1 /*-------------------------------------------------------------------------
2  *
3  * multixact.c
4  *		PostgreSQL multi-transaction-log manager
5  *
6  * The pg_multixact manager is a pg_xact-like manager that stores an array of
7  * MultiXactMember for each MultiXactId.  It is a fundamental part of the
8  * shared-row-lock implementation.  Each MultiXactMember is comprised of a
9  * TransactionId and a set of flag bits.  The name is a bit historical:
10  * originally, a MultiXactId consisted of more than one TransactionId (except
11  * in rare corner cases), hence "multi".  Nowadays, however, it's perfectly
12  * legitimate to have MultiXactIds that only include a single Xid.
13  *
14  * The meaning of the flag bits is opaque to this module, but they are mostly
15  * used in heapam.c to identify lock modes that each of the member transactions
16  * is holding on any given tuple.  This module just contains support to store
17  * and retrieve the arrays.
18  *
19  * We use two SLRU areas, one for storing the offsets at which the data
20  * starts for each MultiXactId in the other one.  This trick allows us to
21  * store variable length arrays of TransactionIds.  (We could alternatively
22  * use one area containing counts and TransactionIds, with valid MultiXactId
23  * values pointing at slots containing counts; but that way seems less robust
24  * since it would get completely confused if someone inquired about a bogus
25  * MultiXactId that pointed to an intermediate slot containing an XID.)
26  *
27  * XLOG interactions: this module generates a record whenever a new OFFSETs or
28  * MEMBERs page is initialized to zeroes, as well as an
29  * XLOG_MULTIXACT_CREATE_ID record whenever a new MultiXactId is defined.
30  * This module ignores the WAL rule "write xlog before data," because it
31  * suffices that actions recording a MultiXactId in a heap xmax do follow that
32  * rule.  The only way for the MXID to be referenced from any data page is for
33  * heap_lock_tuple() or heap_update() to have put it there, and each generates
34  * an XLOG record that must follow ours.  The normal LSN interlock between the
35  * data page and that XLOG record will ensure that our XLOG record reaches
36  * disk first.  If the SLRU members/offsets data reaches disk sooner than the
37  * XLOG records, we do not care; after recovery, no xmax will refer to it.  On
38  * the flip side, to ensure that all referenced entries _do_ reach disk, this
39  * module's XLOG records completely rebuild the data entered since the last
40  * checkpoint.  We flush and sync all dirty OFFSETs and MEMBERs pages to disk
41  * before each checkpoint is considered complete.
42  *
43  * Like clog.c, and unlike subtrans.c, we have to preserve state across
44  * crashes and ensure that MXID and offset numbering increases monotonically
45  * across a crash.  We do this in the same way as it's done for transaction
46  * IDs: the WAL record is guaranteed to contain evidence of every MXID we
47  * could need to worry about, and we just make sure that at the end of
48  * replay, the next-MXID and next-offset counters are at least as large as
49  * anything we saw during replay.
50  *
51  * We are able to remove segments no longer necessary by carefully tracking
52  * each table's used values: during vacuum, any multixact older than a certain
53  * value is removed; the cutoff value is stored in pg_class.  The minimum value
54  * across all tables in each database is stored in pg_database, and the global
55  * minimum across all databases is part of pg_control and is kept in shared
56  * memory.  Whenever that minimum is advanced, the SLRUs are truncated.
57  *
58  * When new multixactid values are to be created, care is taken that the
59  * counter does not fall within the wraparound horizon considering the global
60  * minimum value.
61  *
62  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
63  * Portions Copyright (c) 1994, Regents of the University of California
64  *
65  * src/backend/access/transam/multixact.c
66  *
67  *-------------------------------------------------------------------------
68  */
69 #include "postgres.h"
70 
71 #include "access/multixact.h"
72 #include "access/slru.h"
73 #include "access/transam.h"
74 #include "access/twophase.h"
75 #include "access/twophase_rmgr.h"
76 #include "access/xact.h"
77 #include "access/xlog.h"
78 #include "access/xloginsert.h"
79 #include "catalog/pg_type.h"
80 #include "commands/dbcommands.h"
81 #include "funcapi.h"
82 #include "lib/ilist.h"
83 #include "miscadmin.h"
84 #include "pg_trace.h"
85 #include "postmaster/autovacuum.h"
86 #include "storage/lmgr.h"
87 #include "storage/pmsignal.h"
88 #include "storage/proc.h"
89 #include "storage/procarray.h"
90 #include "utils/builtins.h"
91 #include "utils/memutils.h"
92 #include "utils/snapmgr.h"
93 
94 
95 /*
96  * Defines for MultiXactOffset page sizes.  A page is the same BLCKSZ as is
97  * used everywhere else in Postgres.
98  *
99  * Note: because MultiXactOffsets are 32 bits and wrap around at 0xFFFFFFFF,
100  * MultiXact page numbering also wraps around at
101  * 0xFFFFFFFF/MULTIXACT_OFFSETS_PER_PAGE, and segment numbering at
102  * 0xFFFFFFFF/MULTIXACT_OFFSETS_PER_PAGE/SLRU_PAGES_PER_SEGMENT.  We need
103  * take no explicit notice of that fact in this module, except when comparing
104  * segment and page numbers in TruncateMultiXact (see
105  * MultiXactOffsetPagePrecedes).
106  */
107 
108 /* We need four bytes per offset */
109 #define MULTIXACT_OFFSETS_PER_PAGE (BLCKSZ / sizeof(MultiXactOffset))
110 
111 #define MultiXactIdToOffsetPage(xid) \
112 	((xid) / (MultiXactOffset) MULTIXACT_OFFSETS_PER_PAGE)
113 #define MultiXactIdToOffsetEntry(xid) \
114 	((xid) % (MultiXactOffset) MULTIXACT_OFFSETS_PER_PAGE)
115 #define MultiXactIdToOffsetSegment(xid) (MultiXactIdToOffsetPage(xid) / SLRU_PAGES_PER_SEGMENT)
116 
117 /*
118  * The situation for members is a bit more complex: we store one byte of
119  * additional flag bits for each TransactionId.  To do this without getting
120  * into alignment issues, we store four bytes of flags, and then the
121  * corresponding 4 Xids.  Each such 5-word (20-byte) set we call a "group", and
122  * are stored as a whole in pages.  Thus, with 8kB BLCKSZ, we keep 409 groups
123  * per page.  This wastes 12 bytes per page, but that's OK -- simplicity (and
124  * performance) trumps space efficiency here.
125  *
126  * Note that the "offset" macros work with byte offset, not array indexes, so
127  * arithmetic must be done using "char *" pointers.
128  */
129 /* We need eight bits per xact, so one xact fits in a byte */
130 #define MXACT_MEMBER_BITS_PER_XACT			8
131 #define MXACT_MEMBER_FLAGS_PER_BYTE			1
132 #define MXACT_MEMBER_XACT_BITMASK	((1 << MXACT_MEMBER_BITS_PER_XACT) - 1)
133 
134 /* how many full bytes of flags are there in a group? */
135 #define MULTIXACT_FLAGBYTES_PER_GROUP		4
136 #define MULTIXACT_MEMBERS_PER_MEMBERGROUP	\
137 	(MULTIXACT_FLAGBYTES_PER_GROUP * MXACT_MEMBER_FLAGS_PER_BYTE)
138 /* size in bytes of a complete group */
139 #define MULTIXACT_MEMBERGROUP_SIZE \
140 	(sizeof(TransactionId) * MULTIXACT_MEMBERS_PER_MEMBERGROUP + MULTIXACT_FLAGBYTES_PER_GROUP)
141 #define MULTIXACT_MEMBERGROUPS_PER_PAGE (BLCKSZ / MULTIXACT_MEMBERGROUP_SIZE)
142 #define MULTIXACT_MEMBERS_PER_PAGE	\
143 	(MULTIXACT_MEMBERGROUPS_PER_PAGE * MULTIXACT_MEMBERS_PER_MEMBERGROUP)
144 
145 /*
146  * Because the number of items per page is not a divisor of the last item
147  * number (member 0xFFFFFFFF), the last segment does not use the maximum number
148  * of pages, and moreover the last used page therein does not use the same
149  * number of items as previous pages.  (Another way to say it is that the
150  * 0xFFFFFFFF member is somewhere in the middle of the last page, so the page
151  * has some empty space after that item.)
152  *
153  * This constant is the number of members in the last page of the last segment.
154  */
155 #define MAX_MEMBERS_IN_LAST_MEMBERS_PAGE \
156 		((uint32) ((0xFFFFFFFF % MULTIXACT_MEMBERS_PER_PAGE) + 1))
157 
158 /* page in which a member is to be found */
159 #define MXOffsetToMemberPage(xid) ((xid) / (TransactionId) MULTIXACT_MEMBERS_PER_PAGE)
160 #define MXOffsetToMemberSegment(xid) (MXOffsetToMemberPage(xid) / SLRU_PAGES_PER_SEGMENT)
161 
162 /* Location (byte offset within page) of flag word for a given member */
163 #define MXOffsetToFlagsOffset(xid) \
164 	((((xid) / (TransactionId) MULTIXACT_MEMBERS_PER_MEMBERGROUP) % \
165 	  (TransactionId) MULTIXACT_MEMBERGROUPS_PER_PAGE) * \
166 	 (TransactionId) MULTIXACT_MEMBERGROUP_SIZE)
167 #define MXOffsetToFlagsBitShift(xid) \
168 	(((xid) % (TransactionId) MULTIXACT_MEMBERS_PER_MEMBERGROUP) * \
169 	 MXACT_MEMBER_BITS_PER_XACT)
170 
171 /* Location (byte offset within page) of TransactionId of given member */
172 #define MXOffsetToMemberOffset(xid) \
173 	(MXOffsetToFlagsOffset(xid) + MULTIXACT_FLAGBYTES_PER_GROUP + \
174 	 ((xid) % MULTIXACT_MEMBERS_PER_MEMBERGROUP) * sizeof(TransactionId))
175 
176 /* Multixact members wraparound thresholds. */
177 #define MULTIXACT_MEMBER_SAFE_THRESHOLD		(MaxMultiXactOffset / 2)
178 #define MULTIXACT_MEMBER_DANGER_THRESHOLD	\
179 	(MaxMultiXactOffset - MaxMultiXactOffset / 4)
180 
181 #define PreviousMultiXactId(xid) \
182 	((xid) == FirstMultiXactId ? MaxMultiXactId : (xid) - 1)
183 
184 /*
185  * Links to shared-memory data structures for MultiXact control
186  */
187 static SlruCtlData MultiXactOffsetCtlData;
188 static SlruCtlData MultiXactMemberCtlData;
189 
190 #define MultiXactOffsetCtl	(&MultiXactOffsetCtlData)
191 #define MultiXactMemberCtl	(&MultiXactMemberCtlData)
192 
193 /*
194  * MultiXact state shared across all backends.  All this state is protected
195  * by MultiXactGenLock.  (We also use MultiXactOffsetSLRULock and
196  * MultiXactMemberSLRULock to guard accesses to the two sets of SLRU
197  * buffers.  For concurrency's sake, we avoid holding more than one of these
198  * locks at a time.)
199  */
200 typedef struct MultiXactStateData
201 {
202 	/* next-to-be-assigned MultiXactId */
203 	MultiXactId nextMXact;
204 
205 	/* next-to-be-assigned offset */
206 	MultiXactOffset nextOffset;
207 
208 	/* Have we completed multixact startup? */
209 	bool		finishedStartup;
210 
211 	/*
212 	 * Oldest multixact that is still potentially referenced by a relation.
213 	 * Anything older than this should not be consulted.  These values are
214 	 * updated by vacuum.
215 	 */
216 	MultiXactId oldestMultiXactId;
217 	Oid			oldestMultiXactDB;
218 
219 	/*
220 	 * Oldest multixact offset that is potentially referenced by a multixact
221 	 * referenced by a relation.  We don't always know this value, so there's
222 	 * a flag here to indicate whether or not we currently do.
223 	 */
224 	MultiXactOffset oldestOffset;
225 	bool		oldestOffsetKnown;
226 
227 	/* support for anti-wraparound measures */
228 	MultiXactId multiVacLimit;
229 	MultiXactId multiWarnLimit;
230 	MultiXactId multiStopLimit;
231 	MultiXactId multiWrapLimit;
232 
233 	/* support for members anti-wraparound measures */
234 	MultiXactOffset offsetStopLimit;	/* known if oldestOffsetKnown */
235 
236 	/*
237 	 * Per-backend data starts here.  We have two arrays stored in the area
238 	 * immediately following the MultiXactStateData struct. Each is indexed by
239 	 * BackendId.
240 	 *
241 	 * In both arrays, there's a slot for all normal backends (1..MaxBackends)
242 	 * followed by a slot for max_prepared_xacts prepared transactions. Valid
243 	 * BackendIds start from 1; element zero of each array is never used.
244 	 *
245 	 * OldestMemberMXactId[k] is the oldest MultiXactId each backend's current
246 	 * transaction(s) could possibly be a member of, or InvalidMultiXactId
247 	 * when the backend has no live transaction that could possibly be a
248 	 * member of a MultiXact.  Each backend sets its entry to the current
249 	 * nextMXact counter just before first acquiring a shared lock in a given
250 	 * transaction, and clears it at transaction end. (This works because only
251 	 * during or after acquiring a shared lock could an XID possibly become a
252 	 * member of a MultiXact, and that MultiXact would have to be created
253 	 * during or after the lock acquisition.)
254 	 *
255 	 * OldestVisibleMXactId[k] is the oldest MultiXactId each backend's
256 	 * current transaction(s) think is potentially live, or InvalidMultiXactId
257 	 * when not in a transaction or not in a transaction that's paid any
258 	 * attention to MultiXacts yet.  This is computed when first needed in a
259 	 * given transaction, and cleared at transaction end.  We can compute it
260 	 * as the minimum of the valid OldestMemberMXactId[] entries at the time
261 	 * we compute it (using nextMXact if none are valid).  Each backend is
262 	 * required not to attempt to access any SLRU data for MultiXactIds older
263 	 * than its own OldestVisibleMXactId[] setting; this is necessary because
264 	 * the checkpointer could truncate away such data at any instant.
265 	 *
266 	 * The oldest valid value among all of the OldestMemberMXactId[] and
267 	 * OldestVisibleMXactId[] entries is considered by vacuum as the earliest
268 	 * possible value still having any live member transaction.  Subtracting
269 	 * vacuum_multixact_freeze_min_age from that value we obtain the freezing
270 	 * point for multixacts for that table.  Any value older than that is
271 	 * removed from tuple headers (or "frozen"; see FreezeMultiXactId.  Note
272 	 * that multis that have member xids that are older than the cutoff point
273 	 * for xids must also be frozen, even if the multis themselves are newer
274 	 * than the multixid cutoff point).  Whenever a full table vacuum happens,
275 	 * the freezing point so computed is used as the new pg_class.relminmxid
276 	 * value.  The minimum of all those values in a database is stored as
277 	 * pg_database.datminmxid.  In turn, the minimum of all of those values is
278 	 * stored in pg_control and used as truncation point for pg_multixact.  At
279 	 * checkpoint or restartpoint, unneeded segments are removed.
280 	 */
281 	MultiXactId perBackendXactIds[FLEXIBLE_ARRAY_MEMBER];
282 } MultiXactStateData;
283 
284 /*
285  * Last element of OldestMemberMXactId and OldestVisibleMXactId arrays.
286  * Valid elements are (1..MaxOldestSlot); element 0 is never used.
287  */
288 #define MaxOldestSlot	(MaxBackends + max_prepared_xacts)
289 
290 /* Pointers to the state data in shared memory */
291 static MultiXactStateData *MultiXactState;
292 static MultiXactId *OldestMemberMXactId;
293 static MultiXactId *OldestVisibleMXactId;
294 
295 
296 /*
297  * Definitions for the backend-local MultiXactId cache.
298  *
299  * We use this cache to store known MultiXacts, so we don't need to go to
300  * SLRU areas every time.
301  *
302  * The cache lasts for the duration of a single transaction, the rationale
303  * for this being that most entries will contain our own TransactionId and
304  * so they will be uninteresting by the time our next transaction starts.
305  * (XXX not clear that this is correct --- other members of the MultiXact
306  * could hang around longer than we did.  However, it's not clear what a
307  * better policy for flushing old cache entries would be.)	FIXME actually
308  * this is plain wrong now that multixact's may contain update Xids.
309  *
310  * We allocate the cache entries in a memory context that is deleted at
311  * transaction end, so we don't need to do retail freeing of entries.
312  */
313 typedef struct mXactCacheEnt
314 {
315 	MultiXactId multi;
316 	int			nmembers;
317 	dlist_node	node;
318 	MultiXactMember members[FLEXIBLE_ARRAY_MEMBER];
319 } mXactCacheEnt;
320 
321 #define MAX_CACHE_ENTRIES	256
322 static dlist_head MXactCache = DLIST_STATIC_INIT(MXactCache);
323 static int	MXactCacheMembers = 0;
324 static MemoryContext MXactContext = NULL;
325 
326 #ifdef MULTIXACT_DEBUG
327 #define debug_elog2(a,b) elog(a,b)
328 #define debug_elog3(a,b,c) elog(a,b,c)
329 #define debug_elog4(a,b,c,d) elog(a,b,c,d)
330 #define debug_elog5(a,b,c,d,e) elog(a,b,c,d,e)
331 #define debug_elog6(a,b,c,d,e,f) elog(a,b,c,d,e,f)
332 #else
333 #define debug_elog2(a,b)
334 #define debug_elog3(a,b,c)
335 #define debug_elog4(a,b,c,d)
336 #define debug_elog5(a,b,c,d,e)
337 #define debug_elog6(a,b,c,d,e,f)
338 #endif
339 
340 /* internal MultiXactId management */
341 static void MultiXactIdSetOldestVisible(void);
342 static void RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
343 							   int nmembers, MultiXactMember *members);
344 static MultiXactId GetNewMultiXactId(int nmembers, MultiXactOffset *offset);
345 
346 /* MultiXact cache management */
347 static int	mxactMemberComparator(const void *arg1, const void *arg2);
348 static MultiXactId mXactCacheGetBySet(int nmembers, MultiXactMember *members);
349 static int	mXactCacheGetById(MultiXactId multi, MultiXactMember **members);
350 static void mXactCachePut(MultiXactId multi, int nmembers,
351 						  MultiXactMember *members);
352 
353 static char *mxstatus_to_string(MultiXactStatus status);
354 
355 /* management of SLRU infrastructure */
356 static int	ZeroMultiXactOffsetPage(int pageno, bool writeXlog);
357 static int	ZeroMultiXactMemberPage(int pageno, bool writeXlog);
358 static bool MultiXactOffsetPagePrecedes(int page1, int page2);
359 static bool MultiXactMemberPagePrecedes(int page1, int page2);
360 static bool MultiXactOffsetPrecedes(MultiXactOffset offset1,
361 									MultiXactOffset offset2);
362 static void ExtendMultiXactOffset(MultiXactId multi);
363 static void ExtendMultiXactMember(MultiXactOffset offset, int nmembers);
364 static bool MultiXactOffsetWouldWrap(MultiXactOffset boundary,
365 									 MultiXactOffset start, uint32 distance);
366 static bool SetOffsetVacuumLimit(bool is_startup);
367 static bool find_multixact_start(MultiXactId multi, MultiXactOffset *result);
368 static void WriteMZeroPageXlogRec(int pageno, uint8 info);
369 static void WriteMTruncateXlogRec(Oid oldestMultiDB,
370 								  MultiXactId startTruncOff,
371 								  MultiXactId endTruncOff,
372 								  MultiXactOffset startTruncMemb,
373 								  MultiXactOffset endTruncMemb);
374 
375 
376 /*
377  * MultiXactIdCreate
378  *		Construct a MultiXactId representing two TransactionIds.
379  *
380  * The two XIDs must be different, or be requesting different statuses.
381  *
382  * NB - we don't worry about our local MultiXactId cache here, because that
383  * is handled by the lower-level routines.
384  */
385 MultiXactId
MultiXactIdCreate(TransactionId xid1,MultiXactStatus status1,TransactionId xid2,MultiXactStatus status2)386 MultiXactIdCreate(TransactionId xid1, MultiXactStatus status1,
387 				  TransactionId xid2, MultiXactStatus status2)
388 {
389 	MultiXactId newMulti;
390 	MultiXactMember members[2];
391 
392 	AssertArg(TransactionIdIsValid(xid1));
393 	AssertArg(TransactionIdIsValid(xid2));
394 
395 	Assert(!TransactionIdEquals(xid1, xid2) || (status1 != status2));
396 
397 	/* MultiXactIdSetOldestMember() must have been called already. */
398 	Assert(MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]));
399 
400 	/*
401 	 * Note: unlike MultiXactIdExpand, we don't bother to check that both XIDs
402 	 * are still running.  In typical usage, xid2 will be our own XID and the
403 	 * caller just did a check on xid1, so it'd be wasted effort.
404 	 */
405 
406 	members[0].xid = xid1;
407 	members[0].status = status1;
408 	members[1].xid = xid2;
409 	members[1].status = status2;
410 
411 	newMulti = MultiXactIdCreateFromMembers(2, members);
412 
413 	debug_elog3(DEBUG2, "Create: %s",
414 				mxid_to_string(newMulti, 2, members));
415 
416 	return newMulti;
417 }
418 
419 /*
420  * MultiXactIdExpand
421  *		Add a TransactionId to a pre-existing MultiXactId.
422  *
423  * If the TransactionId is already a member of the passed MultiXactId with the
424  * same status, just return it as-is.
425  *
426  * Note that we do NOT actually modify the membership of a pre-existing
427  * MultiXactId; instead we create a new one.  This is necessary to avoid
428  * a race condition against code trying to wait for one MultiXactId to finish;
429  * see notes in heapam.c.
430  *
431  * NB - we don't worry about our local MultiXactId cache here, because that
432  * is handled by the lower-level routines.
433  *
434  * Note: It is critical that MultiXactIds that come from an old cluster (i.e.
435  * one upgraded by pg_upgrade from a cluster older than this feature) are not
436  * passed in.
437  */
438 MultiXactId
MultiXactIdExpand(MultiXactId multi,TransactionId xid,MultiXactStatus status)439 MultiXactIdExpand(MultiXactId multi, TransactionId xid, MultiXactStatus status)
440 {
441 	MultiXactId newMulti;
442 	MultiXactMember *members;
443 	MultiXactMember *newMembers;
444 	int			nmembers;
445 	int			i;
446 	int			j;
447 
448 	AssertArg(MultiXactIdIsValid(multi));
449 	AssertArg(TransactionIdIsValid(xid));
450 
451 	/* MultiXactIdSetOldestMember() must have been called already. */
452 	Assert(MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]));
453 
454 	debug_elog5(DEBUG2, "Expand: received multi %u, xid %u status %s",
455 				multi, xid, mxstatus_to_string(status));
456 
457 	/*
458 	 * Note: we don't allow for old multis here.  The reason is that the only
459 	 * caller of this function does a check that the multixact is no longer
460 	 * running.
461 	 */
462 	nmembers = GetMultiXactIdMembers(multi, &members, false, false);
463 
464 	if (nmembers < 0)
465 	{
466 		MultiXactMember member;
467 
468 		/*
469 		 * The MultiXactId is obsolete.  This can only happen if all the
470 		 * MultiXactId members stop running between the caller checking and
471 		 * passing it to us.  It would be better to return that fact to the
472 		 * caller, but it would complicate the API and it's unlikely to happen
473 		 * too often, so just deal with it by creating a singleton MultiXact.
474 		 */
475 		member.xid = xid;
476 		member.status = status;
477 		newMulti = MultiXactIdCreateFromMembers(1, &member);
478 
479 		debug_elog4(DEBUG2, "Expand: %u has no members, create singleton %u",
480 					multi, newMulti);
481 		return newMulti;
482 	}
483 
484 	/*
485 	 * If the TransactionId is already a member of the MultiXactId with the
486 	 * same status, just return the existing MultiXactId.
487 	 */
488 	for (i = 0; i < nmembers; i++)
489 	{
490 		if (TransactionIdEquals(members[i].xid, xid) &&
491 			(members[i].status == status))
492 		{
493 			debug_elog4(DEBUG2, "Expand: %u is already a member of %u",
494 						xid, multi);
495 			pfree(members);
496 			return multi;
497 		}
498 	}
499 
500 	/*
501 	 * Determine which of the members of the MultiXactId are still of
502 	 * interest. This is any running transaction, and also any transaction
503 	 * that grabbed something stronger than just a lock and was committed. (An
504 	 * update that aborted is of no interest here; and having more than one
505 	 * update Xid in a multixact would cause errors elsewhere.)
506 	 *
507 	 * Removing dead members is not just an optimization: freezing of tuples
508 	 * whose Xmax are multis depends on this behavior.
509 	 *
510 	 * Note we have the same race condition here as above: j could be 0 at the
511 	 * end of the loop.
512 	 */
513 	newMembers = (MultiXactMember *)
514 		palloc(sizeof(MultiXactMember) * (nmembers + 1));
515 
516 	for (i = 0, j = 0; i < nmembers; i++)
517 	{
518 		if (TransactionIdIsInProgress(members[i].xid) ||
519 			(ISUPDATE_from_mxstatus(members[i].status) &&
520 			 TransactionIdDidCommit(members[i].xid)))
521 		{
522 			newMembers[j].xid = members[i].xid;
523 			newMembers[j++].status = members[i].status;
524 		}
525 	}
526 
527 	newMembers[j].xid = xid;
528 	newMembers[j++].status = status;
529 	newMulti = MultiXactIdCreateFromMembers(j, newMembers);
530 
531 	pfree(members);
532 	pfree(newMembers);
533 
534 	debug_elog3(DEBUG2, "Expand: returning new multi %u", newMulti);
535 
536 	return newMulti;
537 }
538 
539 /*
540  * MultiXactIdIsRunning
541  *		Returns whether a MultiXactId is "running".
542  *
543  * We return true if at least one member of the given MultiXactId is still
544  * running.  Note that a "false" result is certain not to change,
545  * because it is not legal to add members to an existing MultiXactId.
546  *
547  * Caller is expected to have verified that the multixact does not come from
548  * a pg_upgraded share-locked tuple.
549  */
550 bool
MultiXactIdIsRunning(MultiXactId multi,bool isLockOnly)551 MultiXactIdIsRunning(MultiXactId multi, bool isLockOnly)
552 {
553 	MultiXactMember *members;
554 	int			nmembers;
555 	int			i;
556 
557 	debug_elog3(DEBUG2, "IsRunning %u?", multi);
558 
559 	/*
560 	 * "false" here means we assume our callers have checked that the given
561 	 * multi cannot possibly come from a pg_upgraded database.
562 	 */
563 	nmembers = GetMultiXactIdMembers(multi, &members, false, isLockOnly);
564 
565 	if (nmembers <= 0)
566 	{
567 		debug_elog2(DEBUG2, "IsRunning: no members");
568 		return false;
569 	}
570 
571 	/*
572 	 * Checking for myself is cheap compared to looking in shared memory;
573 	 * return true if any live subtransaction of the current top-level
574 	 * transaction is a member.
575 	 *
576 	 * This is not needed for correctness, it's just a fast path.
577 	 */
578 	for (i = 0; i < nmembers; i++)
579 	{
580 		if (TransactionIdIsCurrentTransactionId(members[i].xid))
581 		{
582 			debug_elog3(DEBUG2, "IsRunning: I (%d) am running!", i);
583 			pfree(members);
584 			return true;
585 		}
586 	}
587 
588 	/*
589 	 * This could be made faster by having another entry point in procarray.c,
590 	 * walking the PGPROC array only once for all the members.  But in most
591 	 * cases nmembers should be small enough that it doesn't much matter.
592 	 */
593 	for (i = 0; i < nmembers; i++)
594 	{
595 		if (TransactionIdIsInProgress(members[i].xid))
596 		{
597 			debug_elog4(DEBUG2, "IsRunning: member %d (%u) is running",
598 						i, members[i].xid);
599 			pfree(members);
600 			return true;
601 		}
602 	}
603 
604 	pfree(members);
605 
606 	debug_elog3(DEBUG2, "IsRunning: %u is not running", multi);
607 
608 	return false;
609 }
610 
611 /*
612  * MultiXactIdSetOldestMember
613  *		Save the oldest MultiXactId this transaction could be a member of.
614  *
615  * We set the OldestMemberMXactId for a given transaction the first time it's
616  * going to do some operation that might require a MultiXactId (tuple lock,
617  * update or delete).  We need to do this even if we end up using a
618  * TransactionId instead of a MultiXactId, because there is a chance that
619  * another transaction would add our XID to a MultiXactId.
620  *
621  * The value to set is the next-to-be-assigned MultiXactId, so this is meant to
622  * be called just before doing any such possibly-MultiXactId-able operation.
623  */
624 void
MultiXactIdSetOldestMember(void)625 MultiXactIdSetOldestMember(void)
626 {
627 	if (!MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]))
628 	{
629 		MultiXactId nextMXact;
630 
631 		/*
632 		 * You might think we don't need to acquire a lock here, since
633 		 * fetching and storing of TransactionIds is probably atomic, but in
634 		 * fact we do: suppose we pick up nextMXact and then lose the CPU for
635 		 * a long time.  Someone else could advance nextMXact, and then
636 		 * another someone else could compute an OldestVisibleMXactId that
637 		 * would be after the value we are going to store when we get control
638 		 * back.  Which would be wrong.
639 		 *
640 		 * Note that a shared lock is sufficient, because it's enough to stop
641 		 * someone from advancing nextMXact; and nobody else could be trying
642 		 * to write to our OldestMember entry, only reading (and we assume
643 		 * storing it is atomic.)
644 		 */
645 		LWLockAcquire(MultiXactGenLock, LW_SHARED);
646 
647 		/*
648 		 * We have to beware of the possibility that nextMXact is in the
649 		 * wrapped-around state.  We don't fix the counter itself here, but we
650 		 * must be sure to store a valid value in our array entry.
651 		 */
652 		nextMXact = MultiXactState->nextMXact;
653 		if (nextMXact < FirstMultiXactId)
654 			nextMXact = FirstMultiXactId;
655 
656 		OldestMemberMXactId[MyBackendId] = nextMXact;
657 
658 		LWLockRelease(MultiXactGenLock);
659 
660 		debug_elog4(DEBUG2, "MultiXact: setting OldestMember[%d] = %u",
661 					MyBackendId, nextMXact);
662 	}
663 }
664 
665 /*
666  * MultiXactIdSetOldestVisible
667  *		Save the oldest MultiXactId this transaction considers possibly live.
668  *
669  * We set the OldestVisibleMXactId for a given transaction the first time
670  * it's going to inspect any MultiXactId.  Once we have set this, we are
671  * guaranteed that the checkpointer won't truncate off SLRU data for
672  * MultiXactIds at or after our OldestVisibleMXactId.
673  *
674  * The value to set is the oldest of nextMXact and all the valid per-backend
675  * OldestMemberMXactId[] entries.  Because of the locking we do, we can be
676  * certain that no subsequent call to MultiXactIdSetOldestMember can set
677  * an OldestMemberMXactId[] entry older than what we compute here.  Therefore
678  * there is no live transaction, now or later, that can be a member of any
679  * MultiXactId older than the OldestVisibleMXactId we compute here.
680  */
681 static void
MultiXactIdSetOldestVisible(void)682 MultiXactIdSetOldestVisible(void)
683 {
684 	if (!MultiXactIdIsValid(OldestVisibleMXactId[MyBackendId]))
685 	{
686 		MultiXactId oldestMXact;
687 		int			i;
688 
689 		LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
690 
691 		/*
692 		 * We have to beware of the possibility that nextMXact is in the
693 		 * wrapped-around state.  We don't fix the counter itself here, but we
694 		 * must be sure to store a valid value in our array entry.
695 		 */
696 		oldestMXact = MultiXactState->nextMXact;
697 		if (oldestMXact < FirstMultiXactId)
698 			oldestMXact = FirstMultiXactId;
699 
700 		for (i = 1; i <= MaxOldestSlot; i++)
701 		{
702 			MultiXactId thisoldest = OldestMemberMXactId[i];
703 
704 			if (MultiXactIdIsValid(thisoldest) &&
705 				MultiXactIdPrecedes(thisoldest, oldestMXact))
706 				oldestMXact = thisoldest;
707 		}
708 
709 		OldestVisibleMXactId[MyBackendId] = oldestMXact;
710 
711 		LWLockRelease(MultiXactGenLock);
712 
713 		debug_elog4(DEBUG2, "MultiXact: setting OldestVisible[%d] = %u",
714 					MyBackendId, oldestMXact);
715 	}
716 }
717 
718 /*
719  * ReadNextMultiXactId
720  *		Return the next MultiXactId to be assigned, but don't allocate it
721  */
722 MultiXactId
ReadNextMultiXactId(void)723 ReadNextMultiXactId(void)
724 {
725 	MultiXactId mxid;
726 
727 	/* XXX we could presumably do this without a lock. */
728 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
729 	mxid = MultiXactState->nextMXact;
730 	LWLockRelease(MultiXactGenLock);
731 
732 	if (mxid < FirstMultiXactId)
733 		mxid = FirstMultiXactId;
734 
735 	return mxid;
736 }
737 
738 /*
739  * MultiXactIdCreateFromMembers
740  *		Make a new MultiXactId from the specified set of members
741  *
742  * Make XLOG, SLRU and cache entries for a new MultiXactId, recording the
743  * given TransactionIds as members.  Returns the newly created MultiXactId.
744  *
745  * NB: the passed members[] array will be sorted in-place.
746  */
747 MultiXactId
MultiXactIdCreateFromMembers(int nmembers,MultiXactMember * members)748 MultiXactIdCreateFromMembers(int nmembers, MultiXactMember *members)
749 {
750 	MultiXactId multi;
751 	MultiXactOffset offset;
752 	xl_multixact_create xlrec;
753 
754 	debug_elog3(DEBUG2, "Create: %s",
755 				mxid_to_string(InvalidMultiXactId, nmembers, members));
756 
757 	/*
758 	 * See if the same set of members already exists in our cache; if so, just
759 	 * re-use that MultiXactId.  (Note: it might seem that looking in our
760 	 * cache is insufficient, and we ought to search disk to see if a
761 	 * duplicate definition already exists.  But since we only ever create
762 	 * MultiXacts containing our own XID, in most cases any such MultiXacts
763 	 * were in fact created by us, and so will be in our cache.  There are
764 	 * corner cases where someone else added us to a MultiXact without our
765 	 * knowledge, but it's not worth checking for.)
766 	 */
767 	multi = mXactCacheGetBySet(nmembers, members);
768 	if (MultiXactIdIsValid(multi))
769 	{
770 		debug_elog2(DEBUG2, "Create: in cache!");
771 		return multi;
772 	}
773 
774 	/* Verify that there is a single update Xid among the given members. */
775 	{
776 		int			i;
777 		bool		has_update = false;
778 
779 		for (i = 0; i < nmembers; i++)
780 		{
781 			if (ISUPDATE_from_mxstatus(members[i].status))
782 			{
783 				if (has_update)
784 					elog(ERROR, "new multixact has more than one updating member");
785 				has_update = true;
786 			}
787 		}
788 	}
789 
790 	/*
791 	 * Assign the MXID and offsets range to use, and make sure there is space
792 	 * in the OFFSETs and MEMBERs files.  NB: this routine does
793 	 * START_CRIT_SECTION().
794 	 *
795 	 * Note: unlike MultiXactIdCreate and MultiXactIdExpand, we do not check
796 	 * that we've called MultiXactIdSetOldestMember here.  This is because
797 	 * this routine is used in some places to create new MultiXactIds of which
798 	 * the current backend is not a member, notably during freezing of multis
799 	 * in vacuum.  During vacuum, in particular, it would be unacceptable to
800 	 * keep OldestMulti set, in case it runs for long.
801 	 */
802 	multi = GetNewMultiXactId(nmembers, &offset);
803 
804 	/* Make an XLOG entry describing the new MXID. */
805 	xlrec.mid = multi;
806 	xlrec.moff = offset;
807 	xlrec.nmembers = nmembers;
808 
809 	/*
810 	 * XXX Note: there's a lot of padding space in MultiXactMember.  We could
811 	 * find a more compact representation of this Xlog record -- perhaps all
812 	 * the status flags in one XLogRecData, then all the xids in another one?
813 	 * Not clear that it's worth the trouble though.
814 	 */
815 	XLogBeginInsert();
816 	XLogRegisterData((char *) (&xlrec), SizeOfMultiXactCreate);
817 	XLogRegisterData((char *) members, nmembers * sizeof(MultiXactMember));
818 
819 	(void) XLogInsert(RM_MULTIXACT_ID, XLOG_MULTIXACT_CREATE_ID);
820 
821 	/* Now enter the information into the OFFSETs and MEMBERs logs */
822 	RecordNewMultiXact(multi, offset, nmembers, members);
823 
824 	/* Done with critical section */
825 	END_CRIT_SECTION();
826 
827 	/* Store the new MultiXactId in the local cache, too */
828 	mXactCachePut(multi, nmembers, members);
829 
830 	debug_elog2(DEBUG2, "Create: all done");
831 
832 	return multi;
833 }
834 
835 /*
836  * RecordNewMultiXact
837  *		Write info about a new multixact into the offsets and members files
838  *
839  * This is broken out of MultiXactIdCreateFromMembers so that xlog replay can
840  * use it.
841  */
842 static void
RecordNewMultiXact(MultiXactId multi,MultiXactOffset offset,int nmembers,MultiXactMember * members)843 RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
844 				   int nmembers, MultiXactMember *members)
845 {
846 	int			pageno;
847 	int			prev_pageno;
848 	int			entryno;
849 	int			slotno;
850 	MultiXactOffset *offptr;
851 	int			i;
852 
853 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
854 
855 	pageno = MultiXactIdToOffsetPage(multi);
856 	entryno = MultiXactIdToOffsetEntry(multi);
857 
858 	/*
859 	 * Note: we pass the MultiXactId to SimpleLruReadPage as the "transaction"
860 	 * to complain about if there's any I/O error.  This is kinda bogus, but
861 	 * since the errors will always give the full pathname, it should be clear
862 	 * enough that a MultiXactId is really involved.  Perhaps someday we'll
863 	 * take the trouble to generalize the slru.c error reporting code.
864 	 */
865 	slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, multi);
866 	offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
867 	offptr += entryno;
868 
869 	*offptr = offset;
870 
871 	MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
872 
873 	/* Exchange our lock */
874 	LWLockRelease(MultiXactOffsetSLRULock);
875 
876 	LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
877 
878 	prev_pageno = -1;
879 
880 	for (i = 0; i < nmembers; i++, offset++)
881 	{
882 		TransactionId *memberptr;
883 		uint32	   *flagsptr;
884 		uint32		flagsval;
885 		int			bshift;
886 		int			flagsoff;
887 		int			memberoff;
888 
889 		Assert(members[i].status <= MultiXactStatusUpdate);
890 
891 		pageno = MXOffsetToMemberPage(offset);
892 		memberoff = MXOffsetToMemberOffset(offset);
893 		flagsoff = MXOffsetToFlagsOffset(offset);
894 		bshift = MXOffsetToFlagsBitShift(offset);
895 
896 		if (pageno != prev_pageno)
897 		{
898 			slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, multi);
899 			prev_pageno = pageno;
900 		}
901 
902 		memberptr = (TransactionId *)
903 			(MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
904 
905 		*memberptr = members[i].xid;
906 
907 		flagsptr = (uint32 *)
908 			(MultiXactMemberCtl->shared->page_buffer[slotno] + flagsoff);
909 
910 		flagsval = *flagsptr;
911 		flagsval &= ~(((1 << MXACT_MEMBER_BITS_PER_XACT) - 1) << bshift);
912 		flagsval |= (members[i].status << bshift);
913 		*flagsptr = flagsval;
914 
915 		MultiXactMemberCtl->shared->page_dirty[slotno] = true;
916 	}
917 
918 	LWLockRelease(MultiXactMemberSLRULock);
919 }
920 
921 /*
922  * GetNewMultiXactId
923  *		Get the next MultiXactId.
924  *
925  * Also, reserve the needed amount of space in the "members" area.  The
926  * starting offset of the reserved space is returned in *offset.
927  *
928  * This may generate XLOG records for expansion of the offsets and/or members
929  * files.  Unfortunately, we have to do that while holding MultiXactGenLock
930  * to avoid race conditions --- the XLOG record for zeroing a page must appear
931  * before any backend can possibly try to store data in that page!
932  *
933  * We start a critical section before advancing the shared counters.  The
934  * caller must end the critical section after writing SLRU data.
935  */
936 static MultiXactId
GetNewMultiXactId(int nmembers,MultiXactOffset * offset)937 GetNewMultiXactId(int nmembers, MultiXactOffset *offset)
938 {
939 	MultiXactId result;
940 	MultiXactOffset nextOffset;
941 
942 	debug_elog3(DEBUG2, "GetNew: for %d xids", nmembers);
943 
944 	/* safety check, we should never get this far in a HS standby */
945 	if (RecoveryInProgress())
946 		elog(ERROR, "cannot assign MultiXactIds during recovery");
947 
948 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
949 
950 	/* Handle wraparound of the nextMXact counter */
951 	if (MultiXactState->nextMXact < FirstMultiXactId)
952 		MultiXactState->nextMXact = FirstMultiXactId;
953 
954 	/* Assign the MXID */
955 	result = MultiXactState->nextMXact;
956 
957 	/*----------
958 	 * Check to see if it's safe to assign another MultiXactId.  This protects
959 	 * against catastrophic data loss due to multixact wraparound.  The basic
960 	 * rules are:
961 	 *
962 	 * If we're past multiVacLimit or the safe threshold for member storage
963 	 * space, or we don't know what the safe threshold for member storage is,
964 	 * start trying to force autovacuum cycles.
965 	 * If we're past multiWarnLimit, start issuing warnings.
966 	 * If we're past multiStopLimit, refuse to create new MultiXactIds.
967 	 *
968 	 * Note these are pretty much the same protections in GetNewTransactionId.
969 	 *----------
970 	 */
971 	if (!MultiXactIdPrecedes(result, MultiXactState->multiVacLimit))
972 	{
973 		/*
974 		 * For safety's sake, we release MultiXactGenLock while sending
975 		 * signals, warnings, etc.  This is not so much because we care about
976 		 * preserving concurrency in this situation, as to avoid any
977 		 * possibility of deadlock while doing get_database_name(). First,
978 		 * copy all the shared values we'll need in this path.
979 		 */
980 		MultiXactId multiWarnLimit = MultiXactState->multiWarnLimit;
981 		MultiXactId multiStopLimit = MultiXactState->multiStopLimit;
982 		MultiXactId multiWrapLimit = MultiXactState->multiWrapLimit;
983 		Oid			oldest_datoid = MultiXactState->oldestMultiXactDB;
984 
985 		LWLockRelease(MultiXactGenLock);
986 
987 		if (IsUnderPostmaster &&
988 			!MultiXactIdPrecedes(result, multiStopLimit))
989 		{
990 			char	   *oldest_datname = get_database_name(oldest_datoid);
991 
992 			/*
993 			 * Immediately kick autovacuum into action as we're already in
994 			 * ERROR territory.
995 			 */
996 			SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
997 
998 			/* complain even if that DB has disappeared */
999 			if (oldest_datname)
1000 				ereport(ERROR,
1001 						(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1002 						 errmsg("database is not accepting commands that generate new MultiXactIds to avoid wraparound data loss in database \"%s\"",
1003 								oldest_datname),
1004 						 errhint("Execute a database-wide VACUUM in that database.\n"
1005 								 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1006 			else
1007 				ereport(ERROR,
1008 						(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1009 						 errmsg("database is not accepting commands that generate new MultiXactIds to avoid wraparound data loss in database with OID %u",
1010 								oldest_datoid),
1011 						 errhint("Execute a database-wide VACUUM in that database.\n"
1012 								 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1013 		}
1014 
1015 		/*
1016 		 * To avoid swamping the postmaster with signals, we issue the autovac
1017 		 * request only once per 64K multis generated.  This still gives
1018 		 * plenty of chances before we get into real trouble.
1019 		 */
1020 		if (IsUnderPostmaster && (result % 65536) == 0)
1021 			SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
1022 
1023 		if (!MultiXactIdPrecedes(result, multiWarnLimit))
1024 		{
1025 			char	   *oldest_datname = get_database_name(oldest_datoid);
1026 
1027 			/* complain even if that DB has disappeared */
1028 			if (oldest_datname)
1029 				ereport(WARNING,
1030 						(errmsg_plural("database \"%s\" must be vacuumed before %u more MultiXactId is used",
1031 									   "database \"%s\" must be vacuumed before %u more MultiXactIds are used",
1032 									   multiWrapLimit - result,
1033 									   oldest_datname,
1034 									   multiWrapLimit - result),
1035 						 errhint("Execute a database-wide VACUUM in that database.\n"
1036 								 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1037 			else
1038 				ereport(WARNING,
1039 						(errmsg_plural("database with OID %u must be vacuumed before %u more MultiXactId is used",
1040 									   "database with OID %u must be vacuumed before %u more MultiXactIds are used",
1041 									   multiWrapLimit - result,
1042 									   oldest_datoid,
1043 									   multiWrapLimit - result),
1044 						 errhint("Execute a database-wide VACUUM in that database.\n"
1045 								 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1046 		}
1047 
1048 		/* Re-acquire lock and start over */
1049 		LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
1050 		result = MultiXactState->nextMXact;
1051 		if (result < FirstMultiXactId)
1052 			result = FirstMultiXactId;
1053 	}
1054 
1055 	/* Make sure there is room for the MXID in the file.  */
1056 	ExtendMultiXactOffset(result);
1057 
1058 	/*
1059 	 * Reserve the members space, similarly to above.  Also, be careful not to
1060 	 * return zero as the starting offset for any multixact. See
1061 	 * GetMultiXactIdMembers() for motivation.
1062 	 */
1063 	nextOffset = MultiXactState->nextOffset;
1064 	if (nextOffset == 0)
1065 	{
1066 		*offset = 1;
1067 		nmembers++;				/* allocate member slot 0 too */
1068 	}
1069 	else
1070 		*offset = nextOffset;
1071 
1072 	/*----------
1073 	 * Protect against overrun of the members space as well, with the
1074 	 * following rules:
1075 	 *
1076 	 * If we're past offsetStopLimit, refuse to generate more multis.
1077 	 * If we're close to offsetStopLimit, emit a warning.
1078 	 *
1079 	 * Arbitrarily, we start emitting warnings when we're 20 segments or less
1080 	 * from offsetStopLimit.
1081 	 *
1082 	 * Note we haven't updated the shared state yet, so if we fail at this
1083 	 * point, the multixact ID we grabbed can still be used by the next guy.
1084 	 *
1085 	 * Note that there is no point in forcing autovacuum runs here: the
1086 	 * multixact freeze settings would have to be reduced for that to have any
1087 	 * effect.
1088 	 *----------
1089 	 */
1090 #define OFFSET_WARN_SEGMENTS	20
1091 	if (MultiXactState->oldestOffsetKnown &&
1092 		MultiXactOffsetWouldWrap(MultiXactState->offsetStopLimit, nextOffset,
1093 								 nmembers))
1094 	{
1095 		/* see comment in the corresponding offsets wraparound case */
1096 		SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
1097 
1098 		ereport(ERROR,
1099 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1100 				 errmsg("multixact \"members\" limit exceeded"),
1101 				 errdetail_plural("This command would create a multixact with %u members, but the remaining space is only enough for %u member.",
1102 								  "This command would create a multixact with %u members, but the remaining space is only enough for %u members.",
1103 								  MultiXactState->offsetStopLimit - nextOffset - 1,
1104 								  nmembers,
1105 								  MultiXactState->offsetStopLimit - nextOffset - 1),
1106 				 errhint("Execute a database-wide VACUUM in database with OID %u with reduced vacuum_multixact_freeze_min_age and vacuum_multixact_freeze_table_age settings.",
1107 						 MultiXactState->oldestMultiXactDB)));
1108 	}
1109 
1110 	/*
1111 	 * Check whether we should kick autovacuum into action, to prevent members
1112 	 * wraparound. NB we use a much larger window to trigger autovacuum than
1113 	 * just the warning limit. The warning is just a measure of last resort -
1114 	 * this is in line with GetNewTransactionId's behaviour.
1115 	 */
1116 	if (!MultiXactState->oldestOffsetKnown ||
1117 		(MultiXactState->nextOffset - MultiXactState->oldestOffset
1118 		 > MULTIXACT_MEMBER_SAFE_THRESHOLD))
1119 	{
1120 		/*
1121 		 * To avoid swamping the postmaster with signals, we issue the autovac
1122 		 * request only when crossing a segment boundary. With default
1123 		 * compilation settings that's roughly after 50k members.  This still
1124 		 * gives plenty of chances before we get into real trouble.
1125 		 */
1126 		if ((MXOffsetToMemberPage(nextOffset) / SLRU_PAGES_PER_SEGMENT) !=
1127 			(MXOffsetToMemberPage(nextOffset + nmembers) / SLRU_PAGES_PER_SEGMENT))
1128 			SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
1129 	}
1130 
1131 	if (MultiXactState->oldestOffsetKnown &&
1132 		MultiXactOffsetWouldWrap(MultiXactState->offsetStopLimit,
1133 								 nextOffset,
1134 								 nmembers + MULTIXACT_MEMBERS_PER_PAGE * SLRU_PAGES_PER_SEGMENT * OFFSET_WARN_SEGMENTS))
1135 		ereport(WARNING,
1136 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1137 				 errmsg_plural("database with OID %u must be vacuumed before %d more multixact member is used",
1138 							   "database with OID %u must be vacuumed before %d more multixact members are used",
1139 							   MultiXactState->offsetStopLimit - nextOffset + nmembers,
1140 							   MultiXactState->oldestMultiXactDB,
1141 							   MultiXactState->offsetStopLimit - nextOffset + nmembers),
1142 				 errhint("Execute a database-wide VACUUM in that database with reduced vacuum_multixact_freeze_min_age and vacuum_multixact_freeze_table_age settings.")));
1143 
1144 	ExtendMultiXactMember(nextOffset, nmembers);
1145 
1146 	/*
1147 	 * Critical section from here until caller has written the data into the
1148 	 * just-reserved SLRU space; we don't want to error out with a partly
1149 	 * written MultiXact structure.  (In particular, failing to write our
1150 	 * start offset after advancing nextMXact would effectively corrupt the
1151 	 * previous MultiXact.)
1152 	 */
1153 	START_CRIT_SECTION();
1154 
1155 	/*
1156 	 * Advance counters.  As in GetNewTransactionId(), this must not happen
1157 	 * until after file extension has succeeded!
1158 	 *
1159 	 * We don't care about MultiXactId wraparound here; it will be handled by
1160 	 * the next iteration.  But note that nextMXact may be InvalidMultiXactId
1161 	 * or the first value on a segment-beginning page after this routine
1162 	 * exits, so anyone else looking at the variable must be prepared to deal
1163 	 * with either case.  Similarly, nextOffset may be zero, but we won't use
1164 	 * that as the actual start offset of the next multixact.
1165 	 */
1166 	(MultiXactState->nextMXact)++;
1167 
1168 	MultiXactState->nextOffset += nmembers;
1169 
1170 	LWLockRelease(MultiXactGenLock);
1171 
1172 	debug_elog4(DEBUG2, "GetNew: returning %u offset %u", result, *offset);
1173 	return result;
1174 }
1175 
1176 /*
1177  * GetMultiXactIdMembers
1178  *		Return the set of MultiXactMembers that make up a MultiXactId
1179  *
1180  * Return value is the number of members found, or -1 if there are none,
1181  * and *members is set to a newly palloc'ed array of members.  It's the
1182  * caller's responsibility to free it when done with it.
1183  *
1184  * from_pgupgrade must be passed as true if and only if only the multixact
1185  * corresponds to a value from a tuple that was locked in a 9.2-or-older
1186  * installation and later pg_upgrade'd (that is, the infomask is
1187  * HEAP_LOCKED_UPGRADED).  In this case, we know for certain that no members
1188  * can still be running, so we return -1 just like for an empty multixact
1189  * without any further checking.  It would be wrong to try to resolve such a
1190  * multixact: either the multixact is within the current valid multixact
1191  * range, in which case the returned result would be bogus, or outside that
1192  * range, in which case an error would be raised.
1193  *
1194  * In all other cases, the passed multixact must be within the known valid
1195  * range, that is, greater to or equal than oldestMultiXactId, and less than
1196  * nextMXact.  Otherwise, an error is raised.
1197  *
1198  * onlyLock must be set to true if caller is certain that the given multi
1199  * is used only to lock tuples; can be false without loss of correctness,
1200  * but passing a true means we can return quickly without checking for
1201  * old updates.
1202  */
1203 int
GetMultiXactIdMembers(MultiXactId multi,MultiXactMember ** members,bool from_pgupgrade,bool onlyLock)1204 GetMultiXactIdMembers(MultiXactId multi, MultiXactMember **members,
1205 					  bool from_pgupgrade, bool onlyLock)
1206 {
1207 	int			pageno;
1208 	int			prev_pageno;
1209 	int			entryno;
1210 	int			slotno;
1211 	MultiXactOffset *offptr;
1212 	MultiXactOffset offset;
1213 	int			length;
1214 	int			truelength;
1215 	int			i;
1216 	MultiXactId oldestMXact;
1217 	MultiXactId nextMXact;
1218 	MultiXactId tmpMXact;
1219 	MultiXactOffset nextOffset;
1220 	MultiXactMember *ptr;
1221 
1222 	debug_elog3(DEBUG2, "GetMembers: asked for %u", multi);
1223 
1224 	if (!MultiXactIdIsValid(multi) || from_pgupgrade)
1225 	{
1226 		*members = NULL;
1227 		return -1;
1228 	}
1229 
1230 	/* See if the MultiXactId is in the local cache */
1231 	length = mXactCacheGetById(multi, members);
1232 	if (length >= 0)
1233 	{
1234 		debug_elog3(DEBUG2, "GetMembers: found %s in the cache",
1235 					mxid_to_string(multi, length, *members));
1236 		return length;
1237 	}
1238 
1239 	/* Set our OldestVisibleMXactId[] entry if we didn't already */
1240 	MultiXactIdSetOldestVisible();
1241 
1242 	/*
1243 	 * If we know the multi is used only for locking and not for updates, then
1244 	 * we can skip checking if the value is older than our oldest visible
1245 	 * multi.  It cannot possibly still be running.
1246 	 */
1247 	if (onlyLock &&
1248 		MultiXactIdPrecedes(multi, OldestVisibleMXactId[MyBackendId]))
1249 	{
1250 		debug_elog2(DEBUG2, "GetMembers: a locker-only multi is too old");
1251 		*members = NULL;
1252 		return -1;
1253 	}
1254 
1255 	/*
1256 	 * We check known limits on MultiXact before resorting to the SLRU area.
1257 	 *
1258 	 * An ID older than MultiXactState->oldestMultiXactId cannot possibly be
1259 	 * useful; it has already been removed, or will be removed shortly, by
1260 	 * truncation.  If one is passed, an error is raised.
1261 	 *
1262 	 * Also, an ID >= nextMXact shouldn't ever be seen here; if it is seen, it
1263 	 * implies undetected ID wraparound has occurred.  This raises a hard
1264 	 * error.
1265 	 *
1266 	 * Shared lock is enough here since we aren't modifying any global state.
1267 	 * Acquire it just long enough to grab the current counter values.  We may
1268 	 * need both nextMXact and nextOffset; see below.
1269 	 */
1270 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
1271 
1272 	oldestMXact = MultiXactState->oldestMultiXactId;
1273 	nextMXact = MultiXactState->nextMXact;
1274 	nextOffset = MultiXactState->nextOffset;
1275 
1276 	LWLockRelease(MultiXactGenLock);
1277 
1278 	if (MultiXactIdPrecedes(multi, oldestMXact))
1279 		ereport(ERROR,
1280 				(errcode(ERRCODE_INTERNAL_ERROR),
1281 				 errmsg("MultiXactId %u does no longer exist -- apparent wraparound",
1282 						multi)));
1283 
1284 	if (!MultiXactIdPrecedes(multi, nextMXact))
1285 		ereport(ERROR,
1286 				(errcode(ERRCODE_INTERNAL_ERROR),
1287 				 errmsg("MultiXactId %u has not been created yet -- apparent wraparound",
1288 						multi)));
1289 
1290 	/*
1291 	 * Find out the offset at which we need to start reading MultiXactMembers
1292 	 * and the number of members in the multixact.  We determine the latter as
1293 	 * the difference between this multixact's starting offset and the next
1294 	 * one's.  However, there are some corner cases to worry about:
1295 	 *
1296 	 * 1. This multixact may be the latest one created, in which case there is
1297 	 * no next one to look at.  In this case the nextOffset value we just
1298 	 * saved is the correct endpoint.
1299 	 *
1300 	 * 2. The next multixact may still be in process of being filled in: that
1301 	 * is, another process may have done GetNewMultiXactId but not yet written
1302 	 * the offset entry for that ID.  In that scenario, it is guaranteed that
1303 	 * the offset entry for that multixact exists (because GetNewMultiXactId
1304 	 * won't release MultiXactGenLock until it does) but contains zero
1305 	 * (because we are careful to pre-zero offset pages). Because
1306 	 * GetNewMultiXactId will never return zero as the starting offset for a
1307 	 * multixact, when we read zero as the next multixact's offset, we know we
1308 	 * have this case.  We sleep for a bit and try again.
1309 	 *
1310 	 * 3. Because GetNewMultiXactId increments offset zero to offset one to
1311 	 * handle case #2, there is an ambiguity near the point of offset
1312 	 * wraparound.  If we see next multixact's offset is one, is that our
1313 	 * multixact's actual endpoint, or did it end at zero with a subsequent
1314 	 * increment?  We handle this using the knowledge that if the zero'th
1315 	 * member slot wasn't filled, it'll contain zero, and zero isn't a valid
1316 	 * transaction ID so it can't be a multixact member.  Therefore, if we
1317 	 * read a zero from the members array, just ignore it.
1318 	 *
1319 	 * This is all pretty messy, but the mess occurs only in infrequent corner
1320 	 * cases, so it seems better than holding the MultiXactGenLock for a long
1321 	 * time on every multixact creation.
1322 	 */
1323 retry:
1324 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
1325 
1326 	pageno = MultiXactIdToOffsetPage(multi);
1327 	entryno = MultiXactIdToOffsetEntry(multi);
1328 
1329 	slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, multi);
1330 	offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
1331 	offptr += entryno;
1332 	offset = *offptr;
1333 
1334 	Assert(offset != 0);
1335 
1336 	/*
1337 	 * Use the same increment rule as GetNewMultiXactId(), that is, don't
1338 	 * handle wraparound explicitly until needed.
1339 	 */
1340 	tmpMXact = multi + 1;
1341 
1342 	if (nextMXact == tmpMXact)
1343 	{
1344 		/* Corner case 1: there is no next multixact */
1345 		length = nextOffset - offset;
1346 	}
1347 	else
1348 	{
1349 		MultiXactOffset nextMXOffset;
1350 
1351 		/* handle wraparound if needed */
1352 		if (tmpMXact < FirstMultiXactId)
1353 			tmpMXact = FirstMultiXactId;
1354 
1355 		prev_pageno = pageno;
1356 
1357 		pageno = MultiXactIdToOffsetPage(tmpMXact);
1358 		entryno = MultiXactIdToOffsetEntry(tmpMXact);
1359 
1360 		if (pageno != prev_pageno)
1361 			slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, tmpMXact);
1362 
1363 		offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
1364 		offptr += entryno;
1365 		nextMXOffset = *offptr;
1366 
1367 		if (nextMXOffset == 0)
1368 		{
1369 			/* Corner case 2: next multixact is still being filled in */
1370 			LWLockRelease(MultiXactOffsetSLRULock);
1371 			CHECK_FOR_INTERRUPTS();
1372 			pg_usleep(1000L);
1373 			goto retry;
1374 		}
1375 
1376 		length = nextMXOffset - offset;
1377 	}
1378 
1379 	LWLockRelease(MultiXactOffsetSLRULock);
1380 
1381 	ptr = (MultiXactMember *) palloc(length * sizeof(MultiXactMember));
1382 
1383 	/* Now get the members themselves. */
1384 	LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
1385 
1386 	truelength = 0;
1387 	prev_pageno = -1;
1388 	for (i = 0; i < length; i++, offset++)
1389 	{
1390 		TransactionId *xactptr;
1391 		uint32	   *flagsptr;
1392 		int			flagsoff;
1393 		int			bshift;
1394 		int			memberoff;
1395 
1396 		pageno = MXOffsetToMemberPage(offset);
1397 		memberoff = MXOffsetToMemberOffset(offset);
1398 
1399 		if (pageno != prev_pageno)
1400 		{
1401 			slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, multi);
1402 			prev_pageno = pageno;
1403 		}
1404 
1405 		xactptr = (TransactionId *)
1406 			(MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
1407 
1408 		if (!TransactionIdIsValid(*xactptr))
1409 		{
1410 			/* Corner case 3: we must be looking at unused slot zero */
1411 			Assert(offset == 0);
1412 			continue;
1413 		}
1414 
1415 		flagsoff = MXOffsetToFlagsOffset(offset);
1416 		bshift = MXOffsetToFlagsBitShift(offset);
1417 		flagsptr = (uint32 *) (MultiXactMemberCtl->shared->page_buffer[slotno] + flagsoff);
1418 
1419 		ptr[truelength].xid = *xactptr;
1420 		ptr[truelength].status = (*flagsptr >> bshift) & MXACT_MEMBER_XACT_BITMASK;
1421 		truelength++;
1422 	}
1423 
1424 	LWLockRelease(MultiXactMemberSLRULock);
1425 
1426 	/* A multixid with zero members should not happen */
1427 	Assert(truelength > 0);
1428 
1429 	/*
1430 	 * Copy the result into the local cache.
1431 	 */
1432 	mXactCachePut(multi, truelength, ptr);
1433 
1434 	debug_elog3(DEBUG2, "GetMembers: no cache for %s",
1435 				mxid_to_string(multi, truelength, ptr));
1436 	*members = ptr;
1437 	return truelength;
1438 }
1439 
1440 /*
1441  * mxactMemberComparator
1442  *		qsort comparison function for MultiXactMember
1443  *
1444  * We can't use wraparound comparison for XIDs because that does not respect
1445  * the triangle inequality!  Any old sort order will do.
1446  */
1447 static int
mxactMemberComparator(const void * arg1,const void * arg2)1448 mxactMemberComparator(const void *arg1, const void *arg2)
1449 {
1450 	MultiXactMember member1 = *(const MultiXactMember *) arg1;
1451 	MultiXactMember member2 = *(const MultiXactMember *) arg2;
1452 
1453 	if (member1.xid > member2.xid)
1454 		return 1;
1455 	if (member1.xid < member2.xid)
1456 		return -1;
1457 	if (member1.status > member2.status)
1458 		return 1;
1459 	if (member1.status < member2.status)
1460 		return -1;
1461 	return 0;
1462 }
1463 
1464 /*
1465  * mXactCacheGetBySet
1466  *		returns a MultiXactId from the cache based on the set of
1467  *		TransactionIds that compose it, or InvalidMultiXactId if
1468  *		none matches.
1469  *
1470  * This is helpful, for example, if two transactions want to lock a huge
1471  * table.  By using the cache, the second will use the same MultiXactId
1472  * for the majority of tuples, thus keeping MultiXactId usage low (saving
1473  * both I/O and wraparound issues).
1474  *
1475  * NB: the passed members array will be sorted in-place.
1476  */
1477 static MultiXactId
mXactCacheGetBySet(int nmembers,MultiXactMember * members)1478 mXactCacheGetBySet(int nmembers, MultiXactMember *members)
1479 {
1480 	dlist_iter	iter;
1481 
1482 	debug_elog3(DEBUG2, "CacheGet: looking for %s",
1483 				mxid_to_string(InvalidMultiXactId, nmembers, members));
1484 
1485 	/* sort the array so comparison is easy */
1486 	qsort(members, nmembers, sizeof(MultiXactMember), mxactMemberComparator);
1487 
1488 	dlist_foreach(iter, &MXactCache)
1489 	{
1490 		mXactCacheEnt *entry = dlist_container(mXactCacheEnt, node, iter.cur);
1491 
1492 		if (entry->nmembers != nmembers)
1493 			continue;
1494 
1495 		/*
1496 		 * We assume the cache entries are sorted, and that the unused bits in
1497 		 * "status" are zeroed.
1498 		 */
1499 		if (memcmp(members, entry->members, nmembers * sizeof(MultiXactMember)) == 0)
1500 		{
1501 			debug_elog3(DEBUG2, "CacheGet: found %u", entry->multi);
1502 			dlist_move_head(&MXactCache, iter.cur);
1503 			return entry->multi;
1504 		}
1505 	}
1506 
1507 	debug_elog2(DEBUG2, "CacheGet: not found :-(");
1508 	return InvalidMultiXactId;
1509 }
1510 
1511 /*
1512  * mXactCacheGetById
1513  *		returns the composing MultiXactMember set from the cache for a
1514  *		given MultiXactId, if present.
1515  *
1516  * If successful, *xids is set to the address of a palloc'd copy of the
1517  * MultiXactMember set.  Return value is number of members, or -1 on failure.
1518  */
1519 static int
mXactCacheGetById(MultiXactId multi,MultiXactMember ** members)1520 mXactCacheGetById(MultiXactId multi, MultiXactMember **members)
1521 {
1522 	dlist_iter	iter;
1523 
1524 	debug_elog3(DEBUG2, "CacheGet: looking for %u", multi);
1525 
1526 	dlist_foreach(iter, &MXactCache)
1527 	{
1528 		mXactCacheEnt *entry = dlist_container(mXactCacheEnt, node, iter.cur);
1529 
1530 		if (entry->multi == multi)
1531 		{
1532 			MultiXactMember *ptr;
1533 			Size		size;
1534 
1535 			size = sizeof(MultiXactMember) * entry->nmembers;
1536 			ptr = (MultiXactMember *) palloc(size);
1537 
1538 			memcpy(ptr, entry->members, size);
1539 
1540 			debug_elog3(DEBUG2, "CacheGet: found %s",
1541 						mxid_to_string(multi,
1542 									   entry->nmembers,
1543 									   entry->members));
1544 
1545 			/*
1546 			 * Note we modify the list while not using a modifiable iterator.
1547 			 * This is acceptable only because we exit the iteration
1548 			 * immediately afterwards.
1549 			 */
1550 			dlist_move_head(&MXactCache, iter.cur);
1551 
1552 			*members = ptr;
1553 			return entry->nmembers;
1554 		}
1555 	}
1556 
1557 	debug_elog2(DEBUG2, "CacheGet: not found");
1558 	return -1;
1559 }
1560 
1561 /*
1562  * mXactCachePut
1563  *		Add a new MultiXactId and its composing set into the local cache.
1564  */
1565 static void
mXactCachePut(MultiXactId multi,int nmembers,MultiXactMember * members)1566 mXactCachePut(MultiXactId multi, int nmembers, MultiXactMember *members)
1567 {
1568 	mXactCacheEnt *entry;
1569 
1570 	debug_elog3(DEBUG2, "CachePut: storing %s",
1571 				mxid_to_string(multi, nmembers, members));
1572 
1573 	if (MXactContext == NULL)
1574 	{
1575 		/* The cache only lives as long as the current transaction */
1576 		debug_elog2(DEBUG2, "CachePut: initializing memory context");
1577 		MXactContext = AllocSetContextCreate(TopTransactionContext,
1578 											 "MultiXact cache context",
1579 											 ALLOCSET_SMALL_SIZES);
1580 	}
1581 
1582 	entry = (mXactCacheEnt *)
1583 		MemoryContextAlloc(MXactContext,
1584 						   offsetof(mXactCacheEnt, members) +
1585 						   nmembers * sizeof(MultiXactMember));
1586 
1587 	entry->multi = multi;
1588 	entry->nmembers = nmembers;
1589 	memcpy(entry->members, members, nmembers * sizeof(MultiXactMember));
1590 
1591 	/* mXactCacheGetBySet assumes the entries are sorted, so sort them */
1592 	qsort(entry->members, nmembers, sizeof(MultiXactMember), mxactMemberComparator);
1593 
1594 	dlist_push_head(&MXactCache, &entry->node);
1595 	if (MXactCacheMembers++ >= MAX_CACHE_ENTRIES)
1596 	{
1597 		dlist_node *node;
1598 		mXactCacheEnt *entry;
1599 
1600 		node = dlist_tail_node(&MXactCache);
1601 		dlist_delete(node);
1602 		MXactCacheMembers--;
1603 
1604 		entry = dlist_container(mXactCacheEnt, node, node);
1605 		debug_elog3(DEBUG2, "CachePut: pruning cached multi %u",
1606 					entry->multi);
1607 
1608 		pfree(entry);
1609 	}
1610 }
1611 
1612 static char *
mxstatus_to_string(MultiXactStatus status)1613 mxstatus_to_string(MultiXactStatus status)
1614 {
1615 	switch (status)
1616 	{
1617 		case MultiXactStatusForKeyShare:
1618 			return "keysh";
1619 		case MultiXactStatusForShare:
1620 			return "sh";
1621 		case MultiXactStatusForNoKeyUpdate:
1622 			return "fornokeyupd";
1623 		case MultiXactStatusForUpdate:
1624 			return "forupd";
1625 		case MultiXactStatusNoKeyUpdate:
1626 			return "nokeyupd";
1627 		case MultiXactStatusUpdate:
1628 			return "upd";
1629 		default:
1630 			elog(ERROR, "unrecognized multixact status %d", status);
1631 			return "";
1632 	}
1633 }
1634 
1635 char *
mxid_to_string(MultiXactId multi,int nmembers,MultiXactMember * members)1636 mxid_to_string(MultiXactId multi, int nmembers, MultiXactMember *members)
1637 {
1638 	static char *str = NULL;
1639 	StringInfoData buf;
1640 	int			i;
1641 
1642 	if (str != NULL)
1643 		pfree(str);
1644 
1645 	initStringInfo(&buf);
1646 
1647 	appendStringInfo(&buf, "%u %d[%u (%s)", multi, nmembers, members[0].xid,
1648 					 mxstatus_to_string(members[0].status));
1649 
1650 	for (i = 1; i < nmembers; i++)
1651 		appendStringInfo(&buf, ", %u (%s)", members[i].xid,
1652 						 mxstatus_to_string(members[i].status));
1653 
1654 	appendStringInfoChar(&buf, ']');
1655 	str = MemoryContextStrdup(TopMemoryContext, buf.data);
1656 	pfree(buf.data);
1657 	return str;
1658 }
1659 
1660 /*
1661  * AtEOXact_MultiXact
1662  *		Handle transaction end for MultiXact
1663  *
1664  * This is called at top transaction commit or abort (we don't care which).
1665  */
1666 void
AtEOXact_MultiXact(void)1667 AtEOXact_MultiXact(void)
1668 {
1669 	/*
1670 	 * Reset our OldestMemberMXactId and OldestVisibleMXactId values, both of
1671 	 * which should only be valid while within a transaction.
1672 	 *
1673 	 * We assume that storing a MultiXactId is atomic and so we need not take
1674 	 * MultiXactGenLock to do this.
1675 	 */
1676 	OldestMemberMXactId[MyBackendId] = InvalidMultiXactId;
1677 	OldestVisibleMXactId[MyBackendId] = InvalidMultiXactId;
1678 
1679 	/*
1680 	 * Discard the local MultiXactId cache.  Since MXactContext was created as
1681 	 * a child of TopTransactionContext, we needn't delete it explicitly.
1682 	 */
1683 	MXactContext = NULL;
1684 	dlist_init(&MXactCache);
1685 	MXactCacheMembers = 0;
1686 }
1687 
1688 /*
1689  * AtPrepare_MultiXact
1690  *		Save multixact state at 2PC transaction prepare
1691  *
1692  * In this phase, we only store our OldestMemberMXactId value in the two-phase
1693  * state file.
1694  */
1695 void
AtPrepare_MultiXact(void)1696 AtPrepare_MultiXact(void)
1697 {
1698 	MultiXactId myOldestMember = OldestMemberMXactId[MyBackendId];
1699 
1700 	if (MultiXactIdIsValid(myOldestMember))
1701 		RegisterTwoPhaseRecord(TWOPHASE_RM_MULTIXACT_ID, 0,
1702 							   &myOldestMember, sizeof(MultiXactId));
1703 }
1704 
1705 /*
1706  * PostPrepare_MultiXact
1707  *		Clean up after successful PREPARE TRANSACTION
1708  */
1709 void
PostPrepare_MultiXact(TransactionId xid)1710 PostPrepare_MultiXact(TransactionId xid)
1711 {
1712 	MultiXactId myOldestMember;
1713 
1714 	/*
1715 	 * Transfer our OldestMemberMXactId value to the slot reserved for the
1716 	 * prepared transaction.
1717 	 */
1718 	myOldestMember = OldestMemberMXactId[MyBackendId];
1719 	if (MultiXactIdIsValid(myOldestMember))
1720 	{
1721 		BackendId	dummyBackendId = TwoPhaseGetDummyBackendId(xid, false);
1722 
1723 		/*
1724 		 * Even though storing MultiXactId is atomic, acquire lock to make
1725 		 * sure others see both changes, not just the reset of the slot of the
1726 		 * current backend. Using a volatile pointer might suffice, but this
1727 		 * isn't a hot spot.
1728 		 */
1729 		LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
1730 
1731 		OldestMemberMXactId[dummyBackendId] = myOldestMember;
1732 		OldestMemberMXactId[MyBackendId] = InvalidMultiXactId;
1733 
1734 		LWLockRelease(MultiXactGenLock);
1735 	}
1736 
1737 	/*
1738 	 * We don't need to transfer OldestVisibleMXactId value, because the
1739 	 * transaction is not going to be looking at any more multixacts once it's
1740 	 * prepared.
1741 	 *
1742 	 * We assume that storing a MultiXactId is atomic and so we need not take
1743 	 * MultiXactGenLock to do this.
1744 	 */
1745 	OldestVisibleMXactId[MyBackendId] = InvalidMultiXactId;
1746 
1747 	/*
1748 	 * Discard the local MultiXactId cache like in AtEOX_MultiXact
1749 	 */
1750 	MXactContext = NULL;
1751 	dlist_init(&MXactCache);
1752 	MXactCacheMembers = 0;
1753 }
1754 
1755 /*
1756  * multixact_twophase_recover
1757  *		Recover the state of a prepared transaction at startup
1758  */
1759 void
multixact_twophase_recover(TransactionId xid,uint16 info,void * recdata,uint32 len)1760 multixact_twophase_recover(TransactionId xid, uint16 info,
1761 						   void *recdata, uint32 len)
1762 {
1763 	BackendId	dummyBackendId = TwoPhaseGetDummyBackendId(xid, false);
1764 	MultiXactId oldestMember;
1765 
1766 	/*
1767 	 * Get the oldest member XID from the state file record, and set it in the
1768 	 * OldestMemberMXactId slot reserved for this prepared transaction.
1769 	 */
1770 	Assert(len == sizeof(MultiXactId));
1771 	oldestMember = *((MultiXactId *) recdata);
1772 
1773 	OldestMemberMXactId[dummyBackendId] = oldestMember;
1774 }
1775 
1776 /*
1777  * multixact_twophase_postcommit
1778  *		Similar to AtEOX_MultiXact but for COMMIT PREPARED
1779  */
1780 void
multixact_twophase_postcommit(TransactionId xid,uint16 info,void * recdata,uint32 len)1781 multixact_twophase_postcommit(TransactionId xid, uint16 info,
1782 							  void *recdata, uint32 len)
1783 {
1784 	BackendId	dummyBackendId = TwoPhaseGetDummyBackendId(xid, true);
1785 
1786 	Assert(len == sizeof(MultiXactId));
1787 
1788 	OldestMemberMXactId[dummyBackendId] = InvalidMultiXactId;
1789 }
1790 
1791 /*
1792  * multixact_twophase_postabort
1793  *		This is actually just the same as the COMMIT case.
1794  */
1795 void
multixact_twophase_postabort(TransactionId xid,uint16 info,void * recdata,uint32 len)1796 multixact_twophase_postabort(TransactionId xid, uint16 info,
1797 							 void *recdata, uint32 len)
1798 {
1799 	multixact_twophase_postcommit(xid, info, recdata, len);
1800 }
1801 
1802 /*
1803  * Initialization of shared memory for MultiXact.  We use two SLRU areas,
1804  * thus double memory.  Also, reserve space for the shared MultiXactState
1805  * struct and the per-backend MultiXactId arrays (two of those, too).
1806  */
1807 Size
MultiXactShmemSize(void)1808 MultiXactShmemSize(void)
1809 {
1810 	Size		size;
1811 
1812 	/* We need 2*MaxOldestSlot + 1 perBackendXactIds[] entries */
1813 #define SHARED_MULTIXACT_STATE_SIZE \
1814 	add_size(offsetof(MultiXactStateData, perBackendXactIds) + sizeof(MultiXactId), \
1815 			 mul_size(sizeof(MultiXactId) * 2, MaxOldestSlot))
1816 
1817 	size = SHARED_MULTIXACT_STATE_SIZE;
1818 	size = add_size(size, SimpleLruShmemSize(NUM_MULTIXACTOFFSET_BUFFERS, 0));
1819 	size = add_size(size, SimpleLruShmemSize(NUM_MULTIXACTMEMBER_BUFFERS, 0));
1820 
1821 	return size;
1822 }
1823 
1824 void
MultiXactShmemInit(void)1825 MultiXactShmemInit(void)
1826 {
1827 	bool		found;
1828 
1829 	debug_elog2(DEBUG2, "Shared Memory Init for MultiXact");
1830 
1831 	MultiXactOffsetCtl->PagePrecedes = MultiXactOffsetPagePrecedes;
1832 	MultiXactMemberCtl->PagePrecedes = MultiXactMemberPagePrecedes;
1833 
1834 	SimpleLruInit(MultiXactOffsetCtl,
1835 				  "MultiXactOffset", NUM_MULTIXACTOFFSET_BUFFERS, 0,
1836 				  MultiXactOffsetSLRULock, "pg_multixact/offsets",
1837 				  LWTRANCHE_MULTIXACTOFFSET_BUFFER);
1838 	SlruPagePrecedesUnitTests(MultiXactOffsetCtl, MULTIXACT_OFFSETS_PER_PAGE);
1839 	SimpleLruInit(MultiXactMemberCtl,
1840 				  "MultiXactMember", NUM_MULTIXACTMEMBER_BUFFERS, 0,
1841 				  MultiXactMemberSLRULock, "pg_multixact/members",
1842 				  LWTRANCHE_MULTIXACTMEMBER_BUFFER);
1843 	/* doesn't call SimpleLruTruncate() or meet criteria for unit tests */
1844 
1845 	/* Initialize our shared state struct */
1846 	MultiXactState = ShmemInitStruct("Shared MultiXact State",
1847 									 SHARED_MULTIXACT_STATE_SIZE,
1848 									 &found);
1849 	if (!IsUnderPostmaster)
1850 	{
1851 		Assert(!found);
1852 
1853 		/* Make sure we zero out the per-backend state */
1854 		MemSet(MultiXactState, 0, SHARED_MULTIXACT_STATE_SIZE);
1855 	}
1856 	else
1857 		Assert(found);
1858 
1859 	/*
1860 	 * Set up array pointers.  Note that perBackendXactIds[0] is wasted space
1861 	 * since we only use indexes 1..MaxOldestSlot in each array.
1862 	 */
1863 	OldestMemberMXactId = MultiXactState->perBackendXactIds;
1864 	OldestVisibleMXactId = OldestMemberMXactId + MaxOldestSlot;
1865 }
1866 
1867 /*
1868  * This func must be called ONCE on system install.  It creates the initial
1869  * MultiXact segments.  (The MultiXacts directories are assumed to have been
1870  * created by initdb, and MultiXactShmemInit must have been called already.)
1871  */
1872 void
BootStrapMultiXact(void)1873 BootStrapMultiXact(void)
1874 {
1875 	int			slotno;
1876 
1877 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
1878 
1879 	/* Create and zero the first page of the offsets log */
1880 	slotno = ZeroMultiXactOffsetPage(0, false);
1881 
1882 	/* Make sure it's written out */
1883 	SimpleLruWritePage(MultiXactOffsetCtl, slotno);
1884 	Assert(!MultiXactOffsetCtl->shared->page_dirty[slotno]);
1885 
1886 	LWLockRelease(MultiXactOffsetSLRULock);
1887 
1888 	LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
1889 
1890 	/* Create and zero the first page of the members log */
1891 	slotno = ZeroMultiXactMemberPage(0, false);
1892 
1893 	/* Make sure it's written out */
1894 	SimpleLruWritePage(MultiXactMemberCtl, slotno);
1895 	Assert(!MultiXactMemberCtl->shared->page_dirty[slotno]);
1896 
1897 	LWLockRelease(MultiXactMemberSLRULock);
1898 }
1899 
1900 /*
1901  * Initialize (or reinitialize) a page of MultiXactOffset to zeroes.
1902  * If writeXlog is true, also emit an XLOG record saying we did this.
1903  *
1904  * The page is not actually written, just set up in shared memory.
1905  * The slot number of the new page is returned.
1906  *
1907  * Control lock must be held at entry, and will be held at exit.
1908  */
1909 static int
ZeroMultiXactOffsetPage(int pageno,bool writeXlog)1910 ZeroMultiXactOffsetPage(int pageno, bool writeXlog)
1911 {
1912 	int			slotno;
1913 
1914 	slotno = SimpleLruZeroPage(MultiXactOffsetCtl, pageno);
1915 
1916 	if (writeXlog)
1917 		WriteMZeroPageXlogRec(pageno, XLOG_MULTIXACT_ZERO_OFF_PAGE);
1918 
1919 	return slotno;
1920 }
1921 
1922 /*
1923  * Ditto, for MultiXactMember
1924  */
1925 static int
ZeroMultiXactMemberPage(int pageno,bool writeXlog)1926 ZeroMultiXactMemberPage(int pageno, bool writeXlog)
1927 {
1928 	int			slotno;
1929 
1930 	slotno = SimpleLruZeroPage(MultiXactMemberCtl, pageno);
1931 
1932 	if (writeXlog)
1933 		WriteMZeroPageXlogRec(pageno, XLOG_MULTIXACT_ZERO_MEM_PAGE);
1934 
1935 	return slotno;
1936 }
1937 
1938 /*
1939  * MaybeExtendOffsetSlru
1940  *		Extend the offsets SLRU area, if necessary
1941  *
1942  * After a binary upgrade from <= 9.2, the pg_multixact/offsets SLRU area might
1943  * contain files that are shorter than necessary; this would occur if the old
1944  * installation had used multixacts beyond the first page (files cannot be
1945  * copied, because the on-disk representation is different).  pg_upgrade would
1946  * update pg_control to set the next offset value to be at that position, so
1947  * that tuples marked as locked by such MultiXacts would be seen as visible
1948  * without having to consult multixact.  However, trying to create and use a
1949  * new MultiXactId would result in an error because the page on which the new
1950  * value would reside does not exist.  This routine is in charge of creating
1951  * such pages.
1952  */
1953 static void
MaybeExtendOffsetSlru(void)1954 MaybeExtendOffsetSlru(void)
1955 {
1956 	int			pageno;
1957 
1958 	pageno = MultiXactIdToOffsetPage(MultiXactState->nextMXact);
1959 
1960 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
1961 
1962 	if (!SimpleLruDoesPhysicalPageExist(MultiXactOffsetCtl, pageno))
1963 	{
1964 		int			slotno;
1965 
1966 		/*
1967 		 * Fortunately for us, SimpleLruWritePage is already prepared to deal
1968 		 * with creating a new segment file even if the page we're writing is
1969 		 * not the first in it, so this is enough.
1970 		 */
1971 		slotno = ZeroMultiXactOffsetPage(pageno, false);
1972 		SimpleLruWritePage(MultiXactOffsetCtl, slotno);
1973 	}
1974 
1975 	LWLockRelease(MultiXactOffsetSLRULock);
1976 }
1977 
1978 /*
1979  * This must be called ONCE during postmaster or standalone-backend startup.
1980  *
1981  * StartupXLOG has already established nextMXact/nextOffset by calling
1982  * MultiXactSetNextMXact and/or MultiXactAdvanceNextMXact, and the oldestMulti
1983  * info from pg_control and/or MultiXactAdvanceOldest, but we haven't yet
1984  * replayed WAL.
1985  */
1986 void
StartupMultiXact(void)1987 StartupMultiXact(void)
1988 {
1989 	MultiXactId multi = MultiXactState->nextMXact;
1990 	MultiXactOffset offset = MultiXactState->nextOffset;
1991 	int			pageno;
1992 
1993 	/*
1994 	 * Initialize offset's idea of the latest page number.
1995 	 */
1996 	pageno = MultiXactIdToOffsetPage(multi);
1997 	MultiXactOffsetCtl->shared->latest_page_number = pageno;
1998 
1999 	/*
2000 	 * Initialize member's idea of the latest page number.
2001 	 */
2002 	pageno = MXOffsetToMemberPage(offset);
2003 	MultiXactMemberCtl->shared->latest_page_number = pageno;
2004 }
2005 
2006 /*
2007  * This must be called ONCE at the end of startup/recovery.
2008  */
2009 void
TrimMultiXact(void)2010 TrimMultiXact(void)
2011 {
2012 	MultiXactId nextMXact;
2013 	MultiXactOffset offset;
2014 	MultiXactId oldestMXact;
2015 	Oid			oldestMXactDB;
2016 	int			pageno;
2017 	int			entryno;
2018 	int			flagsoff;
2019 
2020 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2021 	nextMXact = MultiXactState->nextMXact;
2022 	offset = MultiXactState->nextOffset;
2023 	oldestMXact = MultiXactState->oldestMultiXactId;
2024 	oldestMXactDB = MultiXactState->oldestMultiXactDB;
2025 	LWLockRelease(MultiXactGenLock);
2026 
2027 	/* Clean up offsets state */
2028 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
2029 
2030 	/*
2031 	 * (Re-)Initialize our idea of the latest page number for offsets.
2032 	 */
2033 	pageno = MultiXactIdToOffsetPage(nextMXact);
2034 	MultiXactOffsetCtl->shared->latest_page_number = pageno;
2035 
2036 	/*
2037 	 * Zero out the remainder of the current offsets page.  See notes in
2038 	 * TrimCLOG() for background.  Unlike CLOG, some WAL record covers every
2039 	 * pg_multixact SLRU mutation.  Since, also unlike CLOG, we ignore the WAL
2040 	 * rule "write xlog before data," nextMXact successors may carry obsolete,
2041 	 * nonzero offset values.  Zero those so case 2 of GetMultiXactIdMembers()
2042 	 * operates normally.
2043 	 */
2044 	entryno = MultiXactIdToOffsetEntry(nextMXact);
2045 	if (entryno != 0)
2046 	{
2047 		int			slotno;
2048 		MultiXactOffset *offptr;
2049 
2050 		slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, nextMXact);
2051 		offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
2052 		offptr += entryno;
2053 
2054 		MemSet(offptr, 0, BLCKSZ - (entryno * sizeof(MultiXactOffset)));
2055 
2056 		MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
2057 	}
2058 
2059 	LWLockRelease(MultiXactOffsetSLRULock);
2060 
2061 	/* And the same for members */
2062 	LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
2063 
2064 	/*
2065 	 * (Re-)Initialize our idea of the latest page number for members.
2066 	 */
2067 	pageno = MXOffsetToMemberPage(offset);
2068 	MultiXactMemberCtl->shared->latest_page_number = pageno;
2069 
2070 	/*
2071 	 * Zero out the remainder of the current members page.  See notes in
2072 	 * TrimCLOG() for motivation.
2073 	 */
2074 	flagsoff = MXOffsetToFlagsOffset(offset);
2075 	if (flagsoff != 0)
2076 	{
2077 		int			slotno;
2078 		TransactionId *xidptr;
2079 		int			memberoff;
2080 
2081 		memberoff = MXOffsetToMemberOffset(offset);
2082 		slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, offset);
2083 		xidptr = (TransactionId *)
2084 			(MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
2085 
2086 		MemSet(xidptr, 0, BLCKSZ - memberoff);
2087 
2088 		/*
2089 		 * Note: we don't need to zero out the flag bits in the remaining
2090 		 * members of the current group, because they are always reset before
2091 		 * writing.
2092 		 */
2093 
2094 		MultiXactMemberCtl->shared->page_dirty[slotno] = true;
2095 	}
2096 
2097 	LWLockRelease(MultiXactMemberSLRULock);
2098 
2099 	/* signal that we're officially up */
2100 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2101 	MultiXactState->finishedStartup = true;
2102 	LWLockRelease(MultiXactGenLock);
2103 
2104 	/* Now compute how far away the next members wraparound is. */
2105 	SetMultiXactIdLimit(oldestMXact, oldestMXactDB, true);
2106 }
2107 
2108 /*
2109  * This must be called ONCE during postmaster or standalone-backend shutdown
2110  */
2111 void
ShutdownMultiXact(void)2112 ShutdownMultiXact(void)
2113 {
2114 	/* Flush dirty MultiXact pages to disk */
2115 	TRACE_POSTGRESQL_MULTIXACT_CHECKPOINT_START(false);
2116 	SimpleLruFlush(MultiXactOffsetCtl, false);
2117 	SimpleLruFlush(MultiXactMemberCtl, false);
2118 	TRACE_POSTGRESQL_MULTIXACT_CHECKPOINT_DONE(false);
2119 }
2120 
2121 /*
2122  * Get the MultiXact data to save in a checkpoint record
2123  */
2124 void
MultiXactGetCheckptMulti(bool is_shutdown,MultiXactId * nextMulti,MultiXactOffset * nextMultiOffset,MultiXactId * oldestMulti,Oid * oldestMultiDB)2125 MultiXactGetCheckptMulti(bool is_shutdown,
2126 						 MultiXactId *nextMulti,
2127 						 MultiXactOffset *nextMultiOffset,
2128 						 MultiXactId *oldestMulti,
2129 						 Oid *oldestMultiDB)
2130 {
2131 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2132 	*nextMulti = MultiXactState->nextMXact;
2133 	*nextMultiOffset = MultiXactState->nextOffset;
2134 	*oldestMulti = MultiXactState->oldestMultiXactId;
2135 	*oldestMultiDB = MultiXactState->oldestMultiXactDB;
2136 	LWLockRelease(MultiXactGenLock);
2137 
2138 	debug_elog6(DEBUG2,
2139 				"MultiXact: checkpoint is nextMulti %u, nextOffset %u, oldestMulti %u in DB %u",
2140 				*nextMulti, *nextMultiOffset, *oldestMulti, *oldestMultiDB);
2141 }
2142 
2143 /*
2144  * Perform a checkpoint --- either during shutdown, or on-the-fly
2145  */
2146 void
CheckPointMultiXact(void)2147 CheckPointMultiXact(void)
2148 {
2149 	TRACE_POSTGRESQL_MULTIXACT_CHECKPOINT_START(true);
2150 
2151 	/* Flush dirty MultiXact pages to disk */
2152 	SimpleLruFlush(MultiXactOffsetCtl, true);
2153 	SimpleLruFlush(MultiXactMemberCtl, true);
2154 
2155 	TRACE_POSTGRESQL_MULTIXACT_CHECKPOINT_DONE(true);
2156 }
2157 
2158 /*
2159  * Set the next-to-be-assigned MultiXactId and offset
2160  *
2161  * This is used when we can determine the correct next ID/offset exactly
2162  * from a checkpoint record.  Although this is only called during bootstrap
2163  * and XLog replay, we take the lock in case any hot-standby backends are
2164  * examining the values.
2165  */
2166 void
MultiXactSetNextMXact(MultiXactId nextMulti,MultiXactOffset nextMultiOffset)2167 MultiXactSetNextMXact(MultiXactId nextMulti,
2168 					  MultiXactOffset nextMultiOffset)
2169 {
2170 	debug_elog4(DEBUG2, "MultiXact: setting next multi to %u offset %u",
2171 				nextMulti, nextMultiOffset);
2172 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2173 	MultiXactState->nextMXact = nextMulti;
2174 	MultiXactState->nextOffset = nextMultiOffset;
2175 	LWLockRelease(MultiXactGenLock);
2176 
2177 	/*
2178 	 * During a binary upgrade, make sure that the offsets SLRU is large
2179 	 * enough to contain the next value that would be created.
2180 	 *
2181 	 * We need to do this pretty early during the first startup in binary
2182 	 * upgrade mode: before StartupMultiXact() in fact, because this routine
2183 	 * is called even before that by StartupXLOG().  And we can't do it
2184 	 * earlier than at this point, because during that first call of this
2185 	 * routine we determine the MultiXactState->nextMXact value that
2186 	 * MaybeExtendOffsetSlru needs.
2187 	 */
2188 	if (IsBinaryUpgrade)
2189 		MaybeExtendOffsetSlru();
2190 }
2191 
2192 /*
2193  * Determine the last safe MultiXactId to allocate given the currently oldest
2194  * datminmxid (ie, the oldest MultiXactId that might exist in any database
2195  * of our cluster), and the OID of the (or a) database with that value.
2196  *
2197  * is_startup is true when we are just starting the cluster, false when we
2198  * are updating state in a running cluster.  This only affects log messages.
2199  */
2200 void
SetMultiXactIdLimit(MultiXactId oldest_datminmxid,Oid oldest_datoid,bool is_startup)2201 SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid,
2202 					bool is_startup)
2203 {
2204 	MultiXactId multiVacLimit;
2205 	MultiXactId multiWarnLimit;
2206 	MultiXactId multiStopLimit;
2207 	MultiXactId multiWrapLimit;
2208 	MultiXactId curMulti;
2209 	bool		needs_offset_vacuum;
2210 
2211 	Assert(MultiXactIdIsValid(oldest_datminmxid));
2212 
2213 	/*
2214 	 * We pretend that a wrap will happen halfway through the multixact ID
2215 	 * space, but that's not really true, because multixacts wrap differently
2216 	 * from transaction IDs.  Note that, separately from any concern about
2217 	 * multixact IDs wrapping, we must ensure that multixact members do not
2218 	 * wrap.  Limits for that are set in SetOffsetVacuumLimit, not here.
2219 	 */
2220 	multiWrapLimit = oldest_datminmxid + (MaxMultiXactId >> 1);
2221 	if (multiWrapLimit < FirstMultiXactId)
2222 		multiWrapLimit += FirstMultiXactId;
2223 
2224 	/*
2225 	 * We'll refuse to continue assigning MultiXactIds once we get within 100
2226 	 * multi of data loss.
2227 	 *
2228 	 * Note: This differs from the magic number used in
2229 	 * SetTransactionIdLimit() since vacuum itself will never generate new
2230 	 * multis.  XXX actually it does, if it needs to freeze old multis.
2231 	 */
2232 	multiStopLimit = multiWrapLimit - 100;
2233 	if (multiStopLimit < FirstMultiXactId)
2234 		multiStopLimit -= FirstMultiXactId;
2235 
2236 	/*
2237 	 * We'll start complaining loudly when we get within 10M multis of the
2238 	 * stop point.   This is kind of arbitrary, but if you let your gas gauge
2239 	 * get down to 1% of full, would you be looking for the next gas station?
2240 	 * We need to be fairly liberal about this number because there are lots
2241 	 * of scenarios where most transactions are done by automatic clients that
2242 	 * won't pay attention to warnings. (No, we're not gonna make this
2243 	 * configurable.  If you know enough to configure it, you know enough to
2244 	 * not get in this kind of trouble in the first place.)
2245 	 */
2246 	multiWarnLimit = multiStopLimit - 10000000;
2247 	if (multiWarnLimit < FirstMultiXactId)
2248 		multiWarnLimit -= FirstMultiXactId;
2249 
2250 	/*
2251 	 * We'll start trying to force autovacuums when oldest_datminmxid gets to
2252 	 * be more than autovacuum_multixact_freeze_max_age mxids old.
2253 	 *
2254 	 * Note: autovacuum_multixact_freeze_max_age is a PGC_POSTMASTER parameter
2255 	 * so that we don't have to worry about dealing with on-the-fly changes in
2256 	 * its value.  See SetTransactionIdLimit.
2257 	 */
2258 	multiVacLimit = oldest_datminmxid + autovacuum_multixact_freeze_max_age;
2259 	if (multiVacLimit < FirstMultiXactId)
2260 		multiVacLimit += FirstMultiXactId;
2261 
2262 	/* Grab lock for just long enough to set the new limit values */
2263 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2264 	MultiXactState->oldestMultiXactId = oldest_datminmxid;
2265 	MultiXactState->oldestMultiXactDB = oldest_datoid;
2266 	MultiXactState->multiVacLimit = multiVacLimit;
2267 	MultiXactState->multiWarnLimit = multiWarnLimit;
2268 	MultiXactState->multiStopLimit = multiStopLimit;
2269 	MultiXactState->multiWrapLimit = multiWrapLimit;
2270 	curMulti = MultiXactState->nextMXact;
2271 	LWLockRelease(MultiXactGenLock);
2272 
2273 	/* Log the info */
2274 	ereport(DEBUG1,
2275 			(errmsg("MultiXactId wrap limit is %u, limited by database with OID %u",
2276 					multiWrapLimit, oldest_datoid)));
2277 
2278 	/*
2279 	 * Computing the actual limits is only possible once the data directory is
2280 	 * in a consistent state. There's no need to compute the limits while
2281 	 * still replaying WAL - no decisions about new multis are made even
2282 	 * though multixact creations might be replayed. So we'll only do further
2283 	 * checks after TrimMultiXact() has been called.
2284 	 */
2285 	if (!MultiXactState->finishedStartup)
2286 		return;
2287 
2288 	Assert(!InRecovery);
2289 
2290 	/* Set limits for offset vacuum. */
2291 	needs_offset_vacuum = SetOffsetVacuumLimit(is_startup);
2292 
2293 	/*
2294 	 * If past the autovacuum force point, immediately signal an autovac
2295 	 * request.  The reason for this is that autovac only processes one
2296 	 * database per invocation.  Once it's finished cleaning up the oldest
2297 	 * database, it'll call here, and we'll signal the postmaster to start
2298 	 * another iteration immediately if there are still any old databases.
2299 	 */
2300 	if ((MultiXactIdPrecedes(multiVacLimit, curMulti) ||
2301 		 needs_offset_vacuum) && IsUnderPostmaster)
2302 		SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
2303 
2304 	/* Give an immediate warning if past the wrap warn point */
2305 	if (MultiXactIdPrecedes(multiWarnLimit, curMulti))
2306 	{
2307 		char	   *oldest_datname;
2308 
2309 		/*
2310 		 * We can be called when not inside a transaction, for example during
2311 		 * StartupXLOG().  In such a case we cannot do database access, so we
2312 		 * must just report the oldest DB's OID.
2313 		 *
2314 		 * Note: it's also possible that get_database_name fails and returns
2315 		 * NULL, for example because the database just got dropped.  We'll
2316 		 * still warn, even though the warning might now be unnecessary.
2317 		 */
2318 		if (IsTransactionState())
2319 			oldest_datname = get_database_name(oldest_datoid);
2320 		else
2321 			oldest_datname = NULL;
2322 
2323 		if (oldest_datname)
2324 			ereport(WARNING,
2325 					(errmsg_plural("database \"%s\" must be vacuumed before %u more MultiXactId is used",
2326 								   "database \"%s\" must be vacuumed before %u more MultiXactIds are used",
2327 								   multiWrapLimit - curMulti,
2328 								   oldest_datname,
2329 								   multiWrapLimit - curMulti),
2330 					 errhint("To avoid a database shutdown, execute a database-wide VACUUM in that database.\n"
2331 							 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
2332 		else
2333 			ereport(WARNING,
2334 					(errmsg_plural("database with OID %u must be vacuumed before %u more MultiXactId is used",
2335 								   "database with OID %u must be vacuumed before %u more MultiXactIds are used",
2336 								   multiWrapLimit - curMulti,
2337 								   oldest_datoid,
2338 								   multiWrapLimit - curMulti),
2339 					 errhint("To avoid a database shutdown, execute a database-wide VACUUM in that database.\n"
2340 							 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
2341 	}
2342 }
2343 
2344 /*
2345  * Ensure the next-to-be-assigned MultiXactId is at least minMulti,
2346  * and similarly nextOffset is at least minMultiOffset.
2347  *
2348  * This is used when we can determine minimum safe values from an XLog
2349  * record (either an on-line checkpoint or an mxact creation log entry).
2350  * Although this is only called during XLog replay, we take the lock in case
2351  * any hot-standby backends are examining the values.
2352  */
2353 void
MultiXactAdvanceNextMXact(MultiXactId minMulti,MultiXactOffset minMultiOffset)2354 MultiXactAdvanceNextMXact(MultiXactId minMulti,
2355 						  MultiXactOffset minMultiOffset)
2356 {
2357 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2358 	if (MultiXactIdPrecedes(MultiXactState->nextMXact, minMulti))
2359 	{
2360 		debug_elog3(DEBUG2, "MultiXact: setting next multi to %u", minMulti);
2361 		MultiXactState->nextMXact = minMulti;
2362 	}
2363 	if (MultiXactOffsetPrecedes(MultiXactState->nextOffset, minMultiOffset))
2364 	{
2365 		debug_elog3(DEBUG2, "MultiXact: setting next offset to %u",
2366 					minMultiOffset);
2367 		MultiXactState->nextOffset = minMultiOffset;
2368 	}
2369 	LWLockRelease(MultiXactGenLock);
2370 }
2371 
2372 /*
2373  * Update our oldestMultiXactId value, but only if it's more recent than what
2374  * we had.
2375  *
2376  * This may only be called during WAL replay.
2377  */
2378 void
MultiXactAdvanceOldest(MultiXactId oldestMulti,Oid oldestMultiDB)2379 MultiXactAdvanceOldest(MultiXactId oldestMulti, Oid oldestMultiDB)
2380 {
2381 	Assert(InRecovery);
2382 
2383 	if (MultiXactIdPrecedes(MultiXactState->oldestMultiXactId, oldestMulti))
2384 		SetMultiXactIdLimit(oldestMulti, oldestMultiDB, false);
2385 }
2386 
2387 /*
2388  * Make sure that MultiXactOffset has room for a newly-allocated MultiXactId.
2389  *
2390  * NB: this is called while holding MultiXactGenLock.  We want it to be very
2391  * fast most of the time; even when it's not so fast, no actual I/O need
2392  * happen unless we're forced to write out a dirty log or xlog page to make
2393  * room in shared memory.
2394  */
2395 static void
ExtendMultiXactOffset(MultiXactId multi)2396 ExtendMultiXactOffset(MultiXactId multi)
2397 {
2398 	int			pageno;
2399 
2400 	/*
2401 	 * No work except at first MultiXactId of a page.  But beware: just after
2402 	 * wraparound, the first MultiXactId of page zero is FirstMultiXactId.
2403 	 */
2404 	if (MultiXactIdToOffsetEntry(multi) != 0 &&
2405 		multi != FirstMultiXactId)
2406 		return;
2407 
2408 	pageno = MultiXactIdToOffsetPage(multi);
2409 
2410 	LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
2411 
2412 	/* Zero the page and make an XLOG entry about it */
2413 	ZeroMultiXactOffsetPage(pageno, true);
2414 
2415 	LWLockRelease(MultiXactOffsetSLRULock);
2416 }
2417 
2418 /*
2419  * Make sure that MultiXactMember has room for the members of a newly-
2420  * allocated MultiXactId.
2421  *
2422  * Like the above routine, this is called while holding MultiXactGenLock;
2423  * same comments apply.
2424  */
2425 static void
ExtendMultiXactMember(MultiXactOffset offset,int nmembers)2426 ExtendMultiXactMember(MultiXactOffset offset, int nmembers)
2427 {
2428 	/*
2429 	 * It's possible that the members span more than one page of the members
2430 	 * file, so we loop to ensure we consider each page.  The coding is not
2431 	 * optimal if the members span several pages, but that seems unusual
2432 	 * enough to not worry much about.
2433 	 */
2434 	while (nmembers > 0)
2435 	{
2436 		int			flagsoff;
2437 		int			flagsbit;
2438 		uint32		difference;
2439 
2440 		/*
2441 		 * Only zero when at first entry of a page.
2442 		 */
2443 		flagsoff = MXOffsetToFlagsOffset(offset);
2444 		flagsbit = MXOffsetToFlagsBitShift(offset);
2445 		if (flagsoff == 0 && flagsbit == 0)
2446 		{
2447 			int			pageno;
2448 
2449 			pageno = MXOffsetToMemberPage(offset);
2450 
2451 			LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
2452 
2453 			/* Zero the page and make an XLOG entry about it */
2454 			ZeroMultiXactMemberPage(pageno, true);
2455 
2456 			LWLockRelease(MultiXactMemberSLRULock);
2457 		}
2458 
2459 		/*
2460 		 * Compute the number of items till end of current page.  Careful: if
2461 		 * addition of unsigned ints wraps around, we're at the last page of
2462 		 * the last segment; since that page holds a different number of items
2463 		 * than other pages, we need to do it differently.
2464 		 */
2465 		if (offset + MAX_MEMBERS_IN_LAST_MEMBERS_PAGE < offset)
2466 		{
2467 			/*
2468 			 * This is the last page of the last segment; we can compute the
2469 			 * number of items left to allocate in it without modulo
2470 			 * arithmetic.
2471 			 */
2472 			difference = MaxMultiXactOffset - offset + 1;
2473 		}
2474 		else
2475 			difference = MULTIXACT_MEMBERS_PER_PAGE - offset % MULTIXACT_MEMBERS_PER_PAGE;
2476 
2477 		/*
2478 		 * Advance to next page, taking care to properly handle the wraparound
2479 		 * case.  OK if nmembers goes negative.
2480 		 */
2481 		nmembers -= difference;
2482 		offset += difference;
2483 	}
2484 }
2485 
2486 /*
2487  * GetOldestMultiXactId
2488  *
2489  * Return the oldest MultiXactId that's still possibly still seen as live by
2490  * any running transaction.  Older ones might still exist on disk, but they no
2491  * longer have any running member transaction.
2492  *
2493  * It's not safe to truncate MultiXact SLRU segments on the value returned by
2494  * this function; however, it can be used by a full-table vacuum to set the
2495  * point at which it will be possible to truncate SLRU for that table.
2496  */
2497 MultiXactId
GetOldestMultiXactId(void)2498 GetOldestMultiXactId(void)
2499 {
2500 	MultiXactId oldestMXact;
2501 	MultiXactId nextMXact;
2502 	int			i;
2503 
2504 	/*
2505 	 * This is the oldest valid value among all the OldestMemberMXactId[] and
2506 	 * OldestVisibleMXactId[] entries, or nextMXact if none are valid.
2507 	 */
2508 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2509 
2510 	/*
2511 	 * We have to beware of the possibility that nextMXact is in the
2512 	 * wrapped-around state.  We don't fix the counter itself here, but we
2513 	 * must be sure to use a valid value in our calculation.
2514 	 */
2515 	nextMXact = MultiXactState->nextMXact;
2516 	if (nextMXact < FirstMultiXactId)
2517 		nextMXact = FirstMultiXactId;
2518 
2519 	oldestMXact = nextMXact;
2520 	for (i = 1; i <= MaxOldestSlot; i++)
2521 	{
2522 		MultiXactId thisoldest;
2523 
2524 		thisoldest = OldestMemberMXactId[i];
2525 		if (MultiXactIdIsValid(thisoldest) &&
2526 			MultiXactIdPrecedes(thisoldest, oldestMXact))
2527 			oldestMXact = thisoldest;
2528 		thisoldest = OldestVisibleMXactId[i];
2529 		if (MultiXactIdIsValid(thisoldest) &&
2530 			MultiXactIdPrecedes(thisoldest, oldestMXact))
2531 			oldestMXact = thisoldest;
2532 	}
2533 
2534 	LWLockRelease(MultiXactGenLock);
2535 
2536 	return oldestMXact;
2537 }
2538 
2539 /*
2540  * Determine how aggressively we need to vacuum in order to prevent member
2541  * wraparound.
2542  *
2543  * To do so determine what's the oldest member offset and install the limit
2544  * info in MultiXactState, where it can be used to prevent overrun of old data
2545  * in the members SLRU area.
2546  *
2547  * The return value is true if emergency autovacuum is required and false
2548  * otherwise.
2549  */
2550 static bool
SetOffsetVacuumLimit(bool is_startup)2551 SetOffsetVacuumLimit(bool is_startup)
2552 {
2553 	MultiXactId oldestMultiXactId;
2554 	MultiXactId nextMXact;
2555 	MultiXactOffset oldestOffset = 0;	/* placate compiler */
2556 	MultiXactOffset prevOldestOffset;
2557 	MultiXactOffset nextOffset;
2558 	bool		oldestOffsetKnown = false;
2559 	bool		prevOldestOffsetKnown;
2560 	MultiXactOffset offsetStopLimit = 0;
2561 	MultiXactOffset prevOffsetStopLimit;
2562 
2563 	/*
2564 	 * NB: Have to prevent concurrent truncation, we might otherwise try to
2565 	 * lookup an oldestMulti that's concurrently getting truncated away.
2566 	 */
2567 	LWLockAcquire(MultiXactTruncationLock, LW_SHARED);
2568 
2569 	/* Read relevant fields from shared memory. */
2570 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2571 	oldestMultiXactId = MultiXactState->oldestMultiXactId;
2572 	nextMXact = MultiXactState->nextMXact;
2573 	nextOffset = MultiXactState->nextOffset;
2574 	prevOldestOffsetKnown = MultiXactState->oldestOffsetKnown;
2575 	prevOldestOffset = MultiXactState->oldestOffset;
2576 	prevOffsetStopLimit = MultiXactState->offsetStopLimit;
2577 	Assert(MultiXactState->finishedStartup);
2578 	LWLockRelease(MultiXactGenLock);
2579 
2580 	/*
2581 	 * Determine the offset of the oldest multixact.  Normally, we can read
2582 	 * the offset from the multixact itself, but there's an important special
2583 	 * case: if there are no multixacts in existence at all, oldestMXact
2584 	 * obviously can't point to one.  It will instead point to the multixact
2585 	 * ID that will be assigned the next time one is needed.
2586 	 */
2587 	if (oldestMultiXactId == nextMXact)
2588 	{
2589 		/*
2590 		 * When the next multixact gets created, it will be stored at the next
2591 		 * offset.
2592 		 */
2593 		oldestOffset = nextOffset;
2594 		oldestOffsetKnown = true;
2595 	}
2596 	else
2597 	{
2598 		/*
2599 		 * Figure out where the oldest existing multixact's offsets are
2600 		 * stored. Due to bugs in early release of PostgreSQL 9.3.X and 9.4.X,
2601 		 * the supposedly-earliest multixact might not really exist.  We are
2602 		 * careful not to fail in that case.
2603 		 */
2604 		oldestOffsetKnown =
2605 			find_multixact_start(oldestMultiXactId, &oldestOffset);
2606 
2607 		if (oldestOffsetKnown)
2608 			ereport(DEBUG1,
2609 					(errmsg("oldest MultiXactId member is at offset %u",
2610 							oldestOffset)));
2611 		else
2612 			ereport(LOG,
2613 					(errmsg("MultiXact member wraparound protections are disabled because oldest checkpointed MultiXact %u does not exist on disk",
2614 							oldestMultiXactId)));
2615 	}
2616 
2617 	LWLockRelease(MultiXactTruncationLock);
2618 
2619 	/*
2620 	 * If we can, compute limits (and install them MultiXactState) to prevent
2621 	 * overrun of old data in the members SLRU area. We can only do so if the
2622 	 * oldest offset is known though.
2623 	 */
2624 	if (oldestOffsetKnown)
2625 	{
2626 		/* move back to start of the corresponding segment */
2627 		offsetStopLimit = oldestOffset - (oldestOffset %
2628 										  (MULTIXACT_MEMBERS_PER_PAGE * SLRU_PAGES_PER_SEGMENT));
2629 
2630 		/* always leave one segment before the wraparound point */
2631 		offsetStopLimit -= (MULTIXACT_MEMBERS_PER_PAGE * SLRU_PAGES_PER_SEGMENT);
2632 
2633 		if (!prevOldestOffsetKnown && !is_startup)
2634 			ereport(LOG,
2635 					(errmsg("MultiXact member wraparound protections are now enabled")));
2636 
2637 		ereport(DEBUG1,
2638 				(errmsg("MultiXact member stop limit is now %u based on MultiXact %u",
2639 						offsetStopLimit, oldestMultiXactId)));
2640 	}
2641 	else if (prevOldestOffsetKnown)
2642 	{
2643 		/*
2644 		 * If we failed to get the oldest offset this time, but we have a
2645 		 * value from a previous pass through this function, use the old
2646 		 * values rather than automatically forcing an emergency autovacuum
2647 		 * cycle again.
2648 		 */
2649 		oldestOffset = prevOldestOffset;
2650 		oldestOffsetKnown = true;
2651 		offsetStopLimit = prevOffsetStopLimit;
2652 	}
2653 
2654 	/* Install the computed values */
2655 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2656 	MultiXactState->oldestOffset = oldestOffset;
2657 	MultiXactState->oldestOffsetKnown = oldestOffsetKnown;
2658 	MultiXactState->offsetStopLimit = offsetStopLimit;
2659 	LWLockRelease(MultiXactGenLock);
2660 
2661 	/*
2662 	 * Do we need an emergency autovacuum?	If we're not sure, assume yes.
2663 	 */
2664 	return !oldestOffsetKnown ||
2665 		(nextOffset - oldestOffset > MULTIXACT_MEMBER_SAFE_THRESHOLD);
2666 }
2667 
2668 /*
2669  * Return whether adding "distance" to "start" would move past "boundary".
2670  *
2671  * We use this to determine whether the addition is "wrapping around" the
2672  * boundary point, hence the name.  The reason we don't want to use the regular
2673  * 2^31-modulo arithmetic here is that we want to be able to use the whole of
2674  * the 2^32-1 space here, allowing for more multixacts than would fit
2675  * otherwise.
2676  */
2677 static bool
MultiXactOffsetWouldWrap(MultiXactOffset boundary,MultiXactOffset start,uint32 distance)2678 MultiXactOffsetWouldWrap(MultiXactOffset boundary, MultiXactOffset start,
2679 						 uint32 distance)
2680 {
2681 	MultiXactOffset finish;
2682 
2683 	/*
2684 	 * Note that offset number 0 is not used (see GetMultiXactIdMembers), so
2685 	 * if the addition wraps around the UINT_MAX boundary, skip that value.
2686 	 */
2687 	finish = start + distance;
2688 	if (finish < start)
2689 		finish++;
2690 
2691 	/*-----------------------------------------------------------------------
2692 	 * When the boundary is numerically greater than the starting point, any
2693 	 * value numerically between the two is not wrapped:
2694 	 *
2695 	 *	<----S----B---->
2696 	 *	[---)			 = F wrapped past B (and UINT_MAX)
2697 	 *		 [---)		 = F not wrapped
2698 	 *			  [----] = F wrapped past B
2699 	 *
2700 	 * When the boundary is numerically less than the starting point (i.e. the
2701 	 * UINT_MAX wraparound occurs somewhere in between) then all values in
2702 	 * between are wrapped:
2703 	 *
2704 	 *	<----B----S---->
2705 	 *	[---)			 = F not wrapped past B (but wrapped past UINT_MAX)
2706 	 *		 [---)		 = F wrapped past B (and UINT_MAX)
2707 	 *			  [----] = F not wrapped
2708 	 *-----------------------------------------------------------------------
2709 	 */
2710 	if (start < boundary)
2711 		return finish >= boundary || finish < start;
2712 	else
2713 		return finish >= boundary && finish < start;
2714 }
2715 
2716 /*
2717  * Find the starting offset of the given MultiXactId.
2718  *
2719  * Returns false if the file containing the multi does not exist on disk.
2720  * Otherwise, returns true and sets *result to the starting member offset.
2721  *
2722  * This function does not prevent concurrent truncation, so if that's
2723  * required, the caller has to protect against that.
2724  */
2725 static bool
find_multixact_start(MultiXactId multi,MultiXactOffset * result)2726 find_multixact_start(MultiXactId multi, MultiXactOffset *result)
2727 {
2728 	MultiXactOffset offset;
2729 	int			pageno;
2730 	int			entryno;
2731 	int			slotno;
2732 	MultiXactOffset *offptr;
2733 
2734 	Assert(MultiXactState->finishedStartup);
2735 
2736 	pageno = MultiXactIdToOffsetPage(multi);
2737 	entryno = MultiXactIdToOffsetEntry(multi);
2738 
2739 	/*
2740 	 * Flush out dirty data, so PhysicalPageExists can work correctly.
2741 	 * SimpleLruFlush() is a pretty big hammer for that.  Alternatively we
2742 	 * could add an in-memory version of page exists, but find_multixact_start
2743 	 * is called infrequently, and it doesn't seem bad to flush buffers to
2744 	 * disk before truncation.
2745 	 */
2746 	SimpleLruFlush(MultiXactOffsetCtl, true);
2747 	SimpleLruFlush(MultiXactMemberCtl, true);
2748 
2749 	if (!SimpleLruDoesPhysicalPageExist(MultiXactOffsetCtl, pageno))
2750 		return false;
2751 
2752 	/* lock is acquired by SimpleLruReadPage_ReadOnly */
2753 	slotno = SimpleLruReadPage_ReadOnly(MultiXactOffsetCtl, pageno, multi);
2754 	offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
2755 	offptr += entryno;
2756 	offset = *offptr;
2757 	LWLockRelease(MultiXactOffsetSLRULock);
2758 
2759 	*result = offset;
2760 	return true;
2761 }
2762 
2763 /*
2764  * Determine how many multixacts, and how many multixact members, currently
2765  * exist.  Return false if unable to determine.
2766  */
2767 static bool
ReadMultiXactCounts(uint32 * multixacts,MultiXactOffset * members)2768 ReadMultiXactCounts(uint32 *multixacts, MultiXactOffset *members)
2769 {
2770 	MultiXactOffset nextOffset;
2771 	MultiXactOffset oldestOffset;
2772 	MultiXactId oldestMultiXactId;
2773 	MultiXactId nextMultiXactId;
2774 	bool		oldestOffsetKnown;
2775 
2776 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2777 	nextOffset = MultiXactState->nextOffset;
2778 	oldestMultiXactId = MultiXactState->oldestMultiXactId;
2779 	nextMultiXactId = MultiXactState->nextMXact;
2780 	oldestOffset = MultiXactState->oldestOffset;
2781 	oldestOffsetKnown = MultiXactState->oldestOffsetKnown;
2782 	LWLockRelease(MultiXactGenLock);
2783 
2784 	if (!oldestOffsetKnown)
2785 		return false;
2786 
2787 	*members = nextOffset - oldestOffset;
2788 	*multixacts = nextMultiXactId - oldestMultiXactId;
2789 	return true;
2790 }
2791 
2792 /*
2793  * Multixact members can be removed once the multixacts that refer to them
2794  * are older than every datminmxid.  autovacuum_multixact_freeze_max_age and
2795  * vacuum_multixact_freeze_table_age work together to make sure we never have
2796  * too many multixacts; we hope that, at least under normal circumstances,
2797  * this will also be sufficient to keep us from using too many offsets.
2798  * However, if the average multixact has many members, we might exhaust the
2799  * members space while still using few enough members that these limits fail
2800  * to trigger full table scans for relminmxid advancement.  At that point,
2801  * we'd have no choice but to start failing multixact-creating operations
2802  * with an error.
2803  *
2804  * To prevent that, if more than a threshold portion of the members space is
2805  * used, we effectively reduce autovacuum_multixact_freeze_max_age and
2806  * to a value just less than the number of multixacts in use.  We hope that
2807  * this will quickly trigger autovacuuming on the table or tables with the
2808  * oldest relminmxid, thus allowing datminmxid values to advance and removing
2809  * some members.
2810  *
2811  * As the fraction of the member space currently in use grows, we become
2812  * more aggressive in clamping this value.  That not only causes autovacuum
2813  * to ramp up, but also makes any manual vacuums the user issues more
2814  * aggressive.  This happens because vacuum_set_xid_limits() clamps the
2815  * freeze table and the minimum freeze age based on the effective
2816  * autovacuum_multixact_freeze_max_age this function returns.  In the worst
2817  * case, we'll claim the freeze_max_age to zero, and every vacuum of any
2818  * table will try to freeze every multixact.
2819  *
2820  * It's possible that these thresholds should be user-tunable, but for now
2821  * we keep it simple.
2822  */
2823 int
MultiXactMemberFreezeThreshold(void)2824 MultiXactMemberFreezeThreshold(void)
2825 {
2826 	MultiXactOffset members;
2827 	uint32		multixacts;
2828 	uint32		victim_multixacts;
2829 	double		fraction;
2830 
2831 	/* If we can't determine member space utilization, assume the worst. */
2832 	if (!ReadMultiXactCounts(&multixacts, &members))
2833 		return 0;
2834 
2835 	/* If member space utilization is low, no special action is required. */
2836 	if (members <= MULTIXACT_MEMBER_SAFE_THRESHOLD)
2837 		return autovacuum_multixact_freeze_max_age;
2838 
2839 	/*
2840 	 * Compute a target for relminmxid advancement.  The number of multixacts
2841 	 * we try to eliminate from the system is based on how far we are past
2842 	 * MULTIXACT_MEMBER_SAFE_THRESHOLD.
2843 	 */
2844 	fraction = (double) (members - MULTIXACT_MEMBER_SAFE_THRESHOLD) /
2845 		(MULTIXACT_MEMBER_DANGER_THRESHOLD - MULTIXACT_MEMBER_SAFE_THRESHOLD);
2846 	victim_multixacts = multixacts * fraction;
2847 
2848 	/* fraction could be > 1.0, but lowest possible freeze age is zero */
2849 	if (victim_multixacts > multixacts)
2850 		return 0;
2851 	return multixacts - victim_multixacts;
2852 }
2853 
2854 typedef struct mxtruncinfo
2855 {
2856 	int			earliestExistingPage;
2857 } mxtruncinfo;
2858 
2859 /*
2860  * SlruScanDirectory callback
2861  *		This callback determines the earliest existing page number.
2862  */
2863 static bool
SlruScanDirCbFindEarliest(SlruCtl ctl,char * filename,int segpage,void * data)2864 SlruScanDirCbFindEarliest(SlruCtl ctl, char *filename, int segpage, void *data)
2865 {
2866 	mxtruncinfo *trunc = (mxtruncinfo *) data;
2867 
2868 	if (trunc->earliestExistingPage == -1 ||
2869 		ctl->PagePrecedes(segpage, trunc->earliestExistingPage))
2870 	{
2871 		trunc->earliestExistingPage = segpage;
2872 	}
2873 
2874 	return false;				/* keep going */
2875 }
2876 
2877 
2878 /*
2879  * Delete members segments [oldest, newOldest)
2880  *
2881  * The members SLRU can, in contrast to the offsets one, be filled to almost
2882  * the full range at once. This means SimpleLruTruncate() can't trivially be
2883  * used - instead the to-be-deleted range is computed using the offsets
2884  * SLRU. C.f. TruncateMultiXact().
2885  */
2886 static void
PerformMembersTruncation(MultiXactOffset oldestOffset,MultiXactOffset newOldestOffset)2887 PerformMembersTruncation(MultiXactOffset oldestOffset, MultiXactOffset newOldestOffset)
2888 {
2889 	const int	maxsegment = MXOffsetToMemberSegment(MaxMultiXactOffset);
2890 	int			startsegment = MXOffsetToMemberSegment(oldestOffset);
2891 	int			endsegment = MXOffsetToMemberSegment(newOldestOffset);
2892 	int			segment = startsegment;
2893 
2894 	/*
2895 	 * Delete all the segments but the last one. The last segment can still
2896 	 * contain, possibly partially, valid data.
2897 	 */
2898 	while (segment != endsegment)
2899 	{
2900 		elog(DEBUG2, "truncating multixact members segment %x", segment);
2901 		SlruDeleteSegment(MultiXactMemberCtl, segment);
2902 
2903 		/* move to next segment, handling wraparound correctly */
2904 		if (segment == maxsegment)
2905 			segment = 0;
2906 		else
2907 			segment += 1;
2908 	}
2909 }
2910 
2911 /*
2912  * Delete offsets segments [oldest, newOldest)
2913  */
2914 static void
PerformOffsetsTruncation(MultiXactId oldestMulti,MultiXactId newOldestMulti)2915 PerformOffsetsTruncation(MultiXactId oldestMulti, MultiXactId newOldestMulti)
2916 {
2917 	/*
2918 	 * We step back one multixact to avoid passing a cutoff page that hasn't
2919 	 * been created yet in the rare case that oldestMulti would be the first
2920 	 * item on a page and oldestMulti == nextMulti.  In that case, if we
2921 	 * didn't subtract one, we'd trigger SimpleLruTruncate's wraparound
2922 	 * detection.
2923 	 */
2924 	SimpleLruTruncate(MultiXactOffsetCtl,
2925 					  MultiXactIdToOffsetPage(PreviousMultiXactId(newOldestMulti)));
2926 }
2927 
2928 /*
2929  * Remove all MultiXactOffset and MultiXactMember segments before the oldest
2930  * ones still of interest.
2931  *
2932  * This is only called on a primary as part of vacuum (via
2933  * vac_truncate_clog()). During recovery truncation is done by replaying
2934  * truncation WAL records logged here.
2935  *
2936  * newOldestMulti is the oldest currently required multixact, newOldestMultiDB
2937  * is one of the databases preventing newOldestMulti from increasing.
2938  */
2939 void
TruncateMultiXact(MultiXactId newOldestMulti,Oid newOldestMultiDB)2940 TruncateMultiXact(MultiXactId newOldestMulti, Oid newOldestMultiDB)
2941 {
2942 	MultiXactId oldestMulti;
2943 	MultiXactId nextMulti;
2944 	MultiXactOffset newOldestOffset;
2945 	MultiXactOffset oldestOffset;
2946 	MultiXactOffset nextOffset;
2947 	mxtruncinfo trunc;
2948 	MultiXactId earliest;
2949 
2950 	Assert(!RecoveryInProgress());
2951 	Assert(MultiXactState->finishedStartup);
2952 
2953 	/*
2954 	 * We can only allow one truncation to happen at once. Otherwise parts of
2955 	 * members might vanish while we're doing lookups or similar. There's no
2956 	 * need to have an interlock with creating new multis or such, since those
2957 	 * are constrained by the limits (which only grow, never shrink).
2958 	 */
2959 	LWLockAcquire(MultiXactTruncationLock, LW_EXCLUSIVE);
2960 
2961 	LWLockAcquire(MultiXactGenLock, LW_SHARED);
2962 	nextMulti = MultiXactState->nextMXact;
2963 	nextOffset = MultiXactState->nextOffset;
2964 	oldestMulti = MultiXactState->oldestMultiXactId;
2965 	LWLockRelease(MultiXactGenLock);
2966 	Assert(MultiXactIdIsValid(oldestMulti));
2967 
2968 	/*
2969 	 * Make sure to only attempt truncation if there's values to truncate
2970 	 * away. In normal processing values shouldn't go backwards, but there's
2971 	 * some corner cases (due to bugs) where that's possible.
2972 	 */
2973 	if (MultiXactIdPrecedesOrEquals(newOldestMulti, oldestMulti))
2974 	{
2975 		LWLockRelease(MultiXactTruncationLock);
2976 		return;
2977 	}
2978 
2979 	/*
2980 	 * Note we can't just plow ahead with the truncation; it's possible that
2981 	 * there are no segments to truncate, which is a problem because we are
2982 	 * going to attempt to read the offsets page to determine where to
2983 	 * truncate the members SLRU.  So we first scan the directory to determine
2984 	 * the earliest offsets page number that we can read without error.
2985 	 *
2986 	 * When nextMXact is less than one segment away from multiWrapLimit,
2987 	 * SlruScanDirCbFindEarliest can find some early segment other than the
2988 	 * actual earliest.  (MultiXactOffsetPagePrecedes(EARLIEST, LATEST)
2989 	 * returns false, because not all pairs of entries have the same answer.)
2990 	 * That can also arise when an earlier truncation attempt failed unlink()
2991 	 * or returned early from this function.  The only consequence is
2992 	 * returning early, which wastes space that we could have liberated.
2993 	 *
2994 	 * NB: It's also possible that the page that oldestMulti is on has already
2995 	 * been truncated away, and we crashed before updating oldestMulti.
2996 	 */
2997 	trunc.earliestExistingPage = -1;
2998 	SlruScanDirectory(MultiXactOffsetCtl, SlruScanDirCbFindEarliest, &trunc);
2999 	earliest = trunc.earliestExistingPage * MULTIXACT_OFFSETS_PER_PAGE;
3000 	if (earliest < FirstMultiXactId)
3001 		earliest = FirstMultiXactId;
3002 
3003 	/* If there's nothing to remove, we can bail out early. */
3004 	if (MultiXactIdPrecedes(oldestMulti, earliest))
3005 	{
3006 		LWLockRelease(MultiXactTruncationLock);
3007 		return;
3008 	}
3009 
3010 	/*
3011 	 * First, compute the safe truncation point for MultiXactMember. This is
3012 	 * the starting offset of the oldest multixact.
3013 	 *
3014 	 * Hopefully, find_multixact_start will always work here, because we've
3015 	 * already checked that it doesn't precede the earliest MultiXact on disk.
3016 	 * But if it fails, don't truncate anything, and log a message.
3017 	 */
3018 	if (oldestMulti == nextMulti)
3019 	{
3020 		/* there are NO MultiXacts */
3021 		oldestOffset = nextOffset;
3022 	}
3023 	else if (!find_multixact_start(oldestMulti, &oldestOffset))
3024 	{
3025 		ereport(LOG,
3026 				(errmsg("oldest MultiXact %u not found, earliest MultiXact %u, skipping truncation",
3027 						oldestMulti, earliest)));
3028 		LWLockRelease(MultiXactTruncationLock);
3029 		return;
3030 	}
3031 
3032 	/*
3033 	 * Secondly compute up to where to truncate. Lookup the corresponding
3034 	 * member offset for newOldestMulti for that.
3035 	 */
3036 	if (newOldestMulti == nextMulti)
3037 	{
3038 		/* there are NO MultiXacts */
3039 		newOldestOffset = nextOffset;
3040 	}
3041 	else if (!find_multixact_start(newOldestMulti, &newOldestOffset))
3042 	{
3043 		ereport(LOG,
3044 				(errmsg("cannot truncate up to MultiXact %u because it does not exist on disk, skipping truncation",
3045 						newOldestMulti)));
3046 		LWLockRelease(MultiXactTruncationLock);
3047 		return;
3048 	}
3049 
3050 	elog(DEBUG1, "performing multixact truncation: "
3051 		 "offsets [%u, %u), offsets segments [%x, %x), "
3052 		 "members [%u, %u), members segments [%x, %x)",
3053 		 oldestMulti, newOldestMulti,
3054 		 MultiXactIdToOffsetSegment(oldestMulti),
3055 		 MultiXactIdToOffsetSegment(newOldestMulti),
3056 		 oldestOffset, newOldestOffset,
3057 		 MXOffsetToMemberSegment(oldestOffset),
3058 		 MXOffsetToMemberSegment(newOldestOffset));
3059 
3060 	/*
3061 	 * Do truncation, and the WAL logging of the truncation, in a critical
3062 	 * section. That way offsets/members cannot get out of sync anymore, i.e.
3063 	 * once consistent the newOldestMulti will always exist in members, even
3064 	 * if we crashed in the wrong moment.
3065 	 */
3066 	START_CRIT_SECTION();
3067 
3068 	/*
3069 	 * Prevent checkpoints from being scheduled concurrently. This is critical
3070 	 * because otherwise a truncation record might not be replayed after a
3071 	 * crash/basebackup, even though the state of the data directory would
3072 	 * require it.
3073 	 */
3074 	Assert(!MyProc->delayChkpt);
3075 	MyProc->delayChkpt = true;
3076 
3077 	/* WAL log truncation */
3078 	WriteMTruncateXlogRec(newOldestMultiDB,
3079 						  oldestMulti, newOldestMulti,
3080 						  oldestOffset, newOldestOffset);
3081 
3082 	/*
3083 	 * Update in-memory limits before performing the truncation, while inside
3084 	 * the critical section: Have to do it before truncation, to prevent
3085 	 * concurrent lookups of those values. Has to be inside the critical
3086 	 * section as otherwise a future call to this function would error out,
3087 	 * while looking up the oldest member in offsets, if our caller crashes
3088 	 * before updating the limits.
3089 	 */
3090 	LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
3091 	MultiXactState->oldestMultiXactId = newOldestMulti;
3092 	MultiXactState->oldestMultiXactDB = newOldestMultiDB;
3093 	LWLockRelease(MultiXactGenLock);
3094 
3095 	/* First truncate members */
3096 	PerformMembersTruncation(oldestOffset, newOldestOffset);
3097 
3098 	/* Then offsets */
3099 	PerformOffsetsTruncation(oldestMulti, newOldestMulti);
3100 
3101 	MyProc->delayChkpt = false;
3102 
3103 	END_CRIT_SECTION();
3104 	LWLockRelease(MultiXactTruncationLock);
3105 }
3106 
3107 /*
3108  * Decide whether a MultiXactOffset page number is "older" for truncation
3109  * purposes.  Analogous to CLOGPagePrecedes().
3110  *
3111  * Offsetting the values is optional, because MultiXactIdPrecedes() has
3112  * translational symmetry.
3113  */
3114 static bool
MultiXactOffsetPagePrecedes(int page1,int page2)3115 MultiXactOffsetPagePrecedes(int page1, int page2)
3116 {
3117 	MultiXactId multi1;
3118 	MultiXactId multi2;
3119 
3120 	multi1 = ((MultiXactId) page1) * MULTIXACT_OFFSETS_PER_PAGE;
3121 	multi1 += FirstMultiXactId + 1;
3122 	multi2 = ((MultiXactId) page2) * MULTIXACT_OFFSETS_PER_PAGE;
3123 	multi2 += FirstMultiXactId + 1;
3124 
3125 	return (MultiXactIdPrecedes(multi1, multi2) &&
3126 			MultiXactIdPrecedes(multi1,
3127 								multi2 + MULTIXACT_OFFSETS_PER_PAGE - 1));
3128 }
3129 
3130 /*
3131  * Decide whether a MultiXactMember page number is "older" for truncation
3132  * purposes.  There is no "invalid offset number" so use the numbers verbatim.
3133  */
3134 static bool
MultiXactMemberPagePrecedes(int page1,int page2)3135 MultiXactMemberPagePrecedes(int page1, int page2)
3136 {
3137 	MultiXactOffset offset1;
3138 	MultiXactOffset offset2;
3139 
3140 	offset1 = ((MultiXactOffset) page1) * MULTIXACT_MEMBERS_PER_PAGE;
3141 	offset2 = ((MultiXactOffset) page2) * MULTIXACT_MEMBERS_PER_PAGE;
3142 
3143 	return (MultiXactOffsetPrecedes(offset1, offset2) &&
3144 			MultiXactOffsetPrecedes(offset1,
3145 									offset2 + MULTIXACT_MEMBERS_PER_PAGE - 1));
3146 }
3147 
3148 /*
3149  * Decide which of two MultiXactIds is earlier.
3150  *
3151  * XXX do we need to do something special for InvalidMultiXactId?
3152  * (Doesn't look like it.)
3153  */
3154 bool
MultiXactIdPrecedes(MultiXactId multi1,MultiXactId multi2)3155 MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2)
3156 {
3157 	int32		diff = (int32) (multi1 - multi2);
3158 
3159 	return (diff < 0);
3160 }
3161 
3162 /*
3163  * MultiXactIdPrecedesOrEquals -- is multi1 logically <= multi2?
3164  *
3165  * XXX do we need to do something special for InvalidMultiXactId?
3166  * (Doesn't look like it.)
3167  */
3168 bool
MultiXactIdPrecedesOrEquals(MultiXactId multi1,MultiXactId multi2)3169 MultiXactIdPrecedesOrEquals(MultiXactId multi1, MultiXactId multi2)
3170 {
3171 	int32		diff = (int32) (multi1 - multi2);
3172 
3173 	return (diff <= 0);
3174 }
3175 
3176 
3177 /*
3178  * Decide which of two offsets is earlier.
3179  */
3180 static bool
MultiXactOffsetPrecedes(MultiXactOffset offset1,MultiXactOffset offset2)3181 MultiXactOffsetPrecedes(MultiXactOffset offset1, MultiXactOffset offset2)
3182 {
3183 	int32		diff = (int32) (offset1 - offset2);
3184 
3185 	return (diff < 0);
3186 }
3187 
3188 /*
3189  * Write an xlog record reflecting the zeroing of either a MEMBERs or
3190  * OFFSETs page (info shows which)
3191  */
3192 static void
WriteMZeroPageXlogRec(int pageno,uint8 info)3193 WriteMZeroPageXlogRec(int pageno, uint8 info)
3194 {
3195 	XLogBeginInsert();
3196 	XLogRegisterData((char *) (&pageno), sizeof(int));
3197 	(void) XLogInsert(RM_MULTIXACT_ID, info);
3198 }
3199 
3200 /*
3201  * Write a TRUNCATE xlog record
3202  *
3203  * We must flush the xlog record to disk before returning --- see notes in
3204  * TruncateCLOG().
3205  */
3206 static void
WriteMTruncateXlogRec(Oid oldestMultiDB,MultiXactId startTruncOff,MultiXactId endTruncOff,MultiXactOffset startTruncMemb,MultiXactOffset endTruncMemb)3207 WriteMTruncateXlogRec(Oid oldestMultiDB,
3208 					  MultiXactId startTruncOff, MultiXactId endTruncOff,
3209 					  MultiXactOffset startTruncMemb, MultiXactOffset endTruncMemb)
3210 {
3211 	XLogRecPtr	recptr;
3212 	xl_multixact_truncate xlrec;
3213 
3214 	xlrec.oldestMultiDB = oldestMultiDB;
3215 
3216 	xlrec.startTruncOff = startTruncOff;
3217 	xlrec.endTruncOff = endTruncOff;
3218 
3219 	xlrec.startTruncMemb = startTruncMemb;
3220 	xlrec.endTruncMemb = endTruncMemb;
3221 
3222 	XLogBeginInsert();
3223 	XLogRegisterData((char *) (&xlrec), SizeOfMultiXactTruncate);
3224 	recptr = XLogInsert(RM_MULTIXACT_ID, XLOG_MULTIXACT_TRUNCATE_ID);
3225 	XLogFlush(recptr);
3226 }
3227 
3228 /*
3229  * MULTIXACT resource manager's routines
3230  */
3231 void
multixact_redo(XLogReaderState * record)3232 multixact_redo(XLogReaderState *record)
3233 {
3234 	uint8		info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
3235 
3236 	/* Backup blocks are not used in multixact records */
3237 	Assert(!XLogRecHasAnyBlockRefs(record));
3238 
3239 	if (info == XLOG_MULTIXACT_ZERO_OFF_PAGE)
3240 	{
3241 		int			pageno;
3242 		int			slotno;
3243 
3244 		memcpy(&pageno, XLogRecGetData(record), sizeof(int));
3245 
3246 		LWLockAcquire(MultiXactOffsetSLRULock, LW_EXCLUSIVE);
3247 
3248 		slotno = ZeroMultiXactOffsetPage(pageno, false);
3249 		SimpleLruWritePage(MultiXactOffsetCtl, slotno);
3250 		Assert(!MultiXactOffsetCtl->shared->page_dirty[slotno]);
3251 
3252 		LWLockRelease(MultiXactOffsetSLRULock);
3253 	}
3254 	else if (info == XLOG_MULTIXACT_ZERO_MEM_PAGE)
3255 	{
3256 		int			pageno;
3257 		int			slotno;
3258 
3259 		memcpy(&pageno, XLogRecGetData(record), sizeof(int));
3260 
3261 		LWLockAcquire(MultiXactMemberSLRULock, LW_EXCLUSIVE);
3262 
3263 		slotno = ZeroMultiXactMemberPage(pageno, false);
3264 		SimpleLruWritePage(MultiXactMemberCtl, slotno);
3265 		Assert(!MultiXactMemberCtl->shared->page_dirty[slotno]);
3266 
3267 		LWLockRelease(MultiXactMemberSLRULock);
3268 	}
3269 	else if (info == XLOG_MULTIXACT_CREATE_ID)
3270 	{
3271 		xl_multixact_create *xlrec =
3272 		(xl_multixact_create *) XLogRecGetData(record);
3273 		TransactionId max_xid;
3274 		int			i;
3275 
3276 		/* Store the data back into the SLRU files */
3277 		RecordNewMultiXact(xlrec->mid, xlrec->moff, xlrec->nmembers,
3278 						   xlrec->members);
3279 
3280 		/* Make sure nextMXact/nextOffset are beyond what this record has */
3281 		MultiXactAdvanceNextMXact(xlrec->mid + 1,
3282 								  xlrec->moff + xlrec->nmembers);
3283 
3284 		/*
3285 		 * Make sure nextFullXid is beyond any XID mentioned in the record.
3286 		 * This should be unnecessary, since any XID found here ought to have
3287 		 * other evidence in the XLOG, but let's be safe.
3288 		 */
3289 		max_xid = XLogRecGetXid(record);
3290 		for (i = 0; i < xlrec->nmembers; i++)
3291 		{
3292 			if (TransactionIdPrecedes(max_xid, xlrec->members[i].xid))
3293 				max_xid = xlrec->members[i].xid;
3294 		}
3295 
3296 		AdvanceNextFullTransactionIdPastXid(max_xid);
3297 	}
3298 	else if (info == XLOG_MULTIXACT_TRUNCATE_ID)
3299 	{
3300 		xl_multixact_truncate xlrec;
3301 		int			pageno;
3302 
3303 		memcpy(&xlrec, XLogRecGetData(record),
3304 			   SizeOfMultiXactTruncate);
3305 
3306 		elog(DEBUG1, "replaying multixact truncation: "
3307 			 "offsets [%u, %u), offsets segments [%x, %x), "
3308 			 "members [%u, %u), members segments [%x, %x)",
3309 			 xlrec.startTruncOff, xlrec.endTruncOff,
3310 			 MultiXactIdToOffsetSegment(xlrec.startTruncOff),
3311 			 MultiXactIdToOffsetSegment(xlrec.endTruncOff),
3312 			 xlrec.startTruncMemb, xlrec.endTruncMemb,
3313 			 MXOffsetToMemberSegment(xlrec.startTruncMemb),
3314 			 MXOffsetToMemberSegment(xlrec.endTruncMemb));
3315 
3316 		/* should not be required, but more than cheap enough */
3317 		LWLockAcquire(MultiXactTruncationLock, LW_EXCLUSIVE);
3318 
3319 		/*
3320 		 * Advance the horizon values, so they're current at the end of
3321 		 * recovery.
3322 		 */
3323 		SetMultiXactIdLimit(xlrec.endTruncOff, xlrec.oldestMultiDB, false);
3324 
3325 		PerformMembersTruncation(xlrec.startTruncMemb, xlrec.endTruncMemb);
3326 
3327 		/*
3328 		 * During XLOG replay, latest_page_number isn't necessarily set up
3329 		 * yet; insert a suitable value to bypass the sanity test in
3330 		 * SimpleLruTruncate.
3331 		 */
3332 		pageno = MultiXactIdToOffsetPage(xlrec.endTruncOff);
3333 		MultiXactOffsetCtl->shared->latest_page_number = pageno;
3334 		PerformOffsetsTruncation(xlrec.startTruncOff, xlrec.endTruncOff);
3335 
3336 		LWLockRelease(MultiXactTruncationLock);
3337 	}
3338 	else
3339 		elog(PANIC, "multixact_redo: unknown op code %u", info);
3340 }
3341 
3342 Datum
pg_get_multixact_members(PG_FUNCTION_ARGS)3343 pg_get_multixact_members(PG_FUNCTION_ARGS)
3344 {
3345 	typedef struct
3346 	{
3347 		MultiXactMember *members;
3348 		int			nmembers;
3349 		int			iter;
3350 	} mxact;
3351 	MultiXactId mxid = PG_GETARG_UINT32(0);
3352 	mxact	   *multi;
3353 	FuncCallContext *funccxt;
3354 
3355 	if (mxid < FirstMultiXactId)
3356 		ereport(ERROR,
3357 				(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3358 				 errmsg("invalid MultiXactId: %u", mxid)));
3359 
3360 	if (SRF_IS_FIRSTCALL())
3361 	{
3362 		MemoryContext oldcxt;
3363 		TupleDesc	tupdesc;
3364 
3365 		funccxt = SRF_FIRSTCALL_INIT();
3366 		oldcxt = MemoryContextSwitchTo(funccxt->multi_call_memory_ctx);
3367 
3368 		multi = palloc(sizeof(mxact));
3369 		/* no need to allow for old values here */
3370 		multi->nmembers = GetMultiXactIdMembers(mxid, &multi->members, false,
3371 												false);
3372 		multi->iter = 0;
3373 
3374 		tupdesc = CreateTemplateTupleDesc(2);
3375 		TupleDescInitEntry(tupdesc, (AttrNumber) 1, "xid",
3376 						   XIDOID, -1, 0);
3377 		TupleDescInitEntry(tupdesc, (AttrNumber) 2, "mode",
3378 						   TEXTOID, -1, 0);
3379 
3380 		funccxt->attinmeta = TupleDescGetAttInMetadata(tupdesc);
3381 		funccxt->user_fctx = multi;
3382 
3383 		MemoryContextSwitchTo(oldcxt);
3384 	}
3385 
3386 	funccxt = SRF_PERCALL_SETUP();
3387 	multi = (mxact *) funccxt->user_fctx;
3388 
3389 	while (multi->iter < multi->nmembers)
3390 	{
3391 		HeapTuple	tuple;
3392 		char	   *values[2];
3393 
3394 		values[0] = psprintf("%u", multi->members[multi->iter].xid);
3395 		values[1] = mxstatus_to_string(multi->members[multi->iter].status);
3396 
3397 		tuple = BuildTupleFromCStrings(funccxt->attinmeta, values);
3398 
3399 		multi->iter++;
3400 		pfree(values[0]);
3401 		SRF_RETURN_NEXT(funccxt, HeapTupleGetDatum(tuple));
3402 	}
3403 
3404 	SRF_RETURN_DONE(funccxt);
3405 }
3406