
3755 Schema   |  Name        | Description
3756----------+----------------------------
3757 fulltext | fulltext_cfg |
3758 public   | fulltext_cfg |
3759</screen>
3760
3761   The available commands are:
3762  </para>
3763
3764  <variablelist>
3765   <varlistentry>
3766    <term><literal>\dF<optional>+</optional> <optional>PATTERN</optional></literal></term>
3767    <listitem>
3768     <para>
3769      List text search configurations (add <literal>+</literal> for more detail).
3770<screen>
3771=&gt; \dF russian
3772            List of text search configurations
3773   Schema   |  Name   |            Description
3774------------+---------+------------------------------------
3775 pg_catalog | russian | configuration for russian language
3776
3777=&gt; \dF+ russian
3778Text search configuration "pg_catalog.russian"
3779Parser: "pg_catalog.default"
3780      Token      | Dictionaries
3781-----------------+--------------
3782 asciihword      | english_stem
3783 asciiword       | english_stem
3784 email           | simple
3785 file            | simple
3786 float           | simple
3787 host            | simple
3788 hword           | russian_stem
3789 hword_asciipart | english_stem
3790 hword_numpart   | simple
3791 hword_part      | russian_stem
3792 int             | simple
3793 numhword        | simple
3794 numword         | simple
3795 sfloat          | simple
3796 uint            | simple
3797 url             | simple
3798 url_path        | simple
3799 version         | simple
3800 word            | russian_stem
3801</screen>
3802     </para>
3803    </listitem>
3804   </varlistentry>
3805
3806   <varlistentry>
3807    <term><literal>\dFd<optional>+</optional> <optional>PATTERN</optional></literal></term>
3808    <listitem>
3809     <para>
3810      List text search dictionaries (add <literal>+</literal> for more detail).
3811<screen>
3812=&gt; \dFd
3813                             List of text search dictionaries
3814   Schema   |      Name       |                        Description
3815------------+-----------------+-----------------------------------------------------------
3816 pg_catalog | arabic_stem     | snowball stemmer for arabic language
3817 pg_catalog | danish_stem     | snowball stemmer for danish language
3818 pg_catalog | dutch_stem      | snowball stemmer for dutch language
3819 pg_catalog | english_stem    | snowball stemmer for english language
3820 pg_catalog | finnish_stem    | snowball stemmer for finnish language
3821 pg_catalog | french_stem     | snowball stemmer for french language
3822 pg_catalog | german_stem     | snowball stemmer for german language
3823 pg_catalog | hungarian_stem  | snowball stemmer for hungarian language
3824 pg_catalog | indonesian_stem | snowball stemmer for indonesian language
3825 pg_catalog | irish_stem      | snowball stemmer for irish language
3826 pg_catalog | italian_stem    | snowball stemmer for italian language
3827 pg_catalog | lithuanian_stem | snowball stemmer for lithuanian language
3828 pg_catalog | nepali_stem     | snowball stemmer for nepali language
3829 pg_catalog | norwegian_stem  | snowball stemmer for norwegian language
3830 pg_catalog | portuguese_stem | snowball stemmer for portuguese language
3831 pg_catalog | romanian_stem   | snowball stemmer for romanian language
3832 pg_catalog | russian_stem    | snowball stemmer for russian language
3833 pg_catalog | simple          | simple dictionary: just lower case and check for stopword
3834 pg_catalog | spanish_stem    | snowball stemmer for spanish language
3835 pg_catalog | swedish_stem    | snowball stemmer for swedish language
3836 pg_catalog | tamil_stem      | snowball stemmer for tamil language
3837 pg_catalog | turkish_stem    | snowball stemmer for turkish language
3838</screen>
3839     </para>
3840    </listitem>
3841   </varlistentry>
3842
3843   <varlistentry>
3844   <term><literal>\dFp<optional>+</optional> <optional>PATTERN</optional></literal></term>
3845    <listitem>
3846     <para>
3847      List text search parsers (add <literal>+</literal> for more detail).
3848<screen>
3849=&gt; \dFp
3850        List of text search parsers
3851   Schema   |  Name   |     Description
3852------------+---------+---------------------
3853 pg_catalog | default | default word parser
3854=&gt; \dFp+
3855    Text search parser "pg_catalog.default"
3856     Method      |    Function    | Description
3857-----------------+----------------+-------------
3858 Start parse     | prsd_start     |
3859 Get next token  | prsd_nexttoken |
3860 End parse       | prsd_end       |
3861 Get headline    | prsd_headline  |
3862 Get token types | prsd_lextype   |
3863
3864        Token types for parser "pg_catalog.default"
3865   Token name    |               Description
3866-----------------+------------------------------------------
3867 asciihword      | Hyphenated word, all ASCII
3868 asciiword       | Word, all ASCII
3869 blank           | Space symbols
3870 email           | Email address
3871 entity          | XML entity
3872 file            | File or path name
3873 float           | Decimal notation
3874 host            | Host
3875 hword           | Hyphenated word, all letters
3876 hword_asciipart | Hyphenated word part, all ASCII
3877 hword_numpart   | Hyphenated word part, letters and digits
3878 hword_part      | Hyphenated word part, all letters
3879 int             | Signed integer
3880 numhword        | Hyphenated word, letters and digits
3881 numword         | Word, letters and digits
3882 protocol        | Protocol head
3883 sfloat          | Scientific notation
3884 tag             | XML tag
3885 uint            | Unsigned integer
3886 url             | URL
3887 url_path        | URL path
3888 version         | Version number
3889 word            | Word, all letters
3890(23 rows)
3891</screen>
3892     </para>
3893    </listitem>
3894   </varlistentry>
3895
3896   <varlistentry>
3897   <term><literal>\dFt<optional>+</optional> <optional>PATTERN</optional></literal></term>
3898    <listitem>
3899     <para>
3900      List text search templates (add <literal>+</literal> for more detail).
3901<screen>
3902=&gt; \dFt
3903                           List of text search templates
3904   Schema   |   Name    |                        Description
3905------------+-----------+-----------------------------------------------------------
3906 pg_catalog | ispell    | ispell dictionary
3907 pg_catalog | simple    | simple dictionary: just lower case and check for stopword
3908 pg_catalog | snowball  | snowball stemmer
3909 pg_catalog | synonym   | synonym dictionary: replace word by its synonym
3910 pg_catalog | thesaurus | thesaurus dictionary: phrase by phrase substitution
3911</screen>
3912     </para>
3913    </listitem>
3914   </varlistentry>
3915  </variablelist>
3916
3917 </sect1>
3918
3919 <sect1 id="textsearch-limitations">
3920  <title>Limitations</title>
3921
3922  <para>
3923   The current limitations of <productname>PostgreSQL</productname>'s
3924   text search features are:
3925   <itemizedlist  spacing="compact" mark="bullet">
3926    <listitem>
3927     <para>The length of each lexeme must be less than 2K bytes</para>
3928    </listitem>
3929    <listitem>
3930     <para>The length of a <type>tsvector</type> (lexemes + positions) must be
3931     less than 1 megabyte</para>
3932    </listitem>
3933    <listitem>
3934     <!-- TODO: number of lexemes in what?  This is unclear -->
3935     <para>The number of lexemes must be less than
3936     2<superscript>64</superscript></para>
3937    </listitem>
3938    <listitem>
3939     <para>Position values in <type>tsvector</type> must be greater than 0 and
3940     no more than 16,383</para>
3941    </listitem>
3942    <listitem>
3943     <para>The match distance in a <literal>&lt;<replaceable>N</replaceable>&gt;</literal>
3944     (FOLLOWED BY) <type>tsquery</type> operator cannot be more than
3945     16,384</para>
3946    </listitem>
3947    <listitem>
3948     <para>No more than 256 positions per lexeme</para>
3949    </listitem>
3950    <listitem>
3951     <para>The number of nodes (lexemes + operators) in a <type>tsquery</type>
3952     must be less than 32,768</para>
3953    </listitem>
3954   </itemizedlist>
3955  </para>
3956
3957  <para>
3958   For comparison, the <productname>PostgreSQL</productname> 8.1 documentation
3959   contained 10,441 unique words, a total of 335,420 words, and the most
3960   frequent word <quote>postgresql</quote> was mentioned 6,127 times in 655
3961   documents.
3962  </para>
3963
3964   <!-- TODO we need to put a date on these numbers? -->
3965  <para>
3966   Another example &mdash; the <productname>PostgreSQL</productname> mailing
3967   list archives contained 910,989 unique words with 57,491,343 lexemes in
3968   461,020 messages.
3969  </para>
3970
3971 </sect1>
3972
3973</chapter>
3974