1 /*-------------------------------------------------------------------------
2  *
3  * htup_details.h
4  *	  POSTGRES heap tuple header definitions.
5  *
6  *
7  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * src/include/access/htup_details.h
11  *
12  *-------------------------------------------------------------------------
13  */
14 #ifndef HTUP_DETAILS_H
15 #define HTUP_DETAILS_H
16 
17 #include "access/htup.h"
18 #include "access/transam.h"
19 #include "access/tupdesc.h"
20 #include "access/tupmacs.h"
21 #include "storage/bufpage.h"
22 
23 /*
24  * MaxTupleAttributeNumber limits the number of (user) columns in a tuple.
25  * The key limit on this value is that the size of the fixed overhead for
26  * a tuple, plus the size of the null-values bitmap (at 1 bit per column),
27  * plus MAXALIGN alignment, must fit into t_hoff which is uint8.  On most
28  * machines the upper limit without making t_hoff wider would be a little
29  * over 1700.  We use round numbers here and for MaxHeapAttributeNumber
30  * so that alterations in HeapTupleHeaderData layout won't change the
31  * supported max number of columns.
32  */
33 #define MaxTupleAttributeNumber 1664	/* 8 * 208 */
34 
35 /*
36  * MaxHeapAttributeNumber limits the number of (user) columns in a table.
37  * This should be somewhat less than MaxTupleAttributeNumber.  It must be
38  * at least one less, else we will fail to do UPDATEs on a maximal-width
39  * table (because UPDATE has to form working tuples that include CTID).
40  * In practice we want some additional daylight so that we can gracefully
41  * support operations that add hidden "resjunk" columns, for example
42  * SELECT * FROM wide_table ORDER BY foo, bar, baz.
43  * In any case, depending on column data types you will likely be running
44  * into the disk-block-based limit on overall tuple size if you have more
45  * than a thousand or so columns.  TOAST won't help.
46  */
47 #define MaxHeapAttributeNumber	1600	/* 8 * 200 */
48 
49 /*
50  * Heap tuple header.  To avoid wasting space, the fields should be
51  * laid out in such a way as to avoid structure padding.
52  *
53  * Datums of composite types (row types) share the same general structure
54  * as on-disk tuples, so that the same routines can be used to build and
55  * examine them.  However the requirements are slightly different: a Datum
56  * does not need any transaction visibility information, and it does need
57  * a length word and some embedded type information.  We can achieve this
58  * by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple
59  * with the fields needed in the Datum case.  Typically, all tuples built
60  * in-memory will be initialized with the Datum fields; but when a tuple is
61  * about to be inserted in a table, the transaction fields will be filled,
62  * overwriting the datum fields.
63  *
64  * The overall structure of a heap tuple looks like:
65  *			fixed fields (HeapTupleHeaderData struct)
66  *			nulls bitmap (if HEAP_HASNULL is set in t_infomask)
67  *			alignment padding (as needed to make user data MAXALIGN'd)
68  *			object ID (if HEAP_HASOID_OLD is set in t_infomask, not created
69  *          anymore)
70  *			user data fields
71  *
72  * We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three
73  * physical fields.  Xmin and Xmax are always really stored, but Cmin, Cmax
74  * and Xvac share a field.  This works because we know that Cmin and Cmax
75  * are only interesting for the lifetime of the inserting and deleting
76  * transaction respectively.  If a tuple is inserted and deleted in the same
77  * transaction, we store a "combo" command id that can be mapped to the real
78  * cmin and cmax, but only by use of local state within the originating
79  * backend.  See combocid.c for more details.  Meanwhile, Xvac is only set by
80  * old-style VACUUM FULL, which does not have any command sub-structure and so
81  * does not need either Cmin or Cmax.  (This requires that old-style VACUUM
82  * FULL never try to move a tuple whose Cmin or Cmax is still interesting,
83  * ie, an insert-in-progress or delete-in-progress tuple.)
84  *
85  * A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid
86  * is initialized with its own TID (location).  If the tuple is ever updated,
87  * its t_ctid is changed to point to the replacement version of the tuple.  Or
88  * if the tuple is moved from one partition to another, due to an update of
89  * the partition key, t_ctid is set to a special value to indicate that
90  * (see ItemPointerSetMovedPartitions).  Thus, a tuple is the latest version
91  * of its row iff XMAX is invalid or
92  * t_ctid points to itself (in which case, if XMAX is valid, the tuple is
93  * either locked or deleted).  One can follow the chain of t_ctid links
94  * to find the newest version of the row, unless it was moved to a different
95  * partition.  Beware however that VACUUM might
96  * erase the pointed-to (newer) tuple before erasing the pointing (older)
97  * tuple.  Hence, when following a t_ctid link, it is necessary to check
98  * to see if the referenced slot is empty or contains an unrelated tuple.
99  * Check that the referenced tuple has XMIN equal to the referencing tuple's
100  * XMAX to verify that it is actually the descendant version and not an
101  * unrelated tuple stored into a slot recently freed by VACUUM.  If either
102  * check fails, one may assume that there is no live descendant version.
103  *
104  * t_ctid is sometimes used to store a speculative insertion token, instead
105  * of a real TID.  A speculative token is set on a tuple that's being
106  * inserted, until the inserter is sure that it wants to go ahead with the
107  * insertion.  Hence a token should only be seen on a tuple with an XMAX
108  * that's still in-progress, or invalid/aborted.  The token is replaced with
109  * the tuple's real TID when the insertion is confirmed.  One should never
110  * see a speculative insertion token while following a chain of t_ctid links,
111  * because they are not used on updates, only insertions.
112  *
113  * Following the fixed header fields, the nulls bitmap is stored (beginning
114  * at t_bits).  The bitmap is *not* stored if t_infomask shows that there
115  * are no nulls in the tuple.  If an OID field is present (as indicated by
116  * t_infomask), then it is stored just before the user data, which begins at
117  * the offset shown by t_hoff.  Note that t_hoff must be a multiple of
118  * MAXALIGN.
119  */
120 
121 typedef struct HeapTupleFields
122 {
123 	TransactionId t_xmin;		/* inserting xact ID */
124 	TransactionId t_xmax;		/* deleting or locking xact ID */
125 
126 	union
127 	{
128 		CommandId	t_cid;		/* inserting or deleting command ID, or both */
129 		TransactionId t_xvac;	/* old-style VACUUM FULL xact ID */
130 	}			t_field3;
131 } HeapTupleFields;
132 
133 typedef struct DatumTupleFields
134 {
135 	int32		datum_len_;		/* varlena header (do not touch directly!) */
136 
137 	int32		datum_typmod;	/* -1, or identifier of a record type */
138 
139 	Oid			datum_typeid;	/* composite type OID, or RECORDOID */
140 
141 	/*
142 	 * datum_typeid cannot be a domain over composite, only plain composite,
143 	 * even if the datum is meant as a value of a domain-over-composite type.
144 	 * This is in line with the general principle that CoerceToDomain does not
145 	 * change the physical representation of the base type value.
146 	 *
147 	 * Note: field ordering is chosen with thought that Oid might someday
148 	 * widen to 64 bits.
149 	 */
150 } DatumTupleFields;
151 
152 struct HeapTupleHeaderData
153 {
154 	union
155 	{
156 		HeapTupleFields t_heap;
157 		DatumTupleFields t_datum;
158 	}			t_choice;
159 
160 	ItemPointerData t_ctid;		/* current TID of this or newer tuple (or a
161 								 * speculative insertion token) */
162 
163 	/* Fields below here must match MinimalTupleData! */
164 
165 #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK2 2
166 	uint16		t_infomask2;	/* number of attributes + various flags */
167 
168 #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK 3
169 	uint16		t_infomask;		/* various flag bits, see below */
170 
171 #define FIELDNO_HEAPTUPLEHEADERDATA_HOFF 4
172 	uint8		t_hoff;			/* sizeof header incl. bitmap, padding */
173 
174 	/* ^ - 23 bytes - ^ */
175 
176 #define FIELDNO_HEAPTUPLEHEADERDATA_BITS 5
177 	bits8		t_bits[FLEXIBLE_ARRAY_MEMBER];	/* bitmap of NULLs */
178 
179 	/* MORE DATA FOLLOWS AT END OF STRUCT */
180 };
181 
182 /* typedef appears in htup.h */
183 
184 #define SizeofHeapTupleHeader offsetof(HeapTupleHeaderData, t_bits)
185 
186 /*
187  * information stored in t_infomask:
188  */
189 #define HEAP_HASNULL			0x0001	/* has null attribute(s) */
190 #define HEAP_HASVARWIDTH		0x0002	/* has variable-width attribute(s) */
191 #define HEAP_HASEXTERNAL		0x0004	/* has external stored attribute(s) */
192 #define HEAP_HASOID_OLD			0x0008	/* has an object-id field */
193 #define HEAP_XMAX_KEYSHR_LOCK	0x0010	/* xmax is a key-shared locker */
194 #define HEAP_COMBOCID			0x0020	/* t_cid is a combo cid */
195 #define HEAP_XMAX_EXCL_LOCK		0x0040	/* xmax is exclusive locker */
196 #define HEAP_XMAX_LOCK_ONLY		0x0080	/* xmax, if valid, is only a locker */
197 
198  /* xmax is a shared locker */
199 #define HEAP_XMAX_SHR_LOCK	(HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)
200 
201 #define HEAP_LOCK_MASK	(HEAP_XMAX_SHR_LOCK | HEAP_XMAX_EXCL_LOCK | \
202 						 HEAP_XMAX_KEYSHR_LOCK)
203 #define HEAP_XMIN_COMMITTED		0x0100	/* t_xmin committed */
204 #define HEAP_XMIN_INVALID		0x0200	/* t_xmin invalid/aborted */
205 #define HEAP_XMIN_FROZEN		(HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)
206 #define HEAP_XMAX_COMMITTED		0x0400	/* t_xmax committed */
207 #define HEAP_XMAX_INVALID		0x0800	/* t_xmax invalid/aborted */
208 #define HEAP_XMAX_IS_MULTI		0x1000	/* t_xmax is a MultiXactId */
209 #define HEAP_UPDATED			0x2000	/* this is UPDATEd version of row */
210 #define HEAP_MOVED_OFF			0x4000	/* moved to another place by pre-9.0
211 										 * VACUUM FULL; kept for binary
212 										 * upgrade support */
213 #define HEAP_MOVED_IN			0x8000	/* moved from another place by pre-9.0
214 										 * VACUUM FULL; kept for binary
215 										 * upgrade support */
216 #define HEAP_MOVED (HEAP_MOVED_OFF | HEAP_MOVED_IN)
217 
218 #define HEAP_XACT_MASK			0xFFF0	/* visibility-related bits */
219 
220 /*
221  * A tuple is only locked (i.e. not updated by its Xmax) if the
222  * HEAP_XMAX_LOCK_ONLY bit is set; or, for pg_upgrade's sake, if the Xmax is
223  * not a multi and the EXCL_LOCK bit is set.
224  *
225  * See also HeapTupleHeaderIsOnlyLocked, which also checks for a possible
226  * aborted updater transaction.
227  *
228  * Beware of multiple evaluations of the argument.
229  */
230 #define HEAP_XMAX_IS_LOCKED_ONLY(infomask) \
231 	(((infomask) & HEAP_XMAX_LOCK_ONLY) || \
232 	 (((infomask) & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK))
233 
234 /*
235  * A tuple that has HEAP_XMAX_IS_MULTI and HEAP_XMAX_LOCK_ONLY but neither of
236  * HEAP_XMAX_EXCL_LOCK and HEAP_XMAX_KEYSHR_LOCK must come from a tuple that was
237  * share-locked in 9.2 or earlier and then pg_upgrade'd.
238  *
239  * In 9.2 and prior, HEAP_XMAX_IS_MULTI was only set when there were multiple
240  * FOR SHARE lockers of that tuple.  That set HEAP_XMAX_LOCK_ONLY (with a
241  * different name back then) but neither of HEAP_XMAX_EXCL_LOCK and
242  * HEAP_XMAX_KEYSHR_LOCK.  That combination is no longer possible in 9.3 and
243  * up, so if we see that combination we know for certain that the tuple was
244  * locked in an earlier release; since all such lockers are gone (they cannot
245  * survive through pg_upgrade), such tuples can safely be considered not
246  * locked.
247  *
248  * We must not resolve such multixacts locally, because the result would be
249  * bogus, regardless of where they stand with respect to the current valid
250  * multixact range.
251  */
252 #define HEAP_LOCKED_UPGRADED(infomask) \
253 ( \
254 	 ((infomask) & HEAP_XMAX_IS_MULTI) != 0 && \
255 	 ((infomask) & HEAP_XMAX_LOCK_ONLY) != 0 && \
256 	 (((infomask) & (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)) == 0) \
257 )
258 
259 /*
260  * Use these to test whether a particular lock is applied to a tuple
261  */
262 #define HEAP_XMAX_IS_SHR_LOCKED(infomask) \
263 	(((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_SHR_LOCK)
264 #define HEAP_XMAX_IS_EXCL_LOCKED(infomask) \
265 	(((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK)
266 #define HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) \
267 	(((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK)
268 
269 /* turn these all off when Xmax is to change */
270 #define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | \
271 						HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK | HEAP_XMAX_LOCK_ONLY)
272 
273 /*
274  * information stored in t_infomask2:
275  */
276 #define HEAP_NATTS_MASK			0x07FF	/* 11 bits for number of attributes */
277 /* bits 0x1800 are available */
278 #define HEAP_KEYS_UPDATED		0x2000	/* tuple was updated and key cols
279 										 * modified, or tuple deleted */
280 #define HEAP_HOT_UPDATED		0x4000	/* tuple was HOT-updated */
281 #define HEAP_ONLY_TUPLE			0x8000	/* this is heap-only tuple */
282 
283 #define HEAP2_XACT_MASK			0xE000	/* visibility-related bits */
284 
285 /*
286  * HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins.  It is
287  * only used in tuples that are in the hash table, and those don't need
288  * any visibility information, so we can overlay it on a visibility flag
289  * instead of using up a dedicated bit.
290  */
291 #define HEAP_TUPLE_HAS_MATCH	HEAP_ONLY_TUPLE /* tuple has a join match */
292 
293 /*
294  * HeapTupleHeader accessor macros
295  *
296  * Note: beware of multiple evaluations of "tup" argument.  But the Set
297  * macros evaluate their other argument only once.
298  */
299 
300 /*
301  * HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid
302  * originally used to insert the tuple.  However, the tuple might actually
303  * be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin
304  * is visible to every snapshot.  Prior to PostgreSQL 9.4, we actually changed
305  * the xmin to FrozenTransactionId, and that value may still be encountered
306  * on disk.
307  */
308 #define HeapTupleHeaderGetRawXmin(tup) \
309 ( \
310 	(tup)->t_choice.t_heap.t_xmin \
311 )
312 
313 #define HeapTupleHeaderGetXmin(tup) \
314 ( \
315 	HeapTupleHeaderXminFrozen(tup) ? \
316 		FrozenTransactionId : HeapTupleHeaderGetRawXmin(tup) \
317 )
318 
319 #define HeapTupleHeaderSetXmin(tup, xid) \
320 ( \
321 	(tup)->t_choice.t_heap.t_xmin = (xid) \
322 )
323 
324 #define HeapTupleHeaderXminCommitted(tup) \
325 ( \
326 	((tup)->t_infomask & HEAP_XMIN_COMMITTED) != 0 \
327 )
328 
329 #define HeapTupleHeaderXminInvalid(tup) \
330 ( \
331 	((tup)->t_infomask & (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)) == \
332 		HEAP_XMIN_INVALID \
333 )
334 
335 #define HeapTupleHeaderXminFrozen(tup) \
336 ( \
337 	((tup)->t_infomask & (HEAP_XMIN_FROZEN)) == HEAP_XMIN_FROZEN \
338 )
339 
340 #define HeapTupleHeaderSetXminCommitted(tup) \
341 ( \
342 	AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \
343 	((tup)->t_infomask |= HEAP_XMIN_COMMITTED) \
344 )
345 
346 #define HeapTupleHeaderSetXminInvalid(tup) \
347 ( \
348 	AssertMacro(!HeapTupleHeaderXminCommitted(tup)), \
349 	((tup)->t_infomask |= HEAP_XMIN_INVALID) \
350 )
351 
352 #define HeapTupleHeaderSetXminFrozen(tup) \
353 ( \
354 	AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \
355 	((tup)->t_infomask |= HEAP_XMIN_FROZEN) \
356 )
357 
358 /*
359  * HeapTupleHeaderGetRawXmax gets you the raw Xmax field.  To find out the Xid
360  * that updated a tuple, you might need to resolve the MultiXactId if certain
361  * bits are set.  HeapTupleHeaderGetUpdateXid checks those bits and takes care
362  * to resolve the MultiXactId if necessary.  This might involve multixact I/O,
363  * so it should only be used if absolutely necessary.
364  */
365 #define HeapTupleHeaderGetUpdateXid(tup) \
366 ( \
367 	(!((tup)->t_infomask & HEAP_XMAX_INVALID) && \
368 	 ((tup)->t_infomask & HEAP_XMAX_IS_MULTI) && \
369 	 !((tup)->t_infomask & HEAP_XMAX_LOCK_ONLY)) ? \
370 		HeapTupleGetUpdateXid(tup) \
371 	: \
372 		HeapTupleHeaderGetRawXmax(tup) \
373 )
374 
375 #define HeapTupleHeaderGetRawXmax(tup) \
376 ( \
377 	(tup)->t_choice.t_heap.t_xmax \
378 )
379 
380 #define HeapTupleHeaderSetXmax(tup, xid) \
381 ( \
382 	(tup)->t_choice.t_heap.t_xmax = (xid) \
383 )
384 
385 /*
386  * HeapTupleHeaderGetRawCommandId will give you what's in the header whether
387  * it is useful or not.  Most code should use HeapTupleHeaderGetCmin or
388  * HeapTupleHeaderGetCmax instead, but note that those Assert that you can
389  * get a legitimate result, ie you are in the originating transaction!
390  */
391 #define HeapTupleHeaderGetRawCommandId(tup) \
392 ( \
393 	(tup)->t_choice.t_heap.t_field3.t_cid \
394 )
395 
396 /* SetCmin is reasonably simple since we never need a combo CID */
397 #define HeapTupleHeaderSetCmin(tup, cid) \
398 do { \
399 	Assert(!((tup)->t_infomask & HEAP_MOVED)); \
400 	(tup)->t_choice.t_heap.t_field3.t_cid = (cid); \
401 	(tup)->t_infomask &= ~HEAP_COMBOCID; \
402 } while (0)
403 
404 /* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */
405 #define HeapTupleHeaderSetCmax(tup, cid, iscombo) \
406 do { \
407 	Assert(!((tup)->t_infomask & HEAP_MOVED)); \
408 	(tup)->t_choice.t_heap.t_field3.t_cid = (cid); \
409 	if (iscombo) \
410 		(tup)->t_infomask |= HEAP_COMBOCID; \
411 	else \
412 		(tup)->t_infomask &= ~HEAP_COMBOCID; \
413 } while (0)
414 
415 #define HeapTupleHeaderGetXvac(tup) \
416 ( \
417 	((tup)->t_infomask & HEAP_MOVED) ? \
418 		(tup)->t_choice.t_heap.t_field3.t_xvac \
419 	: \
420 		InvalidTransactionId \
421 )
422 
423 #define HeapTupleHeaderSetXvac(tup, xid) \
424 do { \
425 	Assert((tup)->t_infomask & HEAP_MOVED); \
426 	(tup)->t_choice.t_heap.t_field3.t_xvac = (xid); \
427 } while (0)
428 
429 #define HeapTupleHeaderIsSpeculative(tup) \
430 ( \
431 	(ItemPointerGetOffsetNumberNoCheck(&(tup)->t_ctid) == SpecTokenOffsetNumber) \
432 )
433 
434 #define HeapTupleHeaderGetSpeculativeToken(tup) \
435 ( \
436 	AssertMacro(HeapTupleHeaderIsSpeculative(tup)), \
437 	ItemPointerGetBlockNumber(&(tup)->t_ctid) \
438 )
439 
440 #define HeapTupleHeaderSetSpeculativeToken(tup, token)	\
441 ( \
442 	ItemPointerSet(&(tup)->t_ctid, token, SpecTokenOffsetNumber) \
443 )
444 
445 #define HeapTupleHeaderIndicatesMovedPartitions(tup) \
446 	(ItemPointerGetOffsetNumber(&(tup)->t_ctid) == MovedPartitionsOffsetNumber && \
447 	 ItemPointerGetBlockNumberNoCheck(&(tup)->t_ctid) == MovedPartitionsBlockNumber)
448 
449 #define HeapTupleHeaderSetMovedPartitions(tup) \
450 	ItemPointerSet(&(tup)->t_ctid, MovedPartitionsBlockNumber, MovedPartitionsOffsetNumber)
451 
452 #define HeapTupleHeaderGetDatumLength(tup) \
453 	VARSIZE(tup)
454 
455 #define HeapTupleHeaderSetDatumLength(tup, len) \
456 	SET_VARSIZE(tup, len)
457 
458 #define HeapTupleHeaderGetTypeId(tup) \
459 ( \
460 	(tup)->t_choice.t_datum.datum_typeid \
461 )
462 
463 #define HeapTupleHeaderSetTypeId(tup, typeid) \
464 ( \
465 	(tup)->t_choice.t_datum.datum_typeid = (typeid) \
466 )
467 
468 #define HeapTupleHeaderGetTypMod(tup) \
469 ( \
470 	(tup)->t_choice.t_datum.datum_typmod \
471 )
472 
473 #define HeapTupleHeaderSetTypMod(tup, typmod) \
474 ( \
475 	(tup)->t_choice.t_datum.datum_typmod = (typmod) \
476 )
477 
478 /*
479  * Note that we stop considering a tuple HOT-updated as soon as it is known
480  * aborted or the would-be updating transaction is known aborted.  For best
481  * efficiency, check tuple visibility before using this macro, so that the
482  * INVALID bits will be as up to date as possible.
483  */
484 #define HeapTupleHeaderIsHotUpdated(tup) \
485 ( \
486 	((tup)->t_infomask2 & HEAP_HOT_UPDATED) != 0 && \
487 	((tup)->t_infomask & HEAP_XMAX_INVALID) == 0 && \
488 	!HeapTupleHeaderXminInvalid(tup) \
489 )
490 
491 #define HeapTupleHeaderSetHotUpdated(tup) \
492 ( \
493 	(tup)->t_infomask2 |= HEAP_HOT_UPDATED \
494 )
495 
496 #define HeapTupleHeaderClearHotUpdated(tup) \
497 ( \
498 	(tup)->t_infomask2 &= ~HEAP_HOT_UPDATED \
499 )
500 
501 #define HeapTupleHeaderIsHeapOnly(tup) \
502 ( \
503   ((tup)->t_infomask2 & HEAP_ONLY_TUPLE) != 0 \
504 )
505 
506 #define HeapTupleHeaderSetHeapOnly(tup) \
507 ( \
508   (tup)->t_infomask2 |= HEAP_ONLY_TUPLE \
509 )
510 
511 #define HeapTupleHeaderClearHeapOnly(tup) \
512 ( \
513   (tup)->t_infomask2 &= ~HEAP_ONLY_TUPLE \
514 )
515 
516 #define HeapTupleHeaderHasMatch(tup) \
517 ( \
518   ((tup)->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0 \
519 )
520 
521 #define HeapTupleHeaderSetMatch(tup) \
522 ( \
523   (tup)->t_infomask2 |= HEAP_TUPLE_HAS_MATCH \
524 )
525 
526 #define HeapTupleHeaderClearMatch(tup) \
527 ( \
528   (tup)->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH \
529 )
530 
531 #define HeapTupleHeaderGetNatts(tup) \
532 	((tup)->t_infomask2 & HEAP_NATTS_MASK)
533 
534 #define HeapTupleHeaderSetNatts(tup, natts) \
535 ( \
536 	(tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts) \
537 )
538 
539 #define HeapTupleHeaderHasExternal(tup) \
540 		(((tup)->t_infomask & HEAP_HASEXTERNAL) != 0)
541 
542 
543 /*
544  * BITMAPLEN(NATTS) -
545  *		Computes size of null bitmap given number of data columns.
546  */
547 #define BITMAPLEN(NATTS)	(((int)(NATTS) + 7) / 8)
548 
549 /*
550  * MaxHeapTupleSize is the maximum allowed size of a heap tuple, including
551  * header and MAXALIGN alignment padding.  Basically it's BLCKSZ minus the
552  * other stuff that has to be on a disk page.  Since heap pages use no
553  * "special space", there's no deduction for that.
554  *
555  * NOTE: we allow for the ItemId that must point to the tuple, ensuring that
556  * an otherwise-empty page can indeed hold a tuple of this size.  Because
557  * ItemIds and tuples have different alignment requirements, don't assume that
558  * you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page.
559  */
560 #define MaxHeapTupleSize  (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData)))
561 #define MinHeapTupleSize  MAXALIGN(SizeofHeapTupleHeader)
562 
563 /*
564  * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can
565  * fit on one heap page.  (Note that indexes could have more, because they
566  * use a smaller tuple header.)  We arrive at the divisor because each tuple
567  * must be maxaligned, and it must have an associated line pointer.
568  *
569  * Note: with HOT, there could theoretically be more line pointers (not actual
570  * tuples) than this on a heap page.  However we constrain the number of line
571  * pointers to this anyway, to avoid excessive line-pointer bloat and not
572  * require increases in the size of work arrays.
573  */
574 #define MaxHeapTuplesPerPage	\
575 	((int) ((BLCKSZ - SizeOfPageHeaderData) / \
576 			(MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData))))
577 
578 /*
579  * MaxAttrSize is a somewhat arbitrary upper limit on the declared size of
580  * data fields of char(n) and similar types.  It need not have anything
581  * directly to do with the *actual* upper limit of varlena values, which
582  * is currently 1Gb (see TOAST structures in postgres.h).  I've set it
583  * at 10Mb which seems like a reasonable number --- tgl 8/6/00.
584  */
585 #define MaxAttrSize		(10 * 1024 * 1024)
586 
587 
588 /*
589  * MinimalTuple is an alternative representation that is used for transient
590  * tuples inside the executor, in places where transaction status information
591  * is not required, the tuple rowtype is known, and shaving off a few bytes
592  * is worthwhile because we need to store many tuples.  The representation
593  * is chosen so that tuple access routines can work with either full or
594  * minimal tuples via a HeapTupleData pointer structure.  The access routines
595  * see no difference, except that they must not access the transaction status
596  * or t_ctid fields because those aren't there.
597  *
598  * For the most part, MinimalTuples should be accessed via TupleTableSlot
599  * routines.  These routines will prevent access to the "system columns"
600  * and thereby prevent accidental use of the nonexistent fields.
601  *
602  * MinimalTupleData contains a length word, some padding, and fields matching
603  * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so
604  * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both
605  * structs.   This makes data alignment rules equivalent in both cases.
606  *
607  * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is
608  * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the
609  * minimal tuple --- that is, where a full tuple matching the minimal tuple's
610  * data would start.  This trick is what makes the structs seem equivalent.
611  *
612  * Note that t_hoff is computed the same as in a full tuple, hence it includes
613  * the MINIMAL_TUPLE_OFFSET distance.  t_len does not include that, however.
614  *
615  * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data
616  * other than the length word.  tuplesort.c and tuplestore.c use this to avoid
617  * writing the padding to disk.
618  */
619 #define MINIMAL_TUPLE_OFFSET \
620 	((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF)
621 #define MINIMAL_TUPLE_PADDING \
622 	((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF)
623 #define MINIMAL_TUPLE_DATA_OFFSET \
624 	offsetof(MinimalTupleData, t_infomask2)
625 
626 struct MinimalTupleData
627 {
628 	uint32		t_len;			/* actual length of minimal tuple */
629 
630 	char		mt_padding[MINIMAL_TUPLE_PADDING];
631 
632 	/* Fields below here must match HeapTupleHeaderData! */
633 
634 	uint16		t_infomask2;	/* number of attributes + various flags */
635 
636 	uint16		t_infomask;		/* various flag bits, see below */
637 
638 	uint8		t_hoff;			/* sizeof header incl. bitmap, padding */
639 
640 	/* ^ - 23 bytes - ^ */
641 
642 	bits8		t_bits[FLEXIBLE_ARRAY_MEMBER];	/* bitmap of NULLs */
643 
644 	/* MORE DATA FOLLOWS AT END OF STRUCT */
645 };
646 
647 /* typedef appears in htup.h */
648 
649 #define SizeofMinimalTupleHeader offsetof(MinimalTupleData, t_bits)
650 
651 
652 /*
653  * GETSTRUCT - given a HeapTuple pointer, return address of the user data
654  */
655 #define GETSTRUCT(TUP) ((char *) ((TUP)->t_data) + (TUP)->t_data->t_hoff)
656 
657 /*
658  * Accessor macros to be used with HeapTuple pointers.
659  */
660 
661 #define HeapTupleHasNulls(tuple) \
662 		(((tuple)->t_data->t_infomask & HEAP_HASNULL) != 0)
663 
664 #define HeapTupleNoNulls(tuple) \
665 		(!((tuple)->t_data->t_infomask & HEAP_HASNULL))
666 
667 #define HeapTupleHasVarWidth(tuple) \
668 		(((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH) != 0)
669 
670 #define HeapTupleAllFixed(tuple) \
671 		(!((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH))
672 
673 #define HeapTupleHasExternal(tuple) \
674 		(((tuple)->t_data->t_infomask & HEAP_HASEXTERNAL) != 0)
675 
676 #define HeapTupleIsHotUpdated(tuple) \
677 		HeapTupleHeaderIsHotUpdated((tuple)->t_data)
678 
679 #define HeapTupleSetHotUpdated(tuple) \
680 		HeapTupleHeaderSetHotUpdated((tuple)->t_data)
681 
682 #define HeapTupleClearHotUpdated(tuple) \
683 		HeapTupleHeaderClearHotUpdated((tuple)->t_data)
684 
685 #define HeapTupleIsHeapOnly(tuple) \
686 		HeapTupleHeaderIsHeapOnly((tuple)->t_data)
687 
688 #define HeapTupleSetHeapOnly(tuple) \
689 		HeapTupleHeaderSetHeapOnly((tuple)->t_data)
690 
691 #define HeapTupleClearHeapOnly(tuple) \
692 		HeapTupleHeaderClearHeapOnly((tuple)->t_data)
693 
694 
695 /* ----------------
696  *		fastgetattr
697  *
698  *		Fetch a user attribute's value as a Datum (might be either a
699  *		value, or a pointer into the data area of the tuple).
700  *
701  *		This must not be used when a system attribute might be requested.
702  *		Furthermore, the passed attnum MUST be valid.  Use heap_getattr()
703  *		instead, if in doubt.
704  *
705  *		This gets called many times, so we macro the cacheable and NULL
706  *		lookups, and call nocachegetattr() for the rest.
707  * ----------------
708  */
709 
710 #if !defined(DISABLE_COMPLEX_MACRO)
711 
712 #define fastgetattr(tup, attnum, tupleDesc, isnull)					\
713 (																	\
714 	AssertMacro((attnum) > 0),										\
715 	(*(isnull) = false),											\
716 	HeapTupleNoNulls(tup) ?											\
717 	(																\
718 		TupleDescAttr((tupleDesc), (attnum)-1)->attcacheoff >= 0 ?	\
719 		(															\
720 			fetchatt(TupleDescAttr((tupleDesc), (attnum)-1),		\
721 				(char *) (tup)->t_data + (tup)->t_data->t_hoff +	\
722 				TupleDescAttr((tupleDesc), (attnum)-1)->attcacheoff)\
723 		)															\
724 		:															\
725 			nocachegetattr((tup), (attnum), (tupleDesc))			\
726 	)																\
727 	:																\
728 	(																\
729 		att_isnull((attnum)-1, (tup)->t_data->t_bits) ?				\
730 		(															\
731 			(*(isnull) = true),										\
732 			(Datum)NULL												\
733 		)															\
734 		:															\
735 		(															\
736 			nocachegetattr((tup), (attnum), (tupleDesc))			\
737 		)															\
738 	)																\
739 )
740 #else							/* defined(DISABLE_COMPLEX_MACRO) */
741 
742 extern Datum fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
743 						 bool *isnull);
744 #endif							/* defined(DISABLE_COMPLEX_MACRO) */
745 
746 
747 /* ----------------
748  *		heap_getattr
749  *
750  *		Extract an attribute of a heap tuple and return it as a Datum.
751  *		This works for either system or user attributes.  The given attnum
752  *		is properly range-checked.
753  *
754  *		If the field in question has a NULL value, we return a zero Datum
755  *		and set *isnull == true.  Otherwise, we set *isnull == false.
756  *
757  *		<tup> is the pointer to the heap tuple.  <attnum> is the attribute
758  *		number of the column (field) caller wants.  <tupleDesc> is a
759  *		pointer to the structure describing the row and all its fields.
760  * ----------------
761  */
762 #define heap_getattr(tup, attnum, tupleDesc, isnull) \
763 	( \
764 		((attnum) > 0) ? \
765 		( \
766 			((attnum) > (int) HeapTupleHeaderGetNatts((tup)->t_data)) ? \
767 				getmissingattr((tupleDesc), (attnum), (isnull)) \
768 			: \
769 				fastgetattr((tup), (attnum), (tupleDesc), (isnull)) \
770 		) \
771 		: \
772 			heap_getsysattr((tup), (attnum), (tupleDesc), (isnull)) \
773 	)
774 
775 
776 /* prototypes for functions in common/heaptuple.c */
777 extern Size heap_compute_data_size(TupleDesc tupleDesc,
778 								   Datum *values, bool *isnull);
779 extern void heap_fill_tuple(TupleDesc tupleDesc,
780 							Datum *values, bool *isnull,
781 							char *data, Size data_size,
782 							uint16 *infomask, bits8 *bit);
783 extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc);
784 extern Datum nocachegetattr(HeapTuple tup, int attnum,
785 							TupleDesc att);
786 extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
787 							 bool *isnull);
788 extern Datum getmissingattr(TupleDesc tupleDesc,
789 							int attnum, bool *isnull);
790 extern HeapTuple heap_copytuple(HeapTuple tuple);
791 extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest);
792 extern Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc);
793 extern HeapTuple heap_form_tuple(TupleDesc tupleDescriptor,
794 								 Datum *values, bool *isnull);
795 extern HeapTuple heap_modify_tuple(HeapTuple tuple,
796 								   TupleDesc tupleDesc,
797 								   Datum *replValues,
798 								   bool *replIsnull,
799 								   bool *doReplace);
800 extern HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple,
801 										   TupleDesc tupleDesc,
802 										   int nCols,
803 										   int *replCols,
804 										   Datum *replValues,
805 										   bool *replIsnull);
806 extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc,
807 							  Datum *values, bool *isnull);
808 extern void heap_freetuple(HeapTuple htup);
809 extern MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor,
810 											Datum *values, bool *isnull);
811 extern void heap_free_minimal_tuple(MinimalTuple mtup);
812 extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup);
813 extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup);
814 extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup);
815 extern size_t varsize_any(void *p);
816 extern HeapTuple heap_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
817 extern MinimalTuple minimal_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
818 
819 #endif							/* HTUP_DETAILS_H */
820