1 /*-------------------------------------------------------------------------
2  *
3  * parallel.c
4  *	  Infrastructure for launching parallel workers
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  * IDENTIFICATION
10  *	  src/backend/access/transam/parallel.c
11  *
12  *-------------------------------------------------------------------------
13  */
14 
15 #include "postgres.h"
16 
17 #include "access/heapam.h"
18 #include "access/nbtree.h"
19 #include "access/parallel.h"
20 #include "access/session.h"
21 #include "access/xact.h"
22 #include "access/xlog.h"
23 #include "catalog/index.h"
24 #include "catalog/namespace.h"
25 #include "catalog/pg_enum.h"
26 #include "catalog/storage.h"
27 #include "commands/async.h"
28 #include "executor/execParallel.h"
29 #include "libpq/libpq.h"
30 #include "libpq/pqformat.h"
31 #include "libpq/pqmq.h"
32 #include "miscadmin.h"
33 #include "optimizer/optimizer.h"
34 #include "pgstat.h"
35 #include "storage/ipc.h"
36 #include "storage/predicate.h"
37 #include "storage/sinval.h"
38 #include "storage/spin.h"
39 #include "tcop/tcopprot.h"
40 #include "utils/combocid.h"
41 #include "utils/guc.h"
42 #include "utils/inval.h"
43 #include "utils/memutils.h"
44 #include "utils/relmapper.h"
45 #include "utils/snapmgr.h"
46 #include "utils/typcache.h"
47 
48 /*
49  * We don't want to waste a lot of memory on an error queue which, most of
50  * the time, will process only a handful of small messages.  However, it is
51  * desirable to make it large enough that a typical ErrorResponse can be sent
52  * without blocking.  That way, a worker that errors out can write the whole
53  * message into the queue and terminate without waiting for the user backend.
54  */
55 #define PARALLEL_ERROR_QUEUE_SIZE			16384
56 
57 /* Magic number for parallel context TOC. */
58 #define PARALLEL_MAGIC						0x50477c7c
59 
60 /*
61  * Magic numbers for per-context parallel state sharing.  Higher-level code
62  * should use smaller values, leaving these very large ones for use by this
63  * module.
64  */
65 #define PARALLEL_KEY_FIXED					UINT64CONST(0xFFFFFFFFFFFF0001)
66 #define PARALLEL_KEY_ERROR_QUEUE			UINT64CONST(0xFFFFFFFFFFFF0002)
67 #define PARALLEL_KEY_LIBRARY				UINT64CONST(0xFFFFFFFFFFFF0003)
68 #define PARALLEL_KEY_GUC					UINT64CONST(0xFFFFFFFFFFFF0004)
69 #define PARALLEL_KEY_COMBO_CID				UINT64CONST(0xFFFFFFFFFFFF0005)
70 #define PARALLEL_KEY_TRANSACTION_SNAPSHOT	UINT64CONST(0xFFFFFFFFFFFF0006)
71 #define PARALLEL_KEY_ACTIVE_SNAPSHOT		UINT64CONST(0xFFFFFFFFFFFF0007)
72 #define PARALLEL_KEY_TRANSACTION_STATE		UINT64CONST(0xFFFFFFFFFFFF0008)
73 #define PARALLEL_KEY_ENTRYPOINT				UINT64CONST(0xFFFFFFFFFFFF0009)
74 #define PARALLEL_KEY_SESSION_DSM			UINT64CONST(0xFFFFFFFFFFFF000A)
75 #define PARALLEL_KEY_PENDING_SYNCS			UINT64CONST(0xFFFFFFFFFFFF000B)
76 #define PARALLEL_KEY_REINDEX_STATE			UINT64CONST(0xFFFFFFFFFFFF000C)
77 #define PARALLEL_KEY_RELMAPPER_STATE		UINT64CONST(0xFFFFFFFFFFFF000D)
78 #define PARALLEL_KEY_ENUMBLACKLIST			UINT64CONST(0xFFFFFFFFFFFF000E)
79 
80 /* Fixed-size parallel state. */
81 typedef struct FixedParallelState
82 {
83 	/* Fixed-size state that workers must restore. */
84 	Oid			database_id;
85 	Oid			authenticated_user_id;
86 	Oid			current_user_id;
87 	Oid			outer_user_id;
88 	Oid			temp_namespace_id;
89 	Oid			temp_toast_namespace_id;
90 	int			sec_context;
91 	bool		is_superuser;
92 	PGPROC	   *parallel_master_pgproc;
93 	pid_t		parallel_master_pid;
94 	BackendId	parallel_master_backend_id;
95 	TimestampTz xact_ts;
96 	TimestampTz stmt_ts;
97 	SerializableXactHandle serializable_xact_handle;
98 
99 	/* Mutex protects remaining fields. */
100 	slock_t		mutex;
101 
102 	/* Maximum XactLastRecEnd of any worker. */
103 	XLogRecPtr	last_xlog_end;
104 } FixedParallelState;
105 
106 /*
107  * Our parallel worker number.  We initialize this to -1, meaning that we are
108  * not a parallel worker.  In parallel workers, it will be set to a value >= 0
109  * and < the number of workers before any user code is invoked; each parallel
110  * worker will get a different parallel worker number.
111  */
112 int			ParallelWorkerNumber = -1;
113 
114 /* Is there a parallel message pending which we need to receive? */
115 volatile bool ParallelMessagePending = false;
116 
117 /* Are we initializing a parallel worker? */
118 bool		InitializingParallelWorker = false;
119 
120 /* Pointer to our fixed parallel state. */
121 static FixedParallelState *MyFixedParallelState;
122 
123 /* List of active parallel contexts. */
124 static dlist_head pcxt_list = DLIST_STATIC_INIT(pcxt_list);
125 
126 /* Backend-local copy of data from FixedParallelState. */
127 static pid_t ParallelMasterPid;
128 
129 /*
130  * List of internal parallel worker entry points.  We need this for
131  * reasons explained in LookupParallelWorkerFunction(), below.
132  */
133 static const struct
134 {
135 	const char *fn_name;
136 	parallel_worker_main_type fn_addr;
137 }			InternalParallelWorkers[] =
138 
139 {
140 	{
141 		"ParallelQueryMain", ParallelQueryMain
142 	},
143 	{
144 		"_bt_parallel_build_main", _bt_parallel_build_main
145 	},
146 	{
147 		"parallel_vacuum_main", parallel_vacuum_main
148 	}
149 };
150 
151 /* Private functions. */
152 static void HandleParallelMessage(ParallelContext *pcxt, int i, StringInfo msg);
153 static void WaitForParallelWorkersToExit(ParallelContext *pcxt);
154 static parallel_worker_main_type LookupParallelWorkerFunction(const char *libraryname, const char *funcname);
155 static void ParallelWorkerShutdown(int code, Datum arg);
156 
157 
158 /*
159  * Establish a new parallel context.  This should be done after entering
160  * parallel mode, and (unless there is an error) the context should be
161  * destroyed before exiting the current subtransaction.
162  */
163 ParallelContext *
CreateParallelContext(const char * library_name,const char * function_name,int nworkers)164 CreateParallelContext(const char *library_name, const char *function_name,
165 					  int nworkers)
166 {
167 	MemoryContext oldcontext;
168 	ParallelContext *pcxt;
169 
170 	/* It is unsafe to create a parallel context if not in parallel mode. */
171 	Assert(IsInParallelMode());
172 
173 	/* Number of workers should be non-negative. */
174 	Assert(nworkers >= 0);
175 
176 	/* We might be running in a short-lived memory context. */
177 	oldcontext = MemoryContextSwitchTo(TopTransactionContext);
178 
179 	/* Initialize a new ParallelContext. */
180 	pcxt = palloc0(sizeof(ParallelContext));
181 	pcxt->subid = GetCurrentSubTransactionId();
182 	pcxt->nworkers = nworkers;
183 	pcxt->nworkers_to_launch = nworkers;
184 	pcxt->library_name = pstrdup(library_name);
185 	pcxt->function_name = pstrdup(function_name);
186 	pcxt->error_context_stack = error_context_stack;
187 	shm_toc_initialize_estimator(&pcxt->estimator);
188 	dlist_push_head(&pcxt_list, &pcxt->node);
189 
190 	/* Restore previous memory context. */
191 	MemoryContextSwitchTo(oldcontext);
192 
193 	return pcxt;
194 }
195 
196 /*
197  * Establish the dynamic shared memory segment for a parallel context and
198  * copy state and other bookkeeping information that will be needed by
199  * parallel workers into it.
200  */
201 void
InitializeParallelDSM(ParallelContext * pcxt)202 InitializeParallelDSM(ParallelContext *pcxt)
203 {
204 	MemoryContext oldcontext;
205 	Size		library_len = 0;
206 	Size		guc_len = 0;
207 	Size		combocidlen = 0;
208 	Size		tsnaplen = 0;
209 	Size		asnaplen = 0;
210 	Size		tstatelen = 0;
211 	Size		pendingsyncslen = 0;
212 	Size		reindexlen = 0;
213 	Size		relmapperlen = 0;
214 	Size		enumblacklistlen = 0;
215 	Size		segsize = 0;
216 	int			i;
217 	FixedParallelState *fps;
218 	dsm_handle	session_dsm_handle = DSM_HANDLE_INVALID;
219 	Snapshot	transaction_snapshot = GetTransactionSnapshot();
220 	Snapshot	active_snapshot = GetActiveSnapshot();
221 
222 	/* We might be running in a very short-lived memory context. */
223 	oldcontext = MemoryContextSwitchTo(TopTransactionContext);
224 
225 	/* Allow space to store the fixed-size parallel state. */
226 	shm_toc_estimate_chunk(&pcxt->estimator, sizeof(FixedParallelState));
227 	shm_toc_estimate_keys(&pcxt->estimator, 1);
228 
229 	/*
230 	 * Normally, the user will have requested at least one worker process, but
231 	 * if by chance they have not, we can skip a bunch of things here.
232 	 */
233 	if (pcxt->nworkers > 0)
234 	{
235 		/* Get (or create) the per-session DSM segment's handle. */
236 		session_dsm_handle = GetSessionDsmHandle();
237 
238 		/*
239 		 * If we weren't able to create a per-session DSM segment, then we can
240 		 * continue but we can't safely launch any workers because their
241 		 * record typmods would be incompatible so they couldn't exchange
242 		 * tuples.
243 		 */
244 		if (session_dsm_handle == DSM_HANDLE_INVALID)
245 			pcxt->nworkers = 0;
246 	}
247 
248 	if (pcxt->nworkers > 0)
249 	{
250 		/* Estimate space for various kinds of state sharing. */
251 		library_len = EstimateLibraryStateSpace();
252 		shm_toc_estimate_chunk(&pcxt->estimator, library_len);
253 		guc_len = EstimateGUCStateSpace();
254 		shm_toc_estimate_chunk(&pcxt->estimator, guc_len);
255 		combocidlen = EstimateComboCIDStateSpace();
256 		shm_toc_estimate_chunk(&pcxt->estimator, combocidlen);
257 		if (IsolationUsesXactSnapshot())
258 		{
259 			tsnaplen = EstimateSnapshotSpace(transaction_snapshot);
260 			shm_toc_estimate_chunk(&pcxt->estimator, tsnaplen);
261 		}
262 		asnaplen = EstimateSnapshotSpace(active_snapshot);
263 		shm_toc_estimate_chunk(&pcxt->estimator, asnaplen);
264 		tstatelen = EstimateTransactionStateSpace();
265 		shm_toc_estimate_chunk(&pcxt->estimator, tstatelen);
266 		shm_toc_estimate_chunk(&pcxt->estimator, sizeof(dsm_handle));
267 		pendingsyncslen = EstimatePendingSyncsSpace();
268 		shm_toc_estimate_chunk(&pcxt->estimator, pendingsyncslen);
269 		reindexlen = EstimateReindexStateSpace();
270 		shm_toc_estimate_chunk(&pcxt->estimator, reindexlen);
271 		relmapperlen = EstimateRelationMapSpace();
272 		shm_toc_estimate_chunk(&pcxt->estimator, relmapperlen);
273 		enumblacklistlen = EstimateEnumBlacklistSpace();
274 		shm_toc_estimate_chunk(&pcxt->estimator, enumblacklistlen);
275 		/* If you add more chunks here, you probably need to add keys. */
276 		shm_toc_estimate_keys(&pcxt->estimator, 11);
277 
278 		/* Estimate space need for error queues. */
279 		StaticAssertStmt(BUFFERALIGN(PARALLEL_ERROR_QUEUE_SIZE) ==
280 						 PARALLEL_ERROR_QUEUE_SIZE,
281 						 "parallel error queue size not buffer-aligned");
282 		shm_toc_estimate_chunk(&pcxt->estimator,
283 							   mul_size(PARALLEL_ERROR_QUEUE_SIZE,
284 										pcxt->nworkers));
285 		shm_toc_estimate_keys(&pcxt->estimator, 1);
286 
287 		/* Estimate how much we'll need for the entrypoint info. */
288 		shm_toc_estimate_chunk(&pcxt->estimator, strlen(pcxt->library_name) +
289 							   strlen(pcxt->function_name) + 2);
290 		shm_toc_estimate_keys(&pcxt->estimator, 1);
291 	}
292 
293 	/*
294 	 * Create DSM and initialize with new table of contents.  But if the user
295 	 * didn't request any workers, then don't bother creating a dynamic shared
296 	 * memory segment; instead, just use backend-private memory.
297 	 *
298 	 * Also, if we can't create a dynamic shared memory segment because the
299 	 * maximum number of segments have already been created, then fall back to
300 	 * backend-private memory, and plan not to use any workers.  We hope this
301 	 * won't happen very often, but it's better to abandon the use of
302 	 * parallelism than to fail outright.
303 	 */
304 	segsize = shm_toc_estimate(&pcxt->estimator);
305 	if (pcxt->nworkers > 0)
306 		pcxt->seg = dsm_create(segsize, DSM_CREATE_NULL_IF_MAXSEGMENTS);
307 	if (pcxt->seg != NULL)
308 		pcxt->toc = shm_toc_create(PARALLEL_MAGIC,
309 								   dsm_segment_address(pcxt->seg),
310 								   segsize);
311 	else
312 	{
313 		pcxt->nworkers = 0;
314 		pcxt->private_memory = MemoryContextAlloc(TopMemoryContext, segsize);
315 		pcxt->toc = shm_toc_create(PARALLEL_MAGIC, pcxt->private_memory,
316 								   segsize);
317 	}
318 
319 	/* Initialize fixed-size state in shared memory. */
320 	fps = (FixedParallelState *)
321 		shm_toc_allocate(pcxt->toc, sizeof(FixedParallelState));
322 	fps->database_id = MyDatabaseId;
323 	fps->authenticated_user_id = GetAuthenticatedUserId();
324 	fps->outer_user_id = GetCurrentRoleId();
325 	fps->is_superuser = session_auth_is_superuser;
326 	GetUserIdAndSecContext(&fps->current_user_id, &fps->sec_context);
327 	GetTempNamespaceState(&fps->temp_namespace_id,
328 						  &fps->temp_toast_namespace_id);
329 	fps->parallel_master_pgproc = MyProc;
330 	fps->parallel_master_pid = MyProcPid;
331 	fps->parallel_master_backend_id = MyBackendId;
332 	fps->xact_ts = GetCurrentTransactionStartTimestamp();
333 	fps->stmt_ts = GetCurrentStatementStartTimestamp();
334 	fps->serializable_xact_handle = ShareSerializableXact();
335 	SpinLockInit(&fps->mutex);
336 	fps->last_xlog_end = 0;
337 	shm_toc_insert(pcxt->toc, PARALLEL_KEY_FIXED, fps);
338 
339 	/* We can skip the rest of this if we're not budgeting for any workers. */
340 	if (pcxt->nworkers > 0)
341 	{
342 		char	   *libraryspace;
343 		char	   *gucspace;
344 		char	   *combocidspace;
345 		char	   *tsnapspace;
346 		char	   *asnapspace;
347 		char	   *tstatespace;
348 		char	   *pendingsyncsspace;
349 		char	   *reindexspace;
350 		char	   *relmapperspace;
351 		char	   *error_queue_space;
352 		char	   *session_dsm_handle_space;
353 		char	   *entrypointstate;
354 		char	   *enumblacklistspace;
355 		Size		lnamelen;
356 
357 		/* Serialize shared libraries we have loaded. */
358 		libraryspace = shm_toc_allocate(pcxt->toc, library_len);
359 		SerializeLibraryState(library_len, libraryspace);
360 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_LIBRARY, libraryspace);
361 
362 		/* Serialize GUC settings. */
363 		gucspace = shm_toc_allocate(pcxt->toc, guc_len);
364 		SerializeGUCState(guc_len, gucspace);
365 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_GUC, gucspace);
366 
367 		/* Serialize combo CID state. */
368 		combocidspace = shm_toc_allocate(pcxt->toc, combocidlen);
369 		SerializeComboCIDState(combocidlen, combocidspace);
370 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_COMBO_CID, combocidspace);
371 
372 		/*
373 		 * Serialize the transaction snapshot if the transaction
374 		 * isolation-level uses a transaction snapshot.
375 		 */
376 		if (IsolationUsesXactSnapshot())
377 		{
378 			tsnapspace = shm_toc_allocate(pcxt->toc, tsnaplen);
379 			SerializeSnapshot(transaction_snapshot, tsnapspace);
380 			shm_toc_insert(pcxt->toc, PARALLEL_KEY_TRANSACTION_SNAPSHOT,
381 						   tsnapspace);
382 		}
383 
384 		/* Serialize the active snapshot. */
385 		asnapspace = shm_toc_allocate(pcxt->toc, asnaplen);
386 		SerializeSnapshot(active_snapshot, asnapspace);
387 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_ACTIVE_SNAPSHOT, asnapspace);
388 
389 		/* Provide the handle for per-session segment. */
390 		session_dsm_handle_space = shm_toc_allocate(pcxt->toc,
391 													sizeof(dsm_handle));
392 		*(dsm_handle *) session_dsm_handle_space = session_dsm_handle;
393 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_SESSION_DSM,
394 					   session_dsm_handle_space);
395 
396 		/* Serialize transaction state. */
397 		tstatespace = shm_toc_allocate(pcxt->toc, tstatelen);
398 		SerializeTransactionState(tstatelen, tstatespace);
399 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_TRANSACTION_STATE, tstatespace);
400 
401 		/* Serialize pending syncs. */
402 		pendingsyncsspace = shm_toc_allocate(pcxt->toc, pendingsyncslen);
403 		SerializePendingSyncs(pendingsyncslen, pendingsyncsspace);
404 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_PENDING_SYNCS,
405 					   pendingsyncsspace);
406 
407 		/* Serialize reindex state. */
408 		reindexspace = shm_toc_allocate(pcxt->toc, reindexlen);
409 		SerializeReindexState(reindexlen, reindexspace);
410 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_REINDEX_STATE, reindexspace);
411 
412 		/* Serialize relmapper state. */
413 		relmapperspace = shm_toc_allocate(pcxt->toc, relmapperlen);
414 		SerializeRelationMap(relmapperlen, relmapperspace);
415 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_RELMAPPER_STATE,
416 					   relmapperspace);
417 
418 		/* Serialize enum blacklist state. */
419 		enumblacklistspace = shm_toc_allocate(pcxt->toc, enumblacklistlen);
420 		SerializeEnumBlacklist(enumblacklistspace, enumblacklistlen);
421 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_ENUMBLACKLIST,
422 					   enumblacklistspace);
423 
424 		/* Allocate space for worker information. */
425 		pcxt->worker = palloc0(sizeof(ParallelWorkerInfo) * pcxt->nworkers);
426 
427 		/*
428 		 * Establish error queues in dynamic shared memory.
429 		 *
430 		 * These queues should be used only for transmitting ErrorResponse,
431 		 * NoticeResponse, and NotifyResponse protocol messages.  Tuple data
432 		 * should be transmitted via separate (possibly larger?) queues.
433 		 */
434 		error_queue_space =
435 			shm_toc_allocate(pcxt->toc,
436 							 mul_size(PARALLEL_ERROR_QUEUE_SIZE,
437 									  pcxt->nworkers));
438 		for (i = 0; i < pcxt->nworkers; ++i)
439 		{
440 			char	   *start;
441 			shm_mq	   *mq;
442 
443 			start = error_queue_space + i * PARALLEL_ERROR_QUEUE_SIZE;
444 			mq = shm_mq_create(start, PARALLEL_ERROR_QUEUE_SIZE);
445 			shm_mq_set_receiver(mq, MyProc);
446 			pcxt->worker[i].error_mqh = shm_mq_attach(mq, pcxt->seg, NULL);
447 		}
448 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_ERROR_QUEUE, error_queue_space);
449 
450 		/*
451 		 * Serialize entrypoint information.  It's unsafe to pass function
452 		 * pointers across processes, as the function pointer may be different
453 		 * in each process in EXEC_BACKEND builds, so we always pass library
454 		 * and function name.  (We use library name "postgres" for functions
455 		 * in the core backend.)
456 		 */
457 		lnamelen = strlen(pcxt->library_name);
458 		entrypointstate = shm_toc_allocate(pcxt->toc, lnamelen +
459 										   strlen(pcxt->function_name) + 2);
460 		strcpy(entrypointstate, pcxt->library_name);
461 		strcpy(entrypointstate + lnamelen + 1, pcxt->function_name);
462 		shm_toc_insert(pcxt->toc, PARALLEL_KEY_ENTRYPOINT, entrypointstate);
463 	}
464 
465 	/* Restore previous memory context. */
466 	MemoryContextSwitchTo(oldcontext);
467 }
468 
469 /*
470  * Reinitialize the dynamic shared memory segment for a parallel context such
471  * that we could launch workers for it again.
472  */
473 void
ReinitializeParallelDSM(ParallelContext * pcxt)474 ReinitializeParallelDSM(ParallelContext *pcxt)
475 {
476 	FixedParallelState *fps;
477 
478 	/* Wait for any old workers to exit. */
479 	if (pcxt->nworkers_launched > 0)
480 	{
481 		WaitForParallelWorkersToFinish(pcxt);
482 		WaitForParallelWorkersToExit(pcxt);
483 		pcxt->nworkers_launched = 0;
484 		if (pcxt->known_attached_workers)
485 		{
486 			pfree(pcxt->known_attached_workers);
487 			pcxt->known_attached_workers = NULL;
488 			pcxt->nknown_attached_workers = 0;
489 		}
490 	}
491 
492 	/* Reset a few bits of fixed parallel state to a clean state. */
493 	fps = shm_toc_lookup(pcxt->toc, PARALLEL_KEY_FIXED, false);
494 	fps->last_xlog_end = 0;
495 
496 	/* Recreate error queues (if they exist). */
497 	if (pcxt->nworkers > 0)
498 	{
499 		char	   *error_queue_space;
500 		int			i;
501 
502 		error_queue_space =
503 			shm_toc_lookup(pcxt->toc, PARALLEL_KEY_ERROR_QUEUE, false);
504 		for (i = 0; i < pcxt->nworkers; ++i)
505 		{
506 			char	   *start;
507 			shm_mq	   *mq;
508 
509 			start = error_queue_space + i * PARALLEL_ERROR_QUEUE_SIZE;
510 			mq = shm_mq_create(start, PARALLEL_ERROR_QUEUE_SIZE);
511 			shm_mq_set_receiver(mq, MyProc);
512 			pcxt->worker[i].error_mqh = shm_mq_attach(mq, pcxt->seg, NULL);
513 		}
514 	}
515 }
516 
517 /*
518  * Reinitialize parallel workers for a parallel context such that we could
519  * launch a different number of workers.  This is required for cases where
520  * we need to reuse the same DSM segment, but the number of workers can
521  * vary from run-to-run.
522  */
523 void
ReinitializeParallelWorkers(ParallelContext * pcxt,int nworkers_to_launch)524 ReinitializeParallelWorkers(ParallelContext *pcxt, int nworkers_to_launch)
525 {
526 	/*
527 	 * The number of workers that need to be launched must be less than the
528 	 * number of workers with which the parallel context is initialized.
529 	 */
530 	Assert(pcxt->nworkers >= nworkers_to_launch);
531 	pcxt->nworkers_to_launch = nworkers_to_launch;
532 }
533 
534 /*
535  * Launch parallel workers.
536  */
537 void
LaunchParallelWorkers(ParallelContext * pcxt)538 LaunchParallelWorkers(ParallelContext *pcxt)
539 {
540 	MemoryContext oldcontext;
541 	BackgroundWorker worker;
542 	int			i;
543 	bool		any_registrations_failed = false;
544 
545 	/* Skip this if we have no workers. */
546 	if (pcxt->nworkers == 0 || pcxt->nworkers_to_launch == 0)
547 		return;
548 
549 	/* We need to be a lock group leader. */
550 	BecomeLockGroupLeader();
551 
552 	/* If we do have workers, we'd better have a DSM segment. */
553 	Assert(pcxt->seg != NULL);
554 
555 	/* We might be running in a short-lived memory context. */
556 	oldcontext = MemoryContextSwitchTo(TopTransactionContext);
557 
558 	/* Configure a worker. */
559 	memset(&worker, 0, sizeof(worker));
560 	snprintf(worker.bgw_name, BGW_MAXLEN, "parallel worker for PID %d",
561 			 MyProcPid);
562 	snprintf(worker.bgw_type, BGW_MAXLEN, "parallel worker");
563 	worker.bgw_flags =
564 		BGWORKER_SHMEM_ACCESS | BGWORKER_BACKEND_DATABASE_CONNECTION
565 		| BGWORKER_CLASS_PARALLEL;
566 	worker.bgw_start_time = BgWorkerStart_ConsistentState;
567 	worker.bgw_restart_time = BGW_NEVER_RESTART;
568 	sprintf(worker.bgw_library_name, "postgres");
569 	sprintf(worker.bgw_function_name, "ParallelWorkerMain");
570 	worker.bgw_main_arg = UInt32GetDatum(dsm_segment_handle(pcxt->seg));
571 	worker.bgw_notify_pid = MyProcPid;
572 
573 	/*
574 	 * Start workers.
575 	 *
576 	 * The caller must be able to tolerate ending up with fewer workers than
577 	 * expected, so there is no need to throw an error here if registration
578 	 * fails.  It wouldn't help much anyway, because registering the worker in
579 	 * no way guarantees that it will start up and initialize successfully.
580 	 */
581 	for (i = 0; i < pcxt->nworkers_to_launch; ++i)
582 	{
583 		memcpy(worker.bgw_extra, &i, sizeof(int));
584 		if (!any_registrations_failed &&
585 			RegisterDynamicBackgroundWorker(&worker,
586 											&pcxt->worker[i].bgwhandle))
587 		{
588 			shm_mq_set_handle(pcxt->worker[i].error_mqh,
589 							  pcxt->worker[i].bgwhandle);
590 			pcxt->nworkers_launched++;
591 		}
592 		else
593 		{
594 			/*
595 			 * If we weren't able to register the worker, then we've bumped up
596 			 * against the max_worker_processes limit, and future
597 			 * registrations will probably fail too, so arrange to skip them.
598 			 * But we still have to execute this code for the remaining slots
599 			 * to make sure that we forget about the error queues we budgeted
600 			 * for those workers.  Otherwise, we'll wait for them to start,
601 			 * but they never will.
602 			 */
603 			any_registrations_failed = true;
604 			pcxt->worker[i].bgwhandle = NULL;
605 			shm_mq_detach(pcxt->worker[i].error_mqh);
606 			pcxt->worker[i].error_mqh = NULL;
607 		}
608 	}
609 
610 	/*
611 	 * Now that nworkers_launched has taken its final value, we can initialize
612 	 * known_attached_workers.
613 	 */
614 	if (pcxt->nworkers_launched > 0)
615 	{
616 		pcxt->known_attached_workers =
617 			palloc0(sizeof(bool) * pcxt->nworkers_launched);
618 		pcxt->nknown_attached_workers = 0;
619 	}
620 
621 	/* Restore previous memory context. */
622 	MemoryContextSwitchTo(oldcontext);
623 }
624 
625 /*
626  * Wait for all workers to attach to their error queues, and throw an error if
627  * any worker fails to do this.
628  *
629  * Callers can assume that if this function returns successfully, then the
630  * number of workers given by pcxt->nworkers_launched have initialized and
631  * attached to their error queues.  Whether or not these workers are guaranteed
632  * to still be running depends on what code the caller asked them to run;
633  * this function does not guarantee that they have not exited.  However, it
634  * does guarantee that any workers which exited must have done so cleanly and
635  * after successfully performing the work with which they were tasked.
636  *
637  * If this function is not called, then some of the workers that were launched
638  * may not have been started due to a fork() failure, or may have exited during
639  * early startup prior to attaching to the error queue, so nworkers_launched
640  * cannot be viewed as completely reliable.  It will never be less than the
641  * number of workers which actually started, but it might be more.  Any workers
642  * that failed to start will still be discovered by
643  * WaitForParallelWorkersToFinish and an error will be thrown at that time,
644  * provided that function is eventually reached.
645  *
646  * In general, the leader process should do as much work as possible before
647  * calling this function.  fork() failures and other early-startup failures
648  * are very uncommon, and having the leader sit idle when it could be doing
649  * useful work is undesirable.  However, if the leader needs to wait for
650  * all of its workers or for a specific worker, it may want to call this
651  * function before doing so.  If not, it must make some other provision for
652  * the failure-to-start case, lest it wait forever.  On the other hand, a
653  * leader which never waits for a worker that might not be started yet, or
654  * at least never does so prior to WaitForParallelWorkersToFinish(), need not
655  * call this function at all.
656  */
657 void
WaitForParallelWorkersToAttach(ParallelContext * pcxt)658 WaitForParallelWorkersToAttach(ParallelContext *pcxt)
659 {
660 	int			i;
661 
662 	/* Skip this if we have no launched workers. */
663 	if (pcxt->nworkers_launched == 0)
664 		return;
665 
666 	for (;;)
667 	{
668 		/*
669 		 * This will process any parallel messages that are pending and it may
670 		 * also throw an error propagated from a worker.
671 		 */
672 		CHECK_FOR_INTERRUPTS();
673 
674 		for (i = 0; i < pcxt->nworkers_launched; ++i)
675 		{
676 			BgwHandleStatus status;
677 			shm_mq	   *mq;
678 			int			rc;
679 			pid_t		pid;
680 
681 			if (pcxt->known_attached_workers[i])
682 				continue;
683 
684 			/*
685 			 * If error_mqh is NULL, then the worker has already exited
686 			 * cleanly.
687 			 */
688 			if (pcxt->worker[i].error_mqh == NULL)
689 			{
690 				pcxt->known_attached_workers[i] = true;
691 				++pcxt->nknown_attached_workers;
692 				continue;
693 			}
694 
695 			status = GetBackgroundWorkerPid(pcxt->worker[i].bgwhandle, &pid);
696 			if (status == BGWH_STARTED)
697 			{
698 				/* Has the worker attached to the error queue? */
699 				mq = shm_mq_get_queue(pcxt->worker[i].error_mqh);
700 				if (shm_mq_get_sender(mq) != NULL)
701 				{
702 					/* Yes, so it is known to be attached. */
703 					pcxt->known_attached_workers[i] = true;
704 					++pcxt->nknown_attached_workers;
705 				}
706 			}
707 			else if (status == BGWH_STOPPED)
708 			{
709 				/*
710 				 * If the worker stopped without attaching to the error queue,
711 				 * throw an error.
712 				 */
713 				mq = shm_mq_get_queue(pcxt->worker[i].error_mqh);
714 				if (shm_mq_get_sender(mq) == NULL)
715 					ereport(ERROR,
716 							(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
717 							 errmsg("parallel worker failed to initialize"),
718 							 errhint("More details may be available in the server log.")));
719 
720 				pcxt->known_attached_workers[i] = true;
721 				++pcxt->nknown_attached_workers;
722 			}
723 			else
724 			{
725 				/*
726 				 * Worker not yet started, so we must wait.  The postmaster
727 				 * will notify us if the worker's state changes.  Our latch
728 				 * might also get set for some other reason, but if so we'll
729 				 * just end up waiting for the same worker again.
730 				 */
731 				rc = WaitLatch(MyLatch,
732 							   WL_LATCH_SET | WL_EXIT_ON_PM_DEATH,
733 							   -1, WAIT_EVENT_BGWORKER_STARTUP);
734 
735 				if (rc & WL_LATCH_SET)
736 					ResetLatch(MyLatch);
737 			}
738 		}
739 
740 		/* If all workers are known to have started, we're done. */
741 		if (pcxt->nknown_attached_workers >= pcxt->nworkers_launched)
742 		{
743 			Assert(pcxt->nknown_attached_workers == pcxt->nworkers_launched);
744 			break;
745 		}
746 	}
747 }
748 
749 /*
750  * Wait for all workers to finish computing.
751  *
752  * Even if the parallel operation seems to have completed successfully, it's
753  * important to call this function afterwards.  We must not miss any errors
754  * the workers may have thrown during the parallel operation, or any that they
755  * may yet throw while shutting down.
756  *
757  * Also, we want to update our notion of XactLastRecEnd based on worker
758  * feedback.
759  */
760 void
WaitForParallelWorkersToFinish(ParallelContext * pcxt)761 WaitForParallelWorkersToFinish(ParallelContext *pcxt)
762 {
763 	for (;;)
764 	{
765 		bool		anyone_alive = false;
766 		int			nfinished = 0;
767 		int			i;
768 
769 		/*
770 		 * This will process any parallel messages that are pending, which may
771 		 * change the outcome of the loop that follows.  It may also throw an
772 		 * error propagated from a worker.
773 		 */
774 		CHECK_FOR_INTERRUPTS();
775 
776 		for (i = 0; i < pcxt->nworkers_launched; ++i)
777 		{
778 			/*
779 			 * If error_mqh is NULL, then the worker has already exited
780 			 * cleanly.  If we have received a message through error_mqh from
781 			 * the worker, we know it started up cleanly, and therefore we're
782 			 * certain to be notified when it exits.
783 			 */
784 			if (pcxt->worker[i].error_mqh == NULL)
785 				++nfinished;
786 			else if (pcxt->known_attached_workers[i])
787 			{
788 				anyone_alive = true;
789 				break;
790 			}
791 		}
792 
793 		if (!anyone_alive)
794 		{
795 			/* If all workers are known to have finished, we're done. */
796 			if (nfinished >= pcxt->nworkers_launched)
797 			{
798 				Assert(nfinished == pcxt->nworkers_launched);
799 				break;
800 			}
801 
802 			/*
803 			 * We didn't detect any living workers, but not all workers are
804 			 * known to have exited cleanly.  Either not all workers have
805 			 * launched yet, or maybe some of them failed to start or
806 			 * terminated abnormally.
807 			 */
808 			for (i = 0; i < pcxt->nworkers_launched; ++i)
809 			{
810 				pid_t		pid;
811 				shm_mq	   *mq;
812 
813 				/*
814 				 * If the worker is BGWH_NOT_YET_STARTED or BGWH_STARTED, we
815 				 * should just keep waiting.  If it is BGWH_STOPPED, then
816 				 * further investigation is needed.
817 				 */
818 				if (pcxt->worker[i].error_mqh == NULL ||
819 					pcxt->worker[i].bgwhandle == NULL ||
820 					GetBackgroundWorkerPid(pcxt->worker[i].bgwhandle,
821 										   &pid) != BGWH_STOPPED)
822 					continue;
823 
824 				/*
825 				 * Check whether the worker ended up stopped without ever
826 				 * attaching to the error queue.  If so, the postmaster was
827 				 * unable to fork the worker or it exited without initializing
828 				 * properly.  We must throw an error, since the caller may
829 				 * have been expecting the worker to do some work before
830 				 * exiting.
831 				 */
832 				mq = shm_mq_get_queue(pcxt->worker[i].error_mqh);
833 				if (shm_mq_get_sender(mq) == NULL)
834 					ereport(ERROR,
835 							(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
836 							 errmsg("parallel worker failed to initialize"),
837 							 errhint("More details may be available in the server log.")));
838 
839 				/*
840 				 * The worker is stopped, but is attached to the error queue.
841 				 * Unless there's a bug somewhere, this will only happen when
842 				 * the worker writes messages and terminates after the
843 				 * CHECK_FOR_INTERRUPTS() near the top of this function and
844 				 * before the call to GetBackgroundWorkerPid().  In that case,
845 				 * or latch should have been set as well and the right things
846 				 * will happen on the next pass through the loop.
847 				 */
848 			}
849 		}
850 
851 		(void) WaitLatch(MyLatch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, -1,
852 						 WAIT_EVENT_PARALLEL_FINISH);
853 		ResetLatch(MyLatch);
854 	}
855 
856 	if (pcxt->toc != NULL)
857 	{
858 		FixedParallelState *fps;
859 
860 		fps = shm_toc_lookup(pcxt->toc, PARALLEL_KEY_FIXED, false);
861 		if (fps->last_xlog_end > XactLastRecEnd)
862 			XactLastRecEnd = fps->last_xlog_end;
863 	}
864 }
865 
866 /*
867  * Wait for all workers to exit.
868  *
869  * This function ensures that workers have been completely shutdown.  The
870  * difference between WaitForParallelWorkersToFinish and this function is
871  * that former just ensures that last message sent by worker backend is
872  * received by master backend whereas this ensures the complete shutdown.
873  */
874 static void
WaitForParallelWorkersToExit(ParallelContext * pcxt)875 WaitForParallelWorkersToExit(ParallelContext *pcxt)
876 {
877 	int			i;
878 
879 	/* Wait until the workers actually die. */
880 	for (i = 0; i < pcxt->nworkers_launched; ++i)
881 	{
882 		BgwHandleStatus status;
883 
884 		if (pcxt->worker == NULL || pcxt->worker[i].bgwhandle == NULL)
885 			continue;
886 
887 		status = WaitForBackgroundWorkerShutdown(pcxt->worker[i].bgwhandle);
888 
889 		/*
890 		 * If the postmaster kicked the bucket, we have no chance of cleaning
891 		 * up safely -- we won't be able to tell when our workers are actually
892 		 * dead.  This doesn't necessitate a PANIC since they will all abort
893 		 * eventually, but we can't safely continue this session.
894 		 */
895 		if (status == BGWH_POSTMASTER_DIED)
896 			ereport(FATAL,
897 					(errcode(ERRCODE_ADMIN_SHUTDOWN),
898 					 errmsg("postmaster exited during a parallel transaction")));
899 
900 		/* Release memory. */
901 		pfree(pcxt->worker[i].bgwhandle);
902 		pcxt->worker[i].bgwhandle = NULL;
903 	}
904 }
905 
906 /*
907  * Destroy a parallel context.
908  *
909  * If expecting a clean exit, you should use WaitForParallelWorkersToFinish()
910  * first, before calling this function.  When this function is invoked, any
911  * remaining workers are forcibly killed; the dynamic shared memory segment
912  * is unmapped; and we then wait (uninterruptibly) for the workers to exit.
913  */
914 void
DestroyParallelContext(ParallelContext * pcxt)915 DestroyParallelContext(ParallelContext *pcxt)
916 {
917 	int			i;
918 
919 	/*
920 	 * Be careful about order of operations here!  We remove the parallel
921 	 * context from the list before we do anything else; otherwise, if an
922 	 * error occurs during a subsequent step, we might try to nuke it again
923 	 * from AtEOXact_Parallel or AtEOSubXact_Parallel.
924 	 */
925 	dlist_delete(&pcxt->node);
926 
927 	/* Kill each worker in turn, and forget their error queues. */
928 	if (pcxt->worker != NULL)
929 	{
930 		for (i = 0; i < pcxt->nworkers_launched; ++i)
931 		{
932 			if (pcxt->worker[i].error_mqh != NULL)
933 			{
934 				TerminateBackgroundWorker(pcxt->worker[i].bgwhandle);
935 
936 				shm_mq_detach(pcxt->worker[i].error_mqh);
937 				pcxt->worker[i].error_mqh = NULL;
938 			}
939 		}
940 	}
941 
942 	/*
943 	 * If we have allocated a shared memory segment, detach it.  This will
944 	 * implicitly detach the error queues, and any other shared memory queues,
945 	 * stored there.
946 	 */
947 	if (pcxt->seg != NULL)
948 	{
949 		dsm_detach(pcxt->seg);
950 		pcxt->seg = NULL;
951 	}
952 
953 	/*
954 	 * If this parallel context is actually in backend-private memory rather
955 	 * than shared memory, free that memory instead.
956 	 */
957 	if (pcxt->private_memory != NULL)
958 	{
959 		pfree(pcxt->private_memory);
960 		pcxt->private_memory = NULL;
961 	}
962 
963 	/*
964 	 * We can't finish transaction commit or abort until all of the workers
965 	 * have exited.  This means, in particular, that we can't respond to
966 	 * interrupts at this stage.
967 	 */
968 	HOLD_INTERRUPTS();
969 	WaitForParallelWorkersToExit(pcxt);
970 	RESUME_INTERRUPTS();
971 
972 	/* Free the worker array itself. */
973 	if (pcxt->worker != NULL)
974 	{
975 		pfree(pcxt->worker);
976 		pcxt->worker = NULL;
977 	}
978 
979 	/* Free memory. */
980 	pfree(pcxt->library_name);
981 	pfree(pcxt->function_name);
982 	pfree(pcxt);
983 }
984 
985 /*
986  * Are there any parallel contexts currently active?
987  */
988 bool
ParallelContextActive(void)989 ParallelContextActive(void)
990 {
991 	return !dlist_is_empty(&pcxt_list);
992 }
993 
994 /*
995  * Handle receipt of an interrupt indicating a parallel worker message.
996  *
997  * Note: this is called within a signal handler!  All we can do is set
998  * a flag that will cause the next CHECK_FOR_INTERRUPTS() to invoke
999  * HandleParallelMessages().
1000  */
1001 void
HandleParallelMessageInterrupt(void)1002 HandleParallelMessageInterrupt(void)
1003 {
1004 	InterruptPending = true;
1005 	ParallelMessagePending = true;
1006 	SetLatch(MyLatch);
1007 }
1008 
1009 /*
1010  * Handle any queued protocol messages received from parallel workers.
1011  */
1012 void
HandleParallelMessages(void)1013 HandleParallelMessages(void)
1014 {
1015 	dlist_iter	iter;
1016 	MemoryContext oldcontext;
1017 
1018 	static MemoryContext hpm_context = NULL;
1019 
1020 	/*
1021 	 * This is invoked from ProcessInterrupts(), and since some of the
1022 	 * functions it calls contain CHECK_FOR_INTERRUPTS(), there is a potential
1023 	 * for recursive calls if more signals are received while this runs.  It's
1024 	 * unclear that recursive entry would be safe, and it doesn't seem useful
1025 	 * even if it is safe, so let's block interrupts until done.
1026 	 */
1027 	HOLD_INTERRUPTS();
1028 
1029 	/*
1030 	 * Moreover, CurrentMemoryContext might be pointing almost anywhere.  We
1031 	 * don't want to risk leaking data into long-lived contexts, so let's do
1032 	 * our work here in a private context that we can reset on each use.
1033 	 */
1034 	if (hpm_context == NULL)	/* first time through? */
1035 		hpm_context = AllocSetContextCreate(TopMemoryContext,
1036 											"HandleParallelMessages",
1037 											ALLOCSET_DEFAULT_SIZES);
1038 	else
1039 		MemoryContextReset(hpm_context);
1040 
1041 	oldcontext = MemoryContextSwitchTo(hpm_context);
1042 
1043 	/* OK to process messages.  Reset the flag saying there are more to do. */
1044 	ParallelMessagePending = false;
1045 
1046 	dlist_foreach(iter, &pcxt_list)
1047 	{
1048 		ParallelContext *pcxt;
1049 		int			i;
1050 
1051 		pcxt = dlist_container(ParallelContext, node, iter.cur);
1052 		if (pcxt->worker == NULL)
1053 			continue;
1054 
1055 		for (i = 0; i < pcxt->nworkers_launched; ++i)
1056 		{
1057 			/*
1058 			 * Read as many messages as we can from each worker, but stop when
1059 			 * either (1) the worker's error queue goes away, which can happen
1060 			 * if we receive a Terminate message from the worker; or (2) no
1061 			 * more messages can be read from the worker without blocking.
1062 			 */
1063 			while (pcxt->worker[i].error_mqh != NULL)
1064 			{
1065 				shm_mq_result res;
1066 				Size		nbytes;
1067 				void	   *data;
1068 
1069 				res = shm_mq_receive(pcxt->worker[i].error_mqh, &nbytes,
1070 									 &data, true);
1071 				if (res == SHM_MQ_WOULD_BLOCK)
1072 					break;
1073 				else if (res == SHM_MQ_SUCCESS)
1074 				{
1075 					StringInfoData msg;
1076 
1077 					initStringInfo(&msg);
1078 					appendBinaryStringInfo(&msg, data, nbytes);
1079 					HandleParallelMessage(pcxt, i, &msg);
1080 					pfree(msg.data);
1081 				}
1082 				else
1083 					ereport(ERROR,
1084 							(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1085 							 errmsg("lost connection to parallel worker")));
1086 			}
1087 		}
1088 	}
1089 
1090 	MemoryContextSwitchTo(oldcontext);
1091 
1092 	/* Might as well clear the context on our way out */
1093 	MemoryContextReset(hpm_context);
1094 
1095 	RESUME_INTERRUPTS();
1096 }
1097 
1098 /*
1099  * Handle a single protocol message received from a single parallel worker.
1100  */
1101 static void
HandleParallelMessage(ParallelContext * pcxt,int i,StringInfo msg)1102 HandleParallelMessage(ParallelContext *pcxt, int i, StringInfo msg)
1103 {
1104 	char		msgtype;
1105 
1106 	if (pcxt->known_attached_workers != NULL &&
1107 		!pcxt->known_attached_workers[i])
1108 	{
1109 		pcxt->known_attached_workers[i] = true;
1110 		pcxt->nknown_attached_workers++;
1111 	}
1112 
1113 	msgtype = pq_getmsgbyte(msg);
1114 
1115 	switch (msgtype)
1116 	{
1117 		case 'K':				/* BackendKeyData */
1118 			{
1119 				int32		pid = pq_getmsgint(msg, 4);
1120 
1121 				(void) pq_getmsgint(msg, 4);	/* discard cancel key */
1122 				(void) pq_getmsgend(msg);
1123 				pcxt->worker[i].pid = pid;
1124 				break;
1125 			}
1126 
1127 		case 'E':				/* ErrorResponse */
1128 		case 'N':				/* NoticeResponse */
1129 			{
1130 				ErrorData	edata;
1131 				ErrorContextCallback *save_error_context_stack;
1132 
1133 				/* Parse ErrorResponse or NoticeResponse. */
1134 				pq_parse_errornotice(msg, &edata);
1135 
1136 				/* Death of a worker isn't enough justification for suicide. */
1137 				edata.elevel = Min(edata.elevel, ERROR);
1138 
1139 				/*
1140 				 * If desired, add a context line to show that this is a
1141 				 * message propagated from a parallel worker.  Otherwise, it
1142 				 * can sometimes be confusing to understand what actually
1143 				 * happened.  (We don't do this in FORCE_PARALLEL_REGRESS mode
1144 				 * because it causes test-result instability depending on
1145 				 * whether a parallel worker is actually used or not.)
1146 				 */
1147 				if (force_parallel_mode != FORCE_PARALLEL_REGRESS)
1148 				{
1149 					if (edata.context)
1150 						edata.context = psprintf("%s\n%s", edata.context,
1151 												 _("parallel worker"));
1152 					else
1153 						edata.context = pstrdup(_("parallel worker"));
1154 				}
1155 
1156 				/*
1157 				 * Context beyond that should use the error context callbacks
1158 				 * that were in effect when the ParallelContext was created,
1159 				 * not the current ones.
1160 				 */
1161 				save_error_context_stack = error_context_stack;
1162 				error_context_stack = pcxt->error_context_stack;
1163 
1164 				/* Rethrow error or print notice. */
1165 				ThrowErrorData(&edata);
1166 
1167 				/* Not an error, so restore previous context stack. */
1168 				error_context_stack = save_error_context_stack;
1169 
1170 				break;
1171 			}
1172 
1173 		case 'A':				/* NotifyResponse */
1174 			{
1175 				/* Propagate NotifyResponse. */
1176 				int32		pid;
1177 				const char *channel;
1178 				const char *payload;
1179 
1180 				pid = pq_getmsgint(msg, 4);
1181 				channel = pq_getmsgrawstring(msg);
1182 				payload = pq_getmsgrawstring(msg);
1183 				pq_endmessage(msg);
1184 
1185 				NotifyMyFrontEnd(channel, payload, pid);
1186 
1187 				break;
1188 			}
1189 
1190 		case 'X':				/* Terminate, indicating clean exit */
1191 			{
1192 				shm_mq_detach(pcxt->worker[i].error_mqh);
1193 				pcxt->worker[i].error_mqh = NULL;
1194 				break;
1195 			}
1196 
1197 		default:
1198 			{
1199 				elog(ERROR, "unrecognized message type received from parallel worker: %c (message length %d bytes)",
1200 					 msgtype, msg->len);
1201 			}
1202 	}
1203 }
1204 
1205 /*
1206  * End-of-subtransaction cleanup for parallel contexts.
1207  *
1208  * Currently, it's forbidden to enter or leave a subtransaction while
1209  * parallel mode is in effect, so we could just blow away everything.  But
1210  * we may want to relax that restriction in the future, so this code
1211  * contemplates that there may be multiple subtransaction IDs in pcxt_list.
1212  */
1213 void
AtEOSubXact_Parallel(bool isCommit,SubTransactionId mySubId)1214 AtEOSubXact_Parallel(bool isCommit, SubTransactionId mySubId)
1215 {
1216 	while (!dlist_is_empty(&pcxt_list))
1217 	{
1218 		ParallelContext *pcxt;
1219 
1220 		pcxt = dlist_head_element(ParallelContext, node, &pcxt_list);
1221 		if (pcxt->subid != mySubId)
1222 			break;
1223 		if (isCommit)
1224 			elog(WARNING, "leaked parallel context");
1225 		DestroyParallelContext(pcxt);
1226 	}
1227 }
1228 
1229 /*
1230  * End-of-transaction cleanup for parallel contexts.
1231  */
1232 void
AtEOXact_Parallel(bool isCommit)1233 AtEOXact_Parallel(bool isCommit)
1234 {
1235 	while (!dlist_is_empty(&pcxt_list))
1236 	{
1237 		ParallelContext *pcxt;
1238 
1239 		pcxt = dlist_head_element(ParallelContext, node, &pcxt_list);
1240 		if (isCommit)
1241 			elog(WARNING, "leaked parallel context");
1242 		DestroyParallelContext(pcxt);
1243 	}
1244 }
1245 
1246 /*
1247  * Main entrypoint for parallel workers.
1248  */
1249 void
ParallelWorkerMain(Datum main_arg)1250 ParallelWorkerMain(Datum main_arg)
1251 {
1252 	dsm_segment *seg;
1253 	shm_toc    *toc;
1254 	FixedParallelState *fps;
1255 	char	   *error_queue_space;
1256 	shm_mq	   *mq;
1257 	shm_mq_handle *mqh;
1258 	char	   *libraryspace;
1259 	char	   *entrypointstate;
1260 	char	   *library_name;
1261 	char	   *function_name;
1262 	parallel_worker_main_type entrypt;
1263 	char	   *gucspace;
1264 	char	   *combocidspace;
1265 	char	   *tsnapspace;
1266 	char	   *asnapspace;
1267 	char	   *tstatespace;
1268 	char	   *pendingsyncsspace;
1269 	char	   *reindexspace;
1270 	char	   *relmapperspace;
1271 	char	   *enumblacklistspace;
1272 	StringInfoData msgbuf;
1273 	char	   *session_dsm_handle_space;
1274 	Snapshot	tsnapshot;
1275 	Snapshot	asnapshot;
1276 
1277 	/* Set flag to indicate that we're initializing a parallel worker. */
1278 	InitializingParallelWorker = true;
1279 
1280 	/* Establish signal handlers. */
1281 	pqsignal(SIGTERM, die);
1282 	BackgroundWorkerUnblockSignals();
1283 
1284 	/* Determine and set our parallel worker number. */
1285 	Assert(ParallelWorkerNumber == -1);
1286 	memcpy(&ParallelWorkerNumber, MyBgworkerEntry->bgw_extra, sizeof(int));
1287 
1288 	/* Set up a memory context to work in, just for cleanliness. */
1289 	CurrentMemoryContext = AllocSetContextCreate(TopMemoryContext,
1290 												 "Parallel worker",
1291 												 ALLOCSET_DEFAULT_SIZES);
1292 
1293 	/*
1294 	 * Attach to the dynamic shared memory segment for the parallel query, and
1295 	 * find its table of contents.
1296 	 *
1297 	 * Note: at this point, we have not created any ResourceOwner in this
1298 	 * process.  This will result in our DSM mapping surviving until process
1299 	 * exit, which is fine.  If there were a ResourceOwner, it would acquire
1300 	 * ownership of the mapping, but we have no need for that.
1301 	 */
1302 	seg = dsm_attach(DatumGetUInt32(main_arg));
1303 	if (seg == NULL)
1304 		ereport(ERROR,
1305 				(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1306 				 errmsg("could not map dynamic shared memory segment")));
1307 	toc = shm_toc_attach(PARALLEL_MAGIC, dsm_segment_address(seg));
1308 	if (toc == NULL)
1309 		ereport(ERROR,
1310 				(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1311 				 errmsg("invalid magic number in dynamic shared memory segment")));
1312 
1313 	/* Look up fixed parallel state. */
1314 	fps = shm_toc_lookup(toc, PARALLEL_KEY_FIXED, false);
1315 	MyFixedParallelState = fps;
1316 
1317 	/* Arrange to signal the leader if we exit. */
1318 	ParallelMasterPid = fps->parallel_master_pid;
1319 	ParallelMasterBackendId = fps->parallel_master_backend_id;
1320 	on_shmem_exit(ParallelWorkerShutdown, (Datum) 0);
1321 
1322 	/*
1323 	 * Now we can find and attach to the error queue provided for us.  That's
1324 	 * good, because until we do that, any errors that happen here will not be
1325 	 * reported back to the process that requested that this worker be
1326 	 * launched.
1327 	 */
1328 	error_queue_space = shm_toc_lookup(toc, PARALLEL_KEY_ERROR_QUEUE, false);
1329 	mq = (shm_mq *) (error_queue_space +
1330 					 ParallelWorkerNumber * PARALLEL_ERROR_QUEUE_SIZE);
1331 	shm_mq_set_sender(mq, MyProc);
1332 	mqh = shm_mq_attach(mq, seg, NULL);
1333 	pq_redirect_to_shm_mq(seg, mqh);
1334 	pq_set_parallel_master(fps->parallel_master_pid,
1335 						   fps->parallel_master_backend_id);
1336 
1337 	/*
1338 	 * Send a BackendKeyData message to the process that initiated parallelism
1339 	 * so that it has access to our PID before it receives any other messages
1340 	 * from us.  Our cancel key is sent, too, since that's the way the
1341 	 * protocol message is defined, but it won't actually be used for anything
1342 	 * in this case.
1343 	 */
1344 	pq_beginmessage(&msgbuf, 'K');
1345 	pq_sendint32(&msgbuf, (int32) MyProcPid);
1346 	pq_sendint32(&msgbuf, (int32) MyCancelKey);
1347 	pq_endmessage(&msgbuf);
1348 
1349 	/*
1350 	 * Hooray! Primary initialization is complete.  Now, we need to set up our
1351 	 * backend-local state to match the original backend.
1352 	 */
1353 
1354 	/*
1355 	 * Join locking group.  We must do this before anything that could try to
1356 	 * acquire a heavyweight lock, because any heavyweight locks acquired to
1357 	 * this point could block either directly against the parallel group
1358 	 * leader or against some process which in turn waits for a lock that
1359 	 * conflicts with the parallel group leader, causing an undetected
1360 	 * deadlock.  (If we can't join the lock group, the leader has gone away,
1361 	 * so just exit quietly.)
1362 	 */
1363 	if (!BecomeLockGroupMember(fps->parallel_master_pgproc,
1364 							   fps->parallel_master_pid))
1365 		return;
1366 
1367 	/*
1368 	 * Restore transaction and statement start-time timestamps.  This must
1369 	 * happen before anything that would start a transaction, else asserts in
1370 	 * xact.c will fire.
1371 	 */
1372 	SetParallelStartTimestamps(fps->xact_ts, fps->stmt_ts);
1373 
1374 	/*
1375 	 * Identify the entry point to be called.  In theory this could result in
1376 	 * loading an additional library, though most likely the entry point is in
1377 	 * the core backend or in a library we just loaded.
1378 	 */
1379 	entrypointstate = shm_toc_lookup(toc, PARALLEL_KEY_ENTRYPOINT, false);
1380 	library_name = entrypointstate;
1381 	function_name = entrypointstate + strlen(library_name) + 1;
1382 
1383 	entrypt = LookupParallelWorkerFunction(library_name, function_name);
1384 
1385 	/* Restore database connection. */
1386 	BackgroundWorkerInitializeConnectionByOid(fps->database_id,
1387 											  fps->authenticated_user_id,
1388 											  0);
1389 
1390 	/*
1391 	 * Set the client encoding to the database encoding, since that is what
1392 	 * the leader will expect.
1393 	 */
1394 	SetClientEncoding(GetDatabaseEncoding());
1395 
1396 	/*
1397 	 * Load libraries that were loaded by original backend.  We want to do
1398 	 * this before restoring GUCs, because the libraries might define custom
1399 	 * variables.
1400 	 */
1401 	libraryspace = shm_toc_lookup(toc, PARALLEL_KEY_LIBRARY, false);
1402 	StartTransactionCommand();
1403 	RestoreLibraryState(libraryspace);
1404 
1405 	/* Restore GUC values from launching backend. */
1406 	gucspace = shm_toc_lookup(toc, PARALLEL_KEY_GUC, false);
1407 	RestoreGUCState(gucspace);
1408 	CommitTransactionCommand();
1409 
1410 	/* Crank up a transaction state appropriate to a parallel worker. */
1411 	tstatespace = shm_toc_lookup(toc, PARALLEL_KEY_TRANSACTION_STATE, false);
1412 	StartParallelWorkerTransaction(tstatespace);
1413 
1414 	/* Restore combo CID state. */
1415 	combocidspace = shm_toc_lookup(toc, PARALLEL_KEY_COMBO_CID, false);
1416 	RestoreComboCIDState(combocidspace);
1417 
1418 	/* Attach to the per-session DSM segment and contained objects. */
1419 	session_dsm_handle_space =
1420 		shm_toc_lookup(toc, PARALLEL_KEY_SESSION_DSM, false);
1421 	AttachSession(*(dsm_handle *) session_dsm_handle_space);
1422 
1423 	/*
1424 	 * If the transaction isolation level is REPEATABLE READ or SERIALIZABLE,
1425 	 * the leader has serialized the transaction snapshot and we must restore
1426 	 * it. At lower isolation levels, there is no transaction-lifetime
1427 	 * snapshot, but we need TransactionXmin to get set to a value which is
1428 	 * less than or equal to the xmin of every snapshot that will be used by
1429 	 * this worker. The easiest way to accomplish that is to install the
1430 	 * active snapshot as the transaction snapshot. Code running in this
1431 	 * parallel worker might take new snapshots via GetTransactionSnapshot()
1432 	 * or GetLatestSnapshot(), but it shouldn't have any way of acquiring a
1433 	 * snapshot older than the active snapshot.
1434 	 */
1435 	asnapspace = shm_toc_lookup(toc, PARALLEL_KEY_ACTIVE_SNAPSHOT, false);
1436 	tsnapspace = shm_toc_lookup(toc, PARALLEL_KEY_TRANSACTION_SNAPSHOT, true);
1437 	asnapshot = RestoreSnapshot(asnapspace);
1438 	tsnapshot = tsnapspace ? RestoreSnapshot(tsnapspace) : asnapshot;
1439 	RestoreTransactionSnapshot(tsnapshot,
1440 							   fps->parallel_master_pgproc);
1441 	PushActiveSnapshot(asnapshot);
1442 
1443 	/*
1444 	 * We've changed which tuples we can see, and must therefore invalidate
1445 	 * system caches.
1446 	 */
1447 	InvalidateSystemCaches();
1448 
1449 	/*
1450 	 * Restore current role id.  Skip verifying whether session user is
1451 	 * allowed to become this role and blindly restore the leader's state for
1452 	 * current role.
1453 	 */
1454 	SetCurrentRoleId(fps->outer_user_id, fps->is_superuser);
1455 
1456 	/* Restore user ID and security context. */
1457 	SetUserIdAndSecContext(fps->current_user_id, fps->sec_context);
1458 
1459 	/* Restore temp-namespace state to ensure search path matches leader's. */
1460 	SetTempNamespaceState(fps->temp_namespace_id,
1461 						  fps->temp_toast_namespace_id);
1462 
1463 	/* Restore pending syncs. */
1464 	pendingsyncsspace = shm_toc_lookup(toc, PARALLEL_KEY_PENDING_SYNCS,
1465 									   false);
1466 	RestorePendingSyncs(pendingsyncsspace);
1467 
1468 	/* Restore reindex state. */
1469 	reindexspace = shm_toc_lookup(toc, PARALLEL_KEY_REINDEX_STATE, false);
1470 	RestoreReindexState(reindexspace);
1471 
1472 	/* Restore relmapper state. */
1473 	relmapperspace = shm_toc_lookup(toc, PARALLEL_KEY_RELMAPPER_STATE, false);
1474 	RestoreRelationMap(relmapperspace);
1475 
1476 	/* Restore enum blacklist. */
1477 	enumblacklistspace = shm_toc_lookup(toc, PARALLEL_KEY_ENUMBLACKLIST,
1478 										false);
1479 	RestoreEnumBlacklist(enumblacklistspace);
1480 
1481 	/* Attach to the leader's serializable transaction, if SERIALIZABLE. */
1482 	AttachSerializableXact(fps->serializable_xact_handle);
1483 
1484 	/*
1485 	 * We've initialized all of our state now; nothing should change
1486 	 * hereafter.
1487 	 */
1488 	InitializingParallelWorker = false;
1489 	EnterParallelMode();
1490 
1491 	/*
1492 	 * Time to do the real work: invoke the caller-supplied code.
1493 	 */
1494 	entrypt(seg, toc);
1495 
1496 	/* Must exit parallel mode to pop active snapshot. */
1497 	ExitParallelMode();
1498 
1499 	/* Must pop active snapshot so snapmgr.c doesn't complain. */
1500 	PopActiveSnapshot();
1501 
1502 	/* Shut down the parallel-worker transaction. */
1503 	EndParallelWorkerTransaction();
1504 
1505 	/* Detach from the per-session DSM segment. */
1506 	DetachSession();
1507 
1508 	/* Report success. */
1509 	pq_putmessage('X', NULL, 0);
1510 }
1511 
1512 /*
1513  * Update shared memory with the ending location of the last WAL record we
1514  * wrote, if it's greater than the value already stored there.
1515  */
1516 void
ParallelWorkerReportLastRecEnd(XLogRecPtr last_xlog_end)1517 ParallelWorkerReportLastRecEnd(XLogRecPtr last_xlog_end)
1518 {
1519 	FixedParallelState *fps = MyFixedParallelState;
1520 
1521 	Assert(fps != NULL);
1522 	SpinLockAcquire(&fps->mutex);
1523 	if (fps->last_xlog_end < last_xlog_end)
1524 		fps->last_xlog_end = last_xlog_end;
1525 	SpinLockRelease(&fps->mutex);
1526 }
1527 
1528 /*
1529  * Make sure the leader tries to read from our error queue one more time.
1530  * This guards against the case where we exit uncleanly without sending an
1531  * ErrorResponse to the leader, for example because some code calls proc_exit
1532  * directly.
1533  */
1534 static void
ParallelWorkerShutdown(int code,Datum arg)1535 ParallelWorkerShutdown(int code, Datum arg)
1536 {
1537 	SendProcSignal(ParallelMasterPid,
1538 				   PROCSIG_PARALLEL_MESSAGE,
1539 				   ParallelMasterBackendId);
1540 }
1541 
1542 /*
1543  * Look up (and possibly load) a parallel worker entry point function.
1544  *
1545  * For functions contained in the core code, we use library name "postgres"
1546  * and consult the InternalParallelWorkers array.  External functions are
1547  * looked up, and loaded if necessary, using load_external_function().
1548  *
1549  * The point of this is to pass function names as strings across process
1550  * boundaries.  We can't pass actual function addresses because of the
1551  * possibility that the function has been loaded at a different address
1552  * in a different process.  This is obviously a hazard for functions in
1553  * loadable libraries, but it can happen even for functions in the core code
1554  * on platforms using EXEC_BACKEND (e.g., Windows).
1555  *
1556  * At some point it might be worthwhile to get rid of InternalParallelWorkers[]
1557  * in favor of applying load_external_function() for core functions too;
1558  * but that raises portability issues that are not worth addressing now.
1559  */
1560 static parallel_worker_main_type
LookupParallelWorkerFunction(const char * libraryname,const char * funcname)1561 LookupParallelWorkerFunction(const char *libraryname, const char *funcname)
1562 {
1563 	/*
1564 	 * If the function is to be loaded from postgres itself, search the
1565 	 * InternalParallelWorkers array.
1566 	 */
1567 	if (strcmp(libraryname, "postgres") == 0)
1568 	{
1569 		int			i;
1570 
1571 		for (i = 0; i < lengthof(InternalParallelWorkers); i++)
1572 		{
1573 			if (strcmp(InternalParallelWorkers[i].fn_name, funcname) == 0)
1574 				return InternalParallelWorkers[i].fn_addr;
1575 		}
1576 
1577 		/* We can only reach this by programming error. */
1578 		elog(ERROR, "internal function \"%s\" not found", funcname);
1579 	}
1580 
1581 	/* Otherwise load from external library. */
1582 	return (parallel_worker_main_type)
1583 		load_external_function(libraryname, funcname, true, NULL);
1584 }
1585