1 /*-------------------------------------------------------------------------
2 *
3 * parse_node.c
4 * various routines that make nodes for querytrees
5 *
6 * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/parser/parse_node.c
12 *
13 *-------------------------------------------------------------------------
14 */
15 #include "postgres.h"
16
17 #include "access/htup_details.h"
18 #include "access/table.h"
19 #include "catalog/pg_type.h"
20 #include "mb/pg_wchar.h"
21 #include "nodes/makefuncs.h"
22 #include "nodes/nodeFuncs.h"
23 #include "parser/parse_coerce.h"
24 #include "parser/parse_expr.h"
25 #include "parser/parse_relation.h"
26 #include "parser/parsetree.h"
27 #include "utils/builtins.h"
28 #include "utils/int8.h"
29 #include "utils/lsyscache.h"
30 #include "utils/syscache.h"
31 #include "utils/varbit.h"
32
33 static void pcb_error_callback(void *arg);
34
35
36 /*
37 * make_parsestate
38 * Allocate and initialize a new ParseState.
39 *
40 * Caller should eventually release the ParseState via free_parsestate().
41 */
42 ParseState *
make_parsestate(ParseState * parentParseState)43 make_parsestate(ParseState *parentParseState)
44 {
45 ParseState *pstate;
46
47 pstate = palloc0(sizeof(ParseState));
48
49 pstate->parentParseState = parentParseState;
50
51 /* Fill in fields that don't start at null/false/zero */
52 pstate->p_next_resno = 1;
53 pstate->p_resolve_unknowns = true;
54
55 if (parentParseState)
56 {
57 pstate->p_sourcetext = parentParseState->p_sourcetext;
58 /* all hooks are copied from parent */
59 pstate->p_pre_columnref_hook = parentParseState->p_pre_columnref_hook;
60 pstate->p_post_columnref_hook = parentParseState->p_post_columnref_hook;
61 pstate->p_paramref_hook = parentParseState->p_paramref_hook;
62 pstate->p_coerce_param_hook = parentParseState->p_coerce_param_hook;
63 pstate->p_ref_hook_state = parentParseState->p_ref_hook_state;
64 /* query environment stays in context for the whole parse analysis */
65 pstate->p_queryEnv = parentParseState->p_queryEnv;
66 }
67
68 return pstate;
69 }
70
71 /*
72 * free_parsestate
73 * Release a ParseState and any subsidiary resources.
74 */
75 void
free_parsestate(ParseState * pstate)76 free_parsestate(ParseState *pstate)
77 {
78 /*
79 * Check that we did not produce too many resnos; at the very least we
80 * cannot allow more than 2^16, since that would exceed the range of a
81 * AttrNumber. It seems safest to use MaxTupleAttributeNumber.
82 */
83 if (pstate->p_next_resno - 1 > MaxTupleAttributeNumber)
84 ereport(ERROR,
85 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
86 errmsg("target lists can have at most %d entries",
87 MaxTupleAttributeNumber)));
88
89 if (pstate->p_target_relation != NULL)
90 table_close(pstate->p_target_relation, NoLock);
91
92 pfree(pstate);
93 }
94
95
96 /*
97 * parser_errposition
98 * Report a parse-analysis-time cursor position, if possible.
99 *
100 * This is expected to be used within an ereport() call. The return value
101 * is a dummy (always 0, in fact).
102 *
103 * The locations stored in raw parsetrees are byte offsets into the source
104 * string. We have to convert them to 1-based character indexes for reporting
105 * to clients. (We do things this way to avoid unnecessary overhead in the
106 * normal non-error case: computing character indexes would be much more
107 * expensive than storing token offsets.)
108 */
109 int
parser_errposition(ParseState * pstate,int location)110 parser_errposition(ParseState *pstate, int location)
111 {
112 int pos;
113
114 /* No-op if location was not provided */
115 if (location < 0)
116 return 0;
117 /* Can't do anything if source text is not available */
118 if (pstate == NULL || pstate->p_sourcetext == NULL)
119 return 0;
120 /* Convert offset to character number */
121 pos = pg_mbstrlen_with_len(pstate->p_sourcetext, location) + 1;
122 /* And pass it to the ereport mechanism */
123 return errposition(pos);
124 }
125
126
127 /*
128 * setup_parser_errposition_callback
129 * Arrange for non-parser errors to report an error position
130 *
131 * Sometimes the parser calls functions that aren't part of the parser
132 * subsystem and can't reasonably be passed a ParseState; yet we would
133 * like any errors thrown in those functions to be tagged with a parse
134 * error location. Use this function to set up an error context stack
135 * entry that will accomplish that. Usage pattern:
136 *
137 * declare a local variable "ParseCallbackState pcbstate"
138 * ...
139 * setup_parser_errposition_callback(&pcbstate, pstate, location);
140 * call function that might throw error;
141 * cancel_parser_errposition_callback(&pcbstate);
142 */
143 void
setup_parser_errposition_callback(ParseCallbackState * pcbstate,ParseState * pstate,int location)144 setup_parser_errposition_callback(ParseCallbackState *pcbstate,
145 ParseState *pstate, int location)
146 {
147 /* Setup error traceback support for ereport() */
148 pcbstate->pstate = pstate;
149 pcbstate->location = location;
150 pcbstate->errcallback.callback = pcb_error_callback;
151 pcbstate->errcallback.arg = (void *) pcbstate;
152 pcbstate->errcallback.previous = error_context_stack;
153 error_context_stack = &pcbstate->errcallback;
154 }
155
156 /*
157 * Cancel a previously-set-up errposition callback.
158 */
159 void
cancel_parser_errposition_callback(ParseCallbackState * pcbstate)160 cancel_parser_errposition_callback(ParseCallbackState *pcbstate)
161 {
162 /* Pop the error context stack */
163 error_context_stack = pcbstate->errcallback.previous;
164 }
165
166 /*
167 * Error context callback for inserting parser error location.
168 *
169 * Note that this will be called for *any* error occurring while the
170 * callback is installed. We avoid inserting an irrelevant error location
171 * if the error is a query cancel --- are there any other important cases?
172 */
173 static void
pcb_error_callback(void * arg)174 pcb_error_callback(void *arg)
175 {
176 ParseCallbackState *pcbstate = (ParseCallbackState *) arg;
177
178 if (geterrcode() != ERRCODE_QUERY_CANCELED)
179 (void) parser_errposition(pcbstate->pstate, pcbstate->location);
180 }
181
182
183 /*
184 * transformContainerType()
185 * Identify the types involved in a subscripting operation for container
186 *
187 *
188 * On entry, containerType/containerTypmod identify the type of the input value
189 * to be subscripted (which could be a domain type). These are modified if
190 * necessary to identify the actual container type and typmod, and the
191 * container's element type is returned. An error is thrown if the input isn't
192 * an array type.
193 */
194 Oid
transformContainerType(Oid * containerType,int32 * containerTypmod)195 transformContainerType(Oid *containerType, int32 *containerTypmod)
196 {
197 Oid origContainerType = *containerType;
198 Oid elementType;
199 HeapTuple type_tuple_container;
200 Form_pg_type type_struct_container;
201
202 /*
203 * If the input is a domain, smash to base type, and extract the actual
204 * typmod to be applied to the base type. Subscripting a domain is an
205 * operation that necessarily works on the base container type, not the
206 * domain itself. (Note that we provide no method whereby the creator of a
207 * domain over a container type could hide its ability to be subscripted.)
208 */
209 *containerType = getBaseTypeAndTypmod(*containerType, containerTypmod);
210
211 /*
212 * Here is an array specific code. We treat int2vector and oidvector as
213 * though they were domains over int2[] and oid[]. This is needed because
214 * array slicing could create an array that doesn't satisfy the
215 * dimensionality constraints of the xxxvector type; so we want the result
216 * of a slice operation to be considered to be of the more general type.
217 */
218 if (*containerType == INT2VECTOROID)
219 *containerType = INT2ARRAYOID;
220 else if (*containerType == OIDVECTOROID)
221 *containerType = OIDARRAYOID;
222
223 /* Get the type tuple for the container */
224 type_tuple_container = SearchSysCache1(TYPEOID, ObjectIdGetDatum(*containerType));
225 if (!HeapTupleIsValid(type_tuple_container))
226 elog(ERROR, "cache lookup failed for type %u", *containerType);
227 type_struct_container = (Form_pg_type) GETSTRUCT(type_tuple_container);
228
229 /* needn't check typisdefined since this will fail anyway */
230
231 elementType = type_struct_container->typelem;
232 if (elementType == InvalidOid)
233 ereport(ERROR,
234 (errcode(ERRCODE_DATATYPE_MISMATCH),
235 errmsg("cannot subscript type %s because it is not an array",
236 format_type_be(origContainerType))));
237
238 ReleaseSysCache(type_tuple_container);
239
240 return elementType;
241 }
242
243 /*
244 * transformContainerSubscripts()
245 * Transform container (array, etc) subscripting. This is used for both
246 * container fetch and container assignment.
247 *
248 * In a container fetch, we are given a source container value and we produce
249 * an expression that represents the result of extracting a single container
250 * element or a container slice.
251 *
252 * In a container assignment, we are given a destination container value plus a
253 * source value that is to be assigned to a single element or a slice of that
254 * container. We produce an expression that represents the new container value
255 * with the source data inserted into the right part of the container.
256 *
257 * For both cases, if the source container is of a domain-over-array type,
258 * the result is of the base array type or its element type; essentially,
259 * we must fold a domain to its base type before applying subscripting.
260 * (Note that int2vector and oidvector are treated as domains here.)
261 *
262 * pstate Parse state
263 * containerBase Already-transformed expression for the container as a whole
264 * containerType OID of container's datatype (should match type of
265 * containerBase, or be the base type of containerBase's
266 * domain type)
267 * elementType OID of container's element type (fetch with
268 * transformContainerType, or pass InvalidOid to do it here)
269 * containerTypMod typmod for the container (which is also typmod for the
270 * elements)
271 * indirection Untransformed list of subscripts (must not be NIL)
272 * assignFrom NULL for container fetch, else transformed expression for
273 * source.
274 */
275 SubscriptingRef *
transformContainerSubscripts(ParseState * pstate,Node * containerBase,Oid containerType,Oid elementType,int32 containerTypMod,List * indirection,Node * assignFrom)276 transformContainerSubscripts(ParseState *pstate,
277 Node *containerBase,
278 Oid containerType,
279 Oid elementType,
280 int32 containerTypMod,
281 List *indirection,
282 Node *assignFrom)
283 {
284 bool isSlice = false;
285 List *upperIndexpr = NIL;
286 List *lowerIndexpr = NIL;
287 ListCell *idx;
288 SubscriptingRef *sbsref;
289
290 /*
291 * Caller may or may not have bothered to determine elementType. Note
292 * that if the caller did do so, containerType/containerTypMod must be as
293 * modified by transformContainerType, ie, smash domain to base type.
294 */
295 if (!OidIsValid(elementType))
296 elementType = transformContainerType(&containerType, &containerTypMod);
297
298 /*
299 * A list containing only simple subscripts refers to a single container
300 * element. If any of the items are slice specifiers (lower:upper), then
301 * the subscript expression means a container slice operation. In this
302 * case, we convert any non-slice items to slices by treating the single
303 * subscript as the upper bound and supplying an assumed lower bound of 1.
304 * We have to prescan the list to see if there are any slice items.
305 */
306 foreach(idx, indirection)
307 {
308 A_Indices *ai = (A_Indices *) lfirst(idx);
309
310 if (ai->is_slice)
311 {
312 isSlice = true;
313 break;
314 }
315 }
316
317 /*
318 * Transform the subscript expressions.
319 */
320 foreach(idx, indirection)
321 {
322 A_Indices *ai = lfirst_node(A_Indices, idx);
323 Node *subexpr;
324
325 if (isSlice)
326 {
327 if (ai->lidx)
328 {
329 subexpr = transformExpr(pstate, ai->lidx, pstate->p_expr_kind);
330 /* If it's not int4 already, try to coerce */
331 subexpr = coerce_to_target_type(pstate,
332 subexpr, exprType(subexpr),
333 INT4OID, -1,
334 COERCION_ASSIGNMENT,
335 COERCE_IMPLICIT_CAST,
336 -1);
337 if (subexpr == NULL)
338 ereport(ERROR,
339 (errcode(ERRCODE_DATATYPE_MISMATCH),
340 errmsg("array subscript must have type integer"),
341 parser_errposition(pstate, exprLocation(ai->lidx))));
342 }
343 else if (!ai->is_slice)
344 {
345 /* Make a constant 1 */
346 subexpr = (Node *) makeConst(INT4OID,
347 -1,
348 InvalidOid,
349 sizeof(int32),
350 Int32GetDatum(1),
351 false,
352 true); /* pass by value */
353 }
354 else
355 {
356 /* Slice with omitted lower bound, put NULL into the list */
357 subexpr = NULL;
358 }
359 lowerIndexpr = lappend(lowerIndexpr, subexpr);
360 }
361 else
362 Assert(ai->lidx == NULL && !ai->is_slice);
363
364 if (ai->uidx)
365 {
366 subexpr = transformExpr(pstate, ai->uidx, pstate->p_expr_kind);
367 /* If it's not int4 already, try to coerce */
368 subexpr = coerce_to_target_type(pstate,
369 subexpr, exprType(subexpr),
370 INT4OID, -1,
371 COERCION_ASSIGNMENT,
372 COERCE_IMPLICIT_CAST,
373 -1);
374 if (subexpr == NULL)
375 ereport(ERROR,
376 (errcode(ERRCODE_DATATYPE_MISMATCH),
377 errmsg("array subscript must have type integer"),
378 parser_errposition(pstate, exprLocation(ai->uidx))));
379 }
380 else
381 {
382 /* Slice with omitted upper bound, put NULL into the list */
383 Assert(isSlice && ai->is_slice);
384 subexpr = NULL;
385 }
386 upperIndexpr = lappend(upperIndexpr, subexpr);
387 }
388
389 /*
390 * If doing an array store, coerce the source value to the right type.
391 * (This should agree with the coercion done by transformAssignedExpr.)
392 */
393 if (assignFrom != NULL)
394 {
395 Oid typesource = exprType(assignFrom);
396 Oid typeneeded = isSlice ? containerType : elementType;
397 Node *newFrom;
398
399 newFrom = coerce_to_target_type(pstate,
400 assignFrom, typesource,
401 typeneeded, containerTypMod,
402 COERCION_ASSIGNMENT,
403 COERCE_IMPLICIT_CAST,
404 -1);
405 if (newFrom == NULL)
406 ereport(ERROR,
407 (errcode(ERRCODE_DATATYPE_MISMATCH),
408 errmsg("array assignment requires type %s"
409 " but expression is of type %s",
410 format_type_be(typeneeded),
411 format_type_be(typesource)),
412 errhint("You will need to rewrite or cast the expression."),
413 parser_errposition(pstate, exprLocation(assignFrom))));
414 assignFrom = newFrom;
415 }
416
417 /*
418 * Ready to build the SubscriptingRef node.
419 */
420 sbsref = (SubscriptingRef *) makeNode(SubscriptingRef);
421 if (assignFrom != NULL)
422 sbsref->refassgnexpr = (Expr *) assignFrom;
423
424 sbsref->refcontainertype = containerType;
425 sbsref->refelemtype = elementType;
426 sbsref->reftypmod = containerTypMod;
427 /* refcollid will be set by parse_collate.c */
428 sbsref->refupperindexpr = upperIndexpr;
429 sbsref->reflowerindexpr = lowerIndexpr;
430 sbsref->refexpr = (Expr *) containerBase;
431 sbsref->refassgnexpr = (Expr *) assignFrom;
432
433 return sbsref;
434 }
435
436 /*
437 * make_const
438 *
439 * Convert a Value node (as returned by the grammar) to a Const node
440 * of the "natural" type for the constant. Note that this routine is
441 * only used when there is no explicit cast for the constant, so we
442 * have to guess what type is wanted.
443 *
444 * For string literals we produce a constant of type UNKNOWN ---- whose
445 * representation is the same as cstring, but it indicates to later type
446 * resolution that we're not sure yet what type it should be considered.
447 * Explicit "NULL" constants are also typed as UNKNOWN.
448 *
449 * For integers and floats we produce int4, int8, or numeric depending
450 * on the value of the number. XXX We should produce int2 as well,
451 * but additional cleanup is needed before we can do that; there are
452 * too many examples that fail if we try.
453 */
454 Const *
make_const(ParseState * pstate,Value * value,int location)455 make_const(ParseState *pstate, Value *value, int location)
456 {
457 Const *con;
458 Datum val;
459 int64 val64;
460 Oid typeid;
461 int typelen;
462 bool typebyval;
463 ParseCallbackState pcbstate;
464
465 switch (nodeTag(value))
466 {
467 case T_Integer:
468 val = Int32GetDatum(intVal(value));
469
470 typeid = INT4OID;
471 typelen = sizeof(int32);
472 typebyval = true;
473 break;
474
475 case T_Float:
476 /* could be an oversize integer as well as a float ... */
477 if (scanint8(strVal(value), true, &val64))
478 {
479 /*
480 * It might actually fit in int32. Probably only INT_MIN can
481 * occur, but we'll code the test generally just to be sure.
482 */
483 int32 val32 = (int32) val64;
484
485 if (val64 == (int64) val32)
486 {
487 val = Int32GetDatum(val32);
488
489 typeid = INT4OID;
490 typelen = sizeof(int32);
491 typebyval = true;
492 }
493 else
494 {
495 val = Int64GetDatum(val64);
496
497 typeid = INT8OID;
498 typelen = sizeof(int64);
499 typebyval = FLOAT8PASSBYVAL; /* int8 and float8 alike */
500 }
501 }
502 else
503 {
504 /* arrange to report location if numeric_in() fails */
505 setup_parser_errposition_callback(&pcbstate, pstate, location);
506 val = DirectFunctionCall3(numeric_in,
507 CStringGetDatum(strVal(value)),
508 ObjectIdGetDatum(InvalidOid),
509 Int32GetDatum(-1));
510 cancel_parser_errposition_callback(&pcbstate);
511
512 typeid = NUMERICOID;
513 typelen = -1; /* variable len */
514 typebyval = false;
515 }
516 break;
517
518 case T_String:
519
520 /*
521 * We assume here that UNKNOWN's internal representation is the
522 * same as CSTRING
523 */
524 val = CStringGetDatum(strVal(value));
525
526 typeid = UNKNOWNOID; /* will be coerced later */
527 typelen = -2; /* cstring-style varwidth type */
528 typebyval = false;
529 break;
530
531 case T_BitString:
532 /* arrange to report location if bit_in() fails */
533 setup_parser_errposition_callback(&pcbstate, pstate, location);
534 val = DirectFunctionCall3(bit_in,
535 CStringGetDatum(strVal(value)),
536 ObjectIdGetDatum(InvalidOid),
537 Int32GetDatum(-1));
538 cancel_parser_errposition_callback(&pcbstate);
539 typeid = BITOID;
540 typelen = -1;
541 typebyval = false;
542 break;
543
544 case T_Null:
545 /* return a null const */
546 con = makeConst(UNKNOWNOID,
547 -1,
548 InvalidOid,
549 -2,
550 (Datum) 0,
551 true,
552 false);
553 con->location = location;
554 return con;
555
556 default:
557 elog(ERROR, "unrecognized node type: %d", (int) nodeTag(value));
558 return NULL; /* keep compiler quiet */
559 }
560
561 con = makeConst(typeid,
562 -1, /* typmod -1 is OK for all cases */
563 InvalidOid, /* all cases are uncollatable types */
564 typelen,
565 val,
566 false,
567 typebyval);
568 con->location = location;
569
570 return con;
571 }
572