1 /*-------------------------------------------------------------------------
2  *
3  * dependency.c
4  *	  Routines to support inter-object dependencies.
5  *
6  *
7  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * IDENTIFICATION
11  *	  src/backend/catalog/dependency.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "access/genam.h"
18 #include "access/htup_details.h"
19 #include "access/table.h"
20 #include "access/xact.h"
21 #include "catalog/dependency.h"
22 #include "catalog/heap.h"
23 #include "catalog/index.h"
24 #include "catalog/objectaccess.h"
25 #include "catalog/pg_am.h"
26 #include "catalog/pg_amop.h"
27 #include "catalog/pg_amproc.h"
28 #include "catalog/pg_attrdef.h"
29 #include "catalog/pg_authid.h"
30 #include "catalog/pg_cast.h"
31 #include "catalog/pg_collation.h"
32 #include "catalog/pg_constraint.h"
33 #include "catalog/pg_conversion.h"
34 #include "catalog/pg_database.h"
35 #include "catalog/pg_default_acl.h"
36 #include "catalog/pg_depend.h"
37 #include "catalog/pg_event_trigger.h"
38 #include "catalog/pg_extension.h"
39 #include "catalog/pg_foreign_data_wrapper.h"
40 #include "catalog/pg_foreign_server.h"
41 #include "catalog/pg_init_privs.h"
42 #include "catalog/pg_language.h"
43 #include "catalog/pg_largeobject.h"
44 #include "catalog/pg_namespace.h"
45 #include "catalog/pg_opclass.h"
46 #include "catalog/pg_operator.h"
47 #include "catalog/pg_opfamily.h"
48 #include "catalog/pg_policy.h"
49 #include "catalog/pg_proc.h"
50 #include "catalog/pg_publication.h"
51 #include "catalog/pg_publication_rel.h"
52 #include "catalog/pg_rewrite.h"
53 #include "catalog/pg_statistic_ext.h"
54 #include "catalog/pg_subscription.h"
55 #include "catalog/pg_tablespace.h"
56 #include "catalog/pg_transform.h"
57 #include "catalog/pg_trigger.h"
58 #include "catalog/pg_ts_config.h"
59 #include "catalog/pg_ts_dict.h"
60 #include "catalog/pg_ts_parser.h"
61 #include "catalog/pg_ts_template.h"
62 #include "catalog/pg_type.h"
63 #include "catalog/pg_user_mapping.h"
64 #include "commands/comment.h"
65 #include "commands/defrem.h"
66 #include "commands/event_trigger.h"
67 #include "commands/extension.h"
68 #include "commands/policy.h"
69 #include "commands/proclang.h"
70 #include "commands/publicationcmds.h"
71 #include "commands/schemacmds.h"
72 #include "commands/seclabel.h"
73 #include "commands/sequence.h"
74 #include "commands/trigger.h"
75 #include "commands/typecmds.h"
76 #include "nodes/nodeFuncs.h"
77 #include "parser/parsetree.h"
78 #include "rewrite/rewriteRemove.h"
79 #include "storage/lmgr.h"
80 #include "utils/acl.h"
81 #include "utils/fmgroids.h"
82 #include "utils/guc.h"
83 #include "utils/lsyscache.h"
84 #include "utils/syscache.h"
85 
86 
87 /*
88  * Deletion processing requires additional state for each ObjectAddress that
89  * it's planning to delete.  For simplicity and code-sharing we make the
90  * ObjectAddresses code support arrays with or without this extra state.
91  */
92 typedef struct
93 {
94 	int			flags;			/* bitmask, see bit definitions below */
95 	ObjectAddress dependee;		/* object whose deletion forced this one */
96 } ObjectAddressExtra;
97 
98 /* ObjectAddressExtra flag bits */
99 #define DEPFLAG_ORIGINAL	0x0001	/* an original deletion target */
100 #define DEPFLAG_NORMAL		0x0002	/* reached via normal dependency */
101 #define DEPFLAG_AUTO		0x0004	/* reached via auto dependency */
102 #define DEPFLAG_INTERNAL	0x0008	/* reached via internal dependency */
103 #define DEPFLAG_PARTITION	0x0010	/* reached via partition dependency */
104 #define DEPFLAG_EXTENSION	0x0020	/* reached via extension dependency */
105 #define DEPFLAG_REVERSE		0x0040	/* reverse internal/extension link */
106 #define DEPFLAG_IS_PART		0x0080	/* has a partition dependency */
107 #define DEPFLAG_SUBOBJECT	0x0100	/* subobject of another deletable object */
108 
109 
110 /* expansible list of ObjectAddresses */
111 struct ObjectAddresses
112 {
113 	ObjectAddress *refs;		/* => palloc'd array */
114 	ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
115 	int			numrefs;		/* current number of references */
116 	int			maxrefs;		/* current size of palloc'd array(s) */
117 };
118 
119 /* typedef ObjectAddresses appears in dependency.h */
120 
121 /* threaded list of ObjectAddresses, for recursion detection */
122 typedef struct ObjectAddressStack
123 {
124 	const ObjectAddress *object;	/* object being visited */
125 	int			flags;			/* its current flag bits */
126 	struct ObjectAddressStack *next;	/* next outer stack level */
127 } ObjectAddressStack;
128 
129 /* temporary storage in findDependentObjects */
130 typedef struct
131 {
132 	ObjectAddress obj;			/* object to be deleted --- MUST BE FIRST */
133 	int			subflags;		/* flags to pass down when recursing to obj */
134 } ObjectAddressAndFlags;
135 
136 /* for find_expr_references_walker */
137 typedef struct
138 {
139 	ObjectAddresses *addrs;		/* addresses being accumulated */
140 	List	   *rtables;		/* list of rangetables to resolve Vars */
141 } find_expr_references_context;
142 
143 /*
144  * This constant table maps ObjectClasses to the corresponding catalog OIDs.
145  * See also getObjectClass().
146  */
147 static const Oid object_classes[] = {
148 	RelationRelationId,			/* OCLASS_CLASS */
149 	ProcedureRelationId,		/* OCLASS_PROC */
150 	TypeRelationId,				/* OCLASS_TYPE */
151 	CastRelationId,				/* OCLASS_CAST */
152 	CollationRelationId,		/* OCLASS_COLLATION */
153 	ConstraintRelationId,		/* OCLASS_CONSTRAINT */
154 	ConversionRelationId,		/* OCLASS_CONVERSION */
155 	AttrDefaultRelationId,		/* OCLASS_DEFAULT */
156 	LanguageRelationId,			/* OCLASS_LANGUAGE */
157 	LargeObjectRelationId,		/* OCLASS_LARGEOBJECT */
158 	OperatorRelationId,			/* OCLASS_OPERATOR */
159 	OperatorClassRelationId,	/* OCLASS_OPCLASS */
160 	OperatorFamilyRelationId,	/* OCLASS_OPFAMILY */
161 	AccessMethodRelationId,		/* OCLASS_AM */
162 	AccessMethodOperatorRelationId, /* OCLASS_AMOP */
163 	AccessMethodProcedureRelationId,	/* OCLASS_AMPROC */
164 	RewriteRelationId,			/* OCLASS_REWRITE */
165 	TriggerRelationId,			/* OCLASS_TRIGGER */
166 	NamespaceRelationId,		/* OCLASS_SCHEMA */
167 	StatisticExtRelationId,		/* OCLASS_STATISTIC_EXT */
168 	TSParserRelationId,			/* OCLASS_TSPARSER */
169 	TSDictionaryRelationId,		/* OCLASS_TSDICT */
170 	TSTemplateRelationId,		/* OCLASS_TSTEMPLATE */
171 	TSConfigRelationId,			/* OCLASS_TSCONFIG */
172 	AuthIdRelationId,			/* OCLASS_ROLE */
173 	DatabaseRelationId,			/* OCLASS_DATABASE */
174 	TableSpaceRelationId,		/* OCLASS_TBLSPACE */
175 	ForeignDataWrapperRelationId,	/* OCLASS_FDW */
176 	ForeignServerRelationId,	/* OCLASS_FOREIGN_SERVER */
177 	UserMappingRelationId,		/* OCLASS_USER_MAPPING */
178 	DefaultAclRelationId,		/* OCLASS_DEFACL */
179 	ExtensionRelationId,		/* OCLASS_EXTENSION */
180 	EventTriggerRelationId,		/* OCLASS_EVENT_TRIGGER */
181 	PolicyRelationId,			/* OCLASS_POLICY */
182 	PublicationRelationId,		/* OCLASS_PUBLICATION */
183 	PublicationRelRelationId,	/* OCLASS_PUBLICATION_REL */
184 	SubscriptionRelationId,		/* OCLASS_SUBSCRIPTION */
185 	TransformRelationId			/* OCLASS_TRANSFORM */
186 };
187 
188 
189 static void findDependentObjects(const ObjectAddress *object,
190 								 int objflags,
191 								 int flags,
192 								 ObjectAddressStack *stack,
193 								 ObjectAddresses *targetObjects,
194 								 const ObjectAddresses *pendingObjects,
195 								 Relation *depRel);
196 static void reportDependentObjects(const ObjectAddresses *targetObjects,
197 								   DropBehavior behavior,
198 								   int flags,
199 								   const ObjectAddress *origObject);
200 static void deleteOneObject(const ObjectAddress *object,
201 							Relation *depRel, int32 flags);
202 static void doDeletion(const ObjectAddress *object, int flags);
203 static bool find_expr_references_walker(Node *node,
204 										find_expr_references_context *context);
205 static void eliminate_duplicate_dependencies(ObjectAddresses *addrs);
206 static int	object_address_comparator(const void *a, const void *b);
207 static void add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
208 							   ObjectAddresses *addrs);
209 static void add_exact_object_address_extra(const ObjectAddress *object,
210 										   const ObjectAddressExtra *extra,
211 										   ObjectAddresses *addrs);
212 static bool object_address_present_add_flags(const ObjectAddress *object,
213 											 int flags,
214 											 ObjectAddresses *addrs);
215 static bool stack_address_present_add_flags(const ObjectAddress *object,
216 											int flags,
217 											ObjectAddressStack *stack);
218 static void DeleteInitPrivs(const ObjectAddress *object);
219 
220 
221 /*
222  * Go through the objects given running the final actions on them, and execute
223  * the actual deletion.
224  */
225 static void
deleteObjectsInList(ObjectAddresses * targetObjects,Relation * depRel,int flags)226 deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel,
227 					int flags)
228 {
229 	int			i;
230 
231 	/*
232 	 * Keep track of objects for event triggers, if necessary.
233 	 */
234 	if (trackDroppedObjectsNeeded() && !(flags & PERFORM_DELETION_INTERNAL))
235 	{
236 		for (i = 0; i < targetObjects->numrefs; i++)
237 		{
238 			const ObjectAddress *thisobj = &targetObjects->refs[i];
239 			const ObjectAddressExtra *extra = &targetObjects->extras[i];
240 			bool		original = false;
241 			bool		normal = false;
242 
243 			if (extra->flags & DEPFLAG_ORIGINAL)
244 				original = true;
245 			if (extra->flags & DEPFLAG_NORMAL)
246 				normal = true;
247 			if (extra->flags & DEPFLAG_REVERSE)
248 				normal = true;
249 
250 			if (EventTriggerSupportsObjectClass(getObjectClass(thisobj)))
251 			{
252 				EventTriggerSQLDropAddObject(thisobj, original, normal);
253 			}
254 		}
255 	}
256 
257 	/*
258 	 * Delete all the objects in the proper order, except that if told to, we
259 	 * should skip the original object(s).
260 	 */
261 	for (i = 0; i < targetObjects->numrefs; i++)
262 	{
263 		ObjectAddress *thisobj = targetObjects->refs + i;
264 		ObjectAddressExtra *thisextra = targetObjects->extras + i;
265 
266 		if ((flags & PERFORM_DELETION_SKIP_ORIGINAL) &&
267 			(thisextra->flags & DEPFLAG_ORIGINAL))
268 			continue;
269 
270 		deleteOneObject(thisobj, depRel, flags);
271 	}
272 }
273 
274 /*
275  * performDeletion: attempt to drop the specified object.  If CASCADE
276  * behavior is specified, also drop any dependent objects (recursively).
277  * If RESTRICT behavior is specified, error out if there are any dependent
278  * objects, except for those that should be implicitly dropped anyway
279  * according to the dependency type.
280  *
281  * This is the outer control routine for all forms of DROP that drop objects
282  * that can participate in dependencies.  Note that performMultipleDeletions
283  * is a variant on the same theme; if you change anything here you'll likely
284  * need to fix that too.
285  *
286  * Bits in the flags argument can include:
287  *
288  * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
289  * direct result of a user-initiated action.  For example, when a temporary
290  * schema is cleaned out so that a new backend can use it, or when a column
291  * default is dropped as an intermediate step while adding a new one, that's
292  * an internal operation.  On the other hand, when we drop something because
293  * the user issued a DROP statement against it, that's not internal. Currently
294  * this suppresses calling event triggers and making some permissions checks.
295  *
296  * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently.  This does
297  * not currently work for anything except dropping indexes; don't set it for
298  * other object types or you may get strange results.
299  *
300  * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
301  *
302  * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
303  * but only what depends on it/them.
304  *
305  * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
306  * deleting objects that are part of an extension.  This should generally
307  * be used only when dropping temporary objects.
308  *
309  * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
310  * as if it were concurrent.  This is used by REINDEX CONCURRENTLY.
311  *
312  */
313 void
performDeletion(const ObjectAddress * object,DropBehavior behavior,int flags)314 performDeletion(const ObjectAddress *object,
315 				DropBehavior behavior, int flags)
316 {
317 	Relation	depRel;
318 	ObjectAddresses *targetObjects;
319 
320 	/*
321 	 * We save some cycles by opening pg_depend just once and passing the
322 	 * Relation pointer down to all the recursive deletion steps.
323 	 */
324 	depRel = table_open(DependRelationId, RowExclusiveLock);
325 
326 	/*
327 	 * Acquire deletion lock on the target object.  (Ideally the caller has
328 	 * done this already, but many places are sloppy about it.)
329 	 */
330 	AcquireDeletionLock(object, 0);
331 
332 	/*
333 	 * Construct a list of objects to delete (ie, the given object plus
334 	 * everything directly or indirectly dependent on it).
335 	 */
336 	targetObjects = new_object_addresses();
337 
338 	findDependentObjects(object,
339 						 DEPFLAG_ORIGINAL,
340 						 flags,
341 						 NULL,	/* empty stack */
342 						 targetObjects,
343 						 NULL,	/* no pendingObjects */
344 						 &depRel);
345 
346 	/*
347 	 * Check if deletion is allowed, and report about cascaded deletes.
348 	 */
349 	reportDependentObjects(targetObjects,
350 						   behavior,
351 						   flags,
352 						   object);
353 
354 	/* do the deed */
355 	deleteObjectsInList(targetObjects, &depRel, flags);
356 
357 	/* And clean up */
358 	free_object_addresses(targetObjects);
359 
360 	table_close(depRel, RowExclusiveLock);
361 }
362 
363 /*
364  * performMultipleDeletions: Similar to performDeletion, but act on multiple
365  * objects at once.
366  *
367  * The main difference from issuing multiple performDeletion calls is that the
368  * list of objects that would be implicitly dropped, for each object to be
369  * dropped, is the union of the implicit-object list for all objects.  This
370  * makes each check be more relaxed.
371  */
372 void
performMultipleDeletions(const ObjectAddresses * objects,DropBehavior behavior,int flags)373 performMultipleDeletions(const ObjectAddresses *objects,
374 						 DropBehavior behavior, int flags)
375 {
376 	Relation	depRel;
377 	ObjectAddresses *targetObjects;
378 	int			i;
379 
380 	/* No work if no objects... */
381 	if (objects->numrefs <= 0)
382 		return;
383 
384 	/*
385 	 * We save some cycles by opening pg_depend just once and passing the
386 	 * Relation pointer down to all the recursive deletion steps.
387 	 */
388 	depRel = table_open(DependRelationId, RowExclusiveLock);
389 
390 	/*
391 	 * Construct a list of objects to delete (ie, the given objects plus
392 	 * everything directly or indirectly dependent on them).  Note that
393 	 * because we pass the whole objects list as pendingObjects context, we
394 	 * won't get a failure from trying to delete an object that is internally
395 	 * dependent on another one in the list; we'll just skip that object and
396 	 * delete it when we reach its owner.
397 	 */
398 	targetObjects = new_object_addresses();
399 
400 	for (i = 0; i < objects->numrefs; i++)
401 	{
402 		const ObjectAddress *thisobj = objects->refs + i;
403 
404 		/*
405 		 * Acquire deletion lock on each target object.  (Ideally the caller
406 		 * has done this already, but many places are sloppy about it.)
407 		 */
408 		AcquireDeletionLock(thisobj, flags);
409 
410 		findDependentObjects(thisobj,
411 							 DEPFLAG_ORIGINAL,
412 							 flags,
413 							 NULL,	/* empty stack */
414 							 targetObjects,
415 							 objects,
416 							 &depRel);
417 	}
418 
419 	/*
420 	 * Check if deletion is allowed, and report about cascaded deletes.
421 	 *
422 	 * If there's exactly one object being deleted, report it the same way as
423 	 * in performDeletion(), else we have to be vaguer.
424 	 */
425 	reportDependentObjects(targetObjects,
426 						   behavior,
427 						   flags,
428 						   (objects->numrefs == 1 ? objects->refs : NULL));
429 
430 	/* do the deed */
431 	deleteObjectsInList(targetObjects, &depRel, flags);
432 
433 	/* And clean up */
434 	free_object_addresses(targetObjects);
435 
436 	table_close(depRel, RowExclusiveLock);
437 }
438 
439 /*
440  * findDependentObjects - find all objects that depend on 'object'
441  *
442  * For every object that depends on the starting object, acquire a deletion
443  * lock on the object, add it to targetObjects (if not already there),
444  * and recursively find objects that depend on it.  An object's dependencies
445  * will be placed into targetObjects before the object itself; this means
446  * that the finished list's order represents a safe deletion order.
447  *
448  * The caller must already have a deletion lock on 'object' itself,
449  * but must not have added it to targetObjects.  (Note: there are corner
450  * cases where we won't add the object either, and will also release the
451  * caller-taken lock.  This is a bit ugly, but the API is set up this way
452  * to allow easy rechecking of an object's liveness after we lock it.  See
453  * notes within the function.)
454  *
455  * When dropping a whole object (subId = 0), we find dependencies for
456  * its sub-objects too.
457  *
458  *	object: the object to add to targetObjects and find dependencies on
459  *	objflags: flags to be ORed into the object's targetObjects entry
460  *	flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
461  *	stack: list of objects being visited in current recursion; topmost item
462  *			is the object that we recursed from (NULL for external callers)
463  *	targetObjects: list of objects that are scheduled to be deleted
464  *	pendingObjects: list of other objects slated for destruction, but
465  *			not necessarily in targetObjects yet (can be NULL if none)
466  *	*depRel: already opened pg_depend relation
467  *
468  * Note: objflags describes the reason for visiting this particular object
469  * at this time, and is not passed down when recursing.  The flags argument
470  * is passed down, since it describes what we're doing overall.
471  */
472 static void
findDependentObjects(const ObjectAddress * object,int objflags,int flags,ObjectAddressStack * stack,ObjectAddresses * targetObjects,const ObjectAddresses * pendingObjects,Relation * depRel)473 findDependentObjects(const ObjectAddress *object,
474 					 int objflags,
475 					 int flags,
476 					 ObjectAddressStack *stack,
477 					 ObjectAddresses *targetObjects,
478 					 const ObjectAddresses *pendingObjects,
479 					 Relation *depRel)
480 {
481 	ScanKeyData key[3];
482 	int			nkeys;
483 	SysScanDesc scan;
484 	HeapTuple	tup;
485 	ObjectAddress otherObject;
486 	ObjectAddress owningObject;
487 	ObjectAddress partitionObject;
488 	ObjectAddressAndFlags *dependentObjects;
489 	int			numDependentObjects;
490 	int			maxDependentObjects;
491 	ObjectAddressStack mystack;
492 	ObjectAddressExtra extra;
493 
494 	/*
495 	 * If the target object is already being visited in an outer recursion
496 	 * level, just report the current objflags back to that level and exit.
497 	 * This is needed to avoid infinite recursion in the face of circular
498 	 * dependencies.
499 	 *
500 	 * The stack check alone would result in dependency loops being broken at
501 	 * an arbitrary point, ie, the first member object of the loop to be
502 	 * visited is the last one to be deleted.  This is obviously unworkable.
503 	 * However, the check for internal dependency below guarantees that we
504 	 * will not break a loop at an internal dependency: if we enter the loop
505 	 * at an "owned" object we will switch and start at the "owning" object
506 	 * instead.  We could probably hack something up to avoid breaking at an
507 	 * auto dependency, too, if we had to.  However there are no known cases
508 	 * where that would be necessary.
509 	 */
510 	if (stack_address_present_add_flags(object, objflags, stack))
511 		return;
512 
513 	/*
514 	 * It's also possible that the target object has already been completely
515 	 * processed and put into targetObjects.  If so, again we just add the
516 	 * specified objflags to its entry and return.
517 	 *
518 	 * (Note: in these early-exit cases we could release the caller-taken
519 	 * lock, since the object is presumably now locked multiple times; but it
520 	 * seems not worth the cycles.)
521 	 */
522 	if (object_address_present_add_flags(object, objflags, targetObjects))
523 		return;
524 
525 	/*
526 	 * The target object might be internally dependent on some other object
527 	 * (its "owner"), and/or be a member of an extension (also considered its
528 	 * owner).  If so, and if we aren't recursing from the owning object, we
529 	 * have to transform this deletion request into a deletion request of the
530 	 * owning object.  (We'll eventually recurse back to this object, but the
531 	 * owning object has to be visited first so it will be deleted after.) The
532 	 * way to find out about this is to scan the pg_depend entries that show
533 	 * what this object depends on.
534 	 */
535 	ScanKeyInit(&key[0],
536 				Anum_pg_depend_classid,
537 				BTEqualStrategyNumber, F_OIDEQ,
538 				ObjectIdGetDatum(object->classId));
539 	ScanKeyInit(&key[1],
540 				Anum_pg_depend_objid,
541 				BTEqualStrategyNumber, F_OIDEQ,
542 				ObjectIdGetDatum(object->objectId));
543 	if (object->objectSubId != 0)
544 	{
545 		/* Consider only dependencies of this sub-object */
546 		ScanKeyInit(&key[2],
547 					Anum_pg_depend_objsubid,
548 					BTEqualStrategyNumber, F_INT4EQ,
549 					Int32GetDatum(object->objectSubId));
550 		nkeys = 3;
551 	}
552 	else
553 	{
554 		/* Consider dependencies of this object and any sub-objects it has */
555 		nkeys = 2;
556 	}
557 
558 	scan = systable_beginscan(*depRel, DependDependerIndexId, true,
559 							  NULL, nkeys, key);
560 
561 	/* initialize variables that loop may fill */
562 	memset(&owningObject, 0, sizeof(owningObject));
563 	memset(&partitionObject, 0, sizeof(partitionObject));
564 
565 	while (HeapTupleIsValid(tup = systable_getnext(scan)))
566 	{
567 		Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
568 
569 		otherObject.classId = foundDep->refclassid;
570 		otherObject.objectId = foundDep->refobjid;
571 		otherObject.objectSubId = foundDep->refobjsubid;
572 
573 		/*
574 		 * When scanning dependencies of a whole object, we may find rows
575 		 * linking sub-objects of the object to the object itself.  (Normally,
576 		 * such a dependency is implicit, but we must make explicit ones in
577 		 * some cases involving partitioning.)  We must ignore such rows to
578 		 * avoid infinite recursion.
579 		 */
580 		if (otherObject.classId == object->classId &&
581 			otherObject.objectId == object->objectId &&
582 			object->objectSubId == 0)
583 			continue;
584 
585 		switch (foundDep->deptype)
586 		{
587 			case DEPENDENCY_NORMAL:
588 			case DEPENDENCY_AUTO:
589 			case DEPENDENCY_AUTO_EXTENSION:
590 				/* no problem */
591 				break;
592 
593 			case DEPENDENCY_EXTENSION:
594 
595 				/*
596 				 * If told to, ignore EXTENSION dependencies altogether.  This
597 				 * flag is normally used to prevent dropping extensions during
598 				 * temporary-object cleanup, even if a temp object was created
599 				 * during an extension script.
600 				 */
601 				if (flags & PERFORM_DELETION_SKIP_EXTENSIONS)
602 					break;
603 
604 				/*
605 				 * If the other object is the extension currently being
606 				 * created/altered, ignore this dependency and continue with
607 				 * the deletion.  This allows dropping of an extension's
608 				 * objects within the extension's scripts, as well as corner
609 				 * cases such as dropping a transient object created within
610 				 * such a script.
611 				 */
612 				if (creating_extension &&
613 					otherObject.classId == ExtensionRelationId &&
614 					otherObject.objectId == CurrentExtensionObject)
615 					break;
616 
617 				/* Otherwise, treat this like an internal dependency */
618 				/* FALL THRU */
619 
620 			case DEPENDENCY_INTERNAL:
621 
622 				/*
623 				 * This object is part of the internal implementation of
624 				 * another object, or is part of the extension that is the
625 				 * other object.  We have three cases:
626 				 *
627 				 * 1. At the outermost recursion level, we must disallow the
628 				 * DROP.  However, if the owning object is listed in
629 				 * pendingObjects, just release the caller's lock and return;
630 				 * we'll eventually complete the DROP when we reach that entry
631 				 * in the pending list.
632 				 *
633 				 * Note: the above statement is true only if this pg_depend
634 				 * entry still exists by then; in principle, therefore, we
635 				 * could miss deleting an item the user told us to delete.
636 				 * However, no inconsistency can result: since we're at outer
637 				 * level, there is no object depending on this one.
638 				 */
639 				if (stack == NULL)
640 				{
641 					if (pendingObjects &&
642 						object_address_present(&otherObject, pendingObjects))
643 					{
644 						systable_endscan(scan);
645 						/* need to release caller's lock; see notes below */
646 						ReleaseDeletionLock(object);
647 						return;
648 					}
649 
650 					/*
651 					 * We postpone actually issuing the error message until
652 					 * after this loop, so that we can make the behavior
653 					 * independent of the ordering of pg_depend entries, at
654 					 * least if there's not more than one INTERNAL and one
655 					 * EXTENSION dependency.  (If there's more, we'll complain
656 					 * about a random one of them.)  Prefer to complain about
657 					 * EXTENSION, since that's generally a more important
658 					 * dependency.
659 					 */
660 					if (!OidIsValid(owningObject.classId) ||
661 						foundDep->deptype == DEPENDENCY_EXTENSION)
662 						owningObject = otherObject;
663 					break;
664 				}
665 
666 				/*
667 				 * 2. When recursing from the other end of this dependency,
668 				 * it's okay to continue with the deletion.  This holds when
669 				 * recursing from a whole object that includes the nominal
670 				 * other end as a component, too.  Since there can be more
671 				 * than one "owning" object, we have to allow matches that are
672 				 * more than one level down in the stack.
673 				 */
674 				if (stack_address_present_add_flags(&otherObject, 0, stack))
675 					break;
676 
677 				/*
678 				 * 3. Not all the owning objects have been visited, so
679 				 * transform this deletion request into a delete of this
680 				 * owning object.
681 				 *
682 				 * First, release caller's lock on this object and get
683 				 * deletion lock on the owning object.  (We must release
684 				 * caller's lock to avoid deadlock against a concurrent
685 				 * deletion of the owning object.)
686 				 */
687 				ReleaseDeletionLock(object);
688 				AcquireDeletionLock(&otherObject, 0);
689 
690 				/*
691 				 * The owning object might have been deleted while we waited
692 				 * to lock it; if so, neither it nor the current object are
693 				 * interesting anymore.  We test this by checking the
694 				 * pg_depend entry (see notes below).
695 				 */
696 				if (!systable_recheck_tuple(scan, tup))
697 				{
698 					systable_endscan(scan);
699 					ReleaseDeletionLock(&otherObject);
700 					return;
701 				}
702 
703 				/*
704 				 * One way or the other, we're done with the scan; might as
705 				 * well close it down before recursing, to reduce peak
706 				 * resource consumption.
707 				 */
708 				systable_endscan(scan);
709 
710 				/*
711 				 * Okay, recurse to the owning object instead of proceeding.
712 				 *
713 				 * We do not need to stack the current object; we want the
714 				 * traversal order to be as if the original reference had
715 				 * linked to the owning object instead of this one.
716 				 *
717 				 * The dependency type is a "reverse" dependency: we need to
718 				 * delete the owning object if this one is to be deleted, but
719 				 * this linkage is never a reason for an automatic deletion.
720 				 */
721 				findDependentObjects(&otherObject,
722 									 DEPFLAG_REVERSE,
723 									 flags,
724 									 stack,
725 									 targetObjects,
726 									 pendingObjects,
727 									 depRel);
728 
729 				/*
730 				 * The current target object should have been added to
731 				 * targetObjects while processing the owning object; but it
732 				 * probably got only the flag bits associated with the
733 				 * dependency we're looking at.  We need to add the objflags
734 				 * that were passed to this recursion level, too, else we may
735 				 * get a bogus failure in reportDependentObjects (if, for
736 				 * example, we were called due to a partition dependency).
737 				 *
738 				 * If somehow the current object didn't get scheduled for
739 				 * deletion, bleat.  (That would imply that somebody deleted
740 				 * this dependency record before the recursion got to it.)
741 				 * Another idea would be to reacquire lock on the current
742 				 * object and resume trying to delete it, but it seems not
743 				 * worth dealing with the race conditions inherent in that.
744 				 */
745 				if (!object_address_present_add_flags(object, objflags,
746 													  targetObjects))
747 					elog(ERROR, "deletion of owning object %s failed to delete %s",
748 						 getObjectDescription(&otherObject),
749 						 getObjectDescription(object));
750 
751 				/* And we're done here. */
752 				return;
753 
754 			case DEPENDENCY_PARTITION_PRI:
755 
756 				/*
757 				 * Remember that this object has a partition-type dependency.
758 				 * After the dependency scan, we'll complain if we didn't find
759 				 * a reason to delete one of its partition dependencies.
760 				 */
761 				objflags |= DEPFLAG_IS_PART;
762 
763 				/*
764 				 * Also remember the primary partition owner, for error
765 				 * messages.  If there are multiple primary owners (which
766 				 * there should not be), we'll report a random one of them.
767 				 */
768 				partitionObject = otherObject;
769 				break;
770 
771 			case DEPENDENCY_PARTITION_SEC:
772 
773 				/*
774 				 * Only use secondary partition owners in error messages if we
775 				 * find no primary owner (which probably shouldn't happen).
776 				 */
777 				if (!(objflags & DEPFLAG_IS_PART))
778 					partitionObject = otherObject;
779 
780 				/*
781 				 * Remember that this object has a partition-type dependency.
782 				 * After the dependency scan, we'll complain if we didn't find
783 				 * a reason to delete one of its partition dependencies.
784 				 */
785 				objflags |= DEPFLAG_IS_PART;
786 				break;
787 
788 			case DEPENDENCY_PIN:
789 
790 				/*
791 				 * Should not happen; PIN dependencies should have zeroes in
792 				 * the depender fields...
793 				 */
794 				elog(ERROR, "incorrect use of PIN dependency with %s",
795 					 getObjectDescription(object));
796 				break;
797 			default:
798 				elog(ERROR, "unrecognized dependency type '%c' for %s",
799 					 foundDep->deptype, getObjectDescription(object));
800 				break;
801 		}
802 	}
803 
804 	systable_endscan(scan);
805 
806 	/*
807 	 * If we found an INTERNAL or EXTENSION dependency when we're at outer
808 	 * level, complain about it now.  If we also found a PARTITION dependency,
809 	 * we prefer to report the PARTITION dependency.  This is arbitrary but
810 	 * seems to be more useful in practice.
811 	 */
812 	if (OidIsValid(owningObject.classId))
813 	{
814 		char	   *otherObjDesc;
815 
816 		if (OidIsValid(partitionObject.classId))
817 			otherObjDesc = getObjectDescription(&partitionObject);
818 		else
819 			otherObjDesc = getObjectDescription(&owningObject);
820 
821 		ereport(ERROR,
822 				(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
823 				 errmsg("cannot drop %s because %s requires it",
824 						getObjectDescription(object), otherObjDesc),
825 				 errhint("You can drop %s instead.", otherObjDesc)));
826 	}
827 
828 	/*
829 	 * Next, identify all objects that directly depend on the current object.
830 	 * To ensure predictable deletion order, we collect them up in
831 	 * dependentObjects and sort the list before actually recursing.  (The
832 	 * deletion order would be valid in any case, but doing this ensures
833 	 * consistent output from DROP CASCADE commands, which is helpful for
834 	 * regression testing.)
835 	 */
836 	maxDependentObjects = 128;	/* arbitrary initial allocation */
837 	dependentObjects = (ObjectAddressAndFlags *)
838 		palloc(maxDependentObjects * sizeof(ObjectAddressAndFlags));
839 	numDependentObjects = 0;
840 
841 	ScanKeyInit(&key[0],
842 				Anum_pg_depend_refclassid,
843 				BTEqualStrategyNumber, F_OIDEQ,
844 				ObjectIdGetDatum(object->classId));
845 	ScanKeyInit(&key[1],
846 				Anum_pg_depend_refobjid,
847 				BTEqualStrategyNumber, F_OIDEQ,
848 				ObjectIdGetDatum(object->objectId));
849 	if (object->objectSubId != 0)
850 	{
851 		ScanKeyInit(&key[2],
852 					Anum_pg_depend_refobjsubid,
853 					BTEqualStrategyNumber, F_INT4EQ,
854 					Int32GetDatum(object->objectSubId));
855 		nkeys = 3;
856 	}
857 	else
858 		nkeys = 2;
859 
860 	scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
861 							  NULL, nkeys, key);
862 
863 	while (HeapTupleIsValid(tup = systable_getnext(scan)))
864 	{
865 		Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
866 		int			subflags;
867 
868 		otherObject.classId = foundDep->classid;
869 		otherObject.objectId = foundDep->objid;
870 		otherObject.objectSubId = foundDep->objsubid;
871 
872 		/*
873 		 * If what we found is a sub-object of the current object, just ignore
874 		 * it.  (Normally, such a dependency is implicit, but we must make
875 		 * explicit ones in some cases involving partitioning.)
876 		 */
877 		if (otherObject.classId == object->classId &&
878 			otherObject.objectId == object->objectId &&
879 			object->objectSubId == 0)
880 			continue;
881 
882 		/*
883 		 * Must lock the dependent object before recursing to it.
884 		 */
885 		AcquireDeletionLock(&otherObject, 0);
886 
887 		/*
888 		 * The dependent object might have been deleted while we waited to
889 		 * lock it; if so, we don't need to do anything more with it. We can
890 		 * test this cheaply and independently of the object's type by seeing
891 		 * if the pg_depend tuple we are looking at is still live. (If the
892 		 * object got deleted, the tuple would have been deleted too.)
893 		 */
894 		if (!systable_recheck_tuple(scan, tup))
895 		{
896 			/* release the now-useless lock */
897 			ReleaseDeletionLock(&otherObject);
898 			/* and continue scanning for dependencies */
899 			continue;
900 		}
901 
902 		/*
903 		 * We do need to delete it, so identify objflags to be passed down,
904 		 * which depend on the dependency type.
905 		 */
906 		switch (foundDep->deptype)
907 		{
908 			case DEPENDENCY_NORMAL:
909 				subflags = DEPFLAG_NORMAL;
910 				break;
911 			case DEPENDENCY_AUTO:
912 			case DEPENDENCY_AUTO_EXTENSION:
913 				subflags = DEPFLAG_AUTO;
914 				break;
915 			case DEPENDENCY_INTERNAL:
916 				subflags = DEPFLAG_INTERNAL;
917 				break;
918 			case DEPENDENCY_PARTITION_PRI:
919 			case DEPENDENCY_PARTITION_SEC:
920 				subflags = DEPFLAG_PARTITION;
921 				break;
922 			case DEPENDENCY_EXTENSION:
923 				subflags = DEPFLAG_EXTENSION;
924 				break;
925 			case DEPENDENCY_PIN:
926 
927 				/*
928 				 * For a PIN dependency we just ereport immediately; there
929 				 * won't be any others to report.
930 				 */
931 				ereport(ERROR,
932 						(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
933 						 errmsg("cannot drop %s because it is required by the database system",
934 								getObjectDescription(object))));
935 				subflags = 0;	/* keep compiler quiet */
936 				break;
937 			default:
938 				elog(ERROR, "unrecognized dependency type '%c' for %s",
939 					 foundDep->deptype, getObjectDescription(object));
940 				subflags = 0;	/* keep compiler quiet */
941 				break;
942 		}
943 
944 		/* And add it to the pending-objects list */
945 		if (numDependentObjects >= maxDependentObjects)
946 		{
947 			/* enlarge array if needed */
948 			maxDependentObjects *= 2;
949 			dependentObjects = (ObjectAddressAndFlags *)
950 				repalloc(dependentObjects,
951 						 maxDependentObjects * sizeof(ObjectAddressAndFlags));
952 		}
953 
954 		dependentObjects[numDependentObjects].obj = otherObject;
955 		dependentObjects[numDependentObjects].subflags = subflags;
956 		numDependentObjects++;
957 	}
958 
959 	systable_endscan(scan);
960 
961 	/*
962 	 * Now we can sort the dependent objects into a stable visitation order.
963 	 * It's safe to use object_address_comparator here since the obj field is
964 	 * first within ObjectAddressAndFlags.
965 	 */
966 	if (numDependentObjects > 1)
967 		qsort((void *) dependentObjects, numDependentObjects,
968 			  sizeof(ObjectAddressAndFlags),
969 			  object_address_comparator);
970 
971 	/*
972 	 * Now recurse to the dependent objects.  We must visit them first since
973 	 * they have to be deleted before the current object.
974 	 */
975 	mystack.object = object;	/* set up a new stack level */
976 	mystack.flags = objflags;
977 	mystack.next = stack;
978 
979 	for (int i = 0; i < numDependentObjects; i++)
980 	{
981 		ObjectAddressAndFlags *depObj = dependentObjects + i;
982 
983 		findDependentObjects(&depObj->obj,
984 							 depObj->subflags,
985 							 flags,
986 							 &mystack,
987 							 targetObjects,
988 							 pendingObjects,
989 							 depRel);
990 	}
991 
992 	pfree(dependentObjects);
993 
994 	/*
995 	 * Finally, we can add the target object to targetObjects.  Be careful to
996 	 * include any flags that were passed back down to us from inner recursion
997 	 * levels.  Record the "dependee" as being either the most important
998 	 * partition owner if there is one, else the object we recursed from, if
999 	 * any.  (The logic in reportDependentObjects() is such that it can only
1000 	 * need one of those objects.)
1001 	 */
1002 	extra.flags = mystack.flags;
1003 	if (extra.flags & DEPFLAG_IS_PART)
1004 		extra.dependee = partitionObject;
1005 	else if (stack)
1006 		extra.dependee = *stack->object;
1007 	else
1008 		memset(&extra.dependee, 0, sizeof(extra.dependee));
1009 	add_exact_object_address_extra(object, &extra, targetObjects);
1010 }
1011 
1012 /*
1013  * reportDependentObjects - report about dependencies, and fail if RESTRICT
1014  *
1015  * Tell the user about dependent objects that we are going to delete
1016  * (or would need to delete, but are prevented by RESTRICT mode);
1017  * then error out if there are any and it's not CASCADE mode.
1018  *
1019  *	targetObjects: list of objects that are scheduled to be deleted
1020  *	behavior: RESTRICT or CASCADE
1021  *	flags: other flags for the deletion operation
1022  *	origObject: base object of deletion, or NULL if not available
1023  *		(the latter case occurs in DROP OWNED)
1024  */
1025 static void
reportDependentObjects(const ObjectAddresses * targetObjects,DropBehavior behavior,int flags,const ObjectAddress * origObject)1026 reportDependentObjects(const ObjectAddresses *targetObjects,
1027 					   DropBehavior behavior,
1028 					   int flags,
1029 					   const ObjectAddress *origObject)
1030 {
1031 	int			msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
1032 	bool		ok = true;
1033 	StringInfoData clientdetail;
1034 	StringInfoData logdetail;
1035 	int			numReportedClient = 0;
1036 	int			numNotReportedClient = 0;
1037 	int			i;
1038 
1039 	/*
1040 	 * If we need to delete any partition-dependent objects, make sure that
1041 	 * we're deleting at least one of their partition dependencies, too. That
1042 	 * can be detected by checking that we reached them by a PARTITION
1043 	 * dependency at some point.
1044 	 *
1045 	 * We just report the first such object, as in most cases the only way to
1046 	 * trigger this complaint is to explicitly try to delete one partition of
1047 	 * a partitioned object.
1048 	 */
1049 	for (i = 0; i < targetObjects->numrefs; i++)
1050 	{
1051 		const ObjectAddressExtra *extra = &targetObjects->extras[i];
1052 
1053 		if ((extra->flags & DEPFLAG_IS_PART) &&
1054 			!(extra->flags & DEPFLAG_PARTITION))
1055 		{
1056 			const ObjectAddress *object = &targetObjects->refs[i];
1057 			char	   *otherObjDesc = getObjectDescription(&extra->dependee);
1058 
1059 			ereport(ERROR,
1060 					(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1061 					 errmsg("cannot drop %s because %s requires it",
1062 							getObjectDescription(object), otherObjDesc),
1063 					 errhint("You can drop %s instead.", otherObjDesc)));
1064 		}
1065 	}
1066 
1067 	/*
1068 	 * If no error is to be thrown, and the msglevel is too low to be shown to
1069 	 * either client or server log, there's no need to do any of the rest of
1070 	 * the work.
1071 	 *
1072 	 * Note: this code doesn't know all there is to be known about elog
1073 	 * levels, but it works for NOTICE and DEBUG2, which are the only values
1074 	 * msglevel can currently have.  We also assume we are running in a normal
1075 	 * operating environment.
1076 	 */
1077 	if (behavior == DROP_CASCADE &&
1078 		msglevel < client_min_messages &&
1079 		(msglevel < log_min_messages || log_min_messages == LOG))
1080 		return;
1081 
1082 	/*
1083 	 * We limit the number of dependencies reported to the client to
1084 	 * MAX_REPORTED_DEPS, since client software may not deal well with
1085 	 * enormous error strings.  The server log always gets a full report.
1086 	 */
1087 #define MAX_REPORTED_DEPS 100
1088 
1089 	initStringInfo(&clientdetail);
1090 	initStringInfo(&logdetail);
1091 
1092 	/*
1093 	 * We process the list back to front (ie, in dependency order not deletion
1094 	 * order), since this makes for a more understandable display.
1095 	 */
1096 	for (i = targetObjects->numrefs - 1; i >= 0; i--)
1097 	{
1098 		const ObjectAddress *obj = &targetObjects->refs[i];
1099 		const ObjectAddressExtra *extra = &targetObjects->extras[i];
1100 		char	   *objDesc;
1101 
1102 		/* Ignore the original deletion target(s) */
1103 		if (extra->flags & DEPFLAG_ORIGINAL)
1104 			continue;
1105 
1106 		/* Also ignore sub-objects; we'll report the whole object elsewhere */
1107 		if (extra->flags & DEPFLAG_SUBOBJECT)
1108 			continue;
1109 
1110 		objDesc = getObjectDescription(obj);
1111 
1112 		/* An object being dropped concurrently doesn't need to be reported */
1113 		if (objDesc == NULL)
1114 			continue;
1115 
1116 		/*
1117 		 * If, at any stage of the recursive search, we reached the object via
1118 		 * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1119 		 * okay to delete it even in RESTRICT mode.
1120 		 */
1121 		if (extra->flags & (DEPFLAG_AUTO |
1122 							DEPFLAG_INTERNAL |
1123 							DEPFLAG_PARTITION |
1124 							DEPFLAG_EXTENSION))
1125 		{
1126 			/*
1127 			 * auto-cascades are reported at DEBUG2, not msglevel.  We don't
1128 			 * try to combine them with the regular message because the
1129 			 * results are too confusing when client_min_messages and
1130 			 * log_min_messages are different.
1131 			 */
1132 			ereport(DEBUG2,
1133 					(errmsg("drop auto-cascades to %s",
1134 							objDesc)));
1135 		}
1136 		else if (behavior == DROP_RESTRICT)
1137 		{
1138 			char	   *otherDesc = getObjectDescription(&extra->dependee);
1139 
1140 			if (otherDesc)
1141 			{
1142 				if (numReportedClient < MAX_REPORTED_DEPS)
1143 				{
1144 					/* separate entries with a newline */
1145 					if (clientdetail.len != 0)
1146 						appendStringInfoChar(&clientdetail, '\n');
1147 					appendStringInfo(&clientdetail, _("%s depends on %s"),
1148 									 objDesc, otherDesc);
1149 					numReportedClient++;
1150 				}
1151 				else
1152 					numNotReportedClient++;
1153 				/* separate entries with a newline */
1154 				if (logdetail.len != 0)
1155 					appendStringInfoChar(&logdetail, '\n');
1156 				appendStringInfo(&logdetail, _("%s depends on %s"),
1157 								 objDesc, otherDesc);
1158 				pfree(otherDesc);
1159 			}
1160 			else
1161 				numNotReportedClient++;
1162 			ok = false;
1163 		}
1164 		else
1165 		{
1166 			if (numReportedClient < MAX_REPORTED_DEPS)
1167 			{
1168 				/* separate entries with a newline */
1169 				if (clientdetail.len != 0)
1170 					appendStringInfoChar(&clientdetail, '\n');
1171 				appendStringInfo(&clientdetail, _("drop cascades to %s"),
1172 								 objDesc);
1173 				numReportedClient++;
1174 			}
1175 			else
1176 				numNotReportedClient++;
1177 			/* separate entries with a newline */
1178 			if (logdetail.len != 0)
1179 				appendStringInfoChar(&logdetail, '\n');
1180 			appendStringInfo(&logdetail, _("drop cascades to %s"),
1181 							 objDesc);
1182 		}
1183 
1184 		pfree(objDesc);
1185 	}
1186 
1187 	if (numNotReportedClient > 0)
1188 		appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1189 												 "(see server log for list)",
1190 												 "\nand %d other objects "
1191 												 "(see server log for list)",
1192 												 numNotReportedClient),
1193 						 numNotReportedClient);
1194 
1195 	if (!ok)
1196 	{
1197 		if (origObject)
1198 			ereport(ERROR,
1199 					(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1200 					 errmsg("cannot drop %s because other objects depend on it",
1201 							getObjectDescription(origObject)),
1202 					 errdetail("%s", clientdetail.data),
1203 					 errdetail_log("%s", logdetail.data),
1204 					 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1205 		else
1206 			ereport(ERROR,
1207 					(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1208 					 errmsg("cannot drop desired object(s) because other objects depend on them"),
1209 					 errdetail("%s", clientdetail.data),
1210 					 errdetail_log("%s", logdetail.data),
1211 					 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1212 	}
1213 	else if (numReportedClient > 1)
1214 	{
1215 		ereport(msglevel,
1216 		/* translator: %d always has a value larger than 1 */
1217 				(errmsg_plural("drop cascades to %d other object",
1218 							   "drop cascades to %d other objects",
1219 							   numReportedClient + numNotReportedClient,
1220 							   numReportedClient + numNotReportedClient),
1221 				 errdetail("%s", clientdetail.data),
1222 				 errdetail_log("%s", logdetail.data)));
1223 	}
1224 	else if (numReportedClient == 1)
1225 	{
1226 		/* we just use the single item as-is */
1227 		ereport(msglevel,
1228 				(errmsg_internal("%s", clientdetail.data)));
1229 	}
1230 
1231 	pfree(clientdetail.data);
1232 	pfree(logdetail.data);
1233 }
1234 
1235 /*
1236  * deleteOneObject: delete a single object for performDeletion.
1237  *
1238  * *depRel is the already-open pg_depend relation.
1239  */
1240 static void
deleteOneObject(const ObjectAddress * object,Relation * depRel,int flags)1241 deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1242 {
1243 	ScanKeyData key[3];
1244 	int			nkeys;
1245 	SysScanDesc scan;
1246 	HeapTuple	tup;
1247 
1248 	/* DROP hook of the objects being removed */
1249 	InvokeObjectDropHookArg(object->classId, object->objectId,
1250 							object->objectSubId, flags);
1251 
1252 	/*
1253 	 * Close depRel if we are doing a drop concurrently.  The object deletion
1254 	 * subroutine will commit the current transaction, so we can't keep the
1255 	 * relation open across doDeletion().
1256 	 */
1257 	if (flags & PERFORM_DELETION_CONCURRENTLY)
1258 		table_close(*depRel, RowExclusiveLock);
1259 
1260 	/*
1261 	 * Delete the object itself, in an object-type-dependent way.
1262 	 *
1263 	 * We used to do this after removing the outgoing dependency links, but it
1264 	 * seems just as reasonable to do it beforehand.  In the concurrent case
1265 	 * we *must* do it in this order, because we can't make any transactional
1266 	 * updates before calling doDeletion() --- they'd get committed right
1267 	 * away, which is not cool if the deletion then fails.
1268 	 */
1269 	doDeletion(object, flags);
1270 
1271 	/*
1272 	 * Reopen depRel if we closed it above
1273 	 */
1274 	if (flags & PERFORM_DELETION_CONCURRENTLY)
1275 		*depRel = table_open(DependRelationId, RowExclusiveLock);
1276 
1277 	/*
1278 	 * Now remove any pg_depend records that link from this object to others.
1279 	 * (Any records linking to this object should be gone already.)
1280 	 *
1281 	 * When dropping a whole object (subId = 0), remove all pg_depend records
1282 	 * for its sub-objects too.
1283 	 */
1284 	ScanKeyInit(&key[0],
1285 				Anum_pg_depend_classid,
1286 				BTEqualStrategyNumber, F_OIDEQ,
1287 				ObjectIdGetDatum(object->classId));
1288 	ScanKeyInit(&key[1],
1289 				Anum_pg_depend_objid,
1290 				BTEqualStrategyNumber, F_OIDEQ,
1291 				ObjectIdGetDatum(object->objectId));
1292 	if (object->objectSubId != 0)
1293 	{
1294 		ScanKeyInit(&key[2],
1295 					Anum_pg_depend_objsubid,
1296 					BTEqualStrategyNumber, F_INT4EQ,
1297 					Int32GetDatum(object->objectSubId));
1298 		nkeys = 3;
1299 	}
1300 	else
1301 		nkeys = 2;
1302 
1303 	scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1304 							  NULL, nkeys, key);
1305 
1306 	while (HeapTupleIsValid(tup = systable_getnext(scan)))
1307 	{
1308 		CatalogTupleDelete(*depRel, &tup->t_self);
1309 	}
1310 
1311 	systable_endscan(scan);
1312 
1313 	/*
1314 	 * Delete shared dependency references related to this object.  Again, if
1315 	 * subId = 0, remove records for sub-objects too.
1316 	 */
1317 	deleteSharedDependencyRecordsFor(object->classId, object->objectId,
1318 									 object->objectSubId);
1319 
1320 
1321 	/*
1322 	 * Delete any comments, security labels, or initial privileges associated
1323 	 * with this object.  (This is a convenient place to do these things,
1324 	 * rather than having every object type know to do it.)
1325 	 */
1326 	DeleteComments(object->objectId, object->classId, object->objectSubId);
1327 	DeleteSecurityLabel(object);
1328 	DeleteInitPrivs(object);
1329 
1330 	/*
1331 	 * CommandCounterIncrement here to ensure that preceding changes are all
1332 	 * visible to the next deletion step.
1333 	 */
1334 	CommandCounterIncrement();
1335 
1336 	/*
1337 	 * And we're done!
1338 	 */
1339 }
1340 
1341 /*
1342  * doDeletion: actually delete a single object
1343  */
1344 static void
doDeletion(const ObjectAddress * object,int flags)1345 doDeletion(const ObjectAddress *object, int flags)
1346 {
1347 	switch (getObjectClass(object))
1348 	{
1349 		case OCLASS_CLASS:
1350 			{
1351 				char		relKind = get_rel_relkind(object->objectId);
1352 
1353 				if (relKind == RELKIND_INDEX ||
1354 					relKind == RELKIND_PARTITIONED_INDEX)
1355 				{
1356 					bool		concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1357 					bool		concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1358 
1359 					Assert(object->objectSubId == 0);
1360 					index_drop(object->objectId, concurrent, concurrent_lock_mode);
1361 				}
1362 				else
1363 				{
1364 					if (object->objectSubId != 0)
1365 						RemoveAttributeById(object->objectId,
1366 											object->objectSubId);
1367 					else
1368 						heap_drop_with_catalog(object->objectId);
1369 				}
1370 
1371 				/*
1372 				 * for a sequence, in addition to dropping the heap, also
1373 				 * delete pg_sequence tuple
1374 				 */
1375 				if (relKind == RELKIND_SEQUENCE)
1376 					DeleteSequenceTuple(object->objectId);
1377 				break;
1378 			}
1379 
1380 		case OCLASS_PROC:
1381 			RemoveFunctionById(object->objectId);
1382 			break;
1383 
1384 		case OCLASS_TYPE:
1385 			RemoveTypeById(object->objectId);
1386 			break;
1387 
1388 		case OCLASS_CAST:
1389 			DropCastById(object->objectId);
1390 			break;
1391 
1392 		case OCLASS_COLLATION:
1393 			RemoveCollationById(object->objectId);
1394 			break;
1395 
1396 		case OCLASS_CONSTRAINT:
1397 			RemoveConstraintById(object->objectId);
1398 			break;
1399 
1400 		case OCLASS_CONVERSION:
1401 			RemoveConversionById(object->objectId);
1402 			break;
1403 
1404 		case OCLASS_DEFAULT:
1405 			RemoveAttrDefaultById(object->objectId);
1406 			break;
1407 
1408 		case OCLASS_LANGUAGE:
1409 			DropProceduralLanguageById(object->objectId);
1410 			break;
1411 
1412 		case OCLASS_LARGEOBJECT:
1413 			LargeObjectDrop(object->objectId);
1414 			break;
1415 
1416 		case OCLASS_OPERATOR:
1417 			RemoveOperatorById(object->objectId);
1418 			break;
1419 
1420 		case OCLASS_OPCLASS:
1421 			RemoveOpClassById(object->objectId);
1422 			break;
1423 
1424 		case OCLASS_OPFAMILY:
1425 			RemoveOpFamilyById(object->objectId);
1426 			break;
1427 
1428 		case OCLASS_AM:
1429 			RemoveAccessMethodById(object->objectId);
1430 			break;
1431 
1432 		case OCLASS_AMOP:
1433 			RemoveAmOpEntryById(object->objectId);
1434 			break;
1435 
1436 		case OCLASS_AMPROC:
1437 			RemoveAmProcEntryById(object->objectId);
1438 			break;
1439 
1440 		case OCLASS_REWRITE:
1441 			RemoveRewriteRuleById(object->objectId);
1442 			break;
1443 
1444 		case OCLASS_TRIGGER:
1445 			RemoveTriggerById(object->objectId);
1446 			break;
1447 
1448 		case OCLASS_SCHEMA:
1449 			RemoveSchemaById(object->objectId);
1450 			break;
1451 
1452 		case OCLASS_STATISTIC_EXT:
1453 			RemoveStatisticsById(object->objectId);
1454 			break;
1455 
1456 		case OCLASS_TSPARSER:
1457 			RemoveTSParserById(object->objectId);
1458 			break;
1459 
1460 		case OCLASS_TSDICT:
1461 			RemoveTSDictionaryById(object->objectId);
1462 			break;
1463 
1464 		case OCLASS_TSTEMPLATE:
1465 			RemoveTSTemplateById(object->objectId);
1466 			break;
1467 
1468 		case OCLASS_TSCONFIG:
1469 			RemoveTSConfigurationById(object->objectId);
1470 			break;
1471 
1472 			/*
1473 			 * OCLASS_ROLE, OCLASS_DATABASE, OCLASS_TBLSPACE intentionally not
1474 			 * handled here
1475 			 */
1476 
1477 		case OCLASS_FDW:
1478 			RemoveForeignDataWrapperById(object->objectId);
1479 			break;
1480 
1481 		case OCLASS_FOREIGN_SERVER:
1482 			RemoveForeignServerById(object->objectId);
1483 			break;
1484 
1485 		case OCLASS_USER_MAPPING:
1486 			RemoveUserMappingById(object->objectId);
1487 			break;
1488 
1489 		case OCLASS_DEFACL:
1490 			RemoveDefaultACLById(object->objectId);
1491 			break;
1492 
1493 		case OCLASS_EXTENSION:
1494 			RemoveExtensionById(object->objectId);
1495 			break;
1496 
1497 		case OCLASS_EVENT_TRIGGER:
1498 			RemoveEventTriggerById(object->objectId);
1499 			break;
1500 
1501 		case OCLASS_POLICY:
1502 			RemovePolicyById(object->objectId);
1503 			break;
1504 
1505 		case OCLASS_PUBLICATION:
1506 			RemovePublicationById(object->objectId);
1507 			break;
1508 
1509 		case OCLASS_PUBLICATION_REL:
1510 			RemovePublicationRelById(object->objectId);
1511 			break;
1512 
1513 		case OCLASS_TRANSFORM:
1514 			DropTransformById(object->objectId);
1515 			break;
1516 
1517 			/*
1518 			 * These global object types are not supported here.
1519 			 */
1520 		case OCLASS_ROLE:
1521 		case OCLASS_DATABASE:
1522 		case OCLASS_TBLSPACE:
1523 		case OCLASS_SUBSCRIPTION:
1524 			elog(ERROR, "global objects cannot be deleted by doDeletion");
1525 			break;
1526 
1527 			/*
1528 			 * There's intentionally no default: case here; we want the
1529 			 * compiler to warn if a new OCLASS hasn't been handled above.
1530 			 */
1531 	}
1532 }
1533 
1534 /*
1535  * AcquireDeletionLock - acquire a suitable lock for deleting an object
1536  *
1537  * Accepts the same flags as performDeletion (though currently only
1538  * PERFORM_DELETION_CONCURRENTLY does anything).
1539  *
1540  * We use LockRelation for relations, LockDatabaseObject for everything
1541  * else.  Shared-across-databases objects are not currently supported
1542  * because no caller cares, but could be modified to use LockSharedObject.
1543  */
1544 void
AcquireDeletionLock(const ObjectAddress * object,int flags)1545 AcquireDeletionLock(const ObjectAddress *object, int flags)
1546 {
1547 	if (object->classId == RelationRelationId)
1548 	{
1549 		/*
1550 		 * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1551 		 * the index for the moment.  index_drop() will promote the lock once
1552 		 * it's safe to do so.  In all other cases we need full exclusive
1553 		 * lock.
1554 		 */
1555 		if (flags & PERFORM_DELETION_CONCURRENTLY)
1556 			LockRelationOid(object->objectId, ShareUpdateExclusiveLock);
1557 		else
1558 			LockRelationOid(object->objectId, AccessExclusiveLock);
1559 	}
1560 	else
1561 	{
1562 		/* assume we should lock the whole object not a sub-object */
1563 		LockDatabaseObject(object->classId, object->objectId, 0,
1564 						   AccessExclusiveLock);
1565 	}
1566 }
1567 
1568 /*
1569  * ReleaseDeletionLock - release an object deletion lock
1570  *
1571  * Companion to AcquireDeletionLock.
1572  */
1573 void
ReleaseDeletionLock(const ObjectAddress * object)1574 ReleaseDeletionLock(const ObjectAddress *object)
1575 {
1576 	if (object->classId == RelationRelationId)
1577 		UnlockRelationOid(object->objectId, AccessExclusiveLock);
1578 	else
1579 		/* assume we should lock the whole object not a sub-object */
1580 		UnlockDatabaseObject(object->classId, object->objectId, 0,
1581 							 AccessExclusiveLock);
1582 }
1583 
1584 /*
1585  * recordDependencyOnExpr - find expression dependencies
1586  *
1587  * This is used to find the dependencies of rules, constraint expressions,
1588  * etc.
1589  *
1590  * Given an expression or query in node-tree form, find all the objects
1591  * it refers to (tables, columns, operators, functions, etc).  Record
1592  * a dependency of the specified type from the given depender object
1593  * to each object mentioned in the expression.
1594  *
1595  * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1596  * It can be NIL if no such variables are expected.
1597  */
1598 void
recordDependencyOnExpr(const ObjectAddress * depender,Node * expr,List * rtable,DependencyType behavior)1599 recordDependencyOnExpr(const ObjectAddress *depender,
1600 					   Node *expr, List *rtable,
1601 					   DependencyType behavior)
1602 {
1603 	find_expr_references_context context;
1604 
1605 	context.addrs = new_object_addresses();
1606 
1607 	/* Set up interpretation for Vars at varlevelsup = 0 */
1608 	context.rtables = list_make1(rtable);
1609 
1610 	/* Scan the expression tree for referenceable objects */
1611 	find_expr_references_walker(expr, &context);
1612 
1613 	/* Remove any duplicates */
1614 	eliminate_duplicate_dependencies(context.addrs);
1615 
1616 	/* And record 'em */
1617 	recordMultipleDependencies(depender,
1618 							   context.addrs->refs, context.addrs->numrefs,
1619 							   behavior);
1620 
1621 	free_object_addresses(context.addrs);
1622 }
1623 
1624 /*
1625  * recordDependencyOnSingleRelExpr - find expression dependencies
1626  *
1627  * As above, but only one relation is expected to be referenced (with
1628  * varno = 1 and varlevelsup = 0).  Pass the relation OID instead of a
1629  * range table.  An additional frammish is that dependencies on that
1630  * relation's component columns will be marked with 'self_behavior',
1631  * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1632  * is true, those dependencies are reversed so that the columns are made
1633  * to depend on the table not vice versa.
1634  *
1635  * NOTE: the caller should ensure that a whole-table dependency on the
1636  * specified relation is created separately, if one is needed.  In particular,
1637  * a whole-row Var "relation.*" will not cause this routine to emit any
1638  * dependency item.  This is appropriate behavior for subexpressions of an
1639  * ordinary query, so other cases need to cope as necessary.
1640  */
1641 void
recordDependencyOnSingleRelExpr(const ObjectAddress * depender,Node * expr,Oid relId,DependencyType behavior,DependencyType self_behavior,bool reverse_self)1642 recordDependencyOnSingleRelExpr(const ObjectAddress *depender,
1643 								Node *expr, Oid relId,
1644 								DependencyType behavior,
1645 								DependencyType self_behavior,
1646 								bool reverse_self)
1647 {
1648 	find_expr_references_context context;
1649 	RangeTblEntry rte;
1650 
1651 	context.addrs = new_object_addresses();
1652 
1653 	/* We gin up a rather bogus rangetable list to handle Vars */
1654 	MemSet(&rte, 0, sizeof(rte));
1655 	rte.type = T_RangeTblEntry;
1656 	rte.rtekind = RTE_RELATION;
1657 	rte.relid = relId;
1658 	rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1659 	rte.rellockmode = AccessShareLock;
1660 
1661 	context.rtables = list_make1(list_make1(&rte));
1662 
1663 	/* Scan the expression tree for referenceable objects */
1664 	find_expr_references_walker(expr, &context);
1665 
1666 	/* Remove any duplicates */
1667 	eliminate_duplicate_dependencies(context.addrs);
1668 
1669 	/* Separate self-dependencies if necessary */
1670 	if ((behavior != self_behavior || reverse_self) &&
1671 		context.addrs->numrefs > 0)
1672 	{
1673 		ObjectAddresses *self_addrs;
1674 		ObjectAddress *outobj;
1675 		int			oldref,
1676 					outrefs;
1677 
1678 		self_addrs = new_object_addresses();
1679 
1680 		outobj = context.addrs->refs;
1681 		outrefs = 0;
1682 		for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1683 		{
1684 			ObjectAddress *thisobj = context.addrs->refs + oldref;
1685 
1686 			if (thisobj->classId == RelationRelationId &&
1687 				thisobj->objectId == relId)
1688 			{
1689 				/* Move this ref into self_addrs */
1690 				add_exact_object_address(thisobj, self_addrs);
1691 			}
1692 			else
1693 			{
1694 				/* Keep it in context.addrs */
1695 				*outobj = *thisobj;
1696 				outobj++;
1697 				outrefs++;
1698 			}
1699 		}
1700 		context.addrs->numrefs = outrefs;
1701 
1702 		/* Record the self-dependencies with the appropriate direction */
1703 		if (!reverse_self)
1704 			recordMultipleDependencies(depender,
1705 									   self_addrs->refs, self_addrs->numrefs,
1706 									   self_behavior);
1707 		else
1708 		{
1709 			/* Can't use recordMultipleDependencies, so do it the hard way */
1710 			int			selfref;
1711 
1712 			for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1713 			{
1714 				ObjectAddress *thisobj = self_addrs->refs + selfref;
1715 
1716 				recordDependencyOn(thisobj, depender, self_behavior);
1717 			}
1718 		}
1719 
1720 		free_object_addresses(self_addrs);
1721 	}
1722 
1723 	/* Record the external dependencies */
1724 	recordMultipleDependencies(depender,
1725 							   context.addrs->refs, context.addrs->numrefs,
1726 							   behavior);
1727 
1728 	free_object_addresses(context.addrs);
1729 }
1730 
1731 /*
1732  * Recursively search an expression tree for object references.
1733  *
1734  * Note: in many cases we do not need to create dependencies on the datatypes
1735  * involved in an expression, because we'll have an indirect dependency via
1736  * some other object.  For instance Var nodes depend on a column which depends
1737  * on the datatype, and OpExpr nodes depend on the operator which depends on
1738  * the datatype.  However we do need a type dependency if there is no such
1739  * indirect dependency, as for example in Const and CoerceToDomain nodes.
1740  *
1741  * Similarly, we don't need to create dependencies on collations except where
1742  * the collation is being freshly introduced to the expression.
1743  */
1744 static bool
find_expr_references_walker(Node * node,find_expr_references_context * context)1745 find_expr_references_walker(Node *node,
1746 							find_expr_references_context *context)
1747 {
1748 	if (node == NULL)
1749 		return false;
1750 	if (IsA(node, Var))
1751 	{
1752 		Var		   *var = (Var *) node;
1753 		List	   *rtable;
1754 		RangeTblEntry *rte;
1755 
1756 		/* Find matching rtable entry, or complain if not found */
1757 		if (var->varlevelsup >= list_length(context->rtables))
1758 			elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1759 		rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1760 		if (var->varno <= 0 || var->varno > list_length(rtable))
1761 			elog(ERROR, "invalid varno %d", var->varno);
1762 		rte = rt_fetch(var->varno, rtable);
1763 
1764 		/*
1765 		 * A whole-row Var references no specific columns, so adds no new
1766 		 * dependency.  (We assume that there is a whole-table dependency
1767 		 * arising from each underlying rangetable entry.  While we could
1768 		 * record such a dependency when finding a whole-row Var that
1769 		 * references a relation directly, it's quite unclear how to extend
1770 		 * that to whole-row Vars for JOINs, so it seems better to leave the
1771 		 * responsibility with the range table.  Note that this poses some
1772 		 * risks for identifying dependencies of stand-alone expressions:
1773 		 * whole-table references may need to be created separately.)
1774 		 */
1775 		if (var->varattno == InvalidAttrNumber)
1776 			return false;
1777 		if (rte->rtekind == RTE_RELATION)
1778 		{
1779 			/* If it's a plain relation, reference this column */
1780 			add_object_address(OCLASS_CLASS, rte->relid, var->varattno,
1781 							   context->addrs);
1782 		}
1783 
1784 		/*
1785 		 * Vars referencing other RTE types require no additional work.  In
1786 		 * particular, a join alias Var can be ignored, because it must
1787 		 * reference a merged USING column.  The relevant join input columns
1788 		 * will also be referenced in the join qual, and any type coercion
1789 		 * functions involved in the alias expression will be dealt with when
1790 		 * we scan the RTE itself.
1791 		 */
1792 		return false;
1793 	}
1794 	else if (IsA(node, Const))
1795 	{
1796 		Const	   *con = (Const *) node;
1797 		Oid			objoid;
1798 
1799 		/* A constant must depend on the constant's datatype */
1800 		add_object_address(OCLASS_TYPE, con->consttype, 0,
1801 						   context->addrs);
1802 
1803 		/*
1804 		 * We must also depend on the constant's collation: it could be
1805 		 * different from the datatype's, if a CollateExpr was const-folded to
1806 		 * a simple constant.  However we can save work in the most common
1807 		 * case where the collation is "default", since we know that's pinned.
1808 		 */
1809 		if (OidIsValid(con->constcollid) &&
1810 			con->constcollid != DEFAULT_COLLATION_OID)
1811 			add_object_address(OCLASS_COLLATION, con->constcollid, 0,
1812 							   context->addrs);
1813 
1814 		/*
1815 		 * If it's a regclass or similar literal referring to an existing
1816 		 * object, add a reference to that object.  (Currently, only the
1817 		 * regclass and regconfig cases have any likely use, but we may as
1818 		 * well handle all the OID-alias datatypes consistently.)
1819 		 */
1820 		if (!con->constisnull)
1821 		{
1822 			switch (con->consttype)
1823 			{
1824 				case REGPROCOID:
1825 				case REGPROCEDUREOID:
1826 					objoid = DatumGetObjectId(con->constvalue);
1827 					if (SearchSysCacheExists1(PROCOID,
1828 											  ObjectIdGetDatum(objoid)))
1829 						add_object_address(OCLASS_PROC, objoid, 0,
1830 										   context->addrs);
1831 					break;
1832 				case REGOPEROID:
1833 				case REGOPERATOROID:
1834 					objoid = DatumGetObjectId(con->constvalue);
1835 					if (SearchSysCacheExists1(OPEROID,
1836 											  ObjectIdGetDatum(objoid)))
1837 						add_object_address(OCLASS_OPERATOR, objoid, 0,
1838 										   context->addrs);
1839 					break;
1840 				case REGCLASSOID:
1841 					objoid = DatumGetObjectId(con->constvalue);
1842 					if (SearchSysCacheExists1(RELOID,
1843 											  ObjectIdGetDatum(objoid)))
1844 						add_object_address(OCLASS_CLASS, objoid, 0,
1845 										   context->addrs);
1846 					break;
1847 				case REGTYPEOID:
1848 					objoid = DatumGetObjectId(con->constvalue);
1849 					if (SearchSysCacheExists1(TYPEOID,
1850 											  ObjectIdGetDatum(objoid)))
1851 						add_object_address(OCLASS_TYPE, objoid, 0,
1852 										   context->addrs);
1853 					break;
1854 				case REGCONFIGOID:
1855 					objoid = DatumGetObjectId(con->constvalue);
1856 					if (SearchSysCacheExists1(TSCONFIGOID,
1857 											  ObjectIdGetDatum(objoid)))
1858 						add_object_address(OCLASS_TSCONFIG, objoid, 0,
1859 										   context->addrs);
1860 					break;
1861 				case REGDICTIONARYOID:
1862 					objoid = DatumGetObjectId(con->constvalue);
1863 					if (SearchSysCacheExists1(TSDICTOID,
1864 											  ObjectIdGetDatum(objoid)))
1865 						add_object_address(OCLASS_TSDICT, objoid, 0,
1866 										   context->addrs);
1867 					break;
1868 
1869 				case REGNAMESPACEOID:
1870 					objoid = DatumGetObjectId(con->constvalue);
1871 					if (SearchSysCacheExists1(NAMESPACEOID,
1872 											  ObjectIdGetDatum(objoid)))
1873 						add_object_address(OCLASS_SCHEMA, objoid, 0,
1874 										   context->addrs);
1875 					break;
1876 
1877 					/*
1878 					 * Dependencies for regrole should be shared among all
1879 					 * databases, so explicitly inhibit to have dependencies.
1880 					 */
1881 				case REGROLEOID:
1882 					ereport(ERROR,
1883 							(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1884 							 errmsg("constant of the type %s cannot be used here",
1885 									"regrole")));
1886 					break;
1887 			}
1888 		}
1889 		return false;
1890 	}
1891 	else if (IsA(node, Param))
1892 	{
1893 		Param	   *param = (Param *) node;
1894 
1895 		/* A parameter must depend on the parameter's datatype */
1896 		add_object_address(OCLASS_TYPE, param->paramtype, 0,
1897 						   context->addrs);
1898 		/* and its collation, just as for Consts */
1899 		if (OidIsValid(param->paramcollid) &&
1900 			param->paramcollid != DEFAULT_COLLATION_OID)
1901 			add_object_address(OCLASS_COLLATION, param->paramcollid, 0,
1902 							   context->addrs);
1903 	}
1904 	else if (IsA(node, FuncExpr))
1905 	{
1906 		FuncExpr   *funcexpr = (FuncExpr *) node;
1907 
1908 		add_object_address(OCLASS_PROC, funcexpr->funcid, 0,
1909 						   context->addrs);
1910 		/* fall through to examine arguments */
1911 	}
1912 	else if (IsA(node, OpExpr))
1913 	{
1914 		OpExpr	   *opexpr = (OpExpr *) node;
1915 
1916 		add_object_address(OCLASS_OPERATOR, opexpr->opno, 0,
1917 						   context->addrs);
1918 		/* fall through to examine arguments */
1919 	}
1920 	else if (IsA(node, DistinctExpr))
1921 	{
1922 		DistinctExpr *distinctexpr = (DistinctExpr *) node;
1923 
1924 		add_object_address(OCLASS_OPERATOR, distinctexpr->opno, 0,
1925 						   context->addrs);
1926 		/* fall through to examine arguments */
1927 	}
1928 	else if (IsA(node, NullIfExpr))
1929 	{
1930 		NullIfExpr *nullifexpr = (NullIfExpr *) node;
1931 
1932 		add_object_address(OCLASS_OPERATOR, nullifexpr->opno, 0,
1933 						   context->addrs);
1934 		/* fall through to examine arguments */
1935 	}
1936 	else if (IsA(node, ScalarArrayOpExpr))
1937 	{
1938 		ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1939 
1940 		add_object_address(OCLASS_OPERATOR, opexpr->opno, 0,
1941 						   context->addrs);
1942 		/* fall through to examine arguments */
1943 	}
1944 	else if (IsA(node, Aggref))
1945 	{
1946 		Aggref	   *aggref = (Aggref *) node;
1947 
1948 		add_object_address(OCLASS_PROC, aggref->aggfnoid, 0,
1949 						   context->addrs);
1950 		/* fall through to examine arguments */
1951 	}
1952 	else if (IsA(node, WindowFunc))
1953 	{
1954 		WindowFunc *wfunc = (WindowFunc *) node;
1955 
1956 		add_object_address(OCLASS_PROC, wfunc->winfnoid, 0,
1957 						   context->addrs);
1958 		/* fall through to examine arguments */
1959 	}
1960 	else if (IsA(node, SubPlan))
1961 	{
1962 		/* Extra work needed here if we ever need this case */
1963 		elog(ERROR, "already-planned subqueries not supported");
1964 	}
1965 	else if (IsA(node, FieldSelect))
1966 	{
1967 		FieldSelect *fselect = (FieldSelect *) node;
1968 		Oid			argtype = getBaseType(exprType((Node *) fselect->arg));
1969 		Oid			reltype = get_typ_typrelid(argtype);
1970 
1971 		/*
1972 		 * We need a dependency on the specific column named in FieldSelect,
1973 		 * assuming we can identify the pg_class OID for it.  (Probably we
1974 		 * always can at the moment, but in future it might be possible for
1975 		 * argtype to be RECORDOID.)  If we can make a column dependency then
1976 		 * we shouldn't need a dependency on the column's type; but if we
1977 		 * can't, make a dependency on the type, as it might not appear
1978 		 * anywhere else in the expression.
1979 		 */
1980 		if (OidIsValid(reltype))
1981 			add_object_address(OCLASS_CLASS, reltype, fselect->fieldnum,
1982 							   context->addrs);
1983 		else
1984 			add_object_address(OCLASS_TYPE, fselect->resulttype, 0,
1985 							   context->addrs);
1986 		/* the collation might not be referenced anywhere else, either */
1987 		if (OidIsValid(fselect->resultcollid) &&
1988 			fselect->resultcollid != DEFAULT_COLLATION_OID)
1989 			add_object_address(OCLASS_COLLATION, fselect->resultcollid, 0,
1990 							   context->addrs);
1991 	}
1992 	else if (IsA(node, FieldStore))
1993 	{
1994 		FieldStore *fstore = (FieldStore *) node;
1995 		Oid			reltype = get_typ_typrelid(fstore->resulttype);
1996 
1997 		/* similar considerations to FieldSelect, but multiple column(s) */
1998 		if (OidIsValid(reltype))
1999 		{
2000 			ListCell   *l;
2001 
2002 			foreach(l, fstore->fieldnums)
2003 				add_object_address(OCLASS_CLASS, reltype, lfirst_int(l),
2004 								   context->addrs);
2005 		}
2006 		else
2007 			add_object_address(OCLASS_TYPE, fstore->resulttype, 0,
2008 							   context->addrs);
2009 	}
2010 	else if (IsA(node, RelabelType))
2011 	{
2012 		RelabelType *relab = (RelabelType *) node;
2013 
2014 		/* since there is no function dependency, need to depend on type */
2015 		add_object_address(OCLASS_TYPE, relab->resulttype, 0,
2016 						   context->addrs);
2017 		/* the collation might not be referenced anywhere else, either */
2018 		if (OidIsValid(relab->resultcollid) &&
2019 			relab->resultcollid != DEFAULT_COLLATION_OID)
2020 			add_object_address(OCLASS_COLLATION, relab->resultcollid, 0,
2021 							   context->addrs);
2022 	}
2023 	else if (IsA(node, CoerceViaIO))
2024 	{
2025 		CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2026 
2027 		/* since there is no exposed function, need to depend on type */
2028 		add_object_address(OCLASS_TYPE, iocoerce->resulttype, 0,
2029 						   context->addrs);
2030 		/* the collation might not be referenced anywhere else, either */
2031 		if (OidIsValid(iocoerce->resultcollid) &&
2032 			iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2033 			add_object_address(OCLASS_COLLATION, iocoerce->resultcollid, 0,
2034 							   context->addrs);
2035 	}
2036 	else if (IsA(node, ArrayCoerceExpr))
2037 	{
2038 		ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2039 
2040 		/* as above, depend on type */
2041 		add_object_address(OCLASS_TYPE, acoerce->resulttype, 0,
2042 						   context->addrs);
2043 		/* the collation might not be referenced anywhere else, either */
2044 		if (OidIsValid(acoerce->resultcollid) &&
2045 			acoerce->resultcollid != DEFAULT_COLLATION_OID)
2046 			add_object_address(OCLASS_COLLATION, acoerce->resultcollid, 0,
2047 							   context->addrs);
2048 		/* fall through to examine arguments */
2049 	}
2050 	else if (IsA(node, ConvertRowtypeExpr))
2051 	{
2052 		ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2053 
2054 		/* since there is no function dependency, need to depend on type */
2055 		add_object_address(OCLASS_TYPE, cvt->resulttype, 0,
2056 						   context->addrs);
2057 	}
2058 	else if (IsA(node, CollateExpr))
2059 	{
2060 		CollateExpr *coll = (CollateExpr *) node;
2061 
2062 		add_object_address(OCLASS_COLLATION, coll->collOid, 0,
2063 						   context->addrs);
2064 	}
2065 	else if (IsA(node, RowExpr))
2066 	{
2067 		RowExpr    *rowexpr = (RowExpr *) node;
2068 
2069 		add_object_address(OCLASS_TYPE, rowexpr->row_typeid, 0,
2070 						   context->addrs);
2071 	}
2072 	else if (IsA(node, RowCompareExpr))
2073 	{
2074 		RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2075 		ListCell   *l;
2076 
2077 		foreach(l, rcexpr->opnos)
2078 		{
2079 			add_object_address(OCLASS_OPERATOR, lfirst_oid(l), 0,
2080 							   context->addrs);
2081 		}
2082 		foreach(l, rcexpr->opfamilies)
2083 		{
2084 			add_object_address(OCLASS_OPFAMILY, lfirst_oid(l), 0,
2085 							   context->addrs);
2086 		}
2087 		/* fall through to examine arguments */
2088 	}
2089 	else if (IsA(node, CoerceToDomain))
2090 	{
2091 		CoerceToDomain *cd = (CoerceToDomain *) node;
2092 
2093 		add_object_address(OCLASS_TYPE, cd->resulttype, 0,
2094 						   context->addrs);
2095 	}
2096 	else if (IsA(node, NextValueExpr))
2097 	{
2098 		NextValueExpr *nve = (NextValueExpr *) node;
2099 
2100 		add_object_address(OCLASS_CLASS, nve->seqid, 0,
2101 						   context->addrs);
2102 	}
2103 	else if (IsA(node, OnConflictExpr))
2104 	{
2105 		OnConflictExpr *onconflict = (OnConflictExpr *) node;
2106 
2107 		if (OidIsValid(onconflict->constraint))
2108 			add_object_address(OCLASS_CONSTRAINT, onconflict->constraint, 0,
2109 							   context->addrs);
2110 		/* fall through to examine arguments */
2111 	}
2112 	else if (IsA(node, SortGroupClause))
2113 	{
2114 		SortGroupClause *sgc = (SortGroupClause *) node;
2115 
2116 		add_object_address(OCLASS_OPERATOR, sgc->eqop, 0,
2117 						   context->addrs);
2118 		if (OidIsValid(sgc->sortop))
2119 			add_object_address(OCLASS_OPERATOR, sgc->sortop, 0,
2120 							   context->addrs);
2121 		return false;
2122 	}
2123 	else if (IsA(node, WindowClause))
2124 	{
2125 		WindowClause *wc = (WindowClause *) node;
2126 
2127 		if (OidIsValid(wc->startInRangeFunc))
2128 			add_object_address(OCLASS_PROC, wc->startInRangeFunc, 0,
2129 							   context->addrs);
2130 		if (OidIsValid(wc->endInRangeFunc))
2131 			add_object_address(OCLASS_PROC, wc->endInRangeFunc, 0,
2132 							   context->addrs);
2133 		if (OidIsValid(wc->inRangeColl) &&
2134 			wc->inRangeColl != DEFAULT_COLLATION_OID)
2135 			add_object_address(OCLASS_COLLATION, wc->inRangeColl, 0,
2136 							   context->addrs);
2137 		/* fall through to examine substructure */
2138 	}
2139 	else if (IsA(node, Query))
2140 	{
2141 		/* Recurse into RTE subquery or not-yet-planned sublink subquery */
2142 		Query	   *query = (Query *) node;
2143 		ListCell   *lc;
2144 		bool		result;
2145 
2146 		/*
2147 		 * Add whole-relation refs for each plain relation mentioned in the
2148 		 * subquery's rtable, and ensure we add refs for any type-coercion
2149 		 * functions used in join alias lists.
2150 		 *
2151 		 * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2152 		 * RTEs, subqueries, etc, so no need to do that here.  But we must
2153 		 * tell it not to visit join alias lists, or we'll add refs for join
2154 		 * input columns whether or not they are actually used in our query.
2155 		 *
2156 		 * Note: we don't need to worry about collations mentioned in
2157 		 * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2158 		 * collations referenced in other parts of the Query.  We do have to
2159 		 * worry about collations mentioned in RTE_FUNCTION, but we take care
2160 		 * of those when we recurse to the RangeTblFunction node(s).
2161 		 */
2162 		foreach(lc, query->rtable)
2163 		{
2164 			RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2165 
2166 			switch (rte->rtekind)
2167 			{
2168 				case RTE_RELATION:
2169 					add_object_address(OCLASS_CLASS, rte->relid, 0,
2170 									   context->addrs);
2171 					break;
2172 				case RTE_JOIN:
2173 
2174 					/*
2175 					 * Examine joinaliasvars entries only for merged JOIN
2176 					 * USING columns.  Only those entries could contain
2177 					 * type-coercion functions.  Also, their join input
2178 					 * columns must be referenced in the join quals, so this
2179 					 * won't accidentally add refs to otherwise-unused join
2180 					 * input columns.  (We want to ref the type coercion
2181 					 * functions even if the merged column isn't explicitly
2182 					 * used anywhere, to protect possible expansion of the
2183 					 * join RTE as a whole-row var, and because it seems like
2184 					 * a bad idea to allow dropping a function that's present
2185 					 * in our query tree, whether or not it could get called.)
2186 					 */
2187 					context->rtables = lcons(query->rtable, context->rtables);
2188 					for (int i = 0; i < rte->joinmergedcols; i++)
2189 					{
2190 						Node	   *aliasvar = list_nth(rte->joinaliasvars, i);
2191 
2192 						if (!IsA(aliasvar, Var))
2193 							find_expr_references_walker(aliasvar, context);
2194 					}
2195 					context->rtables = list_delete_first(context->rtables);
2196 					break;
2197 				default:
2198 					break;
2199 			}
2200 		}
2201 
2202 		/*
2203 		 * If the query is an INSERT or UPDATE, we should create a dependency
2204 		 * on each target column, to prevent the specific target column from
2205 		 * being dropped.  Although we will visit the TargetEntry nodes again
2206 		 * during query_tree_walker, we won't have enough context to do this
2207 		 * conveniently, so do it here.
2208 		 */
2209 		if (query->commandType == CMD_INSERT ||
2210 			query->commandType == CMD_UPDATE)
2211 		{
2212 			RangeTblEntry *rte;
2213 
2214 			if (query->resultRelation <= 0 ||
2215 				query->resultRelation > list_length(query->rtable))
2216 				elog(ERROR, "invalid resultRelation %d",
2217 					 query->resultRelation);
2218 			rte = rt_fetch(query->resultRelation, query->rtable);
2219 			if (rte->rtekind == RTE_RELATION)
2220 			{
2221 				foreach(lc, query->targetList)
2222 				{
2223 					TargetEntry *tle = (TargetEntry *) lfirst(lc);
2224 
2225 					if (tle->resjunk)
2226 						continue;	/* ignore junk tlist items */
2227 					add_object_address(OCLASS_CLASS, rte->relid, tle->resno,
2228 									   context->addrs);
2229 				}
2230 			}
2231 		}
2232 
2233 		/*
2234 		 * Add dependencies on constraints listed in query's constraintDeps
2235 		 */
2236 		foreach(lc, query->constraintDeps)
2237 		{
2238 			add_object_address(OCLASS_CONSTRAINT, lfirst_oid(lc), 0,
2239 							   context->addrs);
2240 		}
2241 
2242 		/* Examine substructure of query */
2243 		context->rtables = lcons(query->rtable, context->rtables);
2244 		result = query_tree_walker(query,
2245 								   find_expr_references_walker,
2246 								   (void *) context,
2247 								   QTW_IGNORE_JOINALIASES |
2248 								   QTW_EXAMINE_SORTGROUP);
2249 		context->rtables = list_delete_first(context->rtables);
2250 		return result;
2251 	}
2252 	else if (IsA(node, SetOperationStmt))
2253 	{
2254 		SetOperationStmt *setop = (SetOperationStmt *) node;
2255 
2256 		/* we need to look at the groupClauses for operator references */
2257 		find_expr_references_walker((Node *) setop->groupClauses, context);
2258 		/* fall through to examine child nodes */
2259 	}
2260 	else if (IsA(node, RangeTblFunction))
2261 	{
2262 		RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2263 		ListCell   *ct;
2264 
2265 		/*
2266 		 * Add refs for any datatypes and collations used in a column
2267 		 * definition list for a RECORD function.  (For other cases, it should
2268 		 * be enough to depend on the function itself.)
2269 		 */
2270 		foreach(ct, rtfunc->funccoltypes)
2271 		{
2272 			add_object_address(OCLASS_TYPE, lfirst_oid(ct), 0,
2273 							   context->addrs);
2274 		}
2275 		foreach(ct, rtfunc->funccolcollations)
2276 		{
2277 			Oid			collid = lfirst_oid(ct);
2278 
2279 			if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2280 				add_object_address(OCLASS_COLLATION, collid, 0,
2281 								   context->addrs);
2282 		}
2283 	}
2284 	else if (IsA(node, TableFunc))
2285 	{
2286 		TableFunc  *tf = (TableFunc *) node;
2287 		ListCell   *ct;
2288 
2289 		/*
2290 		 * Add refs for the datatypes and collations used in the TableFunc.
2291 		 */
2292 		foreach(ct, tf->coltypes)
2293 		{
2294 			add_object_address(OCLASS_TYPE, lfirst_oid(ct), 0,
2295 							   context->addrs);
2296 		}
2297 		foreach(ct, tf->colcollations)
2298 		{
2299 			Oid			collid = lfirst_oid(ct);
2300 
2301 			if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2302 				add_object_address(OCLASS_COLLATION, collid, 0,
2303 								   context->addrs);
2304 		}
2305 	}
2306 	else if (IsA(node, TableSampleClause))
2307 	{
2308 		TableSampleClause *tsc = (TableSampleClause *) node;
2309 
2310 		add_object_address(OCLASS_PROC, tsc->tsmhandler, 0,
2311 						   context->addrs);
2312 		/* fall through to examine arguments */
2313 	}
2314 
2315 	return expression_tree_walker(node, find_expr_references_walker,
2316 								  (void *) context);
2317 }
2318 
2319 /*
2320  * Given an array of dependency references, eliminate any duplicates.
2321  */
2322 static void
eliminate_duplicate_dependencies(ObjectAddresses * addrs)2323 eliminate_duplicate_dependencies(ObjectAddresses *addrs)
2324 {
2325 	ObjectAddress *priorobj;
2326 	int			oldref,
2327 				newrefs;
2328 
2329 	/*
2330 	 * We can't sort if the array has "extra" data, because there's no way to
2331 	 * keep it in sync.  Fortunately that combination of features is not
2332 	 * needed.
2333 	 */
2334 	Assert(!addrs->extras);
2335 
2336 	if (addrs->numrefs <= 1)
2337 		return;					/* nothing to do */
2338 
2339 	/* Sort the refs so that duplicates are adjacent */
2340 	qsort((void *) addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2341 		  object_address_comparator);
2342 
2343 	/* Remove dups */
2344 	priorobj = addrs->refs;
2345 	newrefs = 1;
2346 	for (oldref = 1; oldref < addrs->numrefs; oldref++)
2347 	{
2348 		ObjectAddress *thisobj = addrs->refs + oldref;
2349 
2350 		if (priorobj->classId == thisobj->classId &&
2351 			priorobj->objectId == thisobj->objectId)
2352 		{
2353 			if (priorobj->objectSubId == thisobj->objectSubId)
2354 				continue;		/* identical, so drop thisobj */
2355 
2356 			/*
2357 			 * If we have a whole-object reference and a reference to a part
2358 			 * of the same object, we don't need the whole-object reference
2359 			 * (for example, we don't need to reference both table foo and
2360 			 * column foo.bar).  The whole-object reference will always appear
2361 			 * first in the sorted list.
2362 			 */
2363 			if (priorobj->objectSubId == 0)
2364 			{
2365 				/* replace whole ref with partial */
2366 				priorobj->objectSubId = thisobj->objectSubId;
2367 				continue;
2368 			}
2369 		}
2370 		/* Not identical, so add thisobj to output set */
2371 		priorobj++;
2372 		*priorobj = *thisobj;
2373 		newrefs++;
2374 	}
2375 
2376 	addrs->numrefs = newrefs;
2377 }
2378 
2379 /*
2380  * qsort comparator for ObjectAddress items
2381  */
2382 static int
object_address_comparator(const void * a,const void * b)2383 object_address_comparator(const void *a, const void *b)
2384 {
2385 	const ObjectAddress *obja = (const ObjectAddress *) a;
2386 	const ObjectAddress *objb = (const ObjectAddress *) b;
2387 
2388 	/*
2389 	 * Primary sort key is OID descending.  Most of the time, this will result
2390 	 * in putting newer objects before older ones, which is likely to be the
2391 	 * right order to delete in.
2392 	 */
2393 	if (obja->objectId > objb->objectId)
2394 		return -1;
2395 	if (obja->objectId < objb->objectId)
2396 		return 1;
2397 
2398 	/*
2399 	 * Next sort on catalog ID, in case identical OIDs appear in different
2400 	 * catalogs.  Sort direction is pretty arbitrary here.
2401 	 */
2402 	if (obja->classId < objb->classId)
2403 		return -1;
2404 	if (obja->classId > objb->classId)
2405 		return 1;
2406 
2407 	/*
2408 	 * Last, sort on object subId.
2409 	 *
2410 	 * We sort the subId as an unsigned int so that 0 (the whole object) will
2411 	 * come first.  This is essential for eliminate_duplicate_dependencies,
2412 	 * and is also the best order for findDependentObjects.
2413 	 */
2414 	if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2415 		return -1;
2416 	if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2417 		return 1;
2418 	return 0;
2419 }
2420 
2421 /*
2422  * Routines for handling an expansible array of ObjectAddress items.
2423  *
2424  * new_object_addresses: create a new ObjectAddresses array.
2425  */
2426 ObjectAddresses *
new_object_addresses(void)2427 new_object_addresses(void)
2428 {
2429 	ObjectAddresses *addrs;
2430 
2431 	addrs = palloc(sizeof(ObjectAddresses));
2432 
2433 	addrs->numrefs = 0;
2434 	addrs->maxrefs = 32;
2435 	addrs->refs = (ObjectAddress *)
2436 		palloc(addrs->maxrefs * sizeof(ObjectAddress));
2437 	addrs->extras = NULL;		/* until/unless needed */
2438 
2439 	return addrs;
2440 }
2441 
2442 /*
2443  * Add an entry to an ObjectAddresses array.
2444  *
2445  * It is convenient to specify the class by ObjectClass rather than directly
2446  * by catalog OID.
2447  */
2448 static void
add_object_address(ObjectClass oclass,Oid objectId,int32 subId,ObjectAddresses * addrs)2449 add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
2450 				   ObjectAddresses *addrs)
2451 {
2452 	ObjectAddress *item;
2453 
2454 	/*
2455 	 * Make sure object_classes is kept up to date with the ObjectClass enum.
2456 	 */
2457 	StaticAssertStmt(lengthof(object_classes) == LAST_OCLASS + 1,
2458 					 "object_classes[] must cover all ObjectClasses");
2459 
2460 	/* enlarge array if needed */
2461 	if (addrs->numrefs >= addrs->maxrefs)
2462 	{
2463 		addrs->maxrefs *= 2;
2464 		addrs->refs = (ObjectAddress *)
2465 			repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2466 		Assert(!addrs->extras);
2467 	}
2468 	/* record this item */
2469 	item = addrs->refs + addrs->numrefs;
2470 	item->classId = object_classes[oclass];
2471 	item->objectId = objectId;
2472 	item->objectSubId = subId;
2473 	addrs->numrefs++;
2474 }
2475 
2476 /*
2477  * Add an entry to an ObjectAddresses array.
2478  *
2479  * As above, but specify entry exactly.
2480  */
2481 void
add_exact_object_address(const ObjectAddress * object,ObjectAddresses * addrs)2482 add_exact_object_address(const ObjectAddress *object,
2483 						 ObjectAddresses *addrs)
2484 {
2485 	ObjectAddress *item;
2486 
2487 	/* enlarge array if needed */
2488 	if (addrs->numrefs >= addrs->maxrefs)
2489 	{
2490 		addrs->maxrefs *= 2;
2491 		addrs->refs = (ObjectAddress *)
2492 			repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2493 		Assert(!addrs->extras);
2494 	}
2495 	/* record this item */
2496 	item = addrs->refs + addrs->numrefs;
2497 	*item = *object;
2498 	addrs->numrefs++;
2499 }
2500 
2501 /*
2502  * Add an entry to an ObjectAddresses array.
2503  *
2504  * As above, but specify entry exactly and provide some "extra" data too.
2505  */
2506 static void
add_exact_object_address_extra(const ObjectAddress * object,const ObjectAddressExtra * extra,ObjectAddresses * addrs)2507 add_exact_object_address_extra(const ObjectAddress *object,
2508 							   const ObjectAddressExtra *extra,
2509 							   ObjectAddresses *addrs)
2510 {
2511 	ObjectAddress *item;
2512 	ObjectAddressExtra *itemextra;
2513 
2514 	/* allocate extra space if first time */
2515 	if (!addrs->extras)
2516 		addrs->extras = (ObjectAddressExtra *)
2517 			palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2518 
2519 	/* enlarge array if needed */
2520 	if (addrs->numrefs >= addrs->maxrefs)
2521 	{
2522 		addrs->maxrefs *= 2;
2523 		addrs->refs = (ObjectAddress *)
2524 			repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2525 		addrs->extras = (ObjectAddressExtra *)
2526 			repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2527 	}
2528 	/* record this item */
2529 	item = addrs->refs + addrs->numrefs;
2530 	*item = *object;
2531 	itemextra = addrs->extras + addrs->numrefs;
2532 	*itemextra = *extra;
2533 	addrs->numrefs++;
2534 }
2535 
2536 /*
2537  * Test whether an object is present in an ObjectAddresses array.
2538  *
2539  * We return "true" if object is a subobject of something in the array, too.
2540  */
2541 bool
object_address_present(const ObjectAddress * object,const ObjectAddresses * addrs)2542 object_address_present(const ObjectAddress *object,
2543 					   const ObjectAddresses *addrs)
2544 {
2545 	int			i;
2546 
2547 	for (i = addrs->numrefs - 1; i >= 0; i--)
2548 	{
2549 		const ObjectAddress *thisobj = addrs->refs + i;
2550 
2551 		if (object->classId == thisobj->classId &&
2552 			object->objectId == thisobj->objectId)
2553 		{
2554 			if (object->objectSubId == thisobj->objectSubId ||
2555 				thisobj->objectSubId == 0)
2556 				return true;
2557 		}
2558 	}
2559 
2560 	return false;
2561 }
2562 
2563 /*
2564  * As above, except that if the object is present then also OR the given
2565  * flags into its associated extra data (which must exist).
2566  */
2567 static bool
object_address_present_add_flags(const ObjectAddress * object,int flags,ObjectAddresses * addrs)2568 object_address_present_add_flags(const ObjectAddress *object,
2569 								 int flags,
2570 								 ObjectAddresses *addrs)
2571 {
2572 	bool		result = false;
2573 	int			i;
2574 
2575 	for (i = addrs->numrefs - 1; i >= 0; i--)
2576 	{
2577 		ObjectAddress *thisobj = addrs->refs + i;
2578 
2579 		if (object->classId == thisobj->classId &&
2580 			object->objectId == thisobj->objectId)
2581 		{
2582 			if (object->objectSubId == thisobj->objectSubId)
2583 			{
2584 				ObjectAddressExtra *thisextra = addrs->extras + i;
2585 
2586 				thisextra->flags |= flags;
2587 				result = true;
2588 			}
2589 			else if (thisobj->objectSubId == 0)
2590 			{
2591 				/*
2592 				 * We get here if we find a need to delete a column after
2593 				 * having already decided to drop its whole table.  Obviously
2594 				 * we no longer need to drop the subobject, so report that we
2595 				 * found the subobject in the array.  But don't plaster its
2596 				 * flags on the whole object.
2597 				 */
2598 				result = true;
2599 			}
2600 			else if (object->objectSubId == 0)
2601 			{
2602 				/*
2603 				 * We get here if we find a need to delete a whole table after
2604 				 * having already decided to drop one of its columns.  We
2605 				 * can't report that the whole object is in the array, but we
2606 				 * should mark the subobject with the whole object's flags.
2607 				 *
2608 				 * It might seem attractive to physically delete the column's
2609 				 * array entry, or at least mark it as no longer needing
2610 				 * separate deletion.  But that could lead to, e.g., dropping
2611 				 * the column's datatype before we drop the table, which does
2612 				 * not seem like a good idea.  This is a very rare situation
2613 				 * in practice, so we just take the hit of doing a separate
2614 				 * DROP COLUMN action even though we know we're gonna delete
2615 				 * the table later.
2616 				 *
2617 				 * What we can do, though, is mark this as a subobject so that
2618 				 * we don't report it separately, which is confusing because
2619 				 * it's unpredictable whether it happens or not.  But do so
2620 				 * only if flags != 0 (flags == 0 is a read-only probe).
2621 				 *
2622 				 * Because there could be other subobjects of this object in
2623 				 * the array, this case means we always have to loop through
2624 				 * the whole array; we cannot exit early on a match.
2625 				 */
2626 				ObjectAddressExtra *thisextra = addrs->extras + i;
2627 
2628 				if (flags)
2629 					thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2630 			}
2631 		}
2632 	}
2633 
2634 	return result;
2635 }
2636 
2637 /*
2638  * Similar to above, except we search an ObjectAddressStack.
2639  */
2640 static bool
stack_address_present_add_flags(const ObjectAddress * object,int flags,ObjectAddressStack * stack)2641 stack_address_present_add_flags(const ObjectAddress *object,
2642 								int flags,
2643 								ObjectAddressStack *stack)
2644 {
2645 	bool		result = false;
2646 	ObjectAddressStack *stackptr;
2647 
2648 	for (stackptr = stack; stackptr; stackptr = stackptr->next)
2649 	{
2650 		const ObjectAddress *thisobj = stackptr->object;
2651 
2652 		if (object->classId == thisobj->classId &&
2653 			object->objectId == thisobj->objectId)
2654 		{
2655 			if (object->objectSubId == thisobj->objectSubId)
2656 			{
2657 				stackptr->flags |= flags;
2658 				result = true;
2659 			}
2660 			else if (thisobj->objectSubId == 0)
2661 			{
2662 				/*
2663 				 * We're visiting a column with whole table already on stack.
2664 				 * As in object_address_present_add_flags(), we can skip
2665 				 * further processing of the subobject, but we don't want to
2666 				 * propagate flags for the subobject to the whole object.
2667 				 */
2668 				result = true;
2669 			}
2670 			else if (object->objectSubId == 0)
2671 			{
2672 				/*
2673 				 * We're visiting a table with column already on stack.  As in
2674 				 * object_address_present_add_flags(), we should propagate
2675 				 * flags for the whole object to each of its subobjects.
2676 				 */
2677 				if (flags)
2678 					stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2679 			}
2680 		}
2681 	}
2682 
2683 	return result;
2684 }
2685 
2686 /*
2687  * Record multiple dependencies from an ObjectAddresses array, after first
2688  * removing any duplicates.
2689  */
2690 void
record_object_address_dependencies(const ObjectAddress * depender,ObjectAddresses * referenced,DependencyType behavior)2691 record_object_address_dependencies(const ObjectAddress *depender,
2692 								   ObjectAddresses *referenced,
2693 								   DependencyType behavior)
2694 {
2695 	eliminate_duplicate_dependencies(referenced);
2696 	recordMultipleDependencies(depender,
2697 							   referenced->refs, referenced->numrefs,
2698 							   behavior);
2699 }
2700 
2701 /*
2702  * Sort the items in an ObjectAddresses array.
2703  *
2704  * The major sort key is OID-descending, so that newer objects will be listed
2705  * first in most cases.  This is primarily useful for ensuring stable outputs
2706  * from regression tests; it's not recommended if the order of the objects is
2707  * determined by user input, such as the order of targets in a DROP command.
2708  */
2709 void
sort_object_addresses(ObjectAddresses * addrs)2710 sort_object_addresses(ObjectAddresses *addrs)
2711 {
2712 	if (addrs->numrefs > 1)
2713 		qsort((void *) addrs->refs, addrs->numrefs,
2714 			  sizeof(ObjectAddress),
2715 			  object_address_comparator);
2716 }
2717 
2718 /*
2719  * Clean up when done with an ObjectAddresses array.
2720  */
2721 void
free_object_addresses(ObjectAddresses * addrs)2722 free_object_addresses(ObjectAddresses *addrs)
2723 {
2724 	pfree(addrs->refs);
2725 	if (addrs->extras)
2726 		pfree(addrs->extras);
2727 	pfree(addrs);
2728 }
2729 
2730 /*
2731  * Determine the class of a given object identified by objectAddress.
2732  *
2733  * This function is essentially the reverse mapping for the object_classes[]
2734  * table.  We implement it as a function because the OIDs aren't consecutive.
2735  */
2736 ObjectClass
getObjectClass(const ObjectAddress * object)2737 getObjectClass(const ObjectAddress *object)
2738 {
2739 	/* only pg_class entries can have nonzero objectSubId */
2740 	if (object->classId != RelationRelationId &&
2741 		object->objectSubId != 0)
2742 		elog(ERROR, "invalid non-zero objectSubId for object class %u",
2743 			 object->classId);
2744 
2745 	switch (object->classId)
2746 	{
2747 		case RelationRelationId:
2748 			/* caller must check objectSubId */
2749 			return OCLASS_CLASS;
2750 
2751 		case ProcedureRelationId:
2752 			return OCLASS_PROC;
2753 
2754 		case TypeRelationId:
2755 			return OCLASS_TYPE;
2756 
2757 		case CastRelationId:
2758 			return OCLASS_CAST;
2759 
2760 		case CollationRelationId:
2761 			return OCLASS_COLLATION;
2762 
2763 		case ConstraintRelationId:
2764 			return OCLASS_CONSTRAINT;
2765 
2766 		case ConversionRelationId:
2767 			return OCLASS_CONVERSION;
2768 
2769 		case AttrDefaultRelationId:
2770 			return OCLASS_DEFAULT;
2771 
2772 		case LanguageRelationId:
2773 			return OCLASS_LANGUAGE;
2774 
2775 		case LargeObjectRelationId:
2776 			return OCLASS_LARGEOBJECT;
2777 
2778 		case OperatorRelationId:
2779 			return OCLASS_OPERATOR;
2780 
2781 		case OperatorClassRelationId:
2782 			return OCLASS_OPCLASS;
2783 
2784 		case OperatorFamilyRelationId:
2785 			return OCLASS_OPFAMILY;
2786 
2787 		case AccessMethodRelationId:
2788 			return OCLASS_AM;
2789 
2790 		case AccessMethodOperatorRelationId:
2791 			return OCLASS_AMOP;
2792 
2793 		case AccessMethodProcedureRelationId:
2794 			return OCLASS_AMPROC;
2795 
2796 		case RewriteRelationId:
2797 			return OCLASS_REWRITE;
2798 
2799 		case TriggerRelationId:
2800 			return OCLASS_TRIGGER;
2801 
2802 		case NamespaceRelationId:
2803 			return OCLASS_SCHEMA;
2804 
2805 		case StatisticExtRelationId:
2806 			return OCLASS_STATISTIC_EXT;
2807 
2808 		case TSParserRelationId:
2809 			return OCLASS_TSPARSER;
2810 
2811 		case TSDictionaryRelationId:
2812 			return OCLASS_TSDICT;
2813 
2814 		case TSTemplateRelationId:
2815 			return OCLASS_TSTEMPLATE;
2816 
2817 		case TSConfigRelationId:
2818 			return OCLASS_TSCONFIG;
2819 
2820 		case AuthIdRelationId:
2821 			return OCLASS_ROLE;
2822 
2823 		case DatabaseRelationId:
2824 			return OCLASS_DATABASE;
2825 
2826 		case TableSpaceRelationId:
2827 			return OCLASS_TBLSPACE;
2828 
2829 		case ForeignDataWrapperRelationId:
2830 			return OCLASS_FDW;
2831 
2832 		case ForeignServerRelationId:
2833 			return OCLASS_FOREIGN_SERVER;
2834 
2835 		case UserMappingRelationId:
2836 			return OCLASS_USER_MAPPING;
2837 
2838 		case DefaultAclRelationId:
2839 			return OCLASS_DEFACL;
2840 
2841 		case ExtensionRelationId:
2842 			return OCLASS_EXTENSION;
2843 
2844 		case EventTriggerRelationId:
2845 			return OCLASS_EVENT_TRIGGER;
2846 
2847 		case PolicyRelationId:
2848 			return OCLASS_POLICY;
2849 
2850 		case PublicationRelationId:
2851 			return OCLASS_PUBLICATION;
2852 
2853 		case PublicationRelRelationId:
2854 			return OCLASS_PUBLICATION_REL;
2855 
2856 		case SubscriptionRelationId:
2857 			return OCLASS_SUBSCRIPTION;
2858 
2859 		case TransformRelationId:
2860 			return OCLASS_TRANSFORM;
2861 	}
2862 
2863 	/* shouldn't get here */
2864 	elog(ERROR, "unrecognized object class: %u", object->classId);
2865 	return OCLASS_CLASS;		/* keep compiler quiet */
2866 }
2867 
2868 /*
2869  * delete initial ACL for extension objects
2870  */
2871 static void
DeleteInitPrivs(const ObjectAddress * object)2872 DeleteInitPrivs(const ObjectAddress *object)
2873 {
2874 	Relation	relation;
2875 	ScanKeyData key[3];
2876 	SysScanDesc scan;
2877 	HeapTuple	oldtuple;
2878 
2879 	relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2880 
2881 	ScanKeyInit(&key[0],
2882 				Anum_pg_init_privs_objoid,
2883 				BTEqualStrategyNumber, F_OIDEQ,
2884 				ObjectIdGetDatum(object->objectId));
2885 	ScanKeyInit(&key[1],
2886 				Anum_pg_init_privs_classoid,
2887 				BTEqualStrategyNumber, F_OIDEQ,
2888 				ObjectIdGetDatum(object->classId));
2889 	ScanKeyInit(&key[2],
2890 				Anum_pg_init_privs_objsubid,
2891 				BTEqualStrategyNumber, F_INT4EQ,
2892 				Int32GetDatum(object->objectSubId));
2893 
2894 	scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2895 							  NULL, 3, key);
2896 
2897 	while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2898 		CatalogTupleDelete(relation, &oldtuple->t_self);
2899 
2900 	systable_endscan(scan);
2901 
2902 	table_close(relation, RowExclusiveLock);
2903 }
2904