1 /*-------------------------------------------------------------------------
2  *
3  * array_typanalyze.c
4  *	  Functions for gathering statistics from array columns
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/utils/adt/array_typanalyze.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "access/detoast.h"
18 #include "commands/vacuum.h"
19 #include "utils/array.h"
20 #include "utils/builtins.h"
21 #include "utils/datum.h"
22 #include "utils/lsyscache.h"
23 #include "utils/typcache.h"
24 
25 
26 /*
27  * To avoid consuming too much memory, IO and CPU load during analysis, and/or
28  * too much space in the resulting pg_statistic rows, we ignore arrays that
29  * are wider than ARRAY_WIDTH_THRESHOLD (after detoasting!).  Note that this
30  * number is considerably more than the similar WIDTH_THRESHOLD limit used
31  * in analyze.c's standard typanalyze code.
32  */
33 #define ARRAY_WIDTH_THRESHOLD 0x10000
34 
35 /* Extra data for compute_array_stats function */
36 typedef struct
37 {
38 	/* Information about array element type */
39 	Oid			type_id;		/* element type's OID */
40 	Oid			eq_opr;			/* default equality operator's OID */
41 	Oid			coll_id;		/* collation to use */
42 	bool		typbyval;		/* physical properties of element type */
43 	int16		typlen;
44 	char		typalign;
45 
46 	/*
47 	 * Lookup data for element type's comparison and hash functions (these are
48 	 * in the type's typcache entry, which we expect to remain valid over the
49 	 * lifespan of the ANALYZE run)
50 	 */
51 	FmgrInfo   *cmp;
52 	FmgrInfo   *hash;
53 
54 	/* Saved state from std_typanalyze() */
55 	AnalyzeAttrComputeStatsFunc std_compute_stats;
56 	void	   *std_extra_data;
57 } ArrayAnalyzeExtraData;
58 
59 /*
60  * While compute_array_stats is running, we keep a pointer to the extra data
61  * here for use by assorted subroutines.  compute_array_stats doesn't
62  * currently need to be re-entrant, so avoiding this is not worth the extra
63  * notational cruft that would be needed.
64  */
65 static ArrayAnalyzeExtraData *array_extra_data;
66 
67 /* A hash table entry for the Lossy Counting algorithm */
68 typedef struct
69 {
70 	Datum		key;			/* This is 'e' from the LC algorithm. */
71 	int			frequency;		/* This is 'f'. */
72 	int			delta;			/* And this is 'delta'. */
73 	int			last_container; /* For de-duplication of array elements. */
74 } TrackItem;
75 
76 /* A hash table entry for distinct-elements counts */
77 typedef struct
78 {
79 	int			count;			/* Count of distinct elements in an array */
80 	int			frequency;		/* Number of arrays seen with this count */
81 } DECountItem;
82 
83 static void compute_array_stats(VacAttrStats *stats,
84 								AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows);
85 static void prune_element_hashtable(HTAB *elements_tab, int b_current);
86 static uint32 element_hash(const void *key, Size keysize);
87 static int	element_match(const void *key1, const void *key2, Size keysize);
88 static int	element_compare(const void *key1, const void *key2);
89 static int	trackitem_compare_frequencies_desc(const void *e1, const void *e2);
90 static int	trackitem_compare_element(const void *e1, const void *e2);
91 static int	countitem_compare_count(const void *e1, const void *e2);
92 
93 
94 /*
95  * array_typanalyze -- typanalyze function for array columns
96  */
97 Datum
98 array_typanalyze(PG_FUNCTION_ARGS)
99 {
100 	VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0);
101 	Oid			element_typeid;
102 	TypeCacheEntry *typentry;
103 	ArrayAnalyzeExtraData *extra_data;
104 
105 	/*
106 	 * Call the standard typanalyze function.  It may fail to find needed
107 	 * operators, in which case we also can't do anything, so just fail.
108 	 */
109 	if (!std_typanalyze(stats))
110 		PG_RETURN_BOOL(false);
111 
112 	/*
113 	 * Check attribute data type is a varlena array (or a domain over one).
114 	 */
115 	element_typeid = get_base_element_type(stats->attrtypid);
116 	if (!OidIsValid(element_typeid))
117 		elog(ERROR, "array_typanalyze was invoked for non-array type %u",
118 			 stats->attrtypid);
119 
120 	/*
121 	 * Gather information about the element type.  If we fail to find
122 	 * something, return leaving the state from std_typanalyze() in place.
123 	 */
124 	typentry = lookup_type_cache(element_typeid,
125 								 TYPECACHE_EQ_OPR |
126 								 TYPECACHE_CMP_PROC_FINFO |
127 								 TYPECACHE_HASH_PROC_FINFO);
128 
129 	if (!OidIsValid(typentry->eq_opr) ||
130 		!OidIsValid(typentry->cmp_proc_finfo.fn_oid) ||
131 		!OidIsValid(typentry->hash_proc_finfo.fn_oid))
132 		PG_RETURN_BOOL(true);
133 
134 	/* Store our findings for use by compute_array_stats() */
135 	extra_data = (ArrayAnalyzeExtraData *) palloc(sizeof(ArrayAnalyzeExtraData));
136 	extra_data->type_id = typentry->type_id;
137 	extra_data->eq_opr = typentry->eq_opr;
138 	extra_data->coll_id = stats->attrcollid;	/* collation we should use */
139 	extra_data->typbyval = typentry->typbyval;
140 	extra_data->typlen = typentry->typlen;
141 	extra_data->typalign = typentry->typalign;
142 	extra_data->cmp = &typentry->cmp_proc_finfo;
143 	extra_data->hash = &typentry->hash_proc_finfo;
144 
145 	/* Save old compute_stats and extra_data for scalar statistics ... */
146 	extra_data->std_compute_stats = stats->compute_stats;
147 	extra_data->std_extra_data = stats->extra_data;
148 
149 	/* ... and replace with our info */
150 	stats->compute_stats = compute_array_stats;
151 	stats->extra_data = extra_data;
152 
153 	/*
154 	 * Note we leave stats->minrows set as std_typanalyze set it.  Should it
155 	 * be increased for array analysis purposes?
156 	 */
157 
158 	PG_RETURN_BOOL(true);
159 }
160 
161 /*
162  * compute_array_stats() -- compute statistics for an array column
163  *
164  * This function computes statistics useful for determining selectivity of
165  * the array operators <@, &&, and @>.  It is invoked by ANALYZE via the
166  * compute_stats hook after sample rows have been collected.
167  *
168  * We also invoke the standard compute_stats function, which will compute
169  * "scalar" statistics relevant to the btree-style array comparison operators.
170  * However, exact duplicates of an entire array may be rare despite many
171  * arrays sharing individual elements.  This especially afflicts long arrays,
172  * which are also liable to lack all scalar statistics due to the low
173  * WIDTH_THRESHOLD used in analyze.c.  So, in addition to the standard stats,
174  * we find the most common array elements and compute a histogram of distinct
175  * element counts.
176  *
177  * The algorithm used is Lossy Counting, as proposed in the paper "Approximate
178  * frequency counts over data streams" by G. S. Manku and R. Motwani, in
179  * Proceedings of the 28th International Conference on Very Large Data Bases,
180  * Hong Kong, China, August 2002, section 4.2. The paper is available at
181  * http://www.vldb.org/conf/2002/S10P03.pdf
182  *
183  * The Lossy Counting (aka LC) algorithm goes like this:
184  * Let s be the threshold frequency for an item (the minimum frequency we
185  * are interested in) and epsilon the error margin for the frequency. Let D
186  * be a set of triples (e, f, delta), where e is an element value, f is that
187  * element's frequency (actually, its current occurrence count) and delta is
188  * the maximum error in f. We start with D empty and process the elements in
189  * batches of size w. (The batch size is also known as "bucket size" and is
190  * equal to 1/epsilon.) Let the current batch number be b_current, starting
191  * with 1. For each element e we either increment its f count, if it's
192  * already in D, or insert a new triple into D with values (e, 1, b_current
193  * - 1). After processing each batch we prune D, by removing from it all
194  * elements with f + delta <= b_current.  After the algorithm finishes we
195  * suppress all elements from D that do not satisfy f >= (s - epsilon) * N,
196  * where N is the total number of elements in the input.  We emit the
197  * remaining elements with estimated frequency f/N.  The LC paper proves
198  * that this algorithm finds all elements with true frequency at least s,
199  * and that no frequency is overestimated or is underestimated by more than
200  * epsilon.  Furthermore, given reasonable assumptions about the input
201  * distribution, the required table size is no more than about 7 times w.
202  *
203  * In the absence of a principled basis for other particular values, we
204  * follow ts_typanalyze() and use parameters s = 0.07/K, epsilon = s/10.
205  * But we leave out the correction for stopwords, which do not apply to
206  * arrays.  These parameters give bucket width w = K/0.007 and maximum
207  * expected hashtable size of about 1000 * K.
208  *
209  * Elements may repeat within an array.  Since duplicates do not change the
210  * behavior of <@, && or @>, we want to count each element only once per
211  * array.  Therefore, we store in the finished pg_statistic entry each
212  * element's frequency as the fraction of all non-null rows that contain it.
213  * We divide the raw counts by nonnull_cnt to get those figures.
214  */
215 static void
216 compute_array_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc,
217 					int samplerows, double totalrows)
218 {
219 	ArrayAnalyzeExtraData *extra_data;
220 	int			num_mcelem;
221 	int			null_cnt = 0;
222 	int			null_elem_cnt = 0;
223 	int			analyzed_rows = 0;
224 
225 	/* This is D from the LC algorithm. */
226 	HTAB	   *elements_tab;
227 	HASHCTL		elem_hash_ctl;
228 	HASH_SEQ_STATUS scan_status;
229 
230 	/* This is the current bucket number from the LC algorithm */
231 	int			b_current;
232 
233 	/* This is 'w' from the LC algorithm */
234 	int			bucket_width;
235 	int			array_no;
236 	int64		element_no;
237 	TrackItem  *item;
238 	int			slot_idx;
239 	HTAB	   *count_tab;
240 	HASHCTL		count_hash_ctl;
241 	DECountItem *count_item;
242 
243 	extra_data = (ArrayAnalyzeExtraData *) stats->extra_data;
244 
245 	/*
246 	 * Invoke analyze.c's standard analysis function to create scalar-style
247 	 * stats for the column.  It will expect its own extra_data pointer, so
248 	 * temporarily install that.
249 	 */
250 	stats->extra_data = extra_data->std_extra_data;
251 	extra_data->std_compute_stats(stats, fetchfunc, samplerows, totalrows);
252 	stats->extra_data = extra_data;
253 
254 	/*
255 	 * Set up static pointer for use by subroutines.  We wait till here in
256 	 * case std_compute_stats somehow recursively invokes us (probably not
257 	 * possible, but ...)
258 	 */
259 	array_extra_data = extra_data;
260 
261 	/*
262 	 * We want statistics_target * 10 elements in the MCELEM array. This
263 	 * multiplier is pretty arbitrary, but is meant to reflect the fact that
264 	 * the number of individual elements tracked in pg_statistic ought to be
265 	 * more than the number of values for a simple scalar column.
266 	 */
267 	num_mcelem = stats->attr->attstattarget * 10;
268 
269 	/*
270 	 * We set bucket width equal to num_mcelem / 0.007 as per the comment
271 	 * above.
272 	 */
273 	bucket_width = num_mcelem * 1000 / 7;
274 
275 	/*
276 	 * Create the hashtable. It will be in local memory, so we don't need to
277 	 * worry about overflowing the initial size. Also we don't need to pay any
278 	 * attention to locking and memory management.
279 	 */
280 	MemSet(&elem_hash_ctl, 0, sizeof(elem_hash_ctl));
281 	elem_hash_ctl.keysize = sizeof(Datum);
282 	elem_hash_ctl.entrysize = sizeof(TrackItem);
283 	elem_hash_ctl.hash = element_hash;
284 	elem_hash_ctl.match = element_match;
285 	elem_hash_ctl.hcxt = CurrentMemoryContext;
286 	elements_tab = hash_create("Analyzed elements table",
287 							   num_mcelem,
288 							   &elem_hash_ctl,
289 							   HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
290 
291 	/* hashtable for array distinct elements counts */
292 	MemSet(&count_hash_ctl, 0, sizeof(count_hash_ctl));
293 	count_hash_ctl.keysize = sizeof(int);
294 	count_hash_ctl.entrysize = sizeof(DECountItem);
295 	count_hash_ctl.hcxt = CurrentMemoryContext;
296 	count_tab = hash_create("Array distinct element count table",
297 							64,
298 							&count_hash_ctl,
299 							HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
300 
301 	/* Initialize counters. */
302 	b_current = 1;
303 	element_no = 0;
304 
305 	/* Loop over the arrays. */
306 	for (array_no = 0; array_no < samplerows; array_no++)
307 	{
308 		Datum		value;
309 		bool		isnull;
310 		ArrayType  *array;
311 		int			num_elems;
312 		Datum	   *elem_values;
313 		bool	   *elem_nulls;
314 		bool		null_present;
315 		int			j;
316 		int64		prev_element_no = element_no;
317 		int			distinct_count;
318 		bool		count_item_found;
319 
320 		vacuum_delay_point();
321 
322 		value = fetchfunc(stats, array_no, &isnull);
323 		if (isnull)
324 		{
325 			/* array is null, just count that */
326 			null_cnt++;
327 			continue;
328 		}
329 
330 		/* Skip too-large values. */
331 		if (toast_raw_datum_size(value) > ARRAY_WIDTH_THRESHOLD)
332 			continue;
333 		else
334 			analyzed_rows++;
335 
336 		/*
337 		 * Now detoast the array if needed, and deconstruct into datums.
338 		 */
339 		array = DatumGetArrayTypeP(value);
340 
341 		Assert(ARR_ELEMTYPE(array) == extra_data->type_id);
342 		deconstruct_array(array,
343 						  extra_data->type_id,
344 						  extra_data->typlen,
345 						  extra_data->typbyval,
346 						  extra_data->typalign,
347 						  &elem_values, &elem_nulls, &num_elems);
348 
349 		/*
350 		 * We loop through the elements in the array and add them to our
351 		 * tracking hashtable.
352 		 */
353 		null_present = false;
354 		for (j = 0; j < num_elems; j++)
355 		{
356 			Datum		elem_value;
357 			bool		found;
358 
359 			/* No null element processing other than flag setting here */
360 			if (elem_nulls[j])
361 			{
362 				null_present = true;
363 				continue;
364 			}
365 
366 			/* Lookup current element in hashtable, adding it if new */
367 			elem_value = elem_values[j];
368 			item = (TrackItem *) hash_search(elements_tab,
369 											 (const void *) &elem_value,
370 											 HASH_ENTER, &found);
371 
372 			if (found)
373 			{
374 				/* The element value is already on the tracking list */
375 
376 				/*
377 				 * The operators we assist ignore duplicate array elements, so
378 				 * count a given distinct element only once per array.
379 				 */
380 				if (item->last_container == array_no)
381 					continue;
382 
383 				item->frequency++;
384 				item->last_container = array_no;
385 			}
386 			else
387 			{
388 				/* Initialize new tracking list element */
389 
390 				/*
391 				 * If element type is pass-by-reference, we must copy it into
392 				 * palloc'd space, so that we can release the array below. (We
393 				 * do this so that the space needed for element values is
394 				 * limited by the size of the hashtable; if we kept all the
395 				 * array values around, it could be much more.)
396 				 */
397 				item->key = datumCopy(elem_value,
398 									  extra_data->typbyval,
399 									  extra_data->typlen);
400 
401 				item->frequency = 1;
402 				item->delta = b_current - 1;
403 				item->last_container = array_no;
404 			}
405 
406 			/* element_no is the number of elements processed (ie N) */
407 			element_no++;
408 
409 			/* We prune the D structure after processing each bucket */
410 			if (element_no % bucket_width == 0)
411 			{
412 				prune_element_hashtable(elements_tab, b_current);
413 				b_current++;
414 			}
415 		}
416 
417 		/* Count null element presence once per array. */
418 		if (null_present)
419 			null_elem_cnt++;
420 
421 		/* Update frequency of the particular array distinct element count. */
422 		distinct_count = (int) (element_no - prev_element_no);
423 		count_item = (DECountItem *) hash_search(count_tab, &distinct_count,
424 												 HASH_ENTER,
425 												 &count_item_found);
426 
427 		if (count_item_found)
428 			count_item->frequency++;
429 		else
430 			count_item->frequency = 1;
431 
432 		/* Free memory allocated while detoasting. */
433 		if (PointerGetDatum(array) != value)
434 			pfree(array);
435 		pfree(elem_values);
436 		pfree(elem_nulls);
437 	}
438 
439 	/* Skip pg_statistic slots occupied by standard statistics */
440 	slot_idx = 0;
441 	while (slot_idx < STATISTIC_NUM_SLOTS && stats->stakind[slot_idx] != 0)
442 		slot_idx++;
443 	if (slot_idx > STATISTIC_NUM_SLOTS - 2)
444 		elog(ERROR, "insufficient pg_statistic slots for array stats");
445 
446 	/* We can only compute real stats if we found some non-null values. */
447 	if (analyzed_rows > 0)
448 	{
449 		int			nonnull_cnt = analyzed_rows;
450 		int			count_items_count;
451 		int			i;
452 		TrackItem **sort_table;
453 		int			track_len;
454 		int64		cutoff_freq;
455 		int64		minfreq,
456 					maxfreq;
457 
458 		/*
459 		 * We assume the standard stats code already took care of setting
460 		 * stats_valid, stanullfrac, stawidth, stadistinct.  We'd have to
461 		 * re-compute those values if we wanted to not store the standard
462 		 * stats.
463 		 */
464 
465 		/*
466 		 * Construct an array of the interesting hashtable items, that is,
467 		 * those meeting the cutoff frequency (s - epsilon)*N.  Also identify
468 		 * the minimum and maximum frequencies among these items.
469 		 *
470 		 * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff
471 		 * frequency is 9*N / bucket_width.
472 		 */
473 		cutoff_freq = 9 * element_no / bucket_width;
474 
475 		i = hash_get_num_entries(elements_tab); /* surely enough space */
476 		sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * i);
477 
478 		hash_seq_init(&scan_status, elements_tab);
479 		track_len = 0;
480 		minfreq = element_no;
481 		maxfreq = 0;
482 		while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
483 		{
484 			if (item->frequency > cutoff_freq)
485 			{
486 				sort_table[track_len++] = item;
487 				minfreq = Min(minfreq, item->frequency);
488 				maxfreq = Max(maxfreq, item->frequency);
489 			}
490 		}
491 		Assert(track_len <= i);
492 
493 		/* emit some statistics for debug purposes */
494 		elog(DEBUG3, "compute_array_stats: target # mces = %d, "
495 			 "bucket width = %d, "
496 			 "# elements = " INT64_FORMAT ", hashtable size = %d, "
497 			 "usable entries = %d",
498 			 num_mcelem, bucket_width, element_no, i, track_len);
499 
500 		/*
501 		 * If we obtained more elements than we really want, get rid of those
502 		 * with least frequencies.  The easiest way is to qsort the array into
503 		 * descending frequency order and truncate the array.
504 		 */
505 		if (num_mcelem < track_len)
506 		{
507 			qsort(sort_table, track_len, sizeof(TrackItem *),
508 				  trackitem_compare_frequencies_desc);
509 			/* reset minfreq to the smallest frequency we're keeping */
510 			minfreq = sort_table[num_mcelem - 1]->frequency;
511 		}
512 		else
513 			num_mcelem = track_len;
514 
515 		/* Generate MCELEM slot entry */
516 		if (num_mcelem > 0)
517 		{
518 			MemoryContext old_context;
519 			Datum	   *mcelem_values;
520 			float4	   *mcelem_freqs;
521 
522 			/*
523 			 * We want to store statistics sorted on the element value using
524 			 * the element type's default comparison function.  This permits
525 			 * fast binary searches in selectivity estimation functions.
526 			 */
527 			qsort(sort_table, num_mcelem, sizeof(TrackItem *),
528 				  trackitem_compare_element);
529 
530 			/* Must copy the target values into anl_context */
531 			old_context = MemoryContextSwitchTo(stats->anl_context);
532 
533 			/*
534 			 * We sorted statistics on the element value, but we want to be
535 			 * able to find the minimal and maximal frequencies without going
536 			 * through all the values.  We also want the frequency of null
537 			 * elements.  Store these three values at the end of mcelem_freqs.
538 			 */
539 			mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum));
540 			mcelem_freqs = (float4 *) palloc((num_mcelem + 3) * sizeof(float4));
541 
542 			/*
543 			 * See comments above about use of nonnull_cnt as the divisor for
544 			 * the final frequency estimates.
545 			 */
546 			for (i = 0; i < num_mcelem; i++)
547 			{
548 				TrackItem  *item = sort_table[i];
549 
550 				mcelem_values[i] = datumCopy(item->key,
551 											 extra_data->typbyval,
552 											 extra_data->typlen);
553 				mcelem_freqs[i] = (double) item->frequency /
554 					(double) nonnull_cnt;
555 			}
556 			mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt;
557 			mcelem_freqs[i++] = (double) maxfreq / (double) nonnull_cnt;
558 			mcelem_freqs[i++] = (double) null_elem_cnt / (double) nonnull_cnt;
559 
560 			MemoryContextSwitchTo(old_context);
561 
562 			stats->stakind[slot_idx] = STATISTIC_KIND_MCELEM;
563 			stats->staop[slot_idx] = extra_data->eq_opr;
564 			stats->stacoll[slot_idx] = extra_data->coll_id;
565 			stats->stanumbers[slot_idx] = mcelem_freqs;
566 			/* See above comment about extra stanumber entries */
567 			stats->numnumbers[slot_idx] = num_mcelem + 3;
568 			stats->stavalues[slot_idx] = mcelem_values;
569 			stats->numvalues[slot_idx] = num_mcelem;
570 			/* We are storing values of element type */
571 			stats->statypid[slot_idx] = extra_data->type_id;
572 			stats->statyplen[slot_idx] = extra_data->typlen;
573 			stats->statypbyval[slot_idx] = extra_data->typbyval;
574 			stats->statypalign[slot_idx] = extra_data->typalign;
575 			slot_idx++;
576 		}
577 
578 		/* Generate DECHIST slot entry */
579 		count_items_count = hash_get_num_entries(count_tab);
580 		if (count_items_count > 0)
581 		{
582 			int			num_hist = stats->attr->attstattarget;
583 			DECountItem **sorted_count_items;
584 			int			j;
585 			int			delta;
586 			int64		frac;
587 			float4	   *hist;
588 
589 			/* num_hist must be at least 2 for the loop below to work */
590 			num_hist = Max(num_hist, 2);
591 
592 			/*
593 			 * Create an array of DECountItem pointers, and sort them into
594 			 * increasing count order.
595 			 */
596 			sorted_count_items = (DECountItem **)
597 				palloc(sizeof(DECountItem *) * count_items_count);
598 			hash_seq_init(&scan_status, count_tab);
599 			j = 0;
600 			while ((count_item = (DECountItem *) hash_seq_search(&scan_status)) != NULL)
601 			{
602 				sorted_count_items[j++] = count_item;
603 			}
604 			qsort(sorted_count_items, count_items_count,
605 				  sizeof(DECountItem *), countitem_compare_count);
606 
607 			/*
608 			 * Prepare to fill stanumbers with the histogram, followed by the
609 			 * average count.  This array must be stored in anl_context.
610 			 */
611 			hist = (float4 *)
612 				MemoryContextAlloc(stats->anl_context,
613 								   sizeof(float4) * (num_hist + 1));
614 			hist[num_hist] = (double) element_no / (double) nonnull_cnt;
615 
616 			/*----------
617 			 * Construct the histogram of distinct-element counts (DECs).
618 			 *
619 			 * The object of this loop is to copy the min and max DECs to
620 			 * hist[0] and hist[num_hist - 1], along with evenly-spaced DECs
621 			 * in between (where "evenly-spaced" is with reference to the
622 			 * whole input population of arrays).  If we had a complete sorted
623 			 * array of DECs, one per analyzed row, the i'th hist value would
624 			 * come from DECs[i * (analyzed_rows - 1) / (num_hist - 1)]
625 			 * (compare the histogram-making loop in compute_scalar_stats()).
626 			 * But instead of that we have the sorted_count_items[] array,
627 			 * which holds unique DEC values with their frequencies (that is,
628 			 * a run-length-compressed version of the full array).  So we
629 			 * control advancing through sorted_count_items[] with the
630 			 * variable "frac", which is defined as (x - y) * (num_hist - 1),
631 			 * where x is the index in the notional DECs array corresponding
632 			 * to the start of the next sorted_count_items[] element's run,
633 			 * and y is the index in DECs from which we should take the next
634 			 * histogram value.  We have to advance whenever x <= y, that is
635 			 * frac <= 0.  The x component is the sum of the frequencies seen
636 			 * so far (up through the current sorted_count_items[] element),
637 			 * and of course y * (num_hist - 1) = i * (analyzed_rows - 1),
638 			 * per the subscript calculation above.  (The subscript calculation
639 			 * implies dropping any fractional part of y; in this formulation
640 			 * that's handled by not advancing until frac reaches 1.)
641 			 *
642 			 * Even though frac has a bounded range, it could overflow int32
643 			 * when working with very large statistics targets, so we do that
644 			 * math in int64.
645 			 *----------
646 			 */
647 			delta = analyzed_rows - 1;
648 			j = 0;				/* current index in sorted_count_items */
649 			/* Initialize frac for sorted_count_items[0]; y is initially 0 */
650 			frac = (int64) sorted_count_items[0]->frequency * (num_hist - 1);
651 			for (i = 0; i < num_hist; i++)
652 			{
653 				while (frac <= 0)
654 				{
655 					/* Advance, and update x component of frac */
656 					j++;
657 					frac += (int64) sorted_count_items[j]->frequency * (num_hist - 1);
658 				}
659 				hist[i] = sorted_count_items[j]->count;
660 				frac -= delta;	/* update y for upcoming i increment */
661 			}
662 			Assert(j == count_items_count - 1);
663 
664 			stats->stakind[slot_idx] = STATISTIC_KIND_DECHIST;
665 			stats->staop[slot_idx] = extra_data->eq_opr;
666 			stats->stacoll[slot_idx] = extra_data->coll_id;
667 			stats->stanumbers[slot_idx] = hist;
668 			stats->numnumbers[slot_idx] = num_hist + 1;
669 			slot_idx++;
670 		}
671 	}
672 
673 	/*
674 	 * We don't need to bother cleaning up any of our temporary palloc's. The
675 	 * hashtable should also go away, as it used a child memory context.
676 	 */
677 }
678 
679 /*
680  * A function to prune the D structure from the Lossy Counting algorithm.
681  * Consult compute_tsvector_stats() for wider explanation.
682  */
683 static void
684 prune_element_hashtable(HTAB *elements_tab, int b_current)
685 {
686 	HASH_SEQ_STATUS scan_status;
687 	TrackItem  *item;
688 
689 	hash_seq_init(&scan_status, elements_tab);
690 	while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
691 	{
692 		if (item->frequency + item->delta <= b_current)
693 		{
694 			Datum		value = item->key;
695 
696 			if (hash_search(elements_tab, (const void *) &item->key,
697 							HASH_REMOVE, NULL) == NULL)
698 				elog(ERROR, "hash table corrupted");
699 			/* We should free memory if element is not passed by value */
700 			if (!array_extra_data->typbyval)
701 				pfree(DatumGetPointer(value));
702 		}
703 	}
704 }
705 
706 /*
707  * Hash function for elements.
708  *
709  * We use the element type's default hash opclass, and the column collation
710  * if the type is collation-sensitive.
711  */
712 static uint32
713 element_hash(const void *key, Size keysize)
714 {
715 	Datum		d = *((const Datum *) key);
716 	Datum		h;
717 
718 	h = FunctionCall1Coll(array_extra_data->hash,
719 						  array_extra_data->coll_id,
720 						  d);
721 	return DatumGetUInt32(h);
722 }
723 
724 /*
725  * Matching function for elements, to be used in hashtable lookups.
726  */
727 static int
728 element_match(const void *key1, const void *key2, Size keysize)
729 {
730 	/* The keysize parameter is superfluous here */
731 	return element_compare(key1, key2);
732 }
733 
734 /*
735  * Comparison function for elements.
736  *
737  * We use the element type's default btree opclass, and the column collation
738  * if the type is collation-sensitive.
739  *
740  * XXX consider using SortSupport infrastructure
741  */
742 static int
743 element_compare(const void *key1, const void *key2)
744 {
745 	Datum		d1 = *((const Datum *) key1);
746 	Datum		d2 = *((const Datum *) key2);
747 	Datum		c;
748 
749 	c = FunctionCall2Coll(array_extra_data->cmp,
750 						  array_extra_data->coll_id,
751 						  d1, d2);
752 	return DatumGetInt32(c);
753 }
754 
755 /*
756  * qsort() comparator for sorting TrackItems by frequencies (descending sort)
757  */
758 static int
759 trackitem_compare_frequencies_desc(const void *e1, const void *e2)
760 {
761 	const TrackItem *const *t1 = (const TrackItem *const *) e1;
762 	const TrackItem *const *t2 = (const TrackItem *const *) e2;
763 
764 	return (*t2)->frequency - (*t1)->frequency;
765 }
766 
767 /*
768  * qsort() comparator for sorting TrackItems by element values
769  */
770 static int
771 trackitem_compare_element(const void *e1, const void *e2)
772 {
773 	const TrackItem *const *t1 = (const TrackItem *const *) e1;
774 	const TrackItem *const *t2 = (const TrackItem *const *) e2;
775 
776 	return element_compare(&(*t1)->key, &(*t2)->key);
777 }
778 
779 /*
780  * qsort() comparator for sorting DECountItems by count
781  */
782 static int
783 countitem_compare_count(const void *e1, const void *e2)
784 {
785 	const DECountItem *const *t1 = (const DECountItem *const *) e1;
786 	const DECountItem *const *t2 = (const DECountItem *const *) e2;
787 
788 	if ((*t1)->count < (*t2)->count)
789 		return -1;
790 	else if ((*t1)->count == (*t2)->count)
791 		return 0;
792 	else
793 		return 1;
794 }
795